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Chapter 1

Introduction

1.1 Historical overview of computation inside mathematics
From computation to reasoning Mathematics started with counting. Indeed, the most
ancient mathematical artifacts are tally sticks, the oldest known example being the Lebombo
Bone (circa 35,000 BC). They were used throughout history as legal proofs for contracts and
they appear in official writings as lately as 1804, in the Napoleonic Code [PMTP04, Article
1333] which is still in force in France1. Next came computation, as exemplified by thousands
of Babylonian clay tablets used for administrative records, like taxation, and later as student
exercises in multiplication, division (3rd millennium BC) and linear and quadratic equation solving.
Even nowadays, mathematics summarize to computation for most people, usually with hatred for
fractions and functions, considered as very complex concepts.

This belief is no longer accurate as, around 500 BC, came with Pythagoras a new actor in
mathematics: proof. This arrival changed dramatically the orientation of mathematics: from
computation techniques, it became reasoning writings. The first and most famous instance of a
written mathematical proof is the Pythagorean Theorem, given in Figure 1.1. As time passed,
proofs were getting increasingly more important and relegated computations as a mere tool to help
building proofs. This movement culminated in the 19th century, with the invention of algebraic
structures giving the liberty to abstract numbers away and reason about computation by axiomatic

b a

c
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bc

ba
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b

a

c

c2 c2 = a2 + b2

a b

b

a

a b

b

a a2

b2

Figure 1.1: Graphical proof of the Pythagorean Theorem.

1http://www.legifrance.gouv.fr/affichCode.do?cidTexte=LEGITEXT000006070721
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2 CHAPTER 1. INTRODUCTION

properties that the operations must satisfy. The final point of this trend was the axiomatization
of natural numbers by Giuseppe Peano, reducing even the most basic computation to logical
reasoning. Asserting that 2+2 = 4 means performing a proof of this result and not computing the
addition with an algorithm learnt in elementary school. Computing can be completely reduced to
demonstration. This point of view is very well illustrated and explained in Henry Poincaré’s
book La Science et l’Hypothèse [Poi02].

From reasoning to computation The 20th century saw the come back of computation in
two different ways. On the one hand, calculus reappeared in the years 1930s, linked to a famous
logical problem, David Hilbert’s Entscheidungsproblem, which asks to build a “mechanizable
procedure” to decide the truth of any first-order logical formula. This problem was independently
proved impossible by Alonzo Church and Alan Turing in 1936 [Chu36, Tur36]. This discovery
was the starting point of the whole field of computer science and the very first time that explicit
formal computation appeared in mathematics. Nevertheless, in this setting, computation was
restricted to specific logical problems, an exotic phenomenon that clearly does not permeate into
mathematics.

On the other hand, computation came back in a much more pervasive way through the Curry-
Howard correspondence (named after Haskell Curry and William Howard) and more generally
the BHK2 interpretation of proofs. The idea underlying this interpretation is twofold. Indeed,
proofs can be used to compute, giving correct programs by construction, but the computational
interpretation also gives both a deeper insight on the meaning and intuition of proofs and it often
offer more precise results. The Curry-Howard correspondence, or proof-as-program correspondence,
expresses an adequacy of concepts between proof theory and programming language theory. It
appears at many levels, for instance at the specification level where formulæ are types, and at
the term level where proofs are programs. In this perspective, proofs by induction are recursive
programs and executing a program is a logical transformation called cut elimination (more
details follow). Unlike in the Entscheidungsproblem, computation appears here in all proofs in
mathematics. Paraphrasing Galileo Galilei, we could say “And yet, they compute”. Nevertheless,
there is a strong limitation to this correspondence: it is restricted to constructive logic where
proofs explicitly build the objects they introduce.

A major breakthrough came with Timothy Griffin in 1990 [Gri90] who removed this restric-
tion and extended the correspondence to classical logic through the callcc control operator [SS75]
which captures the state of the environment. Intuitively, callcc allows us to go back in time to a
previous point in the program and to make a different choice, i.e. take a different execution path.
Although Peter Landin earlier introduced a control operator J [Lan65a, Lan65b] to explain the
behavior of the goto instruction of Algol60 [BBG+60], Timothy Griffin was the first to type a
control operator. This discovery is specially remarkable because it connects callcc and Peirce’s
law which were both known for a long time, respectively thirty years and over a century, and
that such a deep connection was never noticed before. Following this result, various techniques
have been used to encompass classical logic into computation: classical λ-calculi like Michel
Parigot’s λµ-calculus [Par92], Stefano Berardi’s interactive realizability [AB10] and Jean-Louis
Krivine’s classical realizability [Kri09] to name a few. This document will focus on the last one.

Formalization of programming languages When the notion of computation was formalized
in the beginning of the 20th century, notably to answer the Entscheidungsproblem, several equiva-
lent approaches were invented at the same time. Among these, the most important computation
models are Turing machines [Tur36], the λ-calculus [Chu32], and recursive functions [Kle36].

2Named after Luitzen Egbertus Jan Brouwer, Arend Heyting and Andrey Kolmogorov.
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Turing machines have a very algorithmic description that has no direct connection to logic or
mathematics but is easy to implement. On the opposite, in the purest mathematical tradition,
recursive functions are defined from a few basic functions (constants and projections) and closure
under three formation rules (composition, recursion and minimization). This makes inductive
reasoning very natural but the drawback is that their implementation on a physical device is
difficult. The λ-calculus lies in the middle, having close connections to logic and a more low-level
definition than recursive functions, so that it is a little bit easier to implement. Each model has
its own merits: Turing machines are well suited for complexity analysis, recursive functions for
computability investigations and the λ-calculus for connections with logic. As we will be interested
in logical properties of programs, we will only look at the λ-calculus, which is the theoretical
basis underlying all functional programming languages. Notice however that its implementation
is still far from obvious and that the main problem with recursive functions, i.e. variable binding,
does not disappear. In fact, the POPLmark challenge [ABF+05] tackles exactly this problem:
formalizing the basic structure of a programming language, embodied by System F<: [CMMS94],
in order to facilitate machine checked proofs.

The underlying idea of the λ-calculus is very simple: everything is a function. Even numbers
are functions! As the only things we can do with functions is to build them and to apply them,
how can that be enough to define everything? To understand this better, let us look at an
example. In mathematics, applying a function to a number is performed in two steps: first,
by replacing the formal argument in the body of the function by the effective one; second, by
performing the actual computation. For instance, consider the function f(x) = 2× x+ 3, which
we want to apply on 7, written f(7). We must first replace x by 7 in the body of f to have
2× 7 + 3, then the real computation takes place and we get the final result 17. During this second
step, the computation is performed by rules learnt in elementary school and, although they are
also functions, the operations × and + do not seem to be of the same nature than f . Indeed, f
is defined by an expression whereas × and + are defined by algorithms, that is, a technique
to compute them, which maybe explains why the former is considered difficult but the latter
seems much more natural to most people. The existence of this second computational step comes
from the assumption that some operations, here × and +, are primitive and cannot be simplified
further, except by calling an external oracle that computes their results. A major progress of
the λ-calculus toward the mechanization of computation is to remove this second step: everything
can be done using only the first one, i.e. replacing a formal argument by a effective one. This
means in particular that we can give expressions to define the operations × and +, with suitable
definitions for numbers.

Let us give now the definition of the λ-calculus, which revolves around the idea of building
and applying functions. Assuming a countable set of variables, its grammar is the following:

λ-calculus M,N := x | λx.M | M N x a variable

Such a definition means that we can form λ-terms M and N from either a variable x, the
abstraction of a λ-term M on a variable x, or the application of a λ-term M to another λ-term N .
Abstraction and application translate into more traditional mathematics as follows:

λ-calculus Mathematics Meaning
λx.M x 7→M function definition
M N M(N) function application

Translated inside the λ-calculus, the first computational step, i.e. the replacement of the formal
argument by the effective one in the body of the function, is performed by the following rule,
called β-reduction:
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β-reduction (λx.M)N β−−→ M [N/x]

The notation of the right-hand side, M [N/x], means that the variable x is substituted by N in M,
the body of the function. There are some subtleties due to free and bound variables that will be
dealt with in Section 2.1.

Within this calculus, natural numbers can be encoded as the iteration of a function: the
integer n is defined by a λ-term n that takes a function f and an argument x as input, and
applies n times f to x. We thus have:

Church integers 0 := λf. λx. x
1 := λf. λx. f x
2 := λf. λx. f (f x)
3 := λf. λx. f (f (f x))

...

We also define addition + and multiplication × by the following λ-terms:

addition + := λn. λm. λf. λx.mf (n f x)
multiplication × := λn. λm. λf. λx.m (n f)x

We can then check that the mathematical function of our example, x 7→ 2× x+ 3, encoded as
λx.+ (× 2x) 3 in the λ-calculus, indeed gives 17 when applied to 7:

(λx. (+ (× 2x) 3) 7 β−−→ + (× 2 7) 3 β−−→ . . .
β−−→ 17

1.2 Typing
Types The λ-calculus is a completely syntactic presentation of computation that attaches
no special meaning to the functions it manipulates. For instance, we can write terms that
mathematically hardly make sense like δ := λx. x x, which applies its arguments to itself: x is
both the function and its argument. Furthermore, if we apply δ to itself, we get Ω := δ δ and
we can easily check that this term β-reduces to itself: Ω β−−→ Ω. This entails that computation
in the λ-calculus may not terminate. To cast out these pathological terms and recover a more
intuitive concept of function, types were introduced. Types express how we can use a function:
how many and what kind of arguments it takes, what kind of result it returns. Many different
type systems exist for the λ-calculus, giving several flavors of typed λ-calculi. By opposition to
these, the λ-calculus without types is called the pure λ-calculus. The simplest type system is
Church’s theory of simple types [Chu40], which involves a set of basic types B and a single type
constructor, the arrow →, used to build functions: A→ B is the type of functions that take an
argument of type A and return a result of type B.

Simple types A,B := α | A→ B α ∈ B

To describe functions of several arguments, we use functions that return functions. More precisely,
to write a function taking n+ 1 arguments, we build a function taking the first argument and
returning a function that expects the n other arguments3. For instance, if nat is the type of
integers, the operations + and × both take two integers of type nat and return an integer of type
nat, thus they have type nat→ nat→ nat.

3Formally, we simply use curryfication: i.e. the type isomorphism A×B → C ' A→ B → C.
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To associate types with λ-terms, we have inductive rules. Given a function of type A→ B,
we expect it to accept only arguments of type A and to give a result of type B. This intuition
is formalized into the following rule, to be read from top to bottom, where the notation M : A
denotes that M has type A:

M : A→ B N : A
M N : B

It means that if M has type A → B and N has type A, then M N has type B. In order to
type a function, we need to know the type of its arguments and the type of its result. As the
type of the result depends on the body of the function, in particular on the arguments, we
need assumptions on the types of the arguments to derive the type of the result. Therefore, we
introduce typing contexts, that associate with some variables a type, typically to the variables
that will be abstracted. Integrating a typing context Γ to the notation M : A yields the typing
judgment Γ `M : A that has the following meaning: under the typing hypotheses in Γ, we can
derive that M has type A.

To use the assumptions within Γ in practice, we need a rule, intuitively trivial, saying that if
we assume that a variable x has type A, then x indeed has type A.

Γ, x : A ` x : A or (x : A) ∈ Γ
Γ ` x : A

To type abstraction, we formalize the following intuition: if, assuming that the argument has
type A, we can deduce that the body of the function has type B, then the function itself has
type A→ B.

Γ, x : A `M : B
Γ ` λx.M : A→ B

Finally, after lifting the original rule for application to make room for hypotheses, we get the
full type system for the simply-typed λ-calculus.

Γ, x : A ` x : A
Γ, x : A `M : B

Γ ` λx.M : A→ B
Γ `M : A→ B Γ ` N : A

Γ `M N : B
Several refinements of this type system exist, that add for instance constants and new program-

ming constructs like pairs and sum types (System T [Göd58]), polymorphism (System F [Gir72]),
or dependent types (CoC [CH88] and LF [HHP93]).

The Curry-Howard correspondence The proof-as-program correspondence allows us to see
these type systems as proof systems. For instance, the simply-typed λ-calculus corresponds to
minimal intuitionistic logic, as follows.

Γ, A ` A
Γ, A ` B

Γ ` A⇒ B
Γ ` A⇒ B Γ ` A

Γ ` B
The only minor differences are that minimal logic does not have terms and that implication is
written ⇒ rather than →. This similarity, which turns out to be an isomorphism, suggests to
identify the notation → and ⇒ and to see λ-terms as witnesses for a proof, called proof terms.
This is the core of the proof-as-program correspondence, and it can be adapted to the extensions
of the λ-calculus4. Furthermore, this correspondence also has consequences at the dynamic
level: normalization of proofs matches β-reduction of λ-terms. This entails that properties of
these λ-calculi translate into properties of the corresponding proof systems. The situation is
partially summarized in Figure 1.2.

