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Abstract

We prove an identity on Hermitian random matrix models with
external source relating the high rank cases to the rank 1 cases. This
identity was proved and used in a previous paper of ours to study the
asymptotics of the top eigenvalues. In this paper, we give an alter-
native, more conceptual proof of this identity based on a connection
between the Hermitian matrix models with external source and the
discrete KP hierarchy. This connection is obtained using the vertex
operator method of Adler and van Moerbeke. The desired identity
then follows from the Fay-like identity of the discrete KP τ vector.

1 Introduction

The subject of this paper is an identity between a Hermitian random matrix

model with external source of rank m and m such models with external
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source of rank 1. This identity allows us to reduce the asymptotic study of

“spiked Hermitian random matrix models” of rank higher than 1 to that of

the models of rank 1. This reduction formula was used in [5] to evaluate the

limiting fluctuations of the top eigenvalue(s) of spiked models of arbitrary

fixed rank with a general class of potentials. In [5] we gave a direct proof

of this identity using the formula of [3] on the Christoffel-Darboux kernel.

Here we give a different, more conceptual proof using the relation between

the random matrix model with external source and discrete KP hierarchy.

We show how the general results of Adler and van Moerbeke [1] on the

construction of solutions of discrete KP hierarchy can be used on the partition

functions of the Hermitian matrix model with external source.

We now introduce the model. Let W (x) be a piecewise-continuous func-

tion on R. We assume that W (x) is nonnegative, has infinite support, and

vanishes sufficiently fast as |x| → ∞ so that (3) converges. Let A be a d× d
Hermitian matrix with eigenvalues a1, · · · , ad. We call A the external source

matrix and W (x) the weight function. Consider the following measure on

the set Hd of d× d Hermitian matrix M :

P (M)dM :=
1

Zd(a1, · · · , ad)
det(W (M))eTr(AM)dM, (1)

where W (M) is defined in terms of a functional calculus and

Zd(a1, · · · , ad) :=

∫
M∈Hd

det(W (M))eTr(AM)dM (2)

is the partition function. Note that the partition function depends only on the

eigenvalues of A, but not its eigenvectors. It is also symmetric in a1, · · · , ad.
The Harish-Chandra-Itzykson-Zuber integral formula [6], [8] implies that

Zd(a1, · · · , ad)

=
Cd∏

1≤j<k≤d

(ak − aj)

∫
Rd

det
[
eajλk

]d
j,k=1

∏
1≤j<k≤d

(λk − λj)
d∏
j=1

W (λj)dλj (3)

for a constant Cd which depends only on d. There is a similar formula for

the density function of the eigenvalues.
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If some of eigenvalues of A are zeros, we use the following short-hand

notations: For m ≤ d,

Zd(a1, · · · , am) := Zd(a1, · · · , am, 0, · · · , 0︸ ︷︷ ︸
d−m

),

Zd := Zd(0, · · · , 0︸ ︷︷ ︸
d

).
(4)

The main theorem of this paper is about the following expectations. For

E ⊂ R, s ∈ C, and m ≤ d, we define

Ed(a1, · · · , am;E; s) := E
[ d∏
j=1

(1− sχE(λj))

]

=

∫
Hd

d∏
j=1

(1− sχE(λj))P (M)dM,

(5)

where λ1, · · · , λd are eigenvalues of M and the expectation is with respect

to the measure (1) when the eigenvalues of the external source matrix A are

a1, · · · , am, 0, · · · , 0︸ ︷︷ ︸
d−m

. We note that the last integral is the partition function

with new weight (1−sχE(x))W (x) divided by the original partition function

with the weight W (x). This observation will be used in the proof later. When

s = 1 the above expectation is a gap probability. Set

Ēd(a1, · · · , am;E; s) :=
Ed(a1, · · · , am;E; s)

Ed(E; s)
. (6)

Let pj(x) be orthonormal polynomials with respect to W (x)dx. For a real

number a, define the constant

Γj(a) :=

∫
R
pj(s)e

asW (s)ds. (7)

The main result is

Theorem 1.1. We have

Ēd(a1, · · · , am;E; s) =
det
[
Γd−j(ak)Ēd−j+1(ak;E; s)

]m
j,k=1

det[Γd−j(ak)]mj,k=1

. (8)

if a1, · · · , am are distinct and non-zero.
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Since both sides of (8) are analytic in aj, the above identity still holds

when some of aj are the same or equal to zero if we interpret the right-hand

side using l’Hôpital’s rule.

