On a general class of multiple Eulerian integrals II

Frederic Ayant

Vinod Gill
Department of Mathematics Amity University, Rajasthan, Jaipur-303002, India

ABSTRACT

Recently, Raina and Srivastava [5] and Srivastava and Hussain [11] have provided closed-form expressions for a number of a general Eulerian integrals involving multivariable H -functions. Motivated by these recent works, we aim at evaluating a general class of multiple eulerian integrals involving a multivariable I-function defined by Prathima et al [4] with general arguments. These integrals will serve as a key formula from which one can deduce numerous useful integrals.

Keywords :Multivariable I-function, multiple Eulerian integral ,class of polynomials, sequence of polynomials.
2010 Mathematics Subject Classification. 33C45, 33C60, 26D20

1. Introduction and preliminaries.

The well-known Eulerian Beta integral

$$
\begin{equation*}
\int_{a}^{b}(z-a)^{\alpha-1}(b-t)^{\beta-1} \mathrm{~d} t=(b-a)^{\alpha+\beta-1} B(\alpha, \beta)(\operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, b>a) \tag{1.1}
\end{equation*}
$$

is a basic result for evaluation of numerous other potentially useful integrals involving various special functions and polynomials. Raina and Srivastava [5], Saigo and Saxena [8], Srivastava and Hussain [11], Srivastava and Garg [10] etc have established a number of Eulerian integrals involving various general class of polynomials, Meijer's G-function and Fox's H-function of one and more variables with general arguments.

The explicit form og the generalized polynomial set [7, p.71, (2.3.4)] is
$S_{n}^{\alpha, \beta, \tau}(x)=\sum_{e, p, u, v} C(e, p, u, v) x^{R}\left(1-\tau x^{\mathfrak{c}}\right)^{\delta n-v}$
where $C(e, p, u, v)=\frac{B^{q n}(-)^{p}(-p)_{e}(\alpha)_{p}(-v)_{u}(-\alpha-q n)_{e}\left(-\frac{\beta}{\tau}-s n\right)_{v}}{u!v!e!p!(1-\alpha-p)_{e}} l^{n}(-\tau)^{v}\left(\frac{e+k+\mathfrak{r} u}{l}\right)_{n}\left(\frac{A}{B}\right)^{b}$
where $\sum_{e, p, u, n}=\sum_{v=0}^{n} \sum_{u=0}^{v} \sum_{p=0}^{n} \sum_{e=0}^{p}$ and $R=\ln +\mathfrak{r v} v p$

We recall here the following definition of the general class of polynomials introduced and studied by Srivastava [9]

$$
\begin{equation*}
S_{V}^{U}(x)=\sum_{\eta=0}^{[V / U]} \frac{(-V)_{U \eta} A_{V, \eta}}{\eta!} x^{\eta} \tag{1.4}
\end{equation*}
$$

where $V=0,1, \cdots$ and U is an arbitrary positive integer. The coefficients $A_{V, \eta}(V, \eta \geqslant 0)$ are arbitrary constants, real or complex.

The multivariable I-function defined by Prathima et al [4] is a extension of the multivariable H -function defined by Srivastava and Panda [12]. It is defined in term of multiple Mellin-Barnes type integral :

$$
\begin{align*}
& I\left(z_{1}, \cdots, z_{r}\right)=I_{p, q: p_{1}, q_{1} ; \cdots ; p_{r}, q_{r}}^{0, n: m_{1}, n_{1} ; \cdots ; m_{r}, n_{r}}\left(\begin{array}{c|l}
\mathrm{z}_{1} \\
\cdot & \left(\mathrm{a}_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)} ; A_{j}\right)_{1, p}: \\
\cdot & \\
\cdot & \left(\mathrm{b}_{j} ; \beta_{j}^{(1)}, \cdots, \beta_{j}^{(r)} ; B_{j}\right)_{1, q}:
\end{array}\right. \\
& \left.\begin{array}{c}
\left(\mathrm{c}_{j}^{(1)}, \gamma_{j}^{(1)} ; C_{j}^{(1)}\right)_{1, p_{1}} ; \cdots ;\left(c_{j}^{(r)}, \gamma_{j}^{(r)} ; C_{j}^{(r)}\right)_{1, p_{r}} \\
\left(\mathrm{~d}_{j}^{(1)}, \delta_{j}^{(1)} ; D_{j}^{(1)}\right)_{1, q_{1}} ; \cdots ;\left(d_{j}^{(r)}, \delta_{j}^{(r)} ; D_{j}^{(r)}\right)_{1, q_{r}}
\end{array}\right) \tag{1.5}\\
& =\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \phi\left(s_{1}, \cdots, s_{r}\right) \prod_{i=1}^{r} \theta_{i}\left(s_{i}\right) z_{i}^{s_{i}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.6}
\end{align*}
$$

where $\phi\left(s_{1}, \cdots, s_{r}\right), \theta_{i}\left(s_{i}\right), i=1, \cdots, r$ are given by :
$\phi\left(s_{1}, \cdots, s_{r}\right)=\frac{\prod_{j=1}^{n} \Gamma^{A_{j}}\left(1-a j+\sum_{i=1}^{r} \alpha_{j}^{(i)} s_{j}\right)}{\prod_{j=n+1}^{p} \Gamma^{A_{j}}\left(a_{j}-\sum_{i=1}^{r} \alpha_{j}^{(i)} s_{j}\right) \prod_{j=1}^{q} \Gamma^{B_{j}}\left(1-b j+\sum_{i=1}^{r} \beta_{j}^{(i)} s_{j}\right)}$
$\theta_{i}\left(s_{i}\right)=\frac{\prod_{j=1}^{n_{i}} \Gamma^{C_{j}^{(i)}}\left(1-c_{j}^{(i)}+\gamma_{j}^{(i)} s_{i}\right) \prod_{j=1}^{m_{i}} \Gamma^{D_{j}^{(i)}}\left(d_{j}^{(i)}-\delta_{j}^{(i)} s_{i}\right)}{\prod_{j=n_{i}+1}^{p_{i}} \Gamma^{C_{j}^{(i)}}\left(c_{j}^{(i)}-\gamma_{j}^{(i)} s_{i}\right) \prod_{j=m_{i}+1}^{q_{i}} \Gamma^{D_{j}^{(i)}}\left(1-d_{j}^{(i)}+\delta_{j}^{(i)} s_{i}\right)}$
For more details, see Prathima et al [4].
Following the result of Braaksma [1] the I-function of r variables is analytic if :
$U_{i}=\sum_{j=1}^{p} A_{j} \alpha_{j}^{(i)}-\sum_{j=1}^{q} B_{j} \beta_{j}^{(i)}+\sum_{j=1}^{p_{i}} C_{j}^{(i)} \gamma_{j}^{(i)}-\sum_{j=1}^{q_{i}} D_{j}^{(i)} \delta_{j}^{(i)} \leqslant 0, i=1, \cdots, r$
The integral (2.1) converges absolutely if
$\left|\arg \left(z_{k}\right)\right|<\frac{1}{2} \Delta_{k} \pi, k=1, \cdots, r$ where
$\Delta_{k}=-\sum_{j=n+1}^{p} A_{j} \alpha_{j}^{(k)}-\sum_{j=1}^{q} B_{j} \beta_{j}^{(k)}+\sum_{j=1}^{m_{k}} D_{j}^{(k)} \delta_{j}^{(k)}-\sum_{j=m_{k}+1}^{q_{k}} D_{j}^{(k)} \delta_{j}^{(k)}+\sum_{j=1}^{n_{k}} C_{j}^{(k)} \gamma_{j}^{(k)}-\sum_{j=n_{k}+1}^{p_{k}} C_{j}^{(k)} \gamma_{j}^{(k)}>0$

