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1 Introduction 

The successful development of artificial intelligence would have a tremendous 
technological and intellectual impact. The AI research effort over the past 30 
years has had some important successes but has also shown many tasks to be 
more complex than first thought. Mainstream AI research through the 1970's 
was dominated by a symbolic approach. In the 1980's, connectionist approaches 
based on artificial neural network models gained in popularity. Both approaches 
have significant strengths and weaknesses. Because the areas of weakness are 
fairly complementary, the time is ripe to forge a new synthesis combining the 
positive aspects of symbolic AI and connectionism. This paper proposes a set 
of characteristics for such a combined approach and describes some of our work 
in that direction. 

1.1 Strengths of Symbolic AI 

Coherent semantics. Much of symbolic AI uses formal logic as a foun­
dation for inference. This base gives the representation a coherent underlying 
semantics. One can treat inference as a variant of theorem proving. To the 
extent that the axioms and rules of inference correctly reflect the domain being 
modelled, the reasoning process must give coherent results. 

Dynamic structure. The use of predicate logic allows symbol-based sys­
tems to represent dynamically structured situations. Knowledge bases typically 
contain relational information which can be combined in complex ways, not 
foreseen by the knowledge engineer. 

mailto:om@icsLberkeley.edu
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Understandable representation. The symbolic representation of knowl­
edge is close to the linguistic form used by people for communicating and ma­
nipulating knowledge. This allows symbolic systems to explain conclusions in 
a way that people find understandable. It also makes it possible for knowledge 
engineers to introspect and construct rules for a domain by hand. 

1.2 Weaknesses of Symbolic AI 

Brittleness. Because symbolic rules tend to work in an "all or none" fashion, 
the performance of a system can drop off dramatically at boundaries of its 
competence. This kind of "brittleness" has been seen repeatedly in symbolic 
expert systems. 

Poor uncertainty representation. Because symbolic systems are funda­
mentally logic based, there isn't a natural semantically coherent way of repre­
senting uncertainty. Attempts to syntactically add uncertainty to these repre­
sentations tend to give rise to incorrect assessments in only a few steps of an 
inference chain. 

Poor quantitative representation. Symbolic systems are not natural for 
representing the quantitative data that arises in sensory domains. For example, 
symbolic systems tend to be quite stilted for visual representation or geometric 
reasoning. 

Weak learning. While there have been advances in symbolic machine 
learning, it is still rather weak compared with quantitative approaches. Because 
symbolic systems don't represent uncertainty well, it is difficult for the system 
to determine what to modify for improvement during learning. 

High development cost. Because symbolic knowledge bases must usually 
be entirely constructed by hand, building a system for a new domain is an 
expensive endeavor requiring many man-years. 

1.3 Strengths of Connectionism 

Naturally evidential. Connectionist representations have been fundamen­
tally evidential from the start. A state of knowledge is represented by the analog 
activation state of neuron-like units. Typically, a greater strength of activation 
represents greater confidence in the presence of a particular feature. 

Naturally quantitative. Because they are fundamentally quantitative, 
connectionist representations are well-suited to geometric and quantitative do­
mains. Analog information from auditory or visual input is naturally repre­
sented and manipulated. Synthetic connectionist systems have been built which 
well-model the corresponding biological systems. 

Quantitative learning. The adaptive weights in connectionist represen­
tations combined with the recent development of many powerful learning rules 
give rise to a powerful quantitative learning capability. It is now commonplace 
to use neural networks to learn simple quantitative and geometric relationships. 
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Naturally parallel. The computation of unit activation in connectionist 
systems is naturally parallel. This type of representation therefore appears to 
be natural for the next generation of computer hardware. 

1.4 Weaknesses of Connectionism 

Fixed structure. Unlike symbolic representations, most connectionist sys­
tems require the pattern of connectivity between units to be fixed in advance. 
This makes it difficult to bind symbols to variables and to represent relational 
information in connectionist systems. 

Opaque. The connectionist representation of knowledge is often opaque 
to humans, especially in unstructured neural networks. Numerical learning 
procedures can spread the representation of a concept over a whole network. 
This makes it difficult for a person to follow the "reasoning" of the network and 
also makes transfer of knowledge to other systems problematic. 

Poor semantics. Most connectionist systems do not have a coherent under­
lying semantic base. While the representations are evidential, it is often difficult 
to say exactly what a particular activation state means about the world. 

Poor structural learning. While most connectionist systems support 
powerful quantitative learning, they usually don't support the learning of new 
relationships. 