The term Ēd−j+1(ak;E; s) on the right-hand side of (8) is given by (6)

with the rank m = 1 and the only non-zero eigenvalue of the external source

A being ak, and the dimension is changed to d− j+1. Hence the identity (8)

relates the rank m case to m rank 1 cases.

In [4], the asymptotics Ēd−j+1(ak;E; s), the rank 1 cases, were obtained.

The quantities Γd−j(ak) were also analyzed asymptotically in the same paper

as an intermediate step. In the subsequent paper [5] the higher rank cases

were then analyzed asymptotically using the identity (8). The main result

was that when the potential, assuming that it is real analytic, is convex to

the right of the right-end point of the support of the equilibrium measure, the

phase transition behavior of the fluctuations of the top eigenvalues is same as

in the Gaussian unitary ensemble. Otherwise, new types of jump transitions

are possible to occur. A characterization of possible new transitions was also

obtained.
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2 Proof

Set ∆(x) :=
∏

1≤j<k≤d(xk − xj) = det(xk−1
j )dj,k=1 for x = (x1, · · · , xd). Recall

that, setting a = (a1, · · · , ad) and λ = (λ1, · · · , λd),

det
[
eajλk

]d
j,k=1

∆(a)∆(λ)
=
∑
`(κ)≤d

sκ(λ)sκ(a)∏d
q=1(κq + d− q)!

(9)

where the sum is over all partitions κ with at most d parts. Here sκ denotes

the Schur polynomial and `(κ) denotes the number of parts of partition κ.

This identity can be proved as follows. First, from the Andréief’s identity [2]
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(equivalently the Cauchy-Binnet formula),

det
[
eajλk

]d
j,k=1

= det

[ ∞∑
n=0

anj λ
n
k

n!

]
=

1

d!

∞∑
n1,··· ,nd=0

det
[
a
nq
j

]
det
[
λ
nq
j

]∏d
q=1 nq!

. (10)

Since the summand is symmetric in nq’s and equals to zero when two of the

summation indices are the same, we can replace 1
d!

∞∑
n1,··· ,nd=0

by
∑

0≤nd<···<n2<n1

.

Now set κq := nq−d+q. Then the summation condition becomes κ1 ≥ · · · ≥
κd ≥ 0, i.e all partitions with at most d parts. The identity (9) follows by

recalling the classical definition of the Schur polynomial sκ(a) =
det(a

κq+d−q
j )

∆(λ)
.

Inserting (9) into (3), we obtain the Schur polynomial expansion of the

partition function:

Zd(a1, · · · , ad) = Cd
∑
`(κ)≤d

Gκ
sκ(a)∏d

q=1(κq + d− q)!
(11)

where

Gκ :=

∫
Rd
sκ(λ)∆(λ)2

d∏
j=1

W (λj)dλj. (12)

Using the classical definition of the Schur function, the determinantal form

of ∆(λ), and the Andréief’s identity [2], we obtain

Gκ = d! · det
[
Mκp+d−p+q−1

]d
p,q=1

, Mj :=

∫
R
xjW (x)dx. (13)

Here Mj are the moments of the measure W (x)dx.

We insert (13) into (11) and use the Jacobi-Trudi identity, sκ(a) =

det
[
hκp−p+q(a)]dp,q=1, where hj(a) denotes the complete symmetric function.

The sum is over the partitions κ = (κ1, · · · , κd) where κ1 ≥ · · · ≥ κd ≥ 0.

We set jp := κp + d − p. Then j1 > · · · > jd ≥ 0. Since the summand is

symmetric in jp’s and vanishes when two indices are the same, we arrive at

the formula

Zd(a1, · · · , ad) = Cd

∞∑
j1,··· ,jd=0

det
[
Mjp+q−1

]d
p,q=1

det
[
hjp−d+q(a)]dp,q=1∏d

q=1 jq!
. (14)
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In the below, the notation t = (t1, t2, · · · ) denotes a sequence of variables.