The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable I-function.
We will note :

$$
\begin{align*}
& \mathbb{A}=\left(a_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)} ; A_{j}\right)_{1, p}:\left(\mathrm{c}_{j}^{(1)}, \gamma_{j}^{(1)} ; C_{j}^{(1)}\right)_{1, p_{1}} ; \cdots ;\left(c_{j}^{(r)}, \gamma_{j}^{(r)} ; C_{j}^{(r)}\right)_{1, p_{r}} \tag{1.11}\\
& \mathbb{B}=\left(b_{j} ; \beta_{j}^{(1)}, \cdots, \beta_{j}^{(r)} ; B_{j}\right)_{1, q}:\left(\mathrm{d}_{j}^{(1)}, \delta_{j}^{(1)} ; D_{j}^{(1)}\right)_{1, q_{1}} ; \cdots ;\left(d_{j}^{(r)}, \delta_{j}^{(r)} ; D_{j}^{(r)}\right)_{1, q_{r}} \tag{1.12}
\end{align*}
$$

2. Main integral

In this section, we shall establish the following Eulerian multiple integral of multivariable I-function and we shall use
the following notations (2.1) and (2.2).
$X_{j}=\left(b_{j}-a_{j}\right)+\rho_{j}\left(t_{j}-a_{j}\right)+\sigma_{j}\left(b_{j}-t_{j}\right)$
$Y_{j}=\frac{\left(t_{j}-a_{j}\right)^{\gamma_{j}}\left(b_{j}-t_{j}\right)^{\delta_{j}} X_{j}^{1-\gamma_{j}-\delta_{j}}}{\beta_{j}\left(b_{j}-a_{j}\right)+\left(\beta_{j} \rho_{j}+\alpha_{j}-\beta_{j}\right)\left(t_{j}-a_{j}\right)+\beta_{j} \sigma_{j}\left(b_{j}-t_{j}\right)}$
for $j=1, \cdots, s$
Lemma ([2] p.287)
$\int_{a}^{b} \frac{(t-a)^{\alpha-1}(b-t)^{\beta-1}}{\{b-a+\lambda(t-a)+\mu(b-t)\}^{\alpha+\beta}} \mathrm{d} t=\frac{(1+\lambda)^{-\alpha}(1+\mu)^{-\beta} \Gamma(\alpha) \Gamma(\beta)}{(b-a) \Gamma(\alpha+\beta)}$
with $t \in[a ; b] \quad a \neq b, \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \eta+\lambda(t-a)+\mu(b-t) \neq 0$
Theorem
We have the following result
$\int_{a_{1}}^{b_{1}} \cdots \int_{a_{s}}^{b_{s}} \prod_{j=1}^{s} \frac{\left(t_{j}-a_{j}\right)^{\lambda_{j}}\left(b_{j}-t_{j}\right)^{\mu_{j}}}{X_{j}^{\lambda_{j}+\mu_{j}+2}} S_{U}^{V}\left[a \prod_{j=1}^{s} \frac{\left(t_{j}-a_{j}\right)^{S_{j}}\left(b_{j}-t_{j}\right)^{T_{j}}}{X_{j}^{S_{j}+T_{j}}}\right]$
$S_{n}^{\alpha, \beta, \tau}\left[b \prod_{j=1}^{s} Y^{\zeta_{j}} ; \mathfrak{r}, t, q, A, B, k ; l\right] I\left(\begin{array}{c|c}\mathrm{z}_{1} \prod_{j=1}^{s} Y_{j}^{v_{j}^{\prime}} & \mathbb{A} \\ \cdot & \\ \cdot & \\ \cdot \\ \mathrm{z}_{r} \prod_{j=1}^{s} Y_{j}^{v_{j}^{(r)}} & \stackrel{\mathbb{B}}{ }\end{array}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{s}$
$=\left\{\prod_{j=1}^{s}\left\{\left(b_{j}-a_{j}\right)^{-1}\left(1+\rho_{j}\right)^{-\lambda_{j}-1}\left(1+\sigma_{j}\right)^{-\mu_{j}-1}\right\} \sum_{K=0}^{[V / U]} \sum_{e, p, u, n} \sum_{\tau_{1}, \cdots, \tau_{s}=0}^{\infty} \frac{(-V)_{U K} A_{V, K}}{K!}\right.$
$C(e, p, u, v)\left\{\prod_{j=1}^{s} \frac{\left(\beta_{j}-\alpha_{j}\right)^{\tau_{j}}\left(1+\rho_{j}\right)^{-K_{j} S_{j}-\gamma_{j} \zeta_{j} R-\tau_{j}}\left(1+\sigma_{j}\right)^{-K T_{j}-\delta_{j} \zeta_{j} R}}{\tau_{j}!\beta_{j}^{\tau_{j}+\zeta_{j} R}}\right\} a^{K} b^{R}$
$I_{p+3 s, q+3 s: p_{1}, q_{1} ; \cdots ; p_{r}, q_{r} ; 1,1}^{0, n+3 s: m_{1}, n_{1} ; \cdots ; m_{r}, n_{r} ; 1,1}\left(\begin{array}{cc|c}\mathrm{z}_{1} \prod_{j=1}^{s}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}}\left(1+\sigma_{j}\right)^{\delta_{j}}\right\}^{-v_{j}^{\prime}} & \\ \cdot & \mathbb{A}^{\prime} \\ \cdot & \\ \mathrm{z}_{r} \prod_{j=1}^{s}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}}\left(1+\sigma_{j}\right)^{\delta_{j}}\right\}^{-v_{j}^{(r)}} & \cdot \\ \mathbb{B}^{\mathbf{r}} \prod_{j=1}^{s}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}}\left(1+\sigma_{j}\right)^{\delta_{j}}\right\}^{-\zeta_{j} \mathrm{r}} & \end{array}\right)$