4For instance, polymorphism (i.e., type quantification) matches second-order quantification and dependent
types match first-order quantification.
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The proof-as-program correspondence is based on a wider philosophical idea, called the BHK
interpretation of proofs, which is at the heart of constructive mathematics. In this interpretation,
a proof not only gives the truth value of a proposition, i.e. whether it holds or not, but it also
justifies why it holds, that is how we effectively get to that knowledge. As logical formulæ are
defined inductively from other formulæ, this naturally leads to the idea that an inference rule is a
function that transforms justifications for the premises into a justification for the conclusion. The
simplest case is the one presented beforehand, linking the simply-typed λ-calculus and minimal
intuitionistic logic.

Proof theory Programming Theory
formulæ types
proofs programs
normalization β-reduction
conjunction ∧ Cartesian product ×
disjunction ∨ disjoint union +
implication ⇒ function space →
1st-order quant. dependent type ∀x : A.B(x)
proof by induction recursive program
cut elimination5 subject reduction
proof checking type checking

Figure 1.2: Proof-as-program correspondence.

This correspondence seems restricted to constructive reasoning because it associates with
every proof a program: the reasoning steps used in a derivation must build explicitly the objects
they talk about, so that we can translate them into programming constructs according to the
dictionary of Figure 1.2. In particular, the law of excluded middle, stating that a proposition A
is either true or false, and formally expressed as A ∨ ¬A, does not hold, as we cannot build
generically a witness for either A or ¬A, independently of A. Furthermore, in this setting, such
a witness would imply that any formula A is decidable, which is known to be false thanks to
Kurt Gödel’s Incompleteness Theorem [Göd31]. This apparent restriction was lifted by Timothy
Griffin [Gri90] by adding the match between Peirce’s law and the control operator callcc. This
discovery opened the door of the proof-as-program correspondence to classical logic and, several
refinements, such as delimited continuations [Fel88, DF90], have been introduced since then.

1.3 Realizability rather than typing
Typing gives strong safety properties about the execution of programs, and the stronger the
type system, the finer the properties. For instance, the simply-typed λ-calculus ensures that all
reductions are terminating (strong normalization property) and that the type does not change
along reduction (subject reduction property). Dependent types can even express properties
about the exact value returned by a program. These properties deal with the computational
behavior of λ-terms whereas typing depends on their structure. Indeed, the typing rules are
defined by induction on λ-terms and make no reference to computation. Although type systems
are expressive enough to give strong results about computation, this mismatch suggests to invent
another relation between types and programs that would focus on computation. Furthermore, we

5Cut elimination is taken here to mean that reducing a cut gives a proof of the same formula. If we consider
instead its other meaning, i.e. that the process of eliminating all cuts terminates, then it corresponds to the
combination of subject reduction and normalization.
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can imagine programs that do not fit the structural constraints of typing but have a perfectly
definable and simple behavior. For example, the program λn. if n = n+ 1 then true else 0 is
not well-typed but it always outputs 0. Other examples includes programs written in another
language that we may want to use for efficiency, like assembly code embedded into C code, or
even compiler optimizations: the output program may not be expressible with the input language.

These observations motivate the introduction of realizability, which can be defined as “models
dealing with computation” or “operational semantics used to build models of logic”. To illustrate
the difference with typing, let us consider the identity function λx. x and wonder why it has the
type nat→ nat. With typing, this justification comes from a derivation tree, which is a finite
syntactic object that we can effectively verify, but it has no direct connection to the computational
behavior of λx. x. On the opposite, λx. x realizes the type nat→ nat, written λx. x  nat→ nat,
because for every integer n ∈ nat, (λx. x)n reduces to n and that n ∈ nat. This justification is
external, infinitary, and undecidable but only depends on computation.

The main interest of this shift from a syntactic analysis to a semantic analysis is that it
is more flexible than typing while keeping the same computational guarantees. For example,
looping terms like fixpoint operators are not a problem if they are used in a reasonable way:
realizability only considers the particular case at hand and not the general behavior of the looping
term. Furthermore, realizability is independent of the exact syntax of programs, it simply needs
the evaluation relation between programs6. Another advantage of realizability over typing is
the absence of contexts: as realizability only manipulates complete programs which are closed7

objects, it simply does not need to handle variables. Of course, all these benefits come at a
cost: the realizability relation is undecidable for all interesting cases. Typing and realizability
are connected through a soundness result, sometimes called adequacy: if M has type A, then M
realizes A. In that sense, realizability is more fined-grained than typing, and we can expect to be
able to prove that M realizes A more often than that M has type A.

Kleene’s intuitionistic realizability As an illustration, let us describe Kleene’s realizability
for a simple extension of the λ-calculus with integers and pairs. The syntax of terms and types is
the following:

Terms M,N := x | λx.M | M N | n | 〈M,N〉 | fst | snd

Types A,B := ⊥ | m = n | A⇒ B | A ∧B | ∀x.A | ∃x.A

There is no negation ¬A as a primitive connective, but it can be defined as A⇒ ⊥. Similarly,
disjunction A ∨B is defined from equality, conjunction and existential quantification by letting
A ∨B := ∃x. (x = 0⇒ A) ∧ (¬(x = 0)⇒ B). Evaluation, written �, contains three rules: one
for β-reduction and two for the projections of a pair:

Evaluation (λx.M)N � M [N/x]
fst 〈M,N〉 � M
snd 〈M,N〉 � N

The reflexive transitive closure of � is written �∗.
The realizability relation M  A is defined by induction on A as follows:

6Nevertheless, this evaluation relation is usually defined by induction on the syntax of programs.
7We consider here library functions either as constants or we inline their code. In fact, in a compiler, such

closed programs are binaries, obtained after the linking phase that resolves library dependencies.
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Kleene’s Realizability M  ⊥ := impossible
M  n = m := n = m and M �∗ 0
M  A⇒ B := for any N such that N  A, M N  B
M  A ∧B := there exists M1 and M2 such that

M �∗ 〈M1,M2〉, M1  A and M2  B
M  ∀x.A := for any n ∈ N, M n  A[n/x]
M  ∃x.A := there exist n ∈ N and M ′ such that

M �∗ 〈n,M ′〉 and M ′  A[n/x]

In the definition of M  n = m, the value 0 is completely arbitrary: the important point is
that the evaluation of M must terminate. It is straightforward to check that the definitions of
disjunction and realizability entail that M  A ∨B gives either a realizer of A or a realizer of B
and we know which one, a result called the disjunction property. We can also easily prove by
induction on A that if A is realized, i.e. M  A for some M , then A is true. As an immediate
corollary, we have the witness property: if M  ∃x.A, then there exists an integer n such that
A[n/x] holds. Finally, Stephen Kleene proved in 1945 the adequacy theorem [Kle45]: proofs in
intuitionistic arithmetic are realizers. These three results allow us to extract more information
from intuitionistic proofs: the proof term is a realizer and, by evaluation, we can get witnesses in
case of existential formulæ and branching information in case of a disjunction. This implies in
particular that any realized formula must be decidable. Therefore, realizability can be seen as a
refinement of constructive provability: when it asserts A⇒ B, ∀x.A, or ∃x.A, it gives explicitly
a justification for it. These justifications are respectively a function mapping realizers of A to
realizers of B, a function mapping integers n to realizers of A[n/x], and a pair consisting of a
witness n and a realizer of A[n/x]. This was the primary reason why Stephen Kleene introduced
realizability in the first place: to convey the “missing information” needed for a constructivist
mathematician to accept a proof.

The converse does not hold: realizability is strictly stronger than provability. Indeed, we can
prove that any λ-term realizes ¬(∀x.Halt(x) ∨ ¬Halt(x)) where Halt(x) is a formula expressing
that the xth Turing machine stops. This amounts to saying that there is no realizer of ∀x.Halt(x)∨
¬Halt(x), which is straightforward as such a realizer would solve the halting problem because of
the disjunction property. Besides, ¬(∀x.Halt(x) ∨ ¬Halt(x)) cannot be provable in intuitionistic
arithmetic because ∀x.Halt(x) ∨ ¬Halt(x) is provable with excluded middle which is compatible
with intuitionistic logic.

This example shows more generally that Kleene’s realizability is not compatible with classical
logic because it realizes the negation of the law of excluded middle. Therefore, we need to develop
a different realizability to encompass classical reasoning in a computational interpretation of
proofs. This is exactly what Jean-Louis Krivine did: he built a new realizability theory that is
designed to be compatible with classical logic.

Krivine’s classical realizability This theory is a complete reformulation of Kleene’s realiza-
bility in a classical setting, using Timothy Griffin’s discovery that the control operator callcc
has the type of Peirce’s law ((A⇒ B)⇒ A)⇒ A. As Peirce’s law is one of several equivalent
ways8 to extend intuitionistic logic to classical logic, this gives directly full classical reasoning.
Because classical logic allows us to write undecidable formulæ, it means in particular that the
computational aspects of realizers, e.g. witness extraction through the disjunction and witness
properties, do not hold in their full generality. Moreover, because of callcc that “goes back in
time”, computational behaviors of classical realizers are more subtle.

8Other possible axioms are the double negation elimination ¬¬A⇒ A or the excluded middle A ∨ ¬A.
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Facing these new difficulties, Jean-Louis Krivine chose the simplest computational framework.
The language of realizers is the λc-calculus, that is the usual λ-calculus plus some constants to
realize additional axioms. For example, one such constant is the control operator callcc, which
realizes Peirce’s law. These λc-terms are evaluated according to a fixed strategy, rather than
full β-reduction, and the simplest one: weak head reduction. The evaluation machine itself, called
the Krivine Abstract Machine (KAM) [Kri07], is very simple and it distinguishes only the λc-term
being evaluated from its arguments, collected in a stack. This strict separation gives a simple
implementation of callcc: to save a snapshot of the machine to which we may come back later
on, it is enough to save the stack. Indeed, to backtrack to a previous point in the history of the
program, we only need to restore a previously saved stack and to change the evaluated term, thus
possibly taking a different execution path.

A major difference between Kleene’s and Krivine’s realizabilities is the treatment of negation.
By definition of Kleene’s realizability, the false formula ⊥ cannot be realized. This has strong
consequences for negated formulæ: either they have no realizer or every program is a realizer. In
particular, their computational content is lost. To avoid this problem in classical realizability,
instead of a single realizability model, there is a family of realizability models, parametrized by
a pole ⊥⊥. Computationally, this pole represents the property we want to observe on programs.
Realizers, in particular the ones for ⊥, are then defined with respect to this pole.

The existence of several realizability models opens new questions that do not exist in Kleene’s
realizability. For instance, the computational content of formulæ strongly depends on the pole.
In particular, the specification problem, asking to find a computational characterization of a
formula, is a challenging question that must deal simultaneously with all realizability models.
Furthermore, even old problems can have new dimensions and difficulties attached to them. For
example, witness extraction is much more difficult and impossible in general, because classical
realizers may backtrack thanks to callcc. This implies in particular that witnesses cannot be
trusted directly, since even though a classical realizer of ∃x.A does reduce to a pair 〈n,M〉 with
M  A[n/x], we have no guarantee that n satisfies A[n/x], as M could backtrack and produce a
different witness n′.

Outside computational questions which are our main concern, classical realizability also gives
very interesting results from a model theory perspective, because smart choices of the pole lead to
very interesting and various classical realizability models. We can get non standard integers, or
objects that are not integers, or build a formula such that its realizers simulate all other realizers.
By the generalization of classical realizability to realizability algebras [Kri11, Kri12], we can even
get eerie results like a well-order on R.

The problem tackled by this thesis The connections between intuitionistic logic and func-
tional programming are well-understood now thanks to intuitionistic realizability. Most of
mathematics is classical, but an important part can be reformulated in an intuitionistic setting,
sometimes at the cost of longer and more complex proofs. Nevertheless, this is not always possible
and the classical and intuitionistic formulations of the same starting idea may lead to very different
theories, like in the case of real analysis [BB85]. Therefore, classical realizability is an excellent
tool to extend the computational interpretation of mathematics to classical proofs.