We also use the notation [c] = (c, c
2

2
, c

3

3
, · · · ) for the evaluation of t by powers

of c. The notation [c1]+[c2]+· · ·+[cm] stands for the evaluation of t obtained

by substituting tj =
∑m

i=1 c
j
i/j.

Following [9, Definition 6.1], we define the so-called “elementary Schur

polynomials” hj(t) by the generating function

∞∑
j=−∞

hj(t)wj = e
P∞
j=1 tjw

j

. (15)

If t = [a1] + [a2] + · · · + [ad] (i.e. tj =
∑d

i=1 a
j
i/j), hj(t) is the complete

symmetric function in a1, · · · , ad, which we denoted earlier by hj(a). This

abuse of notations is unfortunate but in the below we only use the definition

h(t) given in (15).

Now define the formal power series in t = (t1, t2, · · · )

Ẑd(t) :=
1

d!Ĉd

∞∑
j1,··· ,jd=0

det[Mjp+q−1]dp,q=1 det[hjp−d+q(t)]dp,q=1∏d
k=1 jk!

(16)

where Ĉd := 1
d!Cd

. This definition is equivalent to the formula (26) of [12].

Then

Zd(a1, · · · , ad) = Ẑd([a1] + · · ·+ [ad]). (17)

Setting some of the parameters to be zero, we also have for m ≤ d

Zd(a1, · · · , am) = Ẑd([a1] + · · ·+ [am]). (18)

We now show that Ẑd(t) solves the discrete KP hierarchy following the

vertex operator construction of the general solutions due to Adler and van

Moerbeke. We then show that a general property of the vertex operator

solution implies an identity of which the identity (8) is a special case. Note

the definition (16) does not require the assumption that the weight function

W (x) is nonnegative. In the next two subsections we drop this assumption.

2.1 Discrete KP τ vector

We observe that:
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Proposition 2.1. Let Ẑd(t) be defined in (16) and set Ẑ0(t) := 1. Then the

sequence

(· · · , Ẑ2(−t), Ẑ1(−t), Ẑ0(t), Ẑ1(t), Ẑ2(t), · · · ) (19)

constitutes a discrete KP τ vector.

Discrete KP τ vectors are solutions to a system of differential-difference

equations in the discrete KP-hierarchy. Adler and van Moerbeke established

several characterizations of discrete KP τ vectors in [1]. Here we use two of

them: the vertex operator characterization (see Proposition 2.2 below) and

the Hirota bilinear identity characterization (see (34) below).

Remark 2.1. Each components of a discrete KP τ vector is a KP τ function.

The fact that Ẑd(t) is a KP τ function for each d ∈ N was proved in [12]. In

[7] it was proved further that for each d ∈ N, Ẑd(t) is a so-called 1-KP-Toda

τ function and moreover these 1-KP-Toda τ functions are derived from the

same Grassmannian structure. It should also be possible to prove the above

proposition from this fact.

The vertex operator is a differential operator defined by (see [1, Formula

(0.22)])

X(t, z) := exp

( ∞∑
k=1

tkz
k

)
exp

(
−
∞∑
k=1

z−k

k

∂

∂tk

)
. (20)

The vertex operator acts on a formal power series f(t) as

X(t, z)f(t) = e
P∞
k=1 tkz

k

f(t− [z−1]) =

( ∞∑
k=−∞

hk(t)zk
)
f(t− [z−1]). (21)

Adler and van Moerbeke found a very general construction of a discrete KP

τ vector from one KP τ function and a sequence of measures using the vertex

operator:

Proposition 2.2 ([1, Theorem 0.3]). Let τ(t) be a KP τ function. Let (· · · ,
ν−1(z)dz, ν0(z)dz, ν1(z)dz, · · · ) be a sequence of arbitrary measures. Then

the infinite sequence (· · · , τ−1(t), τ0(t), τ1(t), · · · ) defined as τ0(t) := τ(t) and

τd(t) :=

(∫
X(t, z)νd−1(z)dz

)
· · ·
(∫

X(t, z)ν0(z)dz

)
τ(t), (22)

τ−d(t) :=

(∫
X(−t, z)ν−d(z)dz

)
· · ·
(∫

X(−t, z)ν−1(z)dz

)
τ(t), (23)
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for d ∈ N, forms a discrete KP τ vector.