We obtain a I-function of $(r+1)$-variables
where
$\mathbb{A}^{\prime}=\left(1-\tau_{j}-\zeta_{j} R ; v_{j}^{\prime}, \cdots, v_{j}^{(r)}, \zeta_{j} \mathfrak{r} ; 1\right)_{1, s},\left(-\lambda_{j}-K S_{j}-\gamma_{j} \zeta_{j} R-\tau_{j} ; \gamma_{j} v_{j}^{\prime}, \cdots, \gamma_{j} v_{j}^{(r)}, \gamma_{j} \zeta_{j} \mathfrak{r} ; 1\right)_{1, s}$,

$$
\begin{align*}
& \left(-\mu_{j}-K T_{j}-\delta_{j} \zeta_{j} R-\tau_{j} ; \delta_{j} v_{j}^{\prime}, \cdots, \delta_{j} v_{j}^{(r)}, \delta_{j} \zeta_{j} \mathfrak{r} ; 1\right)_{1, s},\left(a_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}, 0 ; A_{j}\right)_{1, p} \\
& \quad:\left(c_{j}^{(1)}, \gamma_{j}^{(1)} ; C_{j}^{(1)}\right)_{1, p_{1}} ; \cdots ;\left(c_{j}^{(r)}, \gamma_{j}^{(r)} ; C_{j}^{(r)}\right)_{1, p_{r}} ;(1-v+\delta \eta, 1 ; 1) \\
& \mathbb{B}^{\prime}=\left(-\lambda_{j}-\mu_{j}-K\left(S_{j}+T_{j}\right)-\zeta_{j}\left(\gamma_{j}+\delta_{j}\right) R-\tau_{j}-1 ;\left(\gamma_{j}+\delta_{j}\right) v_{j}^{\prime}, \cdots,\left(\gamma_{j}+\delta_{j}\right) v_{j}^{(r)},\left(\gamma_{j}+\delta_{j}\right) \zeta_{j} \mathfrak{r} ; 1\right)_{1, s} \\
& \left(1-\zeta_{j} R ; v_{j}^{\prime}, \cdots, v_{j}^{(r)}, \zeta_{j} \mathfrak{r} ; 1\right)_{1, s},\left(b_{j} ; \beta_{j}^{(1)}, \cdots, \beta_{j}^{(r)}, 0 ; B_{j}\right)_{1, q}:\left(\mathrm{d}_{j}^{(1)}, \delta_{j}^{(1)} ; D_{j}^{(1)}\right)_{1, q_{1}} ; \cdots ;\left(d_{j}^{(r)}, \delta_{j}^{(r)} ; D_{j}^{(r)}\right)_{1, q_{r}} ;(0,1 ; 1) \tag{2.5}
\end{align*}
$$

Provided that

(i) $\lambda_{j}, \mu_{j}, s_{j}, t_{j}, \zeta_{j}, v_{j}^{(i)}>0, \beta_{j} \neq 0, b_{j}-a_{j} \neq 0, \rho_{j} \neq-1, \sigma_{j}-1$,
$\left(b_{j}-a_{j}\right)+\rho_{j}\left(t_{j}-a_{j}\right)+\sigma_{j}\left(b_{j}-t_{j}\right) \neq 0, t_{j} \in\left[a_{j}, b_{j}\right]$ for $i=1, \cdots, r, j=1, \cdots, s$
(ii) $\left|\left(\beta_{j}-\alpha_{j}\right)\left(t_{j}-a_{j}\right)\right|<\left|\beta_{j}\left\{\left(b_{j}-a_{j}\right)+\rho_{j}\left(t_{j}-a_{j}\right)+\sigma_{j}\left(b_{j}-t_{j}\right)\right\}\right|$; $t_{j} \in\left[a_{j}, b_{j}\right]$ for $, j=1, \cdots, s$
(iii) When $\min \left(S_{j}, T_{j}\right)>0$
(a) $\operatorname{Re}\left(\lambda_{j}+\gamma_{j} \zeta_{j}(l n+p)\right)+\sum_{i=1}^{r} \gamma_{j} v_{j}^{(i)} \min _{1 \leqslant j \leqslant m_{i}} \operatorname{Re}\left(\frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)+1>0$
(b) $\operatorname{Re}\left(\mu_{j}+\delta_{j} \zeta_{j}(l n+p)\right)+\sum_{i=1}^{r} \gamma_{j} v_{j}^{(i)} \min _{1 \leqslant j \leqslant m_{i}} \operatorname{Re}\left(\frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)+1>0$

When $\max \left(S_{j}, T_{j}\right)<0$
(c) $\operatorname{Re}\left(\lambda_{j}+S_{j}[V / U]+\gamma_{j} \zeta_{j}(l n+p)\right)+\sum_{i=1}^{r} \gamma_{j} v_{j}^{(i)} \min _{1 \leqslant j \leqslant m_{i}} \operatorname{Re}\left(\frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)+1>0$
(d) $\operatorname{Re}\left(\mu_{j}+t_{j}[V / U]+\delta_{j} \zeta_{j}(\ln +p)\right)+\sum_{i=1}^{r} \gamma_{j} v_{j}^{(i)} \min _{1 \leqslant j \leqslant m_{i}} \operatorname{Re}\left(\frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)+1>0$

When $S_{j}>0, T_{j}<0$ inequalities (a) and (d) are satisfied.
When $S_{j}<0, T_{j}>0$ inequalities (b) and (c) are satisfied.
$\left|\arg \left(z_{k}\right)\right|<\frac{1}{2} \Delta_{k} \pi, k=1, \cdots, r$ Where Δ_{k} is defined by (1.10)
The multiple series of R.H.S. of (2.4) converges absolutely.
Proof
To establish the multiple integral formula (2.4), we first use the series representations for the polynomials sets $S_{V}^{U}(x)$ and $S_{n}^{\alpha, \beta, \tau}(x)$ respectively in its left hand side. Further, using contour integral representation for the multivariable Ifunction defined by Prathima et al [4] and then interchanging the order of integration and summation suitably, which is permissible under the conditions stated above, we find that
L.H.S $=\sum_{K=0}^{[V / U]} \sum_{e, p, u, n} \frac{(-V)_{U K} A_{V, K}}{K!} a^{K} b^{R} C(e, p, u, v) \frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}}$
$\phi\left(\xi_{1}, \cdots, \xi_{r}\right) \prod_{i=1}^{r} \theta_{i}\left(\xi_{i}\right) z_{i}^{\xi_{i}} \int_{a_{1}}^{b_{1}} \cdots \int_{a_{s}}^{b_{s}} \prod_{j=1}^{s} \frac{\left(t_{j}-a_{j}\right)^{\lambda_{j}+K S_{j}}\left(b_{j}-t_{j}\right)^{\mu_{j}+K T_{j}}}{X_{j}^{\lambda_{j}+\mu_{j}+K\left(S_{j}+T_{j}\right)+2}} Y_{j}^{\zeta_{j} R+\sum_{i=1}^{r} \xi_{i} v_{j}^{(i)}}$
$\left(1-\tau x^{\mathrm{r}} \prod_{j=1}^{s} Y_{j}^{\zeta_{j} q}\right)^{\delta n-v} \mathrm{~d} t_{1} \cdots \mathrm{~d} t_{s} \mathrm{~d} \xi_{1} \cdots \mathrm{~d} \xi_{r}$