One of the major theories of the second half of the 20th century is Paul Cohen’s classical
forcing [Coh63, Coh64]. This logical theory allowed him to prove the independence of the
continuum hypothesis from the axioms of ZFC, the first problem on David Hilbert’s famous list,
given at the International Congress of Mathematicians in 1900. The overall idea of this technique
is to extend a model of ZF by adding a new set to it, and performing all the required adjustments
to stay a model of ZF. By a careful choice of this new set, we can give to the new model properties
that are false in the starting one. Paul Cohen’s work was so important and influential that he
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won the Field medal for it in 1966. Following the ideas of the BHK interpretation, a computational
interpretation of forcing may shed new light on this theory and give us a better intuition of
it. Forcing might as well be the logical side of a well known programming feature or program
translation, thus providing a new understanding and a strong logical background for it, like
what happened with callcc and Peirce’s law. As Cohen’s forcing is a classical theory, we need
the tools of classical realizability to tackle its computational interpretation. The seminal work
in this direction was done by Jean-Louis Krivine [Kri11, Kri12], and was later reformulated
by Alexandre Miquel [Miq11, Miq13]. Building upon their work, the present document aims
as completing and illustrating the computation interpretation of classical forcing as a program
transformation.

1.4 Outline of this document and contributions
In order to appreciate fully the computational interpretation of forcing, we must first present
classical realizability. Starting with the simplest setting, we consider it in second-order logic.

Classical realizability for second-order arithmetic (PA2) In the first part of this docu-
ment, we expose classical realizability in its simplest setting, second-order arithmetic. Chapter 2
is devoted to the construction itself and its main results, as they were introduced by Jean-Louis
Krivine in his realizability course at Luminy in May 2004 [Kri04]. The focus of our presentation
is the computational aspect of classical realizability, and more precisely the two computational
questions raised by realizability: the specification problem and witness extraction. Specification
has a very wide range of difficulty and shows important differences with Kleene’s realizability,
already for simple cases like the booleans. Extracting witnesses from proofs in PA2 requires to
realize the axioms of PA2. Most of these are trivial except the recurrence axiom which leads to a
long discussion. Finally, we focus on classical witness extraction techniques, their difficulty being
the presence of backtracks in the realizers, which may change witnesses on the fly.

Classical realizability is a very flexible framework that we can very easily extend to increase
the scope of previous results or considered new problems. Chapter 3 presents some extensions of
the formalism developed in Chapter 2. Several new instructions are considered, allowing for new
axioms like countable choice or new programming constructs like pairs or non-determinism. New
realizability connectives allow us to specify more λc-terms, for instance the semantic implication 7→
is used to specify a fixpoint combinator. Primitive data are also integrated into the KAM in order
to improve the efficiency of computation. Primitive integers, introduced in [Miq09b], are equivalent
to Church integers and they can completely replace them. With the same underlying ideas, we
introduce primitive rational numbers and real numbers. The main novelty and interest of this
construction of real numbers is that it combines in a unified framework both computable and non
computable real numbers, while retaining the possibility to extract witnesses. We illustrate this
construction on the problem of polynomial root extraction. Finally, we present a formalization of
classical realizability in Coq, available from http://perso.ens-lyon.fr/lionel.rieg/thesis/.
It focuses on usability and aims at being as extensible as the pen and paper construction. In
particular, it allows users to define new connectives on the fly and provides a library of extensible
tactics to manage them.

Classical realizability for higher-order arithmetic and forcing The results of classical
realizability for second-order arithmetic can be lifted to higher-order arithmetic. Chapter 4
handles this conversion, by stating the new logical framework, higher-order Peano arithmetic
PAω+, but keeping the same KAM and realizers. We take advantage of this modification to

http://perso.ens-lyon.fr/lionel.rieg/thesis/
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introduce formally datatypes in PAω+ along the way, giving efficient implementations that are
disconnected from their logical presentation, i.e. their specification.

Chapter 5 finally presents classical forcing in the formal setting of PAω+. Unlike what Paul
Cohen did, forcing is not presented as a model construction but rather as a theory transformation,
in the fully-typed setting of PAω+ that includes datatypes. This transformation is extended to
generic sets, thus giving a complete translation of proofs in a forcing theory into the underlying base
theory. By analyzing the computational content of this translation, we get the full interpretation of
forcing as a program transformation that adds a memory cell. This translation can be hard-wired
into the evaluation machine, giving a variant of the KAM, the Krivine Forcing Abstract Machine
(KFAM) [Miq13], that features to execution modes, the usual one, called kernel mode, and a
new forcing mode, called user mode, where the computational interpretation of forcing is crystal-
clear. These names are taken from operating system terminology, because the computational
interpretation of forcing is reminiscent from the protection ring technology.

As a illustration of this methodology, we work thoroughly through the example of Herbrand
theorem, and more precisely the extraction of Herbrand trees. Starting from the disadvantages of
the natural proof of this theorem, we give an alternative proof where forcing manages automatically
the tree structure, freeing us from handling it by hand. The computational analysis of this proof
unveils that the Herbrand tree under construction is actually stored in the forcing condition,
which is modified along the execution of the program. Finally, drawing inspiration from this
computational observation, we redesign the forcing components of the proof to make it more
efficient thanks to the datatypes introduced in Chapter 4. The final program that we obtain in
this way is identical to the natural program that one could write to solve the initial problem,
without any concern for a logical validation. In this respect, forcing may be seen as a certification
mechanism for memory cells.

Contribution of this thesis This thesis focuses on the computational interpretation of Paul
Cohen’s classical forcing and its practical use as a program transformation. After giving a survey
of classical realizability for second-order Peano arithmetic with a focus on its computational
aspects, the contributions of this thesis are the following:

• Several extensions presented in Chapter 3 are formalization of ideas that were only sketched
previously, such as intersection type ∩ and semantic implication 7→ (Section 3.2).

• Other extensions are completely original, like syntactic subtyping, primitive conjunctions
and disjunctions, primitive rational numbers and real numbers (Sections 3.4 and 3.5).

• The formalization of classical realizability in the Coq proof assistant as a library available
at http://perso.ens-lyon.fr/lionel.rieg/thesis/(Section 3.7).

About forcing and the higher-order setting (PAω+), the contributions are the followings:

• The introduction of datatypes in PAω+ (Chapter 4).

• The introduction of datatypes in the forcing transformation (Section 5.1) and its reformula-
tion with a datatype as the underlying structure for forcing conditions (Section 6.2).

• The treatment of generic filters in the forcing translation (Section 5.2).

• The case study of Herbrand trees (Chapter 6).

http://perso.ens-lyon.fr/lionel.rieg/thesis/
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Chapter 2

Classical Realizability for
Second-Order Arithmetic

In this second chapter, we develop the general theory of classical realizability [Kri09] in a second-
order setting. Our ultimate goal is to uncover the computational interpretation of classical
mathematics, especially classical analysis. Indeed, empirically, most of analysis can be formalized
in second-order arithmetic. More precisely, we study how classical realizability can give a
computational meaning to the foundational axioms of analysis, reformulated in a second-order
setting rather than in set theory. In turn, this approach gives computational counterparts to
theorems in analysis. In this sense, classical analysis can be seen as a partly “constructive” logic.
The word “constructive” means here that we have the witness extraction property: from a proof
of an existential formula ∃x.A(x), we can extract a witness w satisfying A(w). Of course, this
cannot be true in general because we can write undecidable formulæ. Section 2.10 will develop
the range of application and the limits of witness extraction.

Sections 2.1 to 2.3 introduce the formal setting of the entire document: the language of
programs (Section 2.1), the logical language (Section 2.2), and the type system (Section 2.3).
Notice that this type system is only secondary tool to us because we focus on a semantic analysis.
Sections 2.4 to 2.6 respectively give the definition of the realizability models, compare it with
Kleene’s realizability, and illustrate the definition with some examples of realizability models.
With only these tools at hand, we can already wonder what the connections are between programs
and formulæ, i.e. the specification problem in Section 2.7, and what are the connections between
proofs and realizers in Section 2.8. the is the first computational question where classical and
intuitionistic realizabilities have very different behaviors, already for simple formulæ like the
booleans. Going back to our initial goal of realizing analysis, Section 2.9 realizes full Peano
arithmetic, culminating in Theorem 2.9.10 that realizes all theorems of PA2. These realizers
can be used to recover integers values, by witness extraction, the topic of Section 2.10, which
differs dramatically from intuitionistic realizability. Indeed, classical logic induces backtracks that
breaks the properties of intuitionistic extraction techniques. Finally, Section 2.11 moves away
from the computational aspects of classical realizability that were our guiding thread, and focuses
on realizability models from a model theoretic perspective, illustrating the variety of classical
realizability models and the sometimes surprising properties that they have.

Unless stated otherwise, results in this chapter are due to Jean-Louis Krivine [Kri09], even
though they are sometimes only hinted as a remark.

The extension of this setting to higher-order arithmetic, necessary to fully express the forcing
transformation, is the topic of Chapter 4.

13
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2.1 The language of realizers: the λc-calculus
2.1.1 The Krivine Abstract Machine (KAM)
The Krivine Abstract Machine [Kri07]1 was initially designed by Jean-Louis Krivine as a stack
machine for evaluating λ-terms. Given arguments, they were meant to be evaluated in front
of evaluation contexts represented by stacks, that is: by finite lists of closed terms ended by a
stack constant (also called stack bottom). The KAM was later extended to a classical version
of the λ-calculus, the λc-calculus, which features two kinds of new constants: instructions and
continuation constants . Instructions are used to add programming features (primitive datatypes
for example). These new features are useful in themselves but they also serve to realize extra
axioms, e.g. the axiom of countable choice (see Section 3.3.2). The set of instructions K must
contain at least the control operator callcc, its role being to save the current argument stack2 π
into a continuation constant kπ. Stack constants are taken from a set Π0 and are usually used as
markers. They are crucial for some constructions in classical realizability, like the thread model
(see Section 2.6.3) and the clock interpretation of the axiom of countable choice (see Section 3.3.2).
In most cases however, we can safely ignore them and think of stacks simply as finite lists of
closed terms.

Definition 2.1.1 (Terms and stacks)
Given a set K of instructions containing callcc and a set Π0 of stack constants, λc-terms and
stacks are defined by mutual induction as follows:

λc-Terms t, u := x | λx. t | t u | κ | kπ κ ∈ K
Stacks π := α | t · π α ∈ Π0, t closed

The operation · adding a closed λc-term on top of a stack is called consing. Consecutive
abstractions are regrouped under a single λ: λxy. x stands for λx. λy. x. When an abstracted
variable is not used, we sometimes use an underscore instead of a variable to indicate that it is
discarded, e.g., λx . x. Application has a higher precedence than abstraction, which means for
example that y λx. z x stands for y (λx. (z x)). As usual, we define free variables, open and closed
λc-terms and (capture-avoiding) substitutions in Figure 2.1.

FV(x) := {x}
FV(λx. t) := FV(t) \ {x}
FV(M N) := FV(M) ∪ FV(N)
FV(κ) := ∅
FV(kπ) := ∅

We say that t is closed if FV(t) = ∅.
Otherwise, we say that t is open.

x[u/x] := u
y[u/x] := y when x 6= y
κ[u/x] := κ
kπ[u/x] := kπ
(M N)[u/x] := M [u/x]N [u/x]
(λx. t)[u/x] := λx. t
(λy. t)[u/x] := λy. t[u/x] when x 6= y

and α-renaming of y in t if y ∈ FV(u)

Figure 2.1: Free variables and substitutions in λc-terms.

The set of all closed λc-terms is denoted by Λ and the set of all stacks is written Π. This
definition of substitutions can be extended to parallel substitutions which substitute several
variables at once.

1Although the reference paper is dated from 2007, as its author said, the KAM “was introduced twenty-five
years ago”. Its first appearance was in an unpublished note [Kri85] available on the author’s web page.

2The notation π comes from the similarity between the French pronunciations of π and stack: π is pronounced
[pi] whereas stack, pile in French, is pronounced [pil].
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Definition 2.1.2 (Parallel substitutions)
A parallel substitution σ (also called simply substitution) is a map from variables to λc-terms.
Given a substitution σ, a variable x and a term t, we write σ, x← t the substitution where the
binding of x in σ is replaced by t. We say that a substitution σ is closed when for any variable x,
σ(x) is a closed λc-term. This is equivalent to saying that substituting using σ always yields a
closed term.

Applying a parallel substitution σ to a λc-term t, written t[σ], is then defined as follows:

x[σ] := σ(x)
κ[σ] := κ
kπ[σ] := kπ

(M N)[σ] := M [σ]N [σ]
(λx. t)[σ] := λx. t[σ, x← x]

and α-renaming of x if necessary

If σ is closed, we do not need α-conversion when substituting under a λ.
Closed parallel substitutions will be used to close open terms, which is necessary to execute

them in the KAM. Continuation constants kπ represent saved evaluation contexts that can only
appear during evaluation, and that cannot be part of a proof (see Proposition 2.3.1). This
motivates the definition of proof-like terms.