Remark 2.2. The original statement of [1, Theorem 0.3] assumes that the

measures νk(z)dz are defined on R. However, it is easy to check that the

proof to Proposition 2.2 in [1] holds almost verbatim if we change R into C
(or more restrictively the unit circle {z ∈ C | |z| = 1} that we are going to

use in this section).

Proof of Proposition 2.1. We set τ(t) = Ẑ0(t) := 1. This is trivially a KP

τ function. Hence Proposition 2.1 is proved if we can construct a sequence

of measures (· · · , ν−1(z)dz, ν0(z)dz, ν1(z)dz, · · · ) such that Ẑd(t) equals the

right-hand side of (22) (resp. (23)) with τ(t) = 1 for d > 0 (resp. d < 0).

Define the measure on the circle {z ∈ C : |z| = 1} as

νd(z)dz :=
(−1)dĈd

2πiĈd+1

∞∑
j=0

Mj+d

j!
zd−j−1dz, d = 0, 1, 2, · · · , (24)

where Ĉ0 := 1. We also define

νd(z) := ν−d−1(z) d = −1,−2, · · · . (25)

We now show that these measures satisfy the desired property.

For d = 0, since Ẑ0(t) = 1, (21) implies thatX(t, z)Ẑ0(t) =
∑∞

k=−∞ hk(t)zk.

Hence we find from a direct evaluation of the integral using the Cauchy in-

tegral formula (the integral is over the unit circle) that∮
X(t, z)Ẑ0(t)ν0(z)dz =

1

Ĉ1

∞∑
j=0

hj(t)Mj

j!
= Ẑ1(t) (26)

from the definition (16).

We now consider d > 0. From (21),

X(t, z)Ẑd(t) =
1

d!Ĉd

( ∞∑
k=−∞

hk(t)zk
)

×
∞∑

j1,··· ,jd=0

det[Mjp+q−1]dp,q=1 det[hjp−d+q(t− [z−1])]dp,q=1∏d
k=1 jk!

.

(27)
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Note that from (15) we have
∑∞

j=−∞ hj(t − [z−1])wj = e
P∞
j=1(tj− z

−j
j

)wj =(
1− w

z

)∑∞
j=−∞ hj(t)wj. Comparing the coefficients of wj, we find that

hj(t− [z−1]) = hj(t)− z−1hj−1(t). (28)

By (28), we have

det[hjp−d+q(t− [z−1])]dp,q=1 =
d∑
l=0

z−l det[hjp−d+q−H[l−q](t)]dp,q=1, (29)

where H is the discrete form of the Heaviside function such that H[n] = 0

for n < 0 and H[n] = 1 for n ≥ 0. Substituting (29) into (27), we have, after

the change of variable j0 = k − l + d, that

X(t, z)Ẑd(t)

=
1

d!Ĉd

d∑
l=0

(
∞∑
j0=0

hj0−d+l(t)zj0−d

)

×
∞∑

j1,··· ,jd=0

det[Mjp+q−1]dp,q=1 det[hjp−d+q−H[l−q](t)]dp,q=1∏d
k=1 jk!

=
(−1)d

(d+ 1)!Ĉd

∞∑
j0,j1,··· ,jd=0

n∏
k=0

1

jk!

×

∣∣∣∣∣∣∣∣∣
Mj0 · · · Mj0+d−1 j0!zj0−d

Mj1 · · · Mj1+d−1 j1!zj1−d

...
. . .

...
...

Mjd · · · Mjd+d−1 jn!zjd−d

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
hj0−d(t) hj0−d+1(t) · · · hj0(t)

hj1−d(t) hj1−d+1(t) · · · hj1(t)
...

...
. . .

...

hjd−d(t) hjd−d+1(t) · · · hjd(t)

∣∣∣∣∣∣∣∣∣ .
(30)

Here in the second identity of (30) we use that the right-hand side of (30) is

symmetric in j0, j1, · · · , jd. Note that in (30) there is one more summation

index j0 than in (27) and the determinants are of d + 1 by d + 1 matrices.

