On explaining the observed pattern of quark and lepton masses

Jiří Hošek Department of Theoretical Physics Nuclear Physics institute Řež (Prague) Czech Republic

Talk based on: 1606.03293(v3 soon); 1704.07172; 1708.08233 Replace the Higgs sector of SM by new strong flavor (family, generation, horizontal) SU(3)_f dynamics (QFD for brevity) with one parameter, the scale Λ. For anomaly freedom add one triplet of sterile neutrino right-handed fields.

$$\mathcal{L}_{f} = -\frac{1}{4} F_{a\mu\nu} F_{a}^{\mu\nu} + \frac{1}{4} \bar{q}_{L} i \not D q_{L} + \bar{u}_{R} i \not D u_{R} + \bar{d}_{R} i \not D d_{R} + \bar{l}_{L} i \not D l_{L} + \bar{e}_{R} i \not D e_{R} + \bar{\nu}_{R} i \not D \nu_{R}$$

 $SU(3)_f \times SU(2)_L \times U(1)_Y$ symmetry manifest in the Lagrangian is observed as badly broken down to $U(1)_{em}$

By elementary Higgses: Yanagida, PR D20, 2986(1979)

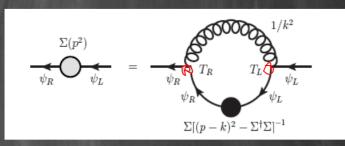
1. Majorana masses of sterile neutrinos: $3 \times 3 = 3^* + 6 =>$ introduce flavor sextet $\phi = (6, 1, 0) \langle \phi \rangle_0$ huge (~ 10^{14} GeV) gives also masses Ma to all eight flavor gluons C $2 \times 6 = 12 = 8(NG) + 1$ (pseudoNG) + 3(Higgs) 2. Dirac masses of SM fermions: $3^* \times 3 = 1 + 8 =$ introduce $\Phi = (8, 2, 1)$ to break SU(2), x U(1), down to $U(1)_{em}$

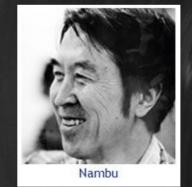
3. Neutrino masses by seesaw come out naturally !

The idea in words: Dynamical chiral gauge symmetry breakdown à la Nambu

- 1. Flavor gluon exchanges in 6 of 3x3 in SD equation generate 3 different huge Majorana masses $M_{fR} \sim \Lambda$ of sterile neutrinos => huge masses of all 8 flavor gluons C_a .
- 2. Flavor gluon exchanges in $3^* \times 3$ channels in SD equation generate 3 different exponentially small Dirac masses m_f same for neutrino, charged lepton, u- and d- quark in given family => masses of W,Z bosons.
- 3. Mass splitting of charged leptons and quarks in a family is attributed to known different weak hypercharges

Dynamical generation of both M_{fR} and m_f masses by $SU(3)_f$ (rest are inevitable consequences of Goldstone theorem)





$$\Sigma(p) = 3 \int \frac{d^4k}{(4\pi)^4} \frac{\bar{h}_{ab}^2((p-k)^2)}{(p-k)^2} T_a(f_R) \Sigma(k) [k^2 + \Sigma^+(k)\Sigma(k)]^{-1} T_b(f_L)$$

- fermion self-energy (mass) is a bridge between L and R valid both for Majorana and Dirac fermions
- sliding coupling at strong coupling entirely unknown
- IF the idea is warranted ULTIMATELY no free parameters seesaw neutrino mass spectrum truly CALCULABLE

Real life is more prosaic: We illustrate explicitly m_f << M_R by a separable Ansatz for the kernel of SD equation

Integrate only up to Λ . The model thus becomes not asymptotically, but strictly free above Λ . Fix external p=(p,0,0,0) and integrate over angles: $\Sigma(p) = \int_{0}^{\Lambda} k^{3} dk K_{ab}(p,k) T_{a}(R) \Sigma(k) [k^{2} + \Sigma^{+}\Sigma]^{-1} T_{b}(L)$

For unknown kernel we make the BCS motivated Ansatz

$$K_{ab}(p,k) = \frac{3}{4\pi^2} \frac{g_{ab}}{pk}$$

 g_{ab} are the effective low-energy constants (how many ?!)