Now by writing $\left(1-\tau x^{\mathrm{r}} \prod_{j=1}^{s} Y_{j}^{\zeta_{j} q}\right)^{\delta n-v}$ in terms of contour integral and changing the order of integration therein, we obtain
L.H.S $=\sum_{K=0}^{[V / U]} \sum_{e, p, u, n} \frac{(-V)_{U K} A_{V, K}}{K!} a^{K} b^{R} C(e, p, u, v) \frac{1}{(2 \pi \omega)^{r+1}} \int_{L_{1}} \cdots \int_{L_{r}} \int_{L_{r+1}}$

$$
\begin{align*}
& \phi\left(\xi_{1}, \cdots, \xi_{r}\right) \prod_{i=1}^{r} \theta_{i}\left(\xi_{i}\right) z_{i}^{\xi_{i}}\left(-\tau b^{r}\right)^{\xi_{r+1}} \Gamma\left(-\xi_{r+1}\right) \Gamma\left(v-\delta n+\xi_{r+1}\right)\left[\int_{a_{1}}^{b_{1}} \cdots \int_{a_{s}}^{b_{s}}\right. \\
& \left.\left\{\prod_{j=1}^{s} \frac{\left(t_{j}-a_{j}\right)^{\lambda_{j}+K S_{j}}\left(b_{j}-t_{j}\right)^{\mu_{j}+K T_{j}}}{X_{j}^{\lambda_{j}+\mu_{j}+K\left(S_{j}+T_{j}\right)+2}} Y_{j}^{\zeta_{j} R+\sum_{i=1}^{r} \xi_{i} v_{j}^{(i)}+\zeta_{j} r \xi_{r+1}}\right\} \mathrm{d} t_{1} \cdots \mathrm{~d} t_{s}\right] \mathrm{d} \xi_{1} \cdots \mathrm{~d} \xi_{r} \mathrm{~d} \xi_{r+1} \tag{2.7}
\end{align*}
$$

Substituting the value of Y_{j} from (2.2) and after simplifications, we get
L.H.S $=\sum_{K=0}^{[V / U]} \sum_{e, p, u, n} \frac{(-V)_{U K} A_{V, K}}{K!} a^{K} b^{R} C(e, p, u, v) \frac{1}{(2 \pi \omega)^{r+1}} \int_{L_{1}} \cdots \int_{L_{r}} \int_{L_{r+1}}$
$\phi\left(\xi_{1}, \cdots, \xi_{r}\right) \prod_{i=1}^{r} \theta_{i}\left(\xi_{i}\right) z_{i}^{\xi_{i}}\left(-\tau b^{\mathrm{r}}\right)^{\xi_{r+1}} \Gamma\left(-\xi_{r+1}\right) \Gamma\left(v-\delta n+\xi_{r+1}\right)$
$\left[\int_{a_{1}}^{b_{1}} \cdots \int_{a_{s}}^{b_{s}}\left\{\prod_{j=1}^{s} \frac{\left(t_{j}-a_{j}\right)^{\lambda_{j}+K S_{j}+\gamma_{j} \sum_{i=1}^{r} \xi_{i} v_{j}^{(i)}+\gamma_{j} \zeta_{j}\left(R+\mathrm{r} \xi_{r+1}\right)}}{X_{j}^{\lambda_{j}+\mu_{j}+K\left(S_{j}+T_{j}\right)+2+\left(\gamma_{j}+\delta_{j}\right)\left(R \zeta_{j}+\sum_{i=1}^{r} \xi_{i} v_{j}^{(i)}+\zeta_{j} \mathfrak{r} \xi_{r+1}\right)}}\right.\right.$
$\left.\frac{\left(b_{j}-t_{j}\right)^{\mu_{j}+K T_{j}+\delta_{j} \sum_{i=1}^{r} \xi_{i} v_{j}^{(i)}+\gamma_{j} \zeta_{j}\left(R+\tau \xi_{r+1}\right)}}{\beta_{j}^{\left(R \zeta_{j}+\sum_{i=1}^{r} \xi_{i} v_{j}^{(i)}+\zeta_{j} r \xi_{r+1}\right)}}\left(1-\frac{\left(\beta_{j}-\alpha_{j}\right)\left(t_{j}-a_{j}\right)}{\beta_{j} X_{j}}\right)^{-\left(\zeta_{j} R+\sum_{i=1}^{r} \xi_{i} v_{j}^{(i)}+\zeta_{j} \tau \xi_{r+1}\right)}\right\}$
$\left.\mathrm{d} t_{1} \cdots \mathrm{~d} t_{s}\right] \mathrm{d} \xi_{1} \cdots \mathrm{~d} \xi_{r} \mathrm{~d} \xi_{r+1}$

If $\frac{\left(\beta_{j}-\alpha_{j}\right)\left(t_{j}-a_{j}\right)}{\beta_{j} X_{j}}<1, t_{j} \in\left[a_{j} ; b_{j}\right]$ for $j=1, \cdots, s$
then use the binomial expansion is valid and we thus find that

$$
\begin{align*}
& \text { L.H.S }=\sum_{K=0}^{[V / U]} \sum_{e, p, u, n} \sum_{\tau_{1}, \cdots, \tau_{s}=0}^{\infty} \frac{(-V)_{U K} A_{V, K}}{K!} a^{K} b^{R} C(e, p, u, v) \prod_{j=1}^{s}\left\{\frac{\left(\beta_{j}-\alpha_{j}\right)^{\tau_{j}}}{\beta_{j}^{\tau_{j}} \tau_{j}!}\right\} \\
& \frac{1}{(2 \pi \omega)^{r+1}} \int_{L_{1}} \cdots \int_{L_{r}} \int_{L_{r+1}} \psi\left(\xi_{1}, \cdots, \xi_{r}\right) \prod_{i=1}^{r} \theta_{i}\left(\xi_{i}\right) z_{i}^{\xi_{i}}\left(-\tau b^{\mathfrak{r}}\right)^{\xi_{r+1}} \Gamma\left(-\xi_{r+1}\right) \Gamma\left(v-\delta n+\xi_{r+1}\right) \\
& \prod_{i=1}^{s}\left\{\frac{\Gamma\left(\tau_{j}+R \zeta_{j}+\sum_{i=1}^{r} \xi_{i} v_{j}^{(i)}+\zeta_{j} \mathfrak{r} \xi_{r+1}\right)}{\Gamma\left(R \zeta_{j}+\sum_{i=1}^{r} \xi_{i} v_{j}^{(i)}+\zeta_{j} \mathfrak{r} \xi_{r+1}\right)} \beta_{j}^{-\left(R \zeta_{j}+\sum_{i=1}^{r} \xi_{i} v_{j}^{(i)}+\zeta_{j} \mathfrak{r} \xi_{r+1}\right)}\right\} \\
& {\left[\int _ { a _ { 1 } } ^ { b _ { 1 } } \cdots \int _ { a _ { s } } ^ { b _ { s } } \left\{\prod_{j=1}^{s} \frac{\left(t_{j}-a_{j}\right)^{\lambda_{j}+K S_{j}+\gamma_{j} \sum_{i=1}^{r} \xi_{i} v_{j}^{(i)}+\gamma_{j} \zeta_{j}\left(R+\mathfrak{r} \xi_{r+1}\right)+\tau_{j}} X_{j}^{\lambda_{j}+\mu_{j}+K\left(S_{j}+T_{j}\right)+2+\left(\gamma_{j}+\delta_{j}\right)\left(R \zeta_{j}+\sum_{i=1}^{r} \xi_{i} v_{j}^{(i)}+\zeta_{j} \mathfrak{r} \xi_{r+1}\right)+\tau_{j}}}{}\right.\right.} \\
& \left.\left(b_{j}-x_{j}\right)^{\mu_{j}+K T_{j}+\delta_{j} \sum_{i=1}^{r} \xi_{i} v_{j}^{(i)}+\delta_{j} \zeta_{j}\left(R+\mathfrak{r} \xi_{r+1}\right)} \mathrm{d} t_{1} \cdots \mathrm{~d} t_{s}\right] \mathrm{d} \xi_{1} \cdots \mathrm{~d} \xi_{r} \mathrm{~d} \xi_{r+1} \tag{2.9}
\end{align*}
$$