Definition 2.1.3 (Proof-like terms)
A λc-term t is said to be proof-like when it contains no continuation constant. The set of proof-like
terms is written PL.

In the literature, the set of proof-like terms is also sometimes written QP for quasi-proof [Kri09].
Finally, we define a process as a term and its stack of arguments, ready for evaluation.

Definition 2.1.4 (Processes)
A process is a pair t ? π consisting of a closed λc-term t and a stack π.
The set of all processes is Λ ? Π := {t ? π | t ∈ Λ, π ∈ Π}.

Since the definition of stacks only makes closed stacks, processes are closed too. Therefore, we
only manipulate closed entities in the KAM. The four evaluation rules (or reduction rules) of the
KAM, given below, must not be seen as a definition of evaluation, but rather as an axiomatization
of the properties it must satisfy.

Definition 2.1.5 (Evaluation relation)
An evaluation relation is any transitive irreflexive relation � that satisfies the following properties:

Push t u ? π � t ? u · π
Grab λx. t ? u · π � t[u/x] ? π
Save callcc ? t · π � t ? kπ · π
Restore kπ′ ? t · π � t ? π′

The reflexive closure of � is written � (transitive closure is not needed as � is already transitive).

Notice that because � is transitive, these rules are not necessarily atomic steps, and they
simply mean that evaluation of the left-hand side must reach the right-hand side in a finite number
of atomic steps. The first two evaluation rules are a decomposition of weak head β-reduction (see
Section 2.1.2). The last two evaluation rules deal with callcc and classical logic: the first one
saves the current stack π into the continuation constant kπ whereas the second one erases the
current stack and replaces it by a previously stored stack.

Presenting the evaluation relation as axioms instead of concrete rules allows for much more
modularity: any evaluation relation that satisfies these rules will define a valid KAM. In particular,
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we can freely add new instructions with their evaluation rules. As the KAM is a parameter of
classical realizability, this means that classical realizability is very flexible on computation, and
that any result we prove holds for any evaluation relation. Therefore, extending the machine does
not require any change to the theory. Examples of such extensions of the KAM will be given in
Chapter 3.

2.1.2 Weak head-reduction of the ordinary λ-calculus
The first two rules (Push and Grab) implement weak head reduction of the ordinary λ-calculus.
This reduction is said to be “weak” because we do not reduce under the binder λ. It is also said
“head” because we only reduce the β-redex that is at the beginning of the term. The presence of
a closed substitution in the statement of Theorem 2.1.6 stems from the fact that the KAM only
works with closed terms.

Theorem 2.1.6 (Weak head reduction in the KAM)
Let t be an open λc-term, and let u be its weak head normal form for β-reduction.

• If u = λx. u′ for some variable x, then for any stack π and any closed substitution σ, we
have t[σ] ? π �Push, Grab u[σ] ? π.

• If u = xu1 . . . un for some variable x, then for any stack π and any closed substitution σ,
we have t[σ] ? π �Push, Grab x[σ] ? u1[σ] · . . . · un[σ] · π.

Proof. Notice that these two cases cover all possibilities of weak head normal forms. The proof is
done by induction on the length of the weak head reduction (whr for short) leading from t to u.

• u = t: the result is straightforward since
t[σ] ? π �Push, Grab t[σ] ? π by definition of � and
(xu1 . . . un)[σ] ? π ≡ x[σ]u1[σ] . . . un[σ] ? π �Push x[σ] ? u1[σ] · . . . · un[σ] · π.

• t whr−−→ u′
whr−−→

∗
u: t whr−−→ u′ means that t has the shape (λx. t′) v v1 . . . vk and that u′ is

t′[v/x] v1 . . . vk. Then we have

((λx. t′) v v1 . . . vk)[σ] ? π ≡ (λx. t′)[σ] v[σ] . . . vk[σ] ? π
�Push (λx. t′)[σ] ? v[σ] · v1[σ] · . . . · vk[σ] · π (k + 1 Push)
�Grab t′[σ, x← v[σ]] ? v1[σ] · . . . · vk[σ] · π

By induction hypothesis u′[σ] ? π �Push, Grab p[σ] for some p that depends on u. Using
only the Push and Grab rules, this reduction sequence must start with k Push rules and
reach t′[v/x][σ] ? v1[σ] · . . . · vk[σ] · π. Since t′[v/x][σ] ≡ t′[σ, x ← v[σ]], we finally get the
expected reduction sequence:

((λx. t′) v v1 . . . vk)[σ] ? π �Push, Grab t
′[v/x][σ] ? v1[σ] · . . . · vk[σ] · π �Push, Grab p[σ] .

2.2 The language of formulæ: PA2
As its name suggests, Second-order Peano arithmetic (PA2) contains both classical arithmetic and
second-order logic. We assume infinite disjoint sets of variables begin given, one for first-order
variables and one for each arity of second-order variables.
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Arithmetical expressions The first-order terms, also called arithmetical expressions or first-
order expressions, are built from first-order variables and from a first-order signature that contains
function symbols for some primitive recursive functions (or more generally, any total computable
function). This signature must contain in particular symbols for any primitive recursive function
that we might use, for instance 0 (zero), s (successor), + (addition), × (multiplication), etc.

Arithmetical expressions e, e′ := x | f(e, . . . , e′)

We define as usual free variables FV(e) and substitution e[e′/x]. To represent natural integers,
we abbreviate as n the nth iteration of the successor function s on the constant 0.

Remark 2.2.1
We restrict function symbols to primitive recursive functions (or more generally, any total
computable function) for a computational reason: we will need in Section 2.9.4 a computational
counterpart for each function in the first-order signature. It will usually come from the proof
of totality of the function and primitive recursive functions are provably total in PA2, see
Theorem 2.9.9.

Formulæ Formulæ are built from second-order variables of any arity (fully applied to first-order
arguments), implication, and universal quantifications of first- and second-order. To keep formulæ
more readable, first-order objects are denoted by lower-case letters and second-order objects by
upper-case letters.

Formulæ A,B := X(e, . . . , e′) | A⇒ B | ∀x.A | ∀X.A

According to the tradition in logic, writing universal quantifications with a dot “∀x. ” means that
it has least precedence. We define as usual open and closed formulæ as well as the set of free
variables of a formula A, written FV(A).

Since we use a minimal logical language with only implication and universal quantification
as primitive connectives, it is necessary to encode the other ones. This is done by the standard
second-order encodings (due to Martin-Löf [ML71]) given in Figure 2.2. In this context, Leibniz
equality is indeed an equivalence relation, as proven by the proof terms given in Figure 2.3 (the
proof system is given in Section 2.3) where we use the predicate Z v := v = x for the symmetry.

Absurdity ⊥ := ∀Z.Z
Identity 1 := ∀Z.Z ⇒ Z
Negation ¬A := A⇒ ⊥
Conjunction A ∧B := ∀Z. (A⇒ B ⇒ Z)⇒ Z
Disjunction A ∨B := ∀Z. (A⇒ Z)⇒ (B ⇒ Z)⇒ Z
1st-order exist. quant. ∃x.A := ∀Z. (∀x.A⇒ Z)⇒ Z
2nd-order exist. quant. ∃X.A := ∀Z. (∀X.A⇒ Z)⇒ Z
Leibniz equality e = e′ := ∀Z.Z(e)⇒ Z(e′)

where Z is a fresh second-order variable.

Figure 2.2: Second-order encodings of connectives.

Predicates and substitutions Substitutions of a first-order (resp. second-order) variable
by a first-order term (resp. a predicate of the same arity) are defined in Figure 2.4. For
second-order substitution, this requires to define predicates first. A predicate λx1 . . . xk. A of
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` λx. x : ∀x. x = x
` λx. x (λx. x) : ∀x∀y. x = y ⇒ y = x
` λxyz. y (x z) : ∀x∀y∀z. x = y ⇒ y = z ⇒ x = z

Figure 2.3: Leibniz equality is an equivalence.

arity k is an arbitrary formula A abstracted over k first-order variables x1, . . . , xk. Therefore,
the free variables of λx1 . . . xk. A are defined as FV(A) \ {x1, . . . , xk}. This abstraction is not
part of the syntax of formulæ, it is an ad-hoc solution to mark the first-order variables that
must be substituted during second-order variable substitution: if P := λx1 . . . xk. A, then we
let P (e1, . . . , ek) := A[e1/x1, . . . , ek/xk]. A second-order variable X of arity k can be seen as a
predicate of arity k, namely as the predicate λx1 . . . xk. X(x1, . . . , xk) with X itself as the only
free variable. It is then straightforward to check that the notation X(e1, . . . , ek) does not depend
on X being read as a second-order variable or as a predicate.

Optimized connectives and notations The definitions of conjunction and disjunction can
be generalized to n-ary connectives, as given in Figure 2.5.

These definitions are of course logically equivalent to the nesting of the binary definitions
(see Section 2.3 for the proof system). Their interest is that they are more efficient and more
symmetrical than the naive nesting of binary connectives. Therefore, we will always use these
definitions in the remaining of this document. For the same reasons, we also have an optimized
combination of existential quantifiers and conjunctions3.

∃x1 . . . ∃xk. A1 ∧ . . . ∧An := ∀Z. (∀x1 . . . ∀xk. A1 ⇒ . . .⇒ An ⇒ Z)⇒ Z

This means in particular that the formula ∃x1 . . . ∃xk. A1 ∧ . . . ∧An is not syntactically equal
to ∃x1 . . . ∃xk. F with F := A1 ∧ . . . ∧ An! Nevertheless, they are again logically equivalent so
that confusing the notations will not lead to misunderstanding. When we need to quantify over
an arbitrary finite number of variables x1, . . . , xk, we will sometimes write ∀~x.A which is more
readable than ∀x1 . . . ∀xk. A.

Whenever a formula F depending on a free variable x is meant to denote the set {x | F x},
we write x ∈ F instead of F x to be closer to the mathematical notation. In particular, it will
be the case when F describes a datatype like natural numbers N or booleans B. This becomes
particularly useful for relativized quantifications introduced in Section 2.9.3: instead of the usual
notation in logic ∀Nx.A or (∀x.A)N, we write ∀x ∈ N. A which is much clearer. We use a similar
notation for existential quantification, except that we may quantify over several variables at once
(because of optimized connectives). Therefore, we let ∃x1, . . . , xk ∈ F1 × . . . × Fk. A stand for
∀Z. (∀x1 . . . ∀xk. x1 ∈ F1 ⇒ . . . ⇒ xk ∈ Fk ⇒ Z) ⇒ Z. When the Fi are all the same, we even
allow ourselves to write F k, again to be closer to mathematical habits.

2.3 The proof system of PA2
Since we are interested in the computational behavior of terms, the proof system features explicit
proof terms. The proof system of PA2 uses formulæ to type λc-terms, which will turn out to be
proof-like terms (Proposition 2.3.1). It is given in Figure 2.6 and uses a natural deduction style.
The sequents are written Γ ` t : A, where Γ is called the context, t is the proof term and A is the
conclusion. Contexts are sets of bindings of distinct proof variables to formulæ. A context Γ is

3The same optimization exists for existential quantifiers and disjunctions but we will not need it.
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X(e1, . . . , ek)[e/x] := X(e1[e/x], . . . , ek[e/x])
(A⇒ B)[e/x] := A[e/x]⇒ B[e/x]
(∀x.A)[e/x] := ∀x.A
(∀y.A)[e/x] := ∀y.A[e/x] when x 6= y

+α-renaming of y in A if y ∈ FV(e)
(∀X.A)[e/x] := ∀X.A[e/x]
X(e1, . . . , ek)[P/X] := P (e1, . . . , ek)
Y (e1, . . . , ek)[P/X] := Y (e1, . . . , ek) when X 6= Y
(A⇒ B)[P/X] := A[P/X]⇒ B[P/X]
(∀x.A)[P/X] := ∀x.A[P/X]
(∀X.A)[P/X] := ∀X.A
(∀Y.A)[P/X] := ∀Y.A[P/X] when X 6= Y

+α-renaming of Y in A if Y ∈ FV(P )

Figure 2.4: Substitutions of first- and second-order.

n-ary conj. A1 ∧ . . . ∧An := ∀Z. (A1 ⇒ . . .⇒ An ⇒ Z)⇒ Z
n-ary disj. A1 ∨ . . . ∨An := ∀Z. ((A1 ⇒ Z)⇒ . . .⇒ (An ⇒ Z)⇒ Z)⇒ Z

Figure 2.5: Optimized n-ary connectives.

said to be closed when all the formulæ it contains are closed. Of course, there is still free proof
variables because contexts are used to declare proof variables, but closed contexts do not contain
any free type variable. The set of proof variables declared in a context Γ is called the domain of Γ
and is written dom Γ.