Then from (30) and (16), and noting that the variable z appears only in the

last column of the first matrix in the (30), we can check directly using the

Cauchy integral formula that∮
X(t, z)Ẑd(t)νd(z)dz = Ẑd+1(t), d > 0. (31)
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Successive applications of the relation (31) imply that for all d > 0,

Ẑd(t) =

(∫
X(t, z)νd−1(z)dz

)
· · ·
(∫

X(t, z)ν0(z)dz

)
Ẑ0(t), (32)

which is same as (22).

Finally, (25) and (32) imply that

Ẑd(−t) =

(∫
X(−t, z)ν−d(z)dz

)
· · ·
(∫

X(−t, z)ν−1(z)dz

)
Ẑ0(t). (33)

This is same as (23). Hence the proposition is proved.

2.2 Fay-like identity

An importance property of discrete KP τ vector is that its components sat-

isfy a Hirota bilinear identity (see [1, Theorem 0.2(iii)]). (Adler and van

Moerbeke, moreover, showed that the Hirota bilinear identity actually char-

acterizes the discrete KP τ vector.) For the discrete KP τ vector (19) in our

situation, replacing the notations τn and τm for components of a general KP

τ vector in [1, Formula (0.18)] into our specific Ẑd1 and Ẑd2 , we find that the

Hirota bilinear identity becomes

1

2πi

∮
z=∞

Ẑd1(t̃− [z−1])Ẑd2+1(t + [z−1])e
P∞
j=1(t̃j−tj)zjzd1−d2−1dz = 0 (34)

for all d1 > d2 ≥ 0. Here the formal integral of a formal Laurent series is

defined by
1

2πi

∮
z=∞

( ∞∑
j=−∞

ajz
j

)
dz = a−1. (35)

We now show that this Hirota bilinear identity implies a Fay-like iden-

tity (41). Such a derivation of a Fay-like identity from the Hirota bilinear

identity was obtained in the Toda lattice hierarchy by [11] and we adapt this

approach.

We take the special choices d1 = d, d2 = d−2 and t̃ = t+[a]+ [b] in (34).

Then the factor e
P∞
j=1(t̃j−tj)zjzd1−d2−1 equals ze

P∞
j=1(a

j

j
+ bj

j
)zj . After re-writing
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the sum in the exponent as − log(1− az)− log(1− bz), and using the simple

identity abz
(1−az)(1−bz) = 1

(a−b)z ( b
1−az −

a
1−bz ) + 1

z
, we find that

ze
P∞
j=1(a

j

j
+ bj

j
)zj =

1

a(a− b)z

∞∑
j=0

ajzj − 1

b(a− b)z

∞∑
j=0

bjzj +
1

abz
. (36)

Using this, (34) implies that

a

2πi

∮
z=∞

Q(z−1)

( ∞∑
j=0

bjzj
)
dz

z
− b

2πi

∮
z=∞

Q(z−1)

( ∞∑
j=0

ajzj
)
dz

z

=
a− b
2πi

∮
z=∞

Q(z−1)
dz

z
,

(37)

where Q is defined by

Q(w) := Ẑd(t + [a] + [b]− [w])Ẑd−1(t + [w]). (38)

Observe that the Laurent series of Q(w) consists only of non-negative powers

of w. Hence

Q(w) =
∞∑
n=0

qnw
n (39)

for some q0, q1, · · · . Thus, from (35) the integral

1

2πi

∮
z=∞

Q(z−1)

( ∞∑
j=0

ajzj
)
dz

z
=

∞∑
n=0

qna
n = Q(a)

= Ẑd(t + [a])Ẑd−1(t + [b]).

(40)

Similar evaluations of the other integrals of (37) imply the following Fay-like

identity:

aẐd(t + [a])Ẑd−1(t + [b])− bẐd(t + [b])Ẑd−1(t + [a])

= (a− b)Ẑd(t + [a] + [b])Ẑd−1(t).
(41)

In the remaining part of this section, using identity (41) we prove that:
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Proposition 2.3. For any d ≥m ≥ 1 and a1, · · · , am ∈ C

Ẑd(t + [a1] + · · ·+ [am])

Ẑd(t)
=

1

∆m(a1, · · · , am)
det

[
am−j
k

Ẑd+1−j(t + [ak])

Ẑd+1−j(t)

]m

j,k=1

(42)

where ∆m(a1, · · · , am) :=
∏

1≤j<k≤m(aj − ak).