1.5 Toward a Synthesis 

The time appears ripe to form a synthesis exhibiting the best characteristics 
of symbolic and connectionist systems while avoiding the weaknesses. Work in 
being done in both the symbolic and connectionist domains towards this goal. 

Structured connectionism is an approach which aims to put more structure 
on connectionist representations. This structure makes the representations more 
understandable to people, provides a more coherent semantics, and allows the 
incorporation of more prior knowledge. Probabilistic networks are a similar kind 
of representation which starts from a probabilistic representation and explicitly 
encodes conditional independence relationships. Both of these representations 
have a static underlying graph structure, however. 

There have also been several attempts to add evidential components to sym­
bolic representations. Most of these attempt to preserve the syntactic compu­
tational structure that is characteristic oflogic, however, and so cannot support 
the coherent semantics of probability theory. 

We do not present a complete synthesis here, but do describe some of our 
research which aims in that direction. We believe that such a representation 
must: 

• have a coherent underlying probahilistic semantics. 
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• be capable of representing and manipulating quantitative geometric and 
physical information. 

• 	 support powerful learning and generalization of both quantitative and 
structural relationships. 

• 	 support the representation and manipulation of dynamically structured 
relational representations. 

• 	 be computationally etIicient. 

2 Learning and Recognition 

Two lessons that most researchers would agree have been learned in the pur­
suit of artificial intelligence are that: 1) Large amounts of knowledge are nec­
essary to perform well in even slightly complex domains and 2) Symbols must 
be grounded in the real world of physical objects to avoid physically incoherent 
conclusions. 

The most efficient way to develop large knowledge bases is through the ex­
tensive use of learning. Not only is learning more cost effective, it provides 
better guarantees of domain coverage than hand-built systems because the sys­
tem itself can seek to improve weak areas. The most efficient way to ground 
symbols in the physical world is through perception and interaction. 

The two tasks of learning and perception are therefore central to the develop­
ment of effective AI. Both of these are fundamentally inductive model-building 
tasks. The system must generalize on the basis of noisy and impoverished data. 
In the case of recognition, the system must construct a perceptual model to 
account for sense data. In the case of learning, the system must construct a 
knowledge base to account for past experiences. In many ways, learning is a 
longer time version of recognition. Learning provides the model construction 
materials for recognition. 

2.1 Simple Neural Net Learning 

Many currently popular learning algorithms have certain properties which 
make them ill-suited to complex AI tasks. We will use back-propagation neu­
ral networks as an example but the criticisms are applicable to many other 
approaches as welL The characteristics of these models include: 

• 	 A fixed small space of possible models is chosen before any learning takes 
place. Eg., an experimenter might choose a particular neural network 
architecture to learn a mapping. 

• A simple parameterization of the model space 	is chosen. Eg., back­
propagation networks are usually parameterized by their synaptic weight 
values. 



3 

7 


HUMA.N AND ANIMAL COGNITION 


• 	The system starts at randomly chosen parameter value. Eg., the network 
weights are chosen randomly. 

• 	 The parameters are gradually modified to improve performance on the 
training data. Eg., the use of back-propagation for stochastic error gradi­
ent descent. 

• 	The system might possibly include terms to help prevent overfitting. Eg., 
weight decay or cross-validation are often used in conjunction with back­
propagation networks to stop training early or to modify its course. 

There are a number of problems with this type of algorithm both in their 
absolute learning performance and as models for animal cognition. 

Because the representation space starts out as large as it will ever be, the 
system always has a fully formed model of the world. This model is a poor one 
at first but gradually improves. The system always thinks it has a complete 
model, though. It doesn't have a measure of what is reliable knowledge based 
on experience and what is due to the random initial conditions. In this sense, 
the system doesn't know what it knows. 

Such systems are usually incapable of one-shot learning. Single examples 
rarely have a big impact and many examples of a give type must be seen to pull 
the model parameters into a region which explains them. Tuning one part of 
the model space will often interfere with performance in another. 

Many of the problems arise from the initial choice of model space. If it has 
too small a representational power then it may not be rich enough to represent 
the true model. If the space is too large, then the system is subject to overfit­
ting. This means that specific examples are inappropriately generalized. Large 
numbers of examples are required to reliably fit the parameters of large model 
spaces. These systems also typically cannot allocate their resources. The model 
space may be large enough, but it can't put the representational power where 
it is needed. 

These systems are often very slow to learn because they gradually vary the 
parameters. They are liable to get stuck in local minima because all parts 
of a complex space are simultaneously manipulated and different portions can 
interfere with one another. They are computationally expensive because the 
full model is evaluated for each example. Most of these systems do not have a 
coherent underlying semantics. Such a semantics is essential, for example, to 
compositionally build up complex models from simple ones. 