Axiom Γ, x : A ` x : A
Peirce

Γ ` callcc : ((A⇒ B)⇒ A)⇒ A

Γ, x : A ` t : B
⇒i

Γ ` λx. t : A⇒ B
Γ ` t : A⇒ B Γ ` u : A ⇒e

Γ ` t u : B
Γ ` t : A∀1

i x /∈ FV(Γ)
Γ ` t : ∀x.A

Γ ` t : ∀x.A ∀1
eΓ ` t : A[N/x]

Γ ` t : A∀2
i X /∈ FV(Γ)

Γ ` t : ∀X.A
Γ ` t : ∀X.A ∀2

eΓ ` t : A[N/X]

Figure 2.6: Deduction rules for PA2.

We will not insist on this type system since it is to us only a tool to generate universal realizers
(see Theorem 2.8.2 and more generally Section 2.8). It is already well-studied [Kri93], although
sometimes presented without explicit proof terms. Is is coherent by Corollary 2.6.2 and we simply
give some of its properties.

Proposition 2.3.1
1. If Γ ` t : A then t ∈ PL.

2. If Γ ` t : A then FV(t) ⊆ dom Γ.

Proof. Immediate by induction on the derivation.

Proposition 2.3.2 (Admissible rules)
The weakening, proof term substitution and type substitution (for both first- and second-order
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variable) rules are admissible, that is, from proofs of the premises, we can build a proof of the
conclusion.

Γ ` t : B
x /∈ dom Γ Γ, x : A ` t : B

Γ, x : A ` t : B Γ ` u : A
Γ ` t[u/x] : A

Γ ` t : A
Γ[e/x] ` t : A[e/x]

Γ ` t : A
Γ[P/X] ` t : A[P/X]

Proof. By straightforward inductions, see [Kri93]. For weakening, we may need to use α-
equivalence for the case of quantifiers (∀1

i and ∀2
i ) to ensure that the bound variable does

not appear free in A.

If the proof term is not relevant, we write Γ ` A to mean that A is provable in the context Γ.
When Γ is empty, we write t : A to mean ` t : A and we simply say that t is a proof term of A.

Example 2.3.3 (Proof of excluded middle)
The proof-like term λlr. callcc λk. r (λx. k (l x)) is a proof term for the law of excluded middle.

Proof. Below is the derivation tree, recalling that P∨¬P ≡ ∀Z. (P ⇒ Z)⇒ ((P ⇒ ⊥)⇒ Z)⇒ Z.
For readability, we let Γ be the context l : P ⇒ Z, r : (P ⇒ ⊥) ⇒ Z, and whenever we use an
axiom rule, we only write Axiom without explicitly writing the sequent.

Γ ` callcc : ((Z ⇒ ⊥) ⇒ Z) ⇒ Z

Axiom

Axiom
Axiom Axiom ⇒e

Γ, k : Z ⇒ ⊥, x : P ` l x : Z
⇒e

Γ, k : Z ⇒ ⊥, x : P ` k (l x) : ⊥
⇒i

Γ, k : Z ⇒ ⊥ ` λx. k (l x) : P ⇒ ⊥
⇒e

Γ, k : Z ⇒ ⊥ ` r (λx. k (l x)) : Z
⇒i

Γ ` λk. r (λx. k (l x)) : (Z ⇒ ⊥) ⇒ Z
⇒e

Γ ` callccλk. r (λx. k (l x)) : Z
⇒i

l : P ⇒ Z ` λr. callccλk. r (λx. k (l x)) : ((P ⇒ ⊥) ⇒ Z) ⇒ Z
⇒i

` λlr. callccλk. r (λx. k (l x)) : (P ⇒ Z) ⇒ ((P ⇒ ⊥) ⇒ Z) ⇒ Z
∀2
i` λlr. callccλk. r (λx. k (l x)) : ∀Z. (P ⇒ Z) ⇒ ((P ⇒ ⊥) ⇒ Z) ⇒ Z

This proof system also enjoys cut-elimination, subject-reduction and strong normalization
for β-reduction. These results directly follow from their intuitionistic counterparts by considering
instructions as inert constant symbols. See [Kri93] for details of the proofs, which essentially
forget the first-order part to get back to Jean-Yves Girard’s system F [Gir72].

2.4 Building classical realizability models of PA2
2.4.1 Construction of classical realizability models
Contrary to Tarski models, realizability models do not focus on provability of a formula, but on
the computational content associated with it via the Curry-Howard correspondence. Therefore,
the truth value of a formula is the set of programs that realize it. Classical realizability is no
exception, although the truth value is a derived notion steming from the primitive one of falsity
value. Albeit having similar names, falsity and truth values are of very different natures: truth
values are sets of realizers whereas falsity values are sets of stacks. This choice of names still
makes sense thanks to Theorem 2.4.8 that connects the truth value of ¬A to the falsity value
of A.
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Let us start with the interpretation of first-order expressions, which is much simpler and usual
than the one of formulæ. Since the first-order expressions and the formulæ that we interpret can
be open (if we are under a universal quantifier for instance), we first need to define valuations to
take care of that.

Definition 2.4.1 (Falsity functions and valuations)
A falsity function of arity n is a function mapping n integers to stacks. A valuation ρ is a total
function mapping first-order variables to integers and second-order variables to falsity functions
of the same arity. We denote by ρ, x ← v the valuation where the binding of x in ρ has been
replaced by v.

Interpretation of arithmetical expressions Expressiveness of classical realizability does not
lie in the interpretation of first-order expressions. In fact, we could take any known interpretation
and plug it into the classical realizability interpretation (see Section 2.11). To keep things simple,
we take the standard interpretation since this framework is already rich enough: no need to
introduce non-standard objects at this level, they will come soon enough! (See Theorem 2.11.7)
Therefore, the values of arithmetical expressions are computed using the standard model. More
precisely, given a valuation ρ used to interpret free variables, the value JeKρ of an arithmetical
expression e is given by interpreting the variables as given by ρ and the function symbols by the
corresponding primitive recursive functions.

Interpreting arithmetic JxKρ := ρ(x)
Jf(e1, . . . , ek)Kρ := f(Je1Kρ , . . . , JekKρ)

Beware that the two fs here do not have the same meaning. Indeed, for convenience, we use f for
both the function symbol in the first-order signature and its interpretation as a primitive recursive
function. The same thing happens for integers with JnKρ = n: the notation n on the left-hand
side is an abbreviation for the nth iteration of the successor s on 0 whereas n on the right-hand
side is a concrete integer of the standard model. When we need to make the distinction between
these two meanings, we will write the symbol ḟ and the abbreviation ṅ, anticipating the notation
for parameters (see below). For example, we have JṅKρ = n. When an arithmetical expression
is closed, its interpretation does not depend on the valuation and we drop the subscript. The
first-order objects of the classical realizability model are called individuals.

The pole Classical realizability models of PA2 are parametrized by a set of processes ⊥⊥ ⊆ Λ ? Π
called the pole. From a logical point of view, the pole defines the notion of contradiction in the
model. From a computational point of view, it specifies which property of the processes we want
to observe4. This observation is reminiscent of the formula A that parametrizes Harvey Fried-
man’s A-translation, see [Miq09d] for details on the connection. To ensure that the computational
property we observe is true at some point in the future, the pole must be closed under anti-
evaluation, that is the conditions p � p′ and p′ ∈ ⊥⊥ entail that p ∈ ⊥⊥. For instance, terminating
processes can be captured by taking ⊥⊥ := {p ∈ Λ ? Π | ∃p′∀p′′. p � p′ 6� p′′}; to characterize pro-
cesses performing a specific instruction κ (e.g. print) we let⊥⊥ := {p ∈ Λ ? Π | ∃π ∈ Π. p � κ ? π}.
Note that once the process has reached κ ? π, it no longer belongs to the pole and can do anything
since it already exhibited the computational property we were interested in (See Kamikaze
Extraction in Section 2.10.3).

4We sometimes take its complement, as in the case of the thread model, or more generally any thread-oriented
model. See Section 2.6.3.
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Interpretation of formulæ Contrary to intuitionistic realizability where formulæ are inter-
preted by sets of programs, called realizers, classical realizability interprets them in a “negative”
way by a falsity value. From a logical point of view, a falsity value is intuitively the refutation of
the formula, the set of challenges that a λc-term must win. From a computational point of view,
it is the set of tests that a program must validate, i.e. stacks of valid arguments and a return
continuation. Realizers are then the programs that win every challenge, pass all tests, that is,
deal correctly with all stacks of valid arguments. Formally, for each formula, they are defined
by orthogonality to the falsity value with respect to the pole. More precisely, for a formula A,
the set of realizers |A|, called the truth value, and the falsity value ‖A‖ are defined by mutual
recursion as follows.

Falsity value ‖X(e, . . . , e′)‖ρ := ρ(X)(JeKρ , . . . Je′Kρ)
‖A⇒ B‖ρ := |A|ρ · ‖B‖ρ

:=
{
t · π

∣∣∣ t ∈ |A|ρ , π ∈ ‖B‖ρ}
‖∀x.A‖ρ :=

⋃
n∈N ‖A‖ρ,x←n

‖∀X.A‖ρ :=
⋃
F∈Nk→P(Π) ‖A‖ρ,X←F

Truth value |A|ρ :=
{
t ∈ Λ

∣∣∣ ∀π ∈ ‖A‖ρ. t ? π ∈ ⊥⊥}
For instance, the interpretation of an implication A⇒ B is a stack, where the first element is a
realizer of A, i.e. an element of |A|ρ, and where the tail is a challenge for B, i.e. an element of
‖B‖ρ.

For a closed formula, the falsity and truth values do not depend on the valuation ρ and we
simply omit the subscript. Since they depend on the pole, we sometimes write them ‖A‖⊥⊥ and
|A|⊥⊥ when the precision is necessary.

Remarks 2.4.2

(i) ⊥⊥ as an orthogonality relation: If we define the relation t⊥⊥π := t ? π ∈ ⊥⊥, the truth
value |A| is the orthogonal to the falsity value ‖A‖, written ‖A‖⊥⊥.
In particular, from the theory of orthogonality relations [Bir64], we have:

• ‖A‖ ⊆ ‖B‖ implies that |B| ⊆ |A|

• ‖A‖ ⊆ (‖A‖⊥⊥)⊥⊥

• ‖A‖⊥⊥ = ((‖A‖⊥⊥)⊥⊥)⊥⊥, in particular |A| = (|A|⊥⊥)⊥⊥

(ii) Interpretation of ∀: The universal quantification is interpreted uniformly, i.e. by an
intersection. Indeed, ‖∀x.A‖ρ =

⋃
m∈N ‖A‖ρ,x←m entails that |∀x.A|ρ =

⋂
m∈N |A|ρ,x←m.

This is very different from Kleene realizability where universal quantification is interpreted
as a dependent product. In fact, this dependent product can be decomposed in the classical
realizability setting into an intersection and an implication, i.e. as a relativized quantification.

(iii) Interpretation of ⇒: In ‖A⇒ B‖, we do not need A to have a falsity value, we only need
its realizers (which are defined from the falsity value of A in the case of a logical formula).
Nevertheless, this means that A can be something else than a formula provided that we
have realizers for it. From the point of view of the KAM, this amounts to putting objects
other than programs on the stack. We will use this remark for primitive datatypes in
Sections 2.10.1 and 4.3.
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Parameters For convenience, we usually extend formulæ with parameters, that is we introduce
in the syntax a predicate symbol Ḟ for each falsity function F in the model (i.e. each function
Nk → P(Π)). This makes the syntax of formulæ uncountable! We already made exactly such
an extension for functions in arithmetical expressions with the exception that we used the same
notation for both the function symbol in the syntax and its interpretation in the standard model
(in order to avoid writing 0̇, ṡ, +̇, ×̇, ḟ , ṅ, etc. everywhere). The full definition of formulæ is then

Formulæ A,B := X(e, . . . , e′) | A⇒ B | ∀x.A | ∀X.A
| Ḟ (e, . . . , e′) where F : Nk → P(Π) is a falsity function

This way, we can refer to specific predicates (e.g. ≤, =) in the syntax and ensure their adequate
interpretation in the model. More precisely, interpretation is extended with the following case:

Falsity value
∥∥Ḟ (e, . . . , e′)

∥∥
ρ

:= F (JeKρ , . . . , Je′Kρ)

Parameters allow us to rewrite the interpretation of second-order universal quantification as
follows: ‖∀X.A‖ρ :=

⋃
F :Nk→P(Π)

∥∥A[Ḟ /X]
∥∥
ρ
. When the falsity value of a nullary parameter is

a singleton, we omit the curly braces to ease readability and write π̇ to denote ˙{π}. We have
then ‖π̇‖ := {π}.