Now using (2.1) and then evaluating the inner-most integral by using the lemma (2.3), we get
L.H.S $=\left\{\prod_{j=1}^{s}\left\{\left(b_{j}-a_{j}\right)^{-1}\left(1+\rho_{j}\right)^{-\lambda_{j}-1}\left(1+\sigma_{j}\right)^{-\mu_{j}-1}\right\} \sum_{K=0}^{[V / U]} \sum_{e, p, u, n} \sum_{\tau_{1}, \cdots, \tau_{s}=0}^{\infty} \frac{(-V)_{U K} A_{V, K}}{K!}\right.$
$C(e, p, u, v)\left\{\prod_{j=1}^{s} \frac{\left(\beta_{j}-\alpha_{j}\right)^{\tau_{j}}\left(1+\rho_{j}\right)^{-K_{j} S_{j}-\gamma_{j} \zeta_{j} R-\tau_{j}}\left(1+\sigma_{j}\right)^{-K T_{j}-\delta_{j} \zeta_{j} R}}{\tau_{j}!\beta_{j}^{\tau_{j}+\zeta_{j} R}}\right\} a^{K} b^{R}$
$\frac{1}{(2 \pi \omega)^{r+1}} \int_{L_{1}} \cdots \int_{L_{r}} \int_{L_{r+1}} \psi\left(\xi_{1}, \cdots, \xi_{r}\right) \prod_{i=1}^{r} \theta_{i}\left(\xi_{i}\right) z_{i}^{\xi_{i}}\left(-\tau b^{\mathfrak{r}}\right)^{\xi_{r+1}} \Gamma\left(-\xi_{r+1}\right) \Gamma\left(v-\delta n+\xi_{r+1}\right)$
$\prod_{j=1}^{s}\left\{\frac{\Gamma\left(\tau_{j}+\lambda_{j}+K S_{j}+\gamma_{j} \zeta_{j} R+\gamma_{j} \sum_{i=1}^{r} \xi_{i} v_{j}^{(i)}+\gamma_{j} \zeta_{j} \mathfrak{r} \xi_{r+1}+1\right)}{\Gamma\left(\lambda_{j}+\mu_{j}+K\left(S_{j}+T_{j}\right)+\left(\gamma_{j}+\delta_{j}\right)\left(\zeta_{j} R+\sum_{i=1}^{r} \xi_{i} v_{j}^{(i)}+\zeta_{j} \mathfrak{r} \xi_{r+1}\right)+\tau_{j}+2\right)}\right.$
$\left.\Gamma\left(-\xi_{r+1}\right) \Gamma\left(v-\delta n+\xi_{r+1}\right) \Gamma\left(\mu_{j}+K_{t j}+\delta_{j} \zeta_{j} R+\delta_{j} \sum_{i=1}^{r} \xi_{i} v_{j}^{(i)}+\delta_{j} \xi_{j} \mathfrak{r} \zeta_{r+1}+1\right)\right\}$
$\prod_{j=1}^{s}\left\{\frac{\left(1+\rho_{j}\right)^{-\Gamma_{j}}\left(1+\sigma_{j}\right)^{-\delta_{j}}}{\beta_{j}}\right\}^{\sum_{i=1}^{r} \xi_{i} v_{j}^{(i)}} \prod_{j=1}^{s}\left\{\frac{\left(1+\rho_{j}\right)^{-\gamma_{j} \zeta_{j} q}\left(1+\sigma_{j}\right)^{-\delta_{j} \zeta_{j} q}\left(-\tau b^{\mathfrak{r}}\right)}{\beta_{j}^{\zeta_{j} \mathfrak{r}}}\right\}^{\xi_{r+1}} \mathrm{~d} \xi_{1} \cdots \mathrm{~d} \xi_{r} \mathrm{~d} \xi_{r+1}$

Finally, reinterpreting the multiple Mellin-Barnes contour integral in terms of multivariable I-function, we obtain the result (2.4).

3. Particular cases

The multivariable I-function occurring in the main integral can be suitably specialized to a remarkably wide variety of special functions which are expressible in terms of E, G, H and I-function of one and several variables. Again by suitably specializing various parameters and coefficients, the general class of polynomials and the general sequence of functions can be reduced to a large number of orthogonal polynomials and hypergeometric polynomials. Thus using various special cases of these special functions, we can obtain a large number of others integrals involving simpler special functions and polynomials of one and several variables.

On taking $V=0, U=1$ and $A_{0,0}$ in (2.4), the general class of polynomials $S_{V}^{U}(x)$ reduces to unity an we get

Corollary 1

$$
\begin{aligned}
& \int_{a_{1}}^{b_{1}} \cdots \int_{a_{s}}^{b_{s}} \prod_{j=1}^{s} \frac{\left(t_{j}-a_{j}\right)^{\lambda_{j}}\left(b_{j}-t_{j}\right)^{\mu_{j}}}{X_{j}^{\lambda_{j}+\mu_{j}+2}} S_{n}^{\alpha, \beta, \tau}\left[b \prod_{j=1}^{s} Y^{\zeta_{j}} ; \mathfrak{r}, t, q, A, B, k ; l\right] \\
& I\left(\begin{array}{c|c}
\mathrm{z}_{1} \prod_{j=1}^{s} Y_{j}^{v_{j}^{\prime}} & \mathbb{A} \\
\cdot \\
\cdot & \cdot \\
\mathrm{z}_{r} \prod_{j=1}^{s} Y_{j}^{v_{j}^{(r)}} & \cdot \\
\mathbb{B}
\end{array}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{s}=\left\{\prod_{j=1}^{s}\left\{\left(b_{j}-a_{j}\right)^{-1}\left(1+\rho_{j}\right)^{-\lambda_{j}-1}\left(1+\sigma_{j}\right)^{-\mu_{j}-1}\right\}\right.
\end{aligned}
$$

$$
\sum_{e, p, u, n} \sum_{\tau_{1}, \cdots, \tau_{s}=0}^{\infty} C(e, p, u, v)\left\{\prod_{j=1}^{s} \frac{\left(\beta_{j}-\alpha_{j}\right)^{\tau_{j}}\left(1+\rho_{j}\right)^{-\gamma_{j} \zeta_{j} R-\tau_{j}}\left(1+\sigma_{j}\right)^{-\delta_{j} \zeta_{j} R}}{\tau_{j}!\beta_{j}^{\tau_{j}+\zeta_{j} R}}\right\} b^{R}
$$