Human and Animal Cognition 

What is known of human and animal cognition appears to have a very different 
character from the models described in the last section. Animals are typically 
capable of one-shot learning. Individual experiences can have a big impact on 

3 
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the future behavior of an animaL One experience with a noxious substance 
will keep rats from ever sampling food with a similar smell again. Humans 
have episodic memory for specific events, especially when first learning about a 
domain. Each early experience in a domain is critical for discovering regularities 
and it is worthwhile for the animal to expend the resources to remember it. 

Early in learning, generalization appears to proceed by similarity. In [13], 
Shepard has studied generalization from a single experience in a wide variety 
of domains. There appears to be a universal law of generalization in which the 
effect of an experience at one sensory parameter value is generalized to other 
parameter values according to a decaying exponential, ie. it is based on the 
distance in the sensory space. 

As experience accumulates, animals build more complex models as they are 
warranted. These models have an adaptive structure and may be complex in 
one part of the domain while they are simple in other parts. For the most part, 
animal and human learning seems to avoid overfitting and getting stuck in local 
minima. There are a variety of elaborate focus of attention mechanisms which 
allow ananimal to only access relevant information. 

People generally know what they know. They have a sense of how much 
confidence they should place in their experience in a given domain. Human 
cognition is adaptable to a wide variety of domains. Finally, in many natural 
domains human cognition is well-modelled by a coherent underlying Bayesian 
semantics [1]. (There is also an extensive literature documenting the failure 
of human probabilistic reasoning outside of the natural domains in which it 
evolved [5].) We will describe Bayesian induction in the next section and then 
present artificial induction algorithms which have many of these characteristics 
of biological systems. 

4 The Bayesian Approach 

Over the past several centuries, probability theory has evolved into a powerful 
mathematical model for representing and manipulating uncertainty. It is used 
both in "objective" situations in which uncertainty arises from physical noise 
processes and in "subjective" situations in which uncertainty is due to ignorance 
(there has been much debate over whether these are in fact distinct). Probability 
theory may be applied to uncertain reasoning in both of these circumstances and 
the resulting inference procedure has come to be known as Bayesian decision 
theory [2). 

Consider a rational agent (such as a robot or biological organism) which 
must make decisions on the basis of its current perceptions, its past experience, 
and any built-in knowledge. To compare different possible actions, the agent 
must have a set of built-in preferences for certain states of the world over certain 
others. This is usually encoded in a utility function U (a, s) which encodes the 
"goodness" of taking the action a when the true state of the world is s. The 
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agent would like to take that action which maximizes this utility. The problem is 
that the agent doesn't have direct access to the state of the world s. It only has 
access to perceptual data d which is noisily related to the state of the world by 
a probability distribution p(dls). When this probability is viewed as a function 
of s with d held fixed, it is called the likelihood l(sld). 

First, consider the objective probability case. Assume that the state of the 
world is chosen from a distribution 7r(s) which is called the prior distribution 
over the state of the world. For a given world state s, the agent is presented with 
sensory data d drawn from the distribution p(dls). How should the agent act so 
as to maximize his expected utility? Probability theory provides a precise and 
objective answer to this question using Bayes' theorem. The agent should first 
compute the posterior probability of each possible state of the world conditioned 
on the data: 

p(sld) = 7r(s)p(dls)
Is 7r(s)p(dls)ds 

This encodes the agent's estimate of the probability of each world state. 
The agent should choose that action which maximizes the expected utility when 
averaged with respect to this posterior distribution: 

a = argmaxa U(a, s)p(sld)ds 1 

Since the normalization factor is a constant, the agent may equivalently do: 

a = argmaxa U(a, S)7r(s)l(sld)ds 1 
ie. the agent should take that action which maximizes the utility times the prior 
times the likelihood integrated over the possible world states. 

The subjective version doesn't make assumptions about the world but in­
stead focusses on the agent. Under a set of very reasonable assumptions (eg. 
that the agent's preference relationship is transitive), there is a powerful theo­
rem [12] which says that a rational agent must behave as if it were performing 
the Bayesian analysis described above with respect to some choice of prior dis­
tribution and utility function. If it does not, then it is subject to exploitation 
by other agents. For example, it will accept certain "Dutch bets" in which it 
loses regardless of the state of the world. In a competitive evolutionary setting, 
agents which don't behave in a Bayesian way will be outperformed by those 
that do. 