Example 2.4.3 (Maximal and minimal falsity values)
1. ‖⊥‖ = ‖∀Z.Z‖ =

⋃
F :N0→P(Π) F = Π

2. Letting > := ∅̇, we have |>| := {t ∈ Λ | ∀π ∈ ∅. t ? π ∈ ⊥⊥} = Λ

Thus all stacks belong to ‖⊥‖ (it is the falsest formula) and all terms belong to |>| (it is the
truest formula).

Using parameters, valuations can close formulæ and arithmetical expressions at the syntactic
level. Borrowing the notation from parallel substitutions, we write it A[ρ] and e[ρ]. It is inductively
defined in Figure 2.7. It is then straightforward to check that A[ρ] and e[ρ] are closed and that
‖A[ρ]‖ = ‖A‖ρ and Je[ρ]K = JeKρ.

(X(e, . . . , e′))[ρ] := Ṗ (e[ρ], . . . , e′[ρ])
(A⇒ B)[ρ] := A[ρ]⇒ B[ρ]

(∀x.A)[ρ] := ∀x.A[ρ, x← x]
(∀X.A)[ρ] := ∀X.A[ρ,X ← X]

Ḟ (e, . . . , e′)[ρ] := Ḟ (e[ρ], . . . , e′[ρ])

with P := ρ(X)
with n := ρ(x)

x[ρ] := ṅ
f(e, . . . , e′)[ρ] := f(e[ρ], . . . , e′[ρ])

Figure 2.7: Closure of a formula by a valuation.

Definition 2.4.4 (Realizers)
Given a closed λc-term t and a closed formula A, we say that t realizes A, written t  A when
t ∈ |A|. When specifying the pole is necessary, we write t ⊥⊥ A (meaning of course t ∈ |A|⊥⊥).
When t realizes A for all pole ⊥⊥, we say that t is a universal realizer of A, written t � A.

Interest of universal realizers Why do we consider universal realizers? Realizers specific to
a pole are used when we want to prove properties of a given realizability model (which depends
on a specific pole ⊥⊥). In this setting, universal realizers are too strong and they cannot take
advantage of the properties of the realizability model at hand.
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On the opposite, universal realizers are used when we are interested in computational properties.
Indeed, the computational behavior of a λc-term depends only on the KAM and the choice of a
pole ⊥⊥ is computationally completely irrelevant. Moreover, some realizability models are very
coarse and realizing a formula in them does not give a lot of information, if any information at
all. For instance, in the degenerated model (see Section 2.6.1), all λc-terms realize all formulæ.
Therefore, only universal realizers make sense for computational properties like the specification
problem (see Section 2.7) and witness extraction (see Section 2.10).

2.4.2 First results in realizability
Proposition 2.4.5 (Realizers of ⊥)
As soon as the pole ⊥⊥ is not empty, there are realizers of the false formula ⊥.

Proof. Let t ? π be a process in ⊥⊥. Then kπ t is a realizer of ⊥. Indeed, for any stack π′, we have
kπ t ? π

′ � t ? π ∈ ⊥⊥ so that by the anti-evaluation closure of ⊥⊥, we have kπ t ? π′ ∈ ⊥⊥.

By definition of the formula ⊥, a realizer of ⊥ is also a realizer of all formulæ. Computationally,
this means that such a realizer can substitute any realizer! What, then, can be the computational
behavior of realizers of ⊥? How can such programs exist? In fact, they do not exist since there
are no universal realizer of ⊥ (see proof of Theorem 2.6.2). In a specific pole ⊥⊥, a realizer t of ⊥
is a program that exhibits the behavior observed by ⊥⊥ no matter what its inputs are. With big
enough poles, that can be easy but in most cases, it means that t backtracks to a previous state
of the program. Therefore, although this is formally false, it is convenient to intuitively think of
universal realizers of ⊥ as triggering backtracks.

Proposition 2.4.6 (callcc universally realizes Peirce’s law)
For any closed formulæ A and B, we have:

1. if π ∈ ‖A‖, then kπ  A⇒ B;

2. callcc � ((A⇒ B)⇒ A)⇒ A.

Proof.
1. Let t be a λc-term realizing A, πA be a stack in ‖A‖ and πB be a stack in ‖B‖. We want to

show that kπA ? t · πB ∈ ⊥⊥. But kπA ? t · πB � t ? πA and t ? πA ∈ ⊥⊥ by assumption on t
and πA. Therefore, by anti-evaluation, kπA ? t · πB ∈ ⊥⊥.

2. Consider an arbitrary realizability model given by a pole ⊥⊥. We want to show that
callcc  ((A ⇒ B) ⇒ A) ⇒ A. Let t be a term realizing (A ⇒ B) ⇒ A and π be a
stack in ‖A‖. We want to show that callcc ? t · π ∈ ⊥⊥. Since callcc ? t · π � t ? kπ · π,
by anti-evaluation we only need to prove that t ? kπ · π ∈ ⊥⊥. Because π ∈ ‖A‖, we have
kπ  A ⇒ B by the previous point and thus kπ · π ∈ ‖(A⇒ B)⇒ A‖. By assumption,
t  (A⇒ B)⇒ A, so that t ? kπ · π ∈ ⊥⊥.

Remark 2.4.7
We proved in particular that if π ∈ ‖A‖, then kπ  A⇒ ⊥, taking B := ⊥. The formula A⇒ ⊥
is in fact as general as A⇒ B because a realizer of ⊥ is a realizer of any formula B. Therefore,
the first point means that continuation constants are realizers of negated formulæ. We can see
this case as the generic one for realizing a negation by the following proposition where we show
how to replace an arbitrary realizer of ¬A by a continuation constant kπ with π ∈ ‖A‖.

Proposition 2.4.8 (Characterization of |A⇒ ⊥| by continuation constants)
If t is a λc-term such that for any stacks πA ∈ ‖A‖ and πB ∈ ‖B‖, t ? kπA · πB ∈ ⊥⊥, then letting
M⊥ := λxy. callcc (λk. y (callcc (λk′. k (x k′)))), we have M⊥ t  ¬A⇒ B.
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Proof. Let t be as in the statement of the proposition and let u  A⇒ ⊥ and π ∈ ‖B‖. We want
to prove that M⊥ t ? u · π ∈ ⊥⊥. We have the following reduction sequence:

M⊥ t ? u · π ≡ λxy. callcc (λk. y (callcc (λk′. k (x k′)))) t ? u · π
� λxy. callcc (λk. y (callcc (λk′. k (x k′)))) ? t · u · π
� λy. callcc (λk. y (callcc (λk′. k (t k′)))) ? u · π
� callcc (λk. u (callcc (λk′. k (t k′)))) ? π
� λk. u (callcc (λk′. k (t k′))) ? kπ · π
� u (callcc (λk′. kπ (t k′))) ? π
� u ? callcc (λk′. kπ (t k′)) · π

Since u  A ⇒ ⊥, by anti-evaluation, it is enough to prove callcc (λk′. kπ (t k′))  A and
π ∈ ‖⊥‖. By definition of ⊥, ‖⊥‖ = Π and we trivially have π ∈ ‖⊥‖. Let us now prove that
callcc (λk′. kπ (t k′))  A. Let π′ ∈ ‖A‖ and consider the following reduction sequence:

callcc (λk′. kπ (t k′)) ? π′ � λk′. kπ (t k′) ? kπ′ · π′

� kπ (t kπ′) ? π′

� kπ ? t kπ′ · π′

� t kπ′ ? π
� t ? kπ′ · π

By assumption on t, the last process belongs to ⊥⊥ since π′ ∈ ‖A‖ and π ∈ ‖B‖ and we conclude
by anti-evaluation.

Remark 2.4.9
The term M⊥ can be seen as a storage operator (see Section 2.10.1) for negated formulæ. It
realizes the formula ∀X∀Y. ({kπ | π ∈ ‖X‖} ⇒ Y ) ⇒ ¬X ⇒ Y which makes sense thanks to
Remark 2.4.2 (iii)

Semantic subtyping In order to ease making realizability proofs, it is convenient to introduce
a semantic subtyping relation ≤⊥⊥ between formulæ.

Subtyping A ≤⊥⊥ B := for all valuations ρ, ‖B‖ρ,⊥⊥ ⊆ ‖A‖ρ,⊥⊥

This notion of subtype depends heavily on the realizability model. For instance, with ⊥⊥ = Λ ? Π,
we have for any formulæ A, B and C, A ⇒ C ≤ B ⇒ C since all truth values are equal (see
Section 2.6.1) whereas this is obviously not true in the general case. When there is no confusion
on the pole, we usually drop the subscript. The interest of subtyping lies in the following fact
that allows for substitution of realizers. It is a direct consequence of the definitions of ≤ and .

Fact 2.4.10 (Substitutivity of realizers)
For any pole ⊥⊥, if A ≤ B and t  A, then t  B.

Proposition 2.4.11 (Validity of subtyping rules)
For any pole ⊥⊥, the relation ≤⊥⊥ satisfies the usual rules for subtyping given on Figure 2.8. It is
therefore a preorder on formulæ and its equivalence is written ≈⊥⊥.

Proof. Simple computations of falsity values.
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A ≤ A
A ≤ B B ≤ C

A ≤ C
A ≤ B C ≤ D
B ⇒ C ≤ A⇒ D

A ≤ B
∀x.A ≤ ∀x.B

A ≤ B
x /∈ FV(A)

A ≤ ∀x.B ∀x.A ≤ A[t/x]
A ≤ B

∀X.A ≤ ∀X.B
A ≤ B

X /∈ FV(A)
A ≤ ∀X.B ∀X.A ≤ A[P/X]

x /∈ FV(A)
∀x.A⇒ B ≈ A⇒ ∀x.B

X /∈ FV(A)
∀X.A⇒ B ≈ A⇒ ∀X.B

A ≤ > A⇒ > ≈ > ⊥ ≤ A

Figure 2.8: Subtyping rules.

Using the rules of Figure 2.8, we can build “derivation trees” to prove that a formula is a
subtype of another. The formal syntactic definition of subtyping that allows us to internalize
these subtyping trees into the proof system will come in Section 3.1.

Example 2.4.12 (callcc universally realizes double negation elimination)
callcc � ((A⇒ ⊥)⇒ ⊥)⇒ A.

Proof. Using proposition 2.4.6, we just have to prove that ∀A∀B. ((A ⇒ B) ⇒ A) ⇒ A is a
subtype of ∀A. ((A⇒ ⊥)⇒ ⊥)⇒ A. First, notice that we can substitute B with ⊥ in the first
formula and prove only ((A⇒ ⊥)⇒ A)⇒ A ≤ ((A⇒ ⊥)⇒ ⊥)⇒ A which is done as follows:

A⇒ ⊥ ≤ A⇒ ⊥ ⊥ ≤ A
(A⇒ ⊥)⇒ ⊥ ≤ (A⇒ ⊥)⇒ A A ≤ A

((A⇒ ⊥)⇒ A)⇒ A ≤ ((A⇒ ⊥)⇒ ⊥)⇒ A

With subtyping equivalence, we have now three different levels of equivalence between two
formulæ A and B: logical equivalence ` A⇔ B, where we can prove A⇔ B; semantic equivalence
A ≈⊥⊥ B defined by ‖A‖ = ‖B‖; universal equivalence � A⇔ B where we can universally realize
A⇔ B. They are connected as illustrated in Figure 2.9.

2.5 Connections with intuitionistic realizability
The purpose of this section is not to give an account of intuitionistic realizability, but mainly to
highlight the differences between intuitionistic and classical realizabilities. For a description of
Kleene’s intuitionistic realizability in HA2, see for example [Kri93].

semantic equivalence
‖A‖ = ‖B‖

logical equivalence
` A⇔ B

universal equivalence
� A⇔ B

Figure 2.9: Connections between three notions of equivalence.
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The essential difference: absurdity In Kleene’s realizability, the false formula ⊥ is inter-
preted by an empty set of realizers. This has strong consequences on the interpretation of negation:
¬A ≡ A⇒ ⊥ is interpreted by the set {t | ∀u. u ∈ JAK ⇒ t u ∈ J⊥K} ≡ {t | ∀u. u ∈ JAK ⇒ t u ∈ ∅}.
Therefore, as soon as the formula A admits a realizer, ¬A has none. Conversely, if JAK is empty,
then J¬AK contains all λ-terms. Therefore, negated formulæ only have two possible interpretations
and we get back a two-valued model. This is the limit of Kleene’s realizability which explains
why it only applies to intuitionistic logic.