$$
I_{p+3 s, q+3 s: p_{1}, q_{1} ; \cdots ; p_{r}, q_{r} ; 1,1}^{0, n+3 s: m_{1}, n_{1} ; \cdots ; m_{,}, n_{r} ; 1,1}\left(\begin{array}{cc|c}
\mathrm{z}_{1} \prod_{j=1}^{s}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}}\left(1+\sigma_{j}\right)^{\delta_{j}}\right\}^{-v_{j}^{\prime}} & \tag{3.1}\\
\cdot & \mathbb{A}_{1}^{\prime} \\
\cdot & \cdot \\
\mathrm{z}_{r} \prod_{j=1}^{s}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}}\left(1+\sigma_{j}\right)^{\delta_{j}}\right\}^{-v_{j}^{(r)}} & \cdot \\
\mathrm{b}^{\mathfrak{r}} \prod_{j=1}^{s}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}}\left(1+\sigma_{j}\right)^{\delta_{j}}\right\}^{-\zeta_{j} \mathfrak{r}} &
\end{array}\right)
$$

where

$$
\begin{align*}
& \mathbb{A}_{1}^{\prime}=\left(1-\tau_{j}-\zeta_{j} R ; v_{j}^{\prime}, \cdots, v_{j}^{(r)}, \zeta_{j} \mathfrak{r} ; 1\right)_{1, s},\left(-\lambda_{j}-\gamma_{j} \zeta_{j} R-\tau_{j} ; \gamma_{j} v_{j}^{\prime}, \cdots, \gamma_{j} v_{j}^{(r)}, \gamma_{j} \zeta_{j} \mathfrak{r} ; 1\right)_{1, s}, \\
& \left(-\mu_{j}-\delta_{j} \zeta_{j} R-\tau_{j} ; \delta_{j} v_{j}^{\prime}, \cdots, \delta_{j} v_{j}^{(r)}, \delta_{j} \zeta_{j} \mathfrak{r} ; 1\right)_{1, s},\left(a_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}, 0 ; A_{j}\right)_{1, p} \\
& :\left(c_{j}^{(1)}, \gamma_{j}^{(1)} ; C_{j}^{(1)}\right)_{1, p_{1}} ; \cdots ;\left(c_{j}^{(r)}, \gamma_{j}^{(r)} ; C_{j}^{(r)}\right)_{1, p_{r}} ;(1-v+\delta \eta, 1 ; 1) \\
& \mathbb{B}^{\prime}=\left(-\lambda_{j}-\mu_{j}-\zeta_{j}\left(\gamma_{j}+\delta_{j}\right) R-\tau_{j}-1 ;\left(\gamma_{j}+\delta_{j}\right) v_{j}^{\prime}, \cdots,\left(\gamma_{j}+\delta_{j}\right) v_{j}^{(r)},\left(\gamma_{j}+\delta_{j}\right) \zeta_{j} \mathfrak{r} ; 1\right)_{1, s} \\
& \left(1-\zeta_{j} R ; v_{j}^{\prime}, \cdots, v_{j}^{(r)}, \zeta_{j} \mathfrak{r} ; 1\right)_{1, s},\left(b_{j} ; \beta_{j}^{(1)}, \cdots, \beta_{j}^{(r)}, 0 ; B_{j}\right)_{1, q}:\left(\mathrm{d}_{j}^{(1)}, \delta_{j}^{(1)} ; D_{j}^{(1)}\right)_{1, q_{1}} ; \cdots ;\left(d_{j}^{(r)}, \delta_{j}^{(r)} ; D_{j}^{(r)}\right)_{1, q_{r}} ;(0,1 ; 1) \tag{3.2}
\end{align*}
$$

with the same notations and corresponding validity conditions that (2.4).
Putting $s=1$ in (2.4), we arrive at the following integral form
Corollary 2
$\int_{a_{1}}^{b_{1}} \frac{\left(t-a_{1}\right)^{\lambda}\left(b_{1}-t\right)^{\mu}}{X_{j}^{\lambda+\mu+2}} S_{U}^{V}\left[a \frac{\left(t-a_{1}\right)^{S_{j}}\left(b_{1}-t\right)^{T}}{X^{S+T}}\right] S_{n}^{\alpha, \beta, \tau}\left[b Y^{\zeta} ; \mathfrak{r}, t, q, A, B, k ; l\right]$
$I\left(\begin{array}{c|c}\mathrm{z}_{1} Y^{v^{\prime}} & \mathbb{A} \\ \cdot & \cdot \\ \cdot & \cdot \\ \mathrm{z}_{r} Y^{V^{(r)}} & \dot{\mathbb{B}}\end{array}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{s}=\left\{\left(b_{1}-a_{1}\right)^{-1}(1+\rho)^{-\lambda-1}(1+\sigma)^{-\mu-1}\right\}$
$\sum_{K=0}^{[V / U]} \sum_{e, p, u, n} \sum_{\tau_{1}=0}^{\infty} \frac{(-V)_{U K} A_{V, K}}{K!} C(e, p, u, v)\left\{\frac{(\beta-\alpha)^{\tau}(1+\rho)^{-K S-\gamma-\tau}(1+\sigma)^{-K T-\delta \zeta R}}{\tau!\beta^{\tau+\zeta R}}\right\} a^{K} b^{R}$

where
$\mathbb{A}^{\prime}{ }_{2}=\left(1-\tau_{1}-\zeta R ; v^{\prime}, \cdots, v^{(r)}, \zeta \mathfrak{r} ; 1\right),\left(-\lambda-K S-\gamma \zeta R-\tau_{1} ; \gamma v^{\prime}, \cdots, \gamma v^{(r)}, \gamma \zeta \mathfrak{r} ; 1\right)$,
$\left(-\mu-K T-\delta \zeta R-\tau ; \delta v^{\prime}, \cdots, \delta v_{j}^{(r)}, \delta \zeta \mathfrak{r} ; 1\right),\left(a_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}, 0 ; A_{j}\right)_{1, p}$

$$
:\left(c_{j}^{(1)}, \gamma_{j}^{(1)} ; C_{j}^{(1)}\right)_{1, p_{1}} ; \cdots ;\left(c_{j}^{(r)}, \gamma_{j}^{(r)} ; C_{j}^{(r)}\right)_{1, p_{r}} ;(1-v+\delta \eta, 1 ; 1)
$$

$\mathbb{B}^{\prime}{ }_{2}=\left(-\lambda-\mu-K(S+T)-\zeta(\gamma+\delta) R-\tau_{1}-1 ;(\gamma+\delta) v^{\prime}, \cdots,(\gamma+\delta) v^{(r)},(\gamma+\delta) \zeta \mathfrak{r} ; 1\right)$,
$\left(1-\zeta R ; v^{\prime}, \cdots, v^{(r)}, \zeta \mathfrak{r} ; 1\right),\left(b_{j} ; \beta_{j}^{(1)}, \cdots, \beta_{j}^{(r)}, 0 ; B_{j}\right)_{1, q}:\left(\mathrm{d}_{j}^{(1)}, \delta_{j}^{(1)} ; D_{j}^{(1)}\right)_{1, q_{1}} ; \cdots ;\left(d_{j}^{(r)}, \delta_{j}^{(r)} ; D_{j}^{(r)}\right)_{1, q_{r} ;} ;(0,1 ; 1)$
with the same notations and corresponding validity conditions that (2.4).
Putting $t_{j}=b_{j}\left(b_{j}-a_{j}\right) v_{j} ; j=1, \cdots, s$ in (2.4), we obtain the following result.