With separable Ansatz the SD equation is immediately formally solved:

$$\Sigma(p^2) = \frac{\Lambda^2}{p} T_a(R) \Gamma_{ab} T_b(L)$$

Difficult part is that Γ has to fulfil non-linear algebraic self-consistency condition (gap equation).

The obtained behavior of $\Sigma(p^2) \sim 1/p$ is not without support: P. Mannheim, Phys. Lett. B773(2017)604, and references therein, and his contribution to this conference. 1. Majorana masses of sterile neutrinos $ar{
u}_R \Sigma_R (
u_R)^{\mathcal{C}}$

 $M_{fR} \sim \Lambda$

2. Dirac masses of leptons and quarks $ar{f}_R \Sigma_D f_L$

$$m_f = \Lambda \exp \left(-1/4\alpha_{\rm f}\right)$$

$$\alpha_{1} = \frac{3}{64\pi^{2}} \left(g_{33} + \frac{2}{\sqrt{3}}g_{38} + \frac{1}{3}g_{88}\right)$$

$$\alpha_{2} = \frac{3}{64\pi^{2}} \left(g_{33} - \frac{2}{\sqrt{3}}g_{38} + \frac{1}{3}g_{88}\right)$$

$$\alpha_{3} = \frac{3}{64\pi^{2}} \frac{4}{3}g_{88}$$

same for all fermion species in a family

Neutrino masses-ultimately exact-true prediction $\Sigma_{\nu} = \begin{pmatrix} \Sigma_{L} & \Sigma_{D} \\ \Sigma_{D}^{T} & \Sigma_{R} \end{pmatrix}$

- $\Sigma_D \sim \Lambda \exp(-1/\alpha)$ and $\Sigma_R \sim \Lambda$ were already computed
- Σ_1 is a Majorana mass of the left-handed neutrino of the electroweak left-handed doublet. $2 \times 2 = 1 + 3$, and the condensing component would be the neutral component of the complex triplet
 - $\phi = (\phi^{(0)}, \phi^+, \phi^{++}) \qquad \phi^{ab}(6, 3, -2) \sim (\bar{l}_L)^{\mathcal{C}a} i\tau_2 \vec{\tau} l_L^b$
- Such a suggestion costs nothing provided ϕ is elementary (triplet Majoron).
- We wishfully argue against formation of composite ϕ strong repulsion without confining force. Hence SEESAW

$$\Sigma_{\nu} = \begin{pmatrix} 0 & \Sigma_D \\ \Sigma_D^T & \Sigma_R \end{pmatrix} \qquad \begin{pmatrix} m_{\nu} \sim \frac{m_{\nu}}{N} \end{pmatrix}$$

Masses of charged leptons and quarks are distinguished by weak hypercharges

In SD eq. consider besides C also the B exchanges: $\bar{g'}(q)^2 \frac{1}{4} Y_R Y_L$

$$Y(l_L) = -1, \quad Y(e_R) = -2, \quad Y(\nu_R) = 0,$$

$$Y(q_L) = \frac{1}{3}, \quad Y(u_R) = \frac{4}{3}, \quad Y(d_R) = -\frac{2}{3}$$

We do not know how to incorporate the B exchange into separable Ansatz, and use a primitive parametrization

$$\begin{aligned} \alpha_1(i) &= \frac{3}{64\pi^2} \{ [g_{33} + \frac{2}{\sqrt{3}}g_{38} + \frac{1}{3}g_{88}] + g_1^i \} \\ \alpha_2(i) &= \frac{3}{64\pi^2} \{ [g_{33} - \frac{2}{\sqrt{3}}g_{38} + \frac{1}{3}g_{88}] + g_2^i \} \\ \alpha_3(i) &= \frac{3}{64\pi^2} \{ \frac{4}{3}g_{88} + g_3^i \} . \end{aligned}$$