No inclusion between intuitionistic and classical realizers As intuitionistic realizability
has been long-studied and is well understood, one may wonder what is the connection between
realizers in Krivine’s sense and in Kleene’s sense. As expected, classical realizers are not included
in intuitionistic realizers. Indeed, take for instance the ⊥ formula: it has no realizer in intuitionistic
realizability but, as we have seen in 2.4.5, it has realizers in classical realizability as soon as the
pole is not empty. Yet, those realizers are not proof-like terms, so it can be seen as a kind of
cheating. We could take instead any classical formula, Peirce’s law for example.

Conversely, some intuitionistic realizers are not classical realizers, even in the realm of proof-like
terms. For instance, λuv. v is an intuitionistic realizer of the formula ∀nm.Sn = Sm⇒ n = m
(injectiveness of the successor function) but not a classical one.

Conservativeness over proofs Nevertheless, there is still a class of realizers that are valid
for both intuitionistic and classical realizabilities: realizers extracted from proof through the
adequacy theorems. Indeed, any proof in the intuitionistic fragment HA2 of PA2 is a proof in the
full system where we simply do not use one rule, namely Peirce’s law. Therefore, by adequacy,
intuitionistic proofs still give valid classical realizers.

Realizer of an implication In Kleene’s realizability, t  A⇒ B means by definition that for
all λ-terms u, u  A implies t u  B. In classical realizability, this is no longer true: we have the
direct implication but only a limited form of the converse implication. Indeed, the closure by
anti-evaluation of the pole directly gives that t  A ⇒ B entails that for all u, u  A implies
t u  B since t u ? π � t ? u ·π. The converse implication is limited to the following form: for all u,
u  A implies t u  B gives that λx. t x  A⇒ B. It is also a direct consequence of closure by
anti-evaluation since λx. t x ? u · π � t u ? π. A counter-example for the full converse implication
is given by ⊥⊥ := {p | ∃u. p � (λx. x)u ? π} for any stack π. Indeed, we have then (λx. x)u  π̇
for any λc-term u (thus any u  >) but not λx. x  > ⇒ π̇ since λx. x ? u · π cannot reduce to
(λx. x)u ? π. To get back the full equivalence, it is enough to assume that the pole is closed
under evaluation for the Push and Grab rules (that is p �Grab,Push p

′ and p ∈ ⊥⊥ entail p′ ∈ ⊥⊥).

2.6 Examples of realizability models of PA2
2.6.1 Trivial models
The degenerated model This model is defined by taking ⊥⊥ := Λ ? Π, which is trivially closed
under anti-evaluation. Then, for any falsity value F (i.e. any set of stacks), we have F⊥⊥ = Λ
since by definition any process t ? π belong to the pole (in particular when π ∈ F ). Thus, all
truth values |A| are Λ and any λc-term realizes any formula: the model is degenerated.

The Tarski model This model is defined by taking ⊥⊥ := ∅, which is also trivially closed under
anti-evaluation. Then, there are only two possible truth values:
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• For an empty falsity value F , we have F⊥⊥ = Λ since by definition there is no π ∈ F .

• For any non-empty falsity value F , we have F⊥⊥ = ∅ since by definition no process t ? π
belongs to the pole.

Thus, the truth values mimic a two-valued model, which happens to be the standard model.

Theorem 2.6.1 (Tarski model)
The realizability model generated by the empty pole “mimics” the standard model M in the
following sense:

|A| =
{

Λ ifM |= A

∅ ifM 6|= A
.

Proof. Postponed to Section 2.11.

Corollary 2.6.2 (Logical coherence of PA2)
The proof system of PA2 is coherent.

Proof. By definition, PA2 coherent means that there is no closed proof of the sequent ` ⊥.
Assume that there is a closed proof of the ⊥ formula. The adequacy lemma for closed terms
(corollary 2.8.3) implies that we have a proof-like term that is a universal realizer of ⊥. In
particular, it would be a realizer of ⊥ for the realizability model generated by the empty pole.
Since |⊥| is not empty, by Theorem 2.6.1, the standard model would validate ⊥, which is a
contradiction.

2.6.2 Models generated by a single process
Models aimed toward a process This family of models focuses on one process p0 and
consider all processes that reduce to it. Formally,

⊥⊥ := {p | p � p0} .

They are extremely useful for specification problems: when we want to prove that a process p1
reduces to p2, we consider the pole ⊥⊥ := {p | p � p2} and prove5 that p1 ∈ ⊥⊥. We will use them
at length inside proofs in the rest of this document. These poles are called goal-oriented [GM11]
because they are defined by the process we want to reach. They can be generalized to sets of
processes P by letting ⊥⊥(P ) := {p | ∃p′ ∈ P. p � p′}.

Models generated by a thread This family of models takes the opposite approach of the
previous one: instead of considering the processes reducing to a given process p0, we consider the
reduction history of a specific process, what we call the thread of the process.

Definition 2.6.3 (Thread of a process)
The thread of a process p is the set Thd(p) := {p′ ∈ Λ ? Π | p � p′}.

Remark 2.6.4
By definition, the thread of a process is closed under evaluation.

5To be perfectly precise, we should also prove that p1 6= p2 as we use � rather than � in the definition of
the pole. This proof is usually trivial and will be omitted in most cases. The reason for choosing � over � is to
trivially have p2 ∈ ⊥⊥ so that we can use anti-evaluation starting from p2. Otherwise, we should use the process
“just before” p2, which is undefined as the evaluation relation is axiomatized. To avoid this, we could simply always
use � instead of � as is usually done in the literature.
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To define a pole, which must be closed under anti-evaluation, we must take the complement of
a thread Thd(p0): ⊥⊥ := Λ ? Π \Thd(p0). These poles can also be used in specifications: to prove
that a process p1 reduces to p2, we consider the pole ⊥⊥ := Λ ? Π\Thd(p1) and prove that p2 /∈ ⊥⊥.
These poles are called thread-oriented [GM11]. Contrary to proofs using goal-oriented poles, these
proofs are intrinsically classical because of the equivalence p2 /∈ ⊥⊥ ⇐⇒ p2 ∈ Thd(p1). These
poles can also be generalized to sets P of processes by letting ⊥⊥ := Λ ? Π \

(⋃
p∈P Thd(p)

)
=⋂

p∈P (Λ ? Π \ Thd(p)).

2.6.3 The thread model
This model, introduced by Jean-Louis Krivine [Kri04], aims at being able to track the thread of
every process starting from a proof-like term. In order to remember during evaluation what is the
original proof-like term we started from, we store this information in the only place which is not
yet used for computation: the stack constant. Indeed, during evaluation, the stack constant αt
does not change with the current rules. Therefore, for any process p, we know that its starting
proof-like term is stored in the stack constant.

Let us first assume a bijection between proof-like terms and stack constants begin given. Since
proof-like terms are countable, this is the same as requiring an enumeration of proof-like terms
and a countable number of stack constants. We write αt the proof constant associated with the
proof-like term t. The processes we allow are then of the form t ? αt. We may want to put
arguments in the stack, but since it is always possible to put them in the term as arguments to t
that will be Pushed on the stack, the restriction to an empty stack does not lose any generality.
The thread model is a particular case of thread-oriented model where the set of processes P is⋃
t∈PL Thd(t ? αt).

Definition 2.6.5 (Thread model)
The thread model is defined by the following pole.

⊥⊥ := Λ ? Π \
( ⋃
t∈PL

Thd(t ? αt)
)

Proposition 2.6.6 (Properties of the thread model)
(i) Provided no instruction generates stack constants, the only stack constants that can appear

in a thread Thd(p) are the ones that were present initially in p.

(ii) A process belong to ⊥⊥ if and only if it does not appear in any thread.

(iii) A λc-term t (not necessarily a proof-like term) realizes ⊥ if and only if it does not appear
in head position in any thread.

(iv) In particular, any λc-term containing at least two different stack constants realizes ⊥.

Proof.
(i) Let p′ ∈ Thd(p). Looking at the reduction steps between p and p′, no new stack constant

can appear by hypothesis, so all stack constants in p′ were already present in p.

(ii) It is a direct consequence of the definition of the pole.

(iii) Let π be any stack. By (ii), t ? π ∈ ⊥⊥ says that t ? π does not appear in any thread. Since π
is arbitrary, this simply means that t does not appear in head position in any thread.
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(iv) It is a simple combination of (i) and (iii).

The thread model is extremely interesting from a model theoretic point of view as it contains,
among other properties, non standard integers and even individuals that are not integers. See
Section 2.11 for details.

2.7 The specification problem
Classical realizability can be used to prove results about the behavior of programs. The most
obvious two avatars of this question are witness extraction and specification. Witness extraction
characterizes the return values of a program no matter how it reduces. On the opposite, the
specification problem highlights the evaluation history of a process. The first question is the topic
of Section 2.10 and it is to this second question that we turn now.

Since the evaluation relation is not defined but only axiomatized, we cannot completely point
out all the reduction history of a process because we do not know what an atomic step is. We
can only ensure the existence of some intermediate steps. To do so, the idea is to use the formula
universally realized by the program and, through clever choices of the pole ⊥⊥, build realizability
models that will exhibits the computational behavior we are looking for.

Specification of a formula The specification of a formula A is the common computational
behavior of all universal realizers of A. More precisely, it is the equivalence between uniformly
realizing the formula A and satisfying a given computational behavior, given in terms of reduction
in the KAM with no reference to realizability models.

Remark 2.7.1
By abuse of language, we also employ the phrase “specification problem” to denote the converse
question: find the formula F universally realized by exactly the terms having a given computational
behavior. For example, we will consider in Section 3.3.1 the specification of non-deterministic
booleans.

The simplest specifications but also the least interesting ones are for the formulæ > and ⊥.
Indeed, there is no universal realizer of ⊥ and any term is a universal realizer of > so that their
“computational” characterization are trivial. As a first example of a real specification problem, let
us consider the case of the next simplest closed formula: 1 ≡ ∀Z.Z ⇒ Z.

Proposition 2.7.2 (Specification of 1)
The universal realizers of 1 ≡ ∀Z.Z ⇒ Z are exactly the λc-terms t behaving like the identity,
that is for any λc-term u and any stack π, t ? u · π � u ? π. Formally,

t � 1 ⇐⇒ ∀u∀π. t ? u · π � u ? π .

Proof.
=⇒ Let t be a universal realizer of 1. Let u be any λc-term and π be any stack. We want to prove

that t ? u ·π � u ? π. We consider the realizability model defined by ⊥⊥ := {p | p � u ? π} so
that we only6 need to prove t ? u ·π ∈ ⊥⊥. Consider the predicate π̇. We have u  π̇ since by
definition u ? π ∈ ⊥⊥, and thus u · π ∈ ‖π̇ ⇒ π̇‖. But ‖π̇ ⇒ π̇‖ ⊆

⋃
P∈P(Π)

∥∥Ṗ ⇒ Ṗ
∥∥ ≡ ‖1‖.

Since t  1, we conclude that t ? u · π ∈ ⊥⊥.
6As explained in Footnote 5, we should also prove t ? u · π 6= u ? π which is trivial here.
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⇐= Let t be a λc-term such that for any λc-term u and any stack π, we have t ? u · π � u ? π.
We want to prove that t universally realizes 1. Let ⊥⊥ be a pole and Z a falsity value. Given
a λc-term u realizing Ḟ and a stack π in F , we prove that the process t ? u ·π belongs to ⊥⊥.
By assumption on t, t ? u · π � u ? π so that using anti-evaluation it is enough to prove
u ? π ∈ ⊥⊥. Finally, u  Ḟ and π ∈ ‖F‖ give u ? π ∈ ⊥⊥.

Let us now specify the formula ⊥ ⇒ ⊥ which has a very close computational interpretation.
Notice that since 1 is a subtype of ⊥ ⇒ ⊥, the specification of ⊥ ⇒ ⊥ should be a generalization
of the one for 1, and it should capture more λc-terms.

Proposition 2.7.3 (Specification of ⊥ ⇒ ⊥)
The universal realizers of ⊥ ⇒ ⊥ are exactly the proof-like terms that put their first argument in
head position. Formally,

t � ⊥ ⇒ ⊥ ⇐⇒ ∀u∀π.∃π′. t ? u · π � u ? π′ .

Proof.
=⇒ Let t be a universal realizer of ⊥ ⇒ ⊥, u be any λc-term and π be any stack. We let

⊥⊥ := {p | ∃π′. p � u ? π′} and we want to prove t ? u · π ∈ ⊥⊥. Since u ? π′ ∈ ⊥⊥ for any π′
by definition of ⊥⊥, we get u  ⊥. We trivially have π ∈ ‖⊥‖ and thus u · π ∈ ‖⊥ ⇒ ⊥‖.
Since t � ⊥ ⇒ ⊥, we have7 the result t ? u · π ∈ ⊥⊥.