Proof. After dividing the identity (41) by Ẑd(t)Ẑd−1(t), we obtain

Ẑd(t + [a] + [b])

Ẑd(t)
=

1

a− b
det

a Ẑd(t+[a])

Ẑd(t)
b Ẑd(t+[b])

Ẑd(t)
Ẑd−1(t+[a])

Ẑd−1(t)

Ẑd−1(t+[b])

Ẑd−1(t)

 . (43)

This is the identity (42) when m = 2 for all d ≥ 2.

We now prove the general case using an induction in m. Suppose that (42)

holds with m ≤ m − 1 for all d ≥ m − 1 and a1, · · · , am−1 ∈ C. We are to

prove that it holds with m = m for all d ≥ m and a1, · · · , am ∈ C. For this

purpose, we set a = a1, b = am, and t 7→ t + [a2] + · · ·+ [am−1] in (43). After

pulling out the denominators of the entries of the determinant outside, we

obtain

(a1 − am)Ẑd(t + [a1] + · · ·+ [am])Ẑd−1(t + [a2] + · · ·+ [am−1])

= det

[
a1Ẑd(t + [a1] + · · ·+ [am−1]) amẐd(t + [a2] + · · ·+ [am])

Ẑd−1(t + [a1] + · · ·+ [am−1]) Ẑd−1(t + [a2] + · · ·+ [am])

]
.

(44)

Let us call the entries of the last determinant Aij, i, j = 1, 2. First we

consider Aij on the first row. From the induction hypothesis,

A11

Ẑd(t)
=

a1

∆m−1(a1, · · · , am−1)
det

[
am−1−j
k

Ẑd+1−j(t + [ak])

Ẑd+1−j(t)

]m−1

j,k=1

. (45)

If we multiply a2 · · · am−1 on both sides and bring the factor a1 · · · am−1 inside

the determinant, we find that

a2 · · · am−1
A11

Ẑd(t)
=

1

∆m−1(a1, · · · , am−1)
det [Bjk]1≤j≤m−1, 1≤k≤m−1 (46)
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where

Bjk := am−jk

Ẑd+1−j(t + [ak])

Ẑd+1−j(t)
. (47)

Note that the power of ak is changed to m − j from m − 1 − j of (45).

Similarly, we find that

a2 · · · am−1
A12

Ẑd(t)
=

1

∆m−1(a2, · · · , am)
det [Bjk]1≤j≤m−1, 2≤k≤m (48)

with the same definition (47) of Bjk. Note the difference of the indices of the

determinant from (46).

Now we consider Aij in the second row. The induction hypothesis implies

that

A21

Ẑd−1(t)
=

1

∆m−1(a1, · · · , am−1)
det

[
am−1−j
k

Ẑd−j(t + [ak])

Ẑd−j(t)

]m−1

j,k=1

. (49)

Note that d is changed to d− 1 in the determinant from (46). If we shift the

index j by j − 1 in the determinant, we can write the above as

A21

Ẑd−1(t)
=

1

∆m−1(a1, · · · , am−1)
det [Bjk]2≤j≤m, 1≤k≤m−1 . (50)

Similarly,

A22

Ẑd−1(t)
=

1

∆m−1(a2, · · · , am)
det [Bjk]2≤j≤m, 2≤k≤m . (51)

Consider the matrix B of size m whose entries are Bjk, j, k = 1, · · · ,m.

Let Bba denote the matrix of size m− 1 obtained from B by deleting the row

a and the column b. Then the determinants in (46), (48), (50), and (51) are

the determinants of the matrices Bmm, B1
m, Bm1 , and B1

1, respectively. Hence

we find that

a2 · · · am−1∆m−1(a1, · · · , am−1)∆m−1(a2, · · · , am)

Ẑd−1(t)Ẑd(t)
det

[
A11 A12

A21 A22

]
= det [Bmm] det

[
B1

1

]
− det

[
B1
m

]
det [Bm1 ] .