In these two senses, the Bayesian procedure is a goal toward which rational 
agents should strive. It should be possible to construct artificial agents which 
outperform humans in many situations by approximating the Bayesian choice 
of action more accurately. 
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5 NATURAL PRIORS FOR INDUCTION 


What are the impediments to directly implementing the Bayesian approach? 
The two primary problems are the choice of prior and the evaluation of the 
integral. We discuss these aspects in the next two sections. 

Natural Priors for Induction 

The prior encodes any specific knowledge about the domain. Asymptotically, 
the prior is unimportant aslong as it doesn't vanish on the true model. This 
is because, under very general conditions [2], the posterior distribution peaks 
around the true model. The shape of the posterior is asymptotically Gaussian 
and the width decreases as the amount of data increases. The effect of the data 
eventually overwhelms the effect of the prior. Ultimately, the Bayesian approach 
will choose the correct model regardless of the choice of prior. 

In practice, the prior can have a tremendous effect on the rate of learning. In 
recognition, the amount of data is fixed by the properties of the sense device. In 
learning, the amount of data is limited by the amount of experience the system 
has had. 

We have discovered in a variety of settings that there are a small number 
of aspects of the physical world that can have a major impact on learning 
performance when incorporated into a prior. Bertrand Russell identified similar 
features in his work on the origin of human knowledge [11]. 

The most fundamental priors describe aspects of time and space. The most 
essential is the "time" prior. This says that the future is likely to be like the 
past. Without this) there is no reason that data collected in the past should be 
applicable to future situations. This leads to inductive procedures that combine 
data obtained on different trials. 

The "continuity" prior prefers solutions in which model parameters vary 
continuously as perceptual data varies. It reflects the "geometric" nature of 
space. It leads to generalization by Similarity and to "interpolation" procedures 
for filling in missing data. 

The two priors with the most dramatic impact on learning performance are 
the "sparseness" and "locality)) priors [10J. These prefer models in which the 
model space and the data space naturally break into distinct components. 

The "sparseness)) prior says that sparsely interacting model components are 
preferred to those which are highly interconnected. This prefers probability 
distributions with a large amount of "conditional independence)). This kind of 
distribution is naturally represented in terms of an underlying independence 
graph. They are being actively studied in the form of "Bayesian networks)) and 
"Markov networks)). The prior that a Bayes' net be sparse is so strong, that 
nets representing 37 random variables interconnected by 46 arcs can be accu­
rately learned with only 10,000 samples [4]. This prior suggests only introducing 
interactions between model components when there is enough data to validate 
them. 
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The "locality" prior is similar but relates to the relationship between model 
components and data components. The preference is for models such that each 
model component affects only a small number of data components. For example, 
each pixel in a visual scene is affected by only a few objects in the scene, each 
word in a sentence is affected by only a few grammar rules, each experience is 
affected by only a few components of a knowledge base, etc. This prior suggests 
using the data components themselves as the initial model components. 

There are many other candidates for fundamental priors (eg. priors repre­
senting the notion of "natural kinds"). \Ve have found, however, that these are 
sufficient to perform powerful learning and recognition in a variety of important 
and complex domains. 

6 Avoiding Overfitting 

The central problem of induction is appropriate generalization. The problem 
of "overfitting" arises when a model is inappropriately "over-tuned" for specific 
data and so fails to generalize well. The full Bayesian procedure described 
above produces the correct answer according to probability theory and is not 
subject to overfitting. Unfortunately, it is usually computationally impossible 
to perform the integral over all possible models. A variety of approximations to 
the integral are used and they give rise to overfitting. 

The simplest approximation is the so-called "MAP" approach which chooses 
the single model whose posterior probability is highest. Typically, more complex 
models will fit the data better and so 'will have a higher posterior. When the 
integral is performed, however, the contribution of the neighborhood of the 
posterior peak introduces a so-called "Occam factor" which gives preference to 
simpler models. 

Much of the research in learning theory has been devoted to techniques 
for avoiding overfitting and detecting when it occurs. There are a variety of 
measures of the "capacity" of a space of models. The central results of learning 
theory describe how the number of samples needed for reliable model induction 
increases as the capacity of the model space increases. 

For a given amount of data, small model spaces won't overfit but are unlikely 
to contain the true model. Larger model spaces may include the true model, but 
are subject to overfitting. Vapnik [15] proposes an approach to learning that 
begins with a nested family of model spaces. As data is received, the smallest 
model space is tested. If a good-fitting model is found, it may be reliably 
validated with a small amount of data. Ifno such model is found, the next larger 
space is considered. In this way the amount of data required is determined by 
the complexity of only the model space ,..,.hich actually contains the true model. 
This allows one to induce models which are potentially arbitrarily complex with 
only a finite amount of data. 