⇐= Assume that for any λc-term u and any stack π, there exists a stack π′ such that t ? u · π �
u ? π′. We want to show that t is a universal realizer of ⊥ ⇒ ⊥. Let ⊥⊥ be a pole, π a stack
and u a realizer of ⊥. We show that t ? u · π ∈ ⊥⊥. By anti-evaluation, it is enough to prove
that u ? π′ ∈ ⊥⊥ where π′ is given by the assumption on t. Since u  ⊥, we have u ? π ∈ ⊥⊥
for any stack π, in particular π′.

As expected, the specification of 1 is a particular case of the one for ⊥ ⇒ ⊥. The difference is
that universal realizers of ⊥ ⇒ ⊥ do not preserve the stack.

Specification of booleans The booleans are an excellent example of specification. Indeed, the
formula is still very simple but its specification is rich and somewhat counter-intuitive because,
as we will see, there are unexpected booleans, namely versatile booleans. Furthermore, it is a
case where Kleene intuitionistic realizability and Krivine classical realizability differ dramatically.

Proposition 2.7.4 (Specifications of booleans)
Letting b ∈ B := ∀Z.Z 0 ⇒ Z 1 ⇒ Z b and Bool := ∀Z.Z ⇒ Z ⇒ Z, we have the following
specifications:

1. t � 0 ∈ B ⇐⇒ ∀u∀v∀π. t ? u · v · π � u ? π;

2. t � 1 ∈ B ⇐⇒ ∀u∀v∀π. t ? u · v · π � v ? π;

3. for any integer n ≥ 2, there is no universal realizer of t � n ∈ B;

4. t � Bool ⇐⇒ ∀u∀v∀π. t ? u · v · π � u ? π or t ? u · v · π � v ? π.

7According to Footnote 5, we should also prove t ? u · π 6= u ? π′. This is a case where it is not always possible:
take u = t and π′ = t · π. Therefore, we should modify the statement to exclude this case or use � instead of �.
Nevertheless, writing a program that can syntactically analyze its input requires quote (see Section 3.3.2) and
cannot be done without evaluation so that the theorem does hold.
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Proof.
1. The structure of the proof is the same as for the specifications of 1 and ⊥ ⇒ ⊥.

=⇒ Let t be a universal realizer of 0 ∈ B and let u, v be any λc-terms and π be any
stack. We want to show t ? u · v · π � u ? π. We consider the realizability model
defined by ⊥⊥ := {p | p � u ? π} so that we only need to prove t ? u · v · π ∈ ⊥⊥. Let P
be the unary predicate defined by ‖P 0‖ := {π} and ‖P (s n)‖ := ∅. Therefore we
have P 0 ≈ π̇ and P (s n) ≈ > which gives u  P 0 and v  P 1. Finally, this gives
u · v · π ∈ ‖P 0⇒ P 1⇒ P 0‖ ⊆ ‖0 ∈ B‖ and we conclude with t � 0 ∈ B.

⇐= Let t be a λc-term such that for any λc-terms u, v and any stack π, t ? u · v · π � u ? π.
Given a pole ⊥⊥, a unary falsity function F , a stack π ∈ (F 0) and realizers u  Ḟ 0 and
v  Ḟ 1, we want to show that t ? u · v ·π ∈ ⊥⊥. By anti-evaluation and the assumption
on t, we only have to prove u ? π ∈ ⊥⊥. This is trivial since u  Ḟ 0 and π ∈ (F 0).

2. The proof is similar to the previous case, swapping P for the unary predicate Q defined by
‖Q 1‖ = {π} and ‖Qn‖ := ∅ otherwise.

3. If we had a universal realizer t of n ∈ B for some n ≥ 2, it would be a realizer in the model
defined by the empty pole. Taking ‖Z 0‖ := ∅, ‖Z 1‖ := ∅ and ‖Z n‖ := Π = ‖⊥‖ otherwise,
we would get a realizer of ⊥ in the empty pole, which is absurd by Theorem 2.6.1.

4. =⇒ Let t be a universal realizer of Bool. Let u, v be any λc-terms and π be any stack.
We want to prove that t ? u · v · π � u ? π or t ? u · v · π � v ? π. We define the pole
⊥⊥ := {p | p � u ? π or p � v ? π} and prove t ? u · v · π ∈ ⊥⊥. By definition of the pole,
we have u  π̇ and v  π̇ thus u · v · π ∈ ‖π̇ ⇒ π̇ ⇒ π̇‖ ⊆ ‖Bool‖. Since t � Bool, we
conclude that t ? u · v · π ∈ ⊥⊥.

⇐= Let t be a λc-term such that for any u, v and π, t ? u · v · π � u ? π or t ? u · v · π.
Given a pole ⊥⊥, a falsity value F , a stack π ∈ F and realizers u  Ḟ and v  Ḟ , we
want to prove t ? u · v · π ∈ ⊥⊥. By assumption on t, the process t ? u · v · π reduces to
either u ? π or v ? π. By anti-evaluation, we only have to prove that both u ? π and
v ? π belong to the pole, which is trivial.

These specifications give a complete picture of the situation of booleans in classical realizability.
Realizers of 0 ∈ B and 1 ∈ B behave as the usual booleans λxy. x and λxy. y respectively. By
subtyping, they are realizers of Bool as well. We may be tempted to say that the universal
realizers of Bool are the union of the universal realizers of 0 ∈ B and 1 ∈ B. This is wrong
because for a given realizer t, the choice between the arguments u and v may not always be the
same. A universal realizer of Bool that is a universal realizer of neither 0 ∈ B and 1 ∈ B is
called a versatile boolean [GM11]. For example, given an arbitrary λc-term u, one such universal
realizer is λxy. quoteu (λm. quote x (λn. int_eq mnxy)) (see Sections 3.3.2 and 3.4 for the
definitions of quote and int_eq). It returns its first argument only when it is syntactically
equal to u and its second argument otherwise. We may also have realizers that are universal
realizers of both 0 ∈ B and 1 ∈ B. As we will see in Section 3.3.1, they exactly correspond
to non-deterministic choice operators. This situation is depicted in Figure 2.10. By additional
constraints on the evaluation relation, we can remove both the non-deterministic and versatile
booleans and recover the intuitionistic equivalence t � Bool ⇐⇒ t � 0 ∈ B or t � 1 ∈ B.
These constraints are: determinism8 to remove non-deterministic booleans, and the existence of
interaction constants [Gui08] to remove versatile booleans. See [GM11] for more details.

8Since evaluation is transitive, determinism is defined by ∀p∀p1∀p2. p � p1 ⇒ p � p2 ⇒ p1 � p2 ∨ p2 � p1.



2.7. THE SPECIFICATION PROBLEM 33

versatile booleans
t  Bool
t 6 1 ∈ B
t 6 0 ∈ B

true-like booleans
t  1 ∈ B

false-like booleans
t  0 ∈ B

non-deterministic
booleans

t  1 ∈ B ∩ 0 ∈ B

Figure 2.10: Booleans in classical realizability.

Specification of Peirce’s law Yet, all specification problems are not that simple to solve as
shown by the case of Peirce’s law, which is a rather simple formula. It was fully solved only
in 2011 by Mauricio Guillermo and Alexandre Miquel [GM11] and turned out to be quite
complex. This is maybe not so surprising because it contains the very essence of classical reasoning.
Nevertheless, we can easily prove a weaker version given by Emmanuel Beffara [Bef05]. This
theorem says that if t is a universal realizer of Peirce’s law and that f puts its first argument
in head position, then the realizer v of A ⇒ B generated by t behaves as the continuation
constant kπ. The difference with the full specification is twofold: on the one hand we assume
that f puts its arguments in head position and, on the other hand, we only have an implication
and not an equivalence.

Theorem 2.7.5 (Partial specification of Peirce’s law)
We say that, on a stack π, a λc-term f puts its argument in head position with a λc-term u if,
for any λc-term v, there exists a stack π′ such that f ? v · π � v ? u · π′.
If t is a universal realizer of ((A ⇒ B) ⇒ A) ⇒ A, then for any stack π and any λc-terms f
and u such that, on π, f puts its argument in head position with u, we have t ? f · π � u ? π.

Proof. Given t, f , u and π as in the statement of the theorem, we let ⊥⊥ := {p | p � u ? π}. We
want to show that t ? f ·π ∈ ⊥⊥. Letting A := π̇ and B := ⊥, we have t � ((π̇ ⇒ ⊥)⇒ π̇)⇒ π̇ and
therefore we only have to prove f  (π̇ ⇒ ⊥)⇒ π̇. Let v  π̇ ⇒ ⊥ so that v ·π ∈ ‖(π̇ ⇒ ⊥)⇒ π̇‖.
By assumption on f , we have f ? v · π � v ? u · π′ for some stack π′. By definition of ⊥⊥, we have
u  π̇ and therefore u · π′ ∈ ‖π̇ ⇒ ⊥‖. Since v  π̇ ⇒ ⊥, this means that v ? u · π′ ∈ ⊥⊥ and we
conclude by anti-evaluation.

For the converse direction, we already know that callcc realizes Peirce’s law (Proposi-
tion 2.4.6). What remains to do is to fill the gap between callcc and a generic λc-term that
exhibits the behavior described by Theorem 2.7.5. This is what was done by Mauricio Guillermo
and Alexandre Miquel [GM11]. To that end, they express universal realizers of Peirce’s law as
winning strategies in a two-player game. This is easy if we have interaction constants but the
general case is much harder.
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2.8 The adequacy theorem
2.8.1 The adequacy theorem
The proof system presented in Section 2.3 is used only as a way to easily generate universal
realizers thanks to the soundness theorem, called in this framework adequacy. This exhibits three
levels of “truth”: provability, universal realizability and truth in the full standard model that are
connected as follows:

Provable =⇒ Universally realizable =⇒ True in the full standard model
` t : A t � A M |= A

The first implication is the adequacy theorem which is at the heart of this section and the second
one is Theorem 2.6.1. The converse implications do not hold: universal realizability is strictly
stronger than provability by Lemmas 2.9.9 and 2.9.15. We first extend the realizability relation
to substitutions and contexts before stating the adequacy theorem.

Definition 2.8.1 (Substitution realizing a context)
Given a pole ⊥⊥, we say that a closed substitution σ realizes a closed context Γ, written σ  Γ,
when for all (x : A) ∈ Γ, we have σ(x)  A.

Theorem 2.8.2 (Adequacy)
If the sequent Γ ` t : A is derivable in PA2 (where Γ and A are closed), then for any pole ⊥⊥ and
any closed substitution σ realizing Γ, we have t[σ]  A.

The only reference to a realizability model lies in the substitution σ where we map variables
to realizers which depend on the particular pole we consider. On the contrary, when t is closed,
we need neither a context Γ to help type t nor a substitution σ to replace its free variables with
realizers.

Corollary 2.8.3 (Adequacy for closed terms)
If the sequent ` t : A is derivable in PA2 (where t and A are closed), then we have t � A.

Example 2.8.4
The proof-like term λlr. callccλk. r (λx. k (l x)) is the universal realizer of the law of excluded
middle extracted from the proof in Example 2.3.3.

The general form is still useful because it allows modular reasoning: we can incorporate
external realizers for all the proof variables in Γ. This is extremely useful for realizer optimization
to replace some part of a proof by a more efficient realizer (see Section 3.6).

Since we are not always manipulating closed terms or closed formulæ (for instance with the
introduction rules of ⇒ or ∀), we cannot prove Theorem 2.8.2 directly and we need a stronger
statement. Following Jean-Louis Krivine [Kri09], we instead prove the more general Lemma 2.8.5.
It deals with open terms and open formulæ by adding a closed substitution σ to map proof
variables to closed terms and a valuation ρ to map type variables to (closed) parameters.

Lemma 2.8.5 (Adequacy lemma)
If the sequent Γ ` t : A is derivable in PA2 (where Γ, t and A can be open), then for any pole ⊥⊥,
any valuation ρ and any closed substitution σ such that σ  Γ[ρ], we have t[σ]  A[ρ].

The notation Γ[ρ] is the pointwise extension of A[ρ] for all formula A ∈ Γ. Using this lemma,
the proof of Theorem 2.8.2 is straightforward since when A and all the Ai ∈ Γ are closed, we
have Ai[ρ] = Ai so that Γ[ρ] = Γ and ρ is no longer needed. We could refer the reader to the
proof of adequacy for PA2 by Jean-Louis Krivine [Kri09]. Instead, closer to the spirit