Corollary 3
$\int_{0}^{1} \cdots \int_{0}^{1} \prod_{j=1}^{s} \frac{\left(1-v_{j} \lambda_{j} v_{j}^{\mu_{j}}\right.}{X_{j}^{\prime \lambda_{j}+\mu_{j}+2}} S_{U}^{V}\left[a \prod_{j=1}^{s} \frac{\left(1-v_{j}\right)^{S_{j}} v_{j}^{T_{j}}}{X_{j}^{\prime S_{j}+T_{j}}}\right] S_{n}^{\alpha, \beta, \tau}\left[b \prod_{j=1}^{s} Y^{\zeta_{j}} ; \mathfrak{r}, t, q, A, B, k ; l\right]$
$I\left(\begin{array}{c|c}\mathrm{z}_{1} \prod_{j=1}^{s} Y_{j}^{v_{j}^{\prime}} & \mathbb{A} \\ \cdot & \cdot \\ \cdot & \dot{z_{r}} \prod_{j=1}^{s} Y_{j}^{v_{j}^{(r)}}\end{array}\right) \mathrm{B} \mathrm{B}_{1} \cdots \mathrm{~d} t_{s}=\left\{\prod_{j=1}^{s}\left\{\left(1+\rho_{j}\right)^{-\lambda_{j}-1}\left(1+\sigma_{j}\right)^{-\mu_{j}-1}\right\} \sum_{K=0}^{[V / U]} \sum_{e, p, u, n}\right.$
$\sum_{\tau_{1}, \cdots, \tau_{s}=0}^{\infty} \frac{(-V)_{U K} A_{V, K}}{K!} C(e, p, u, v)\left\{\prod_{j=1}^{s} \frac{\left(\beta_{j}-\alpha_{j}\right)^{\tau_{j}}\left(1+\rho_{j}\right)^{-K_{j} S_{j}-\gamma_{j} \zeta_{j} R-\tau_{j}}\left(1+\sigma_{j}\right)^{-K T_{j}-\delta_{j} \zeta_{j} R}}{\tau_{j}!\beta_{j}^{\tau_{j}+\zeta_{j} R}}\right\} a^{K} b^{R}$

where
$X_{j}^{\prime}=v_{j}\left(\rho_{j}-\sigma_{j}\right)+\rho_{j}+1$
and
$Y_{j}=\frac{\left(\left(1-v_{j}\right)^{\lambda_{j}} v_{j}^{\delta_{j}}\left(X_{j}^{\prime}\right)^{1-\gamma_{j}-\delta_{j}}\right.}{\left(\alpha_{j}+\beta_{j} \rho_{j}\right)\left(1-v_{j}\right)+\left(1+\sigma_{j}\right) \beta_{j} v_{j}}$
for $j=1, \cdots, s$
with the same notations and corresponding validity conditions that (2.4).
If $r=2$, the multivariable I-function reduces to I-function of two variables defined by Kumari et al [3]. We obtain Corollary 4

$$
\left.\begin{array}{l}
\int_{a_{1}}^{b_{1}} \cdots \int_{a_{s}}^{b_{s}} \prod_{j=1}^{s} \frac{\left(t_{j}-a_{j}\right)^{\lambda_{j}}\left(b_{j}-t_{j}\right)^{\mu_{j}}}{X_{j}^{\lambda_{j}+\mu_{j}+2}} S_{U}^{V}\left[a \prod_{j=1}^{s} \frac{\left(t_{j}-a_{j}\right)^{S_{j}}\left(b_{j}-t_{j}\right)^{T_{j}}}{X_{j}^{S_{j}+T_{j}}}\right] \\
S_{n}^{\alpha, \beta, \tau}\left[b \prod_{j=1}^{s} Y^{\zeta_{j}} ; \mathfrak{r}, t, q, A, B, k ; l\right] I\left(\begin{array}{c}
\mathrm{z}_{1} \prod_{j=1}^{s} Y_{j}^{v_{j}^{\prime}} \\
\cdot \\
\cdot \\
\mathrm{z}_{2} \prod_{j=1}^{s} Y_{j}^{v_{j}^{(2)}} \\
\mathbb{A}^{\prime \prime} \\
\cdot \\
\mathbb{B}^{\prime \prime}
\end{array}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{s}
\end{array}\right] \begin{aligned}
& =\left\{\prod_{j=1}^{s}\left\{\left(b_{j}-a_{j}\right)^{-1}\left(1+\rho_{j}\right)^{-\lambda_{j}-1}\left(1+\sigma_{j}\right)^{-\mu_{j}-1}\right\} \sum_{K=0}^{[V / U]} \sum_{e, p, u, n} \sum_{\tau_{1}, \cdots, \tau_{s}=0}^{\infty} \frac{(-V)_{U K} A_{V, K}}{K!}\right.
\end{aligned}
$$

$C(e, p, u, v)\left\{\prod_{j=1}^{s} \frac{\left(\beta_{j}-\alpha_{j}\right)^{\tau_{j}}\left(1+\rho_{j}\right)^{-K_{j} S_{j}-\gamma_{j} \zeta_{j} R-\tau_{j}}\left(1+\sigma_{j}\right)^{-K T_{j}-\delta_{j} \zeta_{j} R}}{\tau_{j}!\beta_{j}^{\tau_{j}+\zeta_{j} R}}\right\} a^{K} b^{R}$
$I_{p+3 s, q+3 s: p_{1}, q_{1} ; p_{2}, q_{2} ; 1,1}^{0, n+3 s: m_{1}, n_{1} ; m_{2}, n_{2} ; 1,1}\left(\begin{array}{cc|c}\mathrm{z}_{1} \prod_{j=1}^{s}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}}\left(1+\sigma_{j}\right)^{\delta_{j}}\right\}^{-v_{j}^{\prime}} & \\ \cdot & \mathbb{A}^{\prime \prime \prime} \\ \cdot & \cdot \\ \mathrm{z}_{2} \prod_{j=1}^{s}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}}\left(1+\sigma_{j}\right)^{\delta_{j}}\right\}^{-v_{j}^{(2)}} & \cdot \\ \mathrm{b}^{\mathfrak{r}} \prod_{j=1}^{s}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}}\left(1+\sigma_{j}\right)^{\delta_{j}}\right\}^{-\zeta_{j} \mathrm{r}} & \end{array}\right)$
where $\mathbb{A}^{\prime \prime}, B^{\prime \prime}, A^{\prime \prime \prime}, \mathbb{B}^{\prime \prime \prime}$ are equal to $\mathbb{A}, B, A^{\prime}, \mathbb{B}^{\prime}$ respectively for $r=2$ and we have the same conditions that (2.4) with $r=2$.