TABLE I: Fermion masses from experiment [21].			
$m_3(e) \equiv m_{\tau}$	$m_2(e) \equiv m_\mu$	$m_1(e) \equiv m_e$	
$1.777{\rm GeV}$	$105.7\mathrm{MeV}$	$0.511{\rm MeV}$	
$m_3(u) \equiv m_t$	$m_2(u) \equiv m_c$	$m_1(u) \equiv m_u$	
$173.1{ m GeV}$	$1.28{ m GeV}$	$2.2{ m MeV}$	
$m_3(d) \equiv m_b$	$m_2(d) \equiv m_s$	$m_1(d) \equiv m_d$	
$4.18{ m GeV}$	$96.0\mathrm{MeV}$	$4.6\mathrm{MeV}$	

TABLE II: The parameters of the theory describing the fermion spectra.

g_{33}	g_{38}	g_{88}
1.27262	-0.0594915	1.502790
g_1^e	g_2^e	g_3^e
-0.382808	-0.315776	-0.341190
g_1^u	g_2^u	g_3^u
-0.332490	-0.196766	-0.060098
g_1^d	g_2^d	g_3^d
-0.305581	-0.320025	-0.295027

11

11

Impressionistic conclusion: Properties of quantum flavor dynamics

- Masses of leptons and quarks are ultimately calculable
- There is a QFD understanding of seesaw origin of neutrino mass spectrum
- No genuine electroweak symmetry scale, $\Lambda \sim 10^{14}$ GeV
- Composite Higgs is similar to but distinct from SM Higgs
- There are three superheavy neutrino-composite inflatons χ
- There are decent candidates for dark matter axions

Illustration of composite NG bosons by Ward-Takahashi identity (SU₃)

dynamical neutrino mass term (sextet): $\bar{\nu}_R \Sigma_R (\nu_R)^{\mathcal{C}}$ neutrino current $j_a^{\mu} = \bar{\nu}_R \gamma^{\mu} \frac{1}{2} \lambda_a \nu_R = \frac{1}{2} \bar{n} \gamma^{\mu} \frac{1}{2} \Lambda_a n$ where $\frac{1}{2} \Lambda_a = \frac{1}{2} \lambda_a P_R + \frac{1}{2} (-\lambda_a)^T P_L$ $n = \nu_R + (\nu_R)^{\mathcal{C}} \quad (\nu_R)^{\mathcal{C}} = C(\bar{\nu}_R)^T$ WT identity, pole term

$$\Gamma^{\mu}_{a,pole} = \frac{q^{\mu}}{q^2} [\hat{\Sigma}(p+q)\Lambda_a - \bar{\Lambda}_a \hat{\Sigma}(p)]$$

Yukawa couplings of 'would-be' NG bosons $P_a(p,p) \sim \{\Sigma(p), \frac{1}{2}\lambda_a\}\gamma_5, \quad a = 1, 3, 4, 6, 8$ $P_a(p,p) \sim [\Sigma(p), \frac{1}{2}\lambda_a], \quad a = 2, 5, 7$ flavor aluon masses $M_{aC} \sim M_R$ (Jackiw-Johnson) Dynamically generated masses of leptons and quarks break spontaneously $SU(2)_L \times U(1)_Y$ to $U(1)_Q$: There are 3 'would-be' NG bosons i.e., massive W and Z.

$$\Gamma^{\alpha}_{W,pole} = -\frac{g}{2\sqrt{2}} \frac{q^{\alpha}}{q^2} \left[(1-\gamma_5) \Sigma_f(p+q) - (1+\gamma_5) \Sigma_f(p) \right]$$

compute the W, Z masses in terms of Σ using the Pagels-Stokar formula

$$F_f^2 = 8N \int \frac{d^4p}{(2\pi)^4} \frac{\Sigma_f^2(p^2) - \frac{1}{4}p^2(\Sigma_f^2(p^2))}{(p^2 + \Sigma_f^2(p^2))^2}$$
$$m_W^2 = \frac{1}{4}g^2 \frac{5}{4\pi} \sum_f m_f^2$$
$$m_Z^2 = \frac{1}{4}(g^2 + g'^2) \frac{5}{4\pi} \sum_f m_f^2$$

$$m_{3D} \doteq 390 \,\mathrm{GeV}$$

Thanks for your attention !

"Before I came here I was confused about this subject. Having listened to your lecture I am still confused. But on a higher level."

Enrico Fermi