In [10] we extended this approach into what we call "model merging". This 
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7 SURFACE LEARNING 


combines this kind of incremental learning procedure with the features of the 
priors described above. It has proven to be a powerful approach to learning and 
recognition in a wide variety of domains including: classification, density esti­
mation, mapping learning, surface learning, Hidden Markov model induction, 
as well as general stochastic grammar induction. 

The idea is to always represent a model as a collection of sparsely inter­
acting component models. When only a small amount of data is present, the 
data elements themselves are the model components. Generalization at this 
point is by similarity (eg. nearest neighbor classification or kernel-based density 
estimators) . 

As more data appears, more complex model components are formed by merg­
ing together existing model components. When two components are merged, 
the amount of data available for fitting the component increases. This allows 
the complexity class of the model components to increase as the amount of 
data increases. A model component is never chosen from a model class which 
is too complex to fit the data without overfitting. In this way the whole model 
can produce reliable generalization and yet can adapt to the data in arbitrarily 
complex ways. 

This procedure is capable of inducing representations which satisfy each of 
the criteria listed above for the synthesis of symbolic and connectionist ap­
proaches. It is fundamentally probabilistic and serves as an approximation to 
the full Bayesian model. It can naturally represent both symbolic and geometric 
information. It can learn and generalize both structural relationships and quan­
titative ones. The structure of the representation is dynamic and determined by 
the data, adding higher representational complexity where it is needed. It can be 
made computationally efficient through the use of appropriate data structures. 

We will briefly describe two application areas to which we have applied this 
approach: the induction of surfaces and grammars. Surface learning demon­
strates the geometric and quantitative aspects while grammar learning demon­
strates the dynamic structural capabilities. 

Surface Learning 

Learning in geometric domains has been a fundamental task to which many 
connectionist systems have been applied. The most common geometric induc­
tion problems are density estimation, classification, and mapping learning. We 
have applied the ideas described here, along with algorithmic techniques from 
computational geometry to these problems (eg. [6], [7], [8], [9]). 

More recently we have used these techniques to learn and represent nonlinear 
constraint surfaces [3]. This task is more complex than the other geometric 
tasks because the system must determine the dimension of the constraint. The 
initial local surface models are linear vatches determined by a local principle 
components analysis. The local patches are smoothly "glued" together using 
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a partition of unity. The "bumptree" data structure may be used to achieve 
extremely fast access supporting nearest point, partial information completion, 
surface interpolation, and other queries. 

Neighboring patches can be merged to form larger patches. After several 
merges, there is enough data to reliably fit more complex patch models (eg. 
quadratic). The system adapts the representation to fit the data. 

This approach does an excellent job with a small amount of data on a wide 
variety of synthetic surfaces such as spheres and cylinders. We have also applied 
the technique to inducing and modeling the "space of lips" for a visual lipread­
ing task. Initial results produce a five dimensional surface which significantly 
improves the tracking performance and produces relevant features that improve 
recognition performance over a system based on auditory information alone. 

8 Stochastic Grammar Learning 

A non-geometric task to which we have applied the general approach described 
here is stochastic grammar learning [14]. This is especially interesting because 
parse trees and grammars have dynamic structures which depend on the data. 
We have had excellent results inducing the topology of Hidden Markov Models 
(HMM's) from data and are currently studying stochastic context-free gram­
mars. 

The starting point for our HMM induction approach is to use the sam­
ple strings themselves as the data. The initial HMM has a separate internal 
state for each symbol of each sample string. The paths through the model 
are in one-to-one correspondence with the the sample strings. This is also the 
maximum-likelihood model. The algorithm proceeds by merging pairs of states 
together. When two states are merged their transition and emission probability 
distributions are replaced by a weighted mixture of the originals. A Dirichlet 
[2] prior on these distributions provides a Bayesian criterion for stopping the 
merging. 

The merged models do an excellent job of inducing the topology of the 
underlying model. The performance is much better than the standard Baum­
Welsh approach based on the "EM" algorithm. This is especially true when 
there is only a small amount of data and the effects of overfitting are especially 
important. 

9 Conclusions 

We have described some of the strengths and weaknesses of symbolic AI and 
connectionist approaches. We have proposed criteria that an approach which 
synthesizes the best of both should satisfy. We have described an approach to 
learning, recognition, and evidential knowledge representation that we have used 
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in a variety of domains. We described the use of this approach in a geometric 
domain and a symbolic domain. Our current work involves applying it to high­
level vision tasks which incorporate both of these aspects. 
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