Corolary 5
If $r=1$, the multivariable I-function reduces to I-function of one variable defined by Rathie [6]. We obtain
$\int_{a_{1}}^{b_{1}} \cdots \int_{a_{s}}^{b_{s}} \prod_{j=1}^{s} \frac{\left(t_{j}-a_{j}\right)^{\lambda_{j}}\left(b_{j}-t_{j}\right)^{\mu_{j}}}{X_{j}^{\lambda_{j}+\mu_{j}+2}} S_{U}^{V}\left[a \prod_{j=1}^{s} \frac{\left(t_{j}-a_{j}\right)^{S_{j}}\left(b_{j}-t_{j}\right)^{T_{j}}}{X_{j}^{S_{j}+T_{j}}}\right]$
$S_{n}^{\alpha, \beta, \tau}\left[b \prod_{j=1}^{s} Y^{\zeta_{j}} ; \mathfrak{r}, t, q, A, B, k ; l\right] I_{p, q}^{0, n}\left(\begin{array}{l|l}\mathrm{z}_{1} \prod_{j=1}^{s} Y_{j}^{v_{j}^{\prime}} & \begin{array}{l}\left(\mathrm{c}_{1}, \gamma_{1} ; C_{1}\right), \cdots,\left(a_{p}, \gamma_{p}, C_{p}\right) \\ \left(\mathrm{d}_{1}, \delta_{1} ; D_{1}\right), \cdots,\left(d_{q}, \delta_{q}, ; D_{q}\right)\end{array}\end{array}\right)$
$=\left\{\prod_{j=1}^{s}\left\{\left(b_{j}-a_{j}\right)^{-1}\left(1+\rho_{j}\right)^{-\lambda_{j}-1}\left(1+\sigma_{j}\right)^{-\mu_{j}-1}\right\} \sum_{K=0}^{[V / U]} \sum_{e, p, u, n} \sum_{\tau_{1}, \cdots, \tau_{s}=0}^{\infty} \frac{(-V)_{U K} A_{V, K}}{K!}\right.$
$C(e, p, u, v)\left\{\prod_{j=1}^{s} \frac{\left(\beta_{j}-\alpha_{j}\right)^{\tau_{j}}\left(1+\rho_{j}\right)^{-K_{j} S_{j}-\gamma_{j} \zeta_{j} R-\tau_{j}}\left(1+\sigma_{j}\right)^{-K T_{j}-\delta_{j} \zeta_{j} R}}{\tau_{j}!\beta_{j}^{\tau_{j}+\zeta_{j} R}}\right\} a^{K} b^{R}$
$I_{p+3 s, q+3 s: 1,1}^{0, n+3 s: 1,1}\left(\begin{array}{cc|c}\mathrm{z}_{1} \prod_{j=1}^{s}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}}\left(1+\sigma_{j}\right)^{\delta_{j}}\right\}^{-v_{j}^{\prime}} & \mathbb{A}^{\prime}{ }_{3} \\ \cdot & \\ \cdot & \cdot \\ \mathbf{b}^{\mathfrak{r}} \prod_{j=1}^{s}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}}\left(1+\sigma_{j}\right)^{\delta_{j}}\right\}^{-\zeta_{j} \mathfrak{r}} & \mathbb{B}^{\prime}{ }_{3}\end{array}\right)$
where
$\mathbb{A}^{\prime}{ }_{3}=\left(1-\tau_{j}-\zeta_{j} R ; v_{j}^{\prime}, \zeta_{j} \mathfrak{r} ; 1\right)_{1, s},\left(-\lambda_{j}-K S_{j}-\gamma_{j} \zeta_{j} R-\tau_{j} ; \gamma_{j} v_{j}^{\prime}, \gamma_{j} \zeta_{j} \mathfrak{r} ; 1\right)_{1, s}$,

$$
\begin{align*}
& \left(-\mu_{j}-K T_{j}-\delta_{j} \zeta_{j} R-\tau_{j} ; \delta_{j} v_{j}^{\prime}, \delta_{j} \zeta_{j} \mathfrak{r} ; 1\right)_{1, s}:\left(\mathrm{c}_{j}^{(1)}, \gamma_{j}^{(1)} ; C_{j}^{(1)}\right)_{1, p_{1}} ; \cdots ;\left(c_{j}^{(r)}, \gamma_{j}^{(r)} ; C_{j}^{(r)}\right)_{1, p_{r}} ;(1-v+\delta \eta, 1 ; 1) \\
& \mathbb{B}_{3}^{\prime}=\left(-\lambda_{j}-\mu_{j}-K\left(S_{j}+T_{j}\right)-\zeta_{j}\left(\gamma_{j}+\delta_{j}\right) R-\tau_{j}-1 ;\left(\gamma_{j}+\delta_{j}\right) v_{j}^{\prime},\left(\gamma_{j}+\delta_{j}\right) \zeta_{j} \mathfrak{r} ; 1\right)_{1, s} \\
& \left(1-\zeta_{j} R ; v_{j}^{\prime}, \zeta_{j} \mathfrak{r} ; 1\right)_{1, s}:\left(\mathrm{d}_{j}^{(1)}, \delta_{j}^{(1)} ; D_{j}^{(1)}\right)_{1, q_{1}} ; \cdots ;\left(d_{j}^{(r)}, \delta_{j}^{(r)} ; D_{j}^{(r)}\right)_{1, q_{r}} ;(0,1 ; 1) \tag{3.10}
\end{align*}
$$

we have the same conditions that (2.4) with $r=1$.

5. Conclusion

Our main integral formula is unified in nature and possesses manifold generality. It acts a key formula and using various special cases of the multivariable I-function, general class of polynomials and a general sequence of functions, one can obtain a large number of other integrals involving simpler special functions and polynomials of one and several variables.

References

[1] B. L. J. Braaksma, "Asymptotic expansions and analytic continuations for a class of Barnes integrals,"Compositio Mathematical, vol. 15 (1964), pp. 239-341.
[2] I.S. Gradsteyn and I.M. Ryxhik, Table of integrals, series and products: Academic press, New York , (1980).
[3] K. Shantha Kumari, T. M. Vasudevan Nambisan and A. K. Rathie, A study of I-function of two variables, Le Matematiche, 69(1) (2014), 285-305.
[4] J. Prathima, V. Nambisan and S.K. Kurumujji, A Study of I-function of Several Complex Variables, International Journalof Engineering Mathematics $\operatorname{Vol}(2014)$, 2014, 1-12.
[5] R.K. Raina and H.M. Srivastava, Evaluation of certain class of Eulerian integrals. J. phys. A: Math.Gen. 26 (1993), 691-696.
[6] A.K. Rathie, A new generalization of generalized hypergeometric function, Le Matematiche, 52(2) (1997), 297-310.
[7] S.K. Raizada, A study of unified representation of special functions of mathematical physics and their use in statistical and boundary value problems, Ph.D. Thesis, Bundelkhand University, Jhansi, India, 1991.
[8] M. Saigo, and R.K. Saxena, Unified fractional integral formulas forthe multivariable H-function. J.Fractional Calculus 15 (1999), 91-107.
[9] H.M. Srivastava, A contour integral involving Fox's H-function, Indian J. Math, 14 (1972), 1-6.
[10] H.M. Srivastava and M. Garg, Some integrals involving general class of polynomials and the multivariable Hfunction. Rev. Roumaine. Phys. 32 (1987) 685-692.
[11] H.M. Srivastava and M.A. Hussain, Fractional integration of the H-function of several variables. Comput. Math. Appl. 30 (9) (1995),73-85.
[12] H.M.Srivastava, H.M.and R. Panda, Some bilateral generating functions for a class of generalized hypergeometric polynomials, J. Reine Angew. Math. (1976), 265-274.