(52)

13



Now the Desnanot-Jacobi identity (often attributed to Charles Ludwig Dodg-

son, aka Lewis Carroll, see e.g. [10, Proposition 10] and references therein)

implies that the above equals det
[
B
]

det
[
B1,m

1,m

]
where B1,m

1,m is the matrix of

size m− 2 obtained by deleting the rows 1,m and the columns 1,m from B.

The determinant det
[
B
]

is precisely the determinant in (42) with m = m.

On the other hand,

det
[
B1,m

1,m

]
a2 · · · am−1

= det

[
am−1−j
k

Ẑd+1−j(t + [ak])

Ẑd+1−j(t)

]m−1

j,k=2

= det

[
am−2−j
k+1

Ẑd−j(t + [ak+1])

Ẑd−j(t)

]m−2

j,k=1

.

(53)

The last determinant is precisely the determinant in (42) with m = m − 1,

d replaced by d − 1, and the complex numbers given by a2, · · · , am−1. The

induction hypothesis implies the identity

det
[
B1,m

1,m

]
a2 · · · am−1

= ∆m−2(a2, · · · , am−1)
Ẑd−1(t + [a2] + · · ·+ [am−1])

Ẑd−1(t)
. (54)

Combining (44), (52), and (54), and noting that

∆m−2(a2, · · · , am−1)

(a1 − am)∆m−1(a1, · · · , am−1)∆m−1(a2, · · · , am)
=

1

∆m(a1, · · · , am)
, (55)

we obtain (42) with m = m. Hence the induction step is established and the

proposition is proved.

2.3 Proof of the theorem

Now we complete the proof of Theorem 1.1.

Proof of Theorem 1.1. For any subset E ∈ R and s ∈ C, consider the new

weight function WE,s(x) := W (x)(1 − sχE(x)). Let ZE,s
d (a1, · · · , ad) be the

partition function (2) with W replaced by WE,s. We also use a similar short-

hand notation as (4). Then

Ed(a1, · · · , am;E; s) =
ZE,s
d (a1, · · · , am)

Zd(a1, · · · , am)
. (56)
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Taking t = (0, 0, · · · ) in (42) and recalling (17), we find

Zd(a1, · · · , am)

Zd
=

1

∆m(a1, · · · , am)
det

[
am−j
k

Zd+1−j(ak)

Zd+1−j

]m
j,k=1

. (57)

Note that this holds for any weight function W . We substitute W 7→ WE,s

in (57) and divide this identity by (57) with W . From this we obtain

Ēd(a1, · · · , am;E; s) =
det
[
am−j
k Zd+1−j(ak)Ēd+1−j(ak;E; s)

]m
j,k=1

det
[
am−j
k Zd+1−j(ak)

]m
j,k=1

. (58)

We now consider the terms am−j
k Zd+1−j(ak). For any dimension l, if al = a

and a1 = · · · = al−1 = 0, applying l’Hôpital’s rule to (3), we have a formula

of the partition function Zl(a):

Zl(a) =
Cl

al−1
∏l−2

j=0 j!

∫
Rl

det
[
V
]

det
[
λj−1
i

] l∏
j=1

W (λj)dλj (59)

where V =
(
Vij
)l
i,j=1

, with Vij = λj−1
i for j = 1, · · · , l− 1 and Vil = eaλi . Let

pj be orthonormal polynomials with respect W (x)dx. By using elementary

row operations,

Zl(a) =
C ′l
al−1

∫
Rl

det
[
Ṽ
]

det
[
pj−1(λi)

] l∏
j=1

W (λj)dλj. (60)

where Ṽ =
(
Ṽij
)l
i,j=1

, with Ṽij = pj−1(λi) for j = 1, · · · , l − 1 and Ṽil =

eaλi , and C ′l is a new constant which depends only on l and W . Using the

Andréief’s formula and the fact that pj are orthonormal polynomials, we

obtain

Zl(a) =
l!C ′l
al−1

∫
R
eaλpl−1(λ)W (λ)dλ = l!C ′ka

−l+1Γl−1(a). (61)

Inserting this into (58), we obtain Theorem 1.1.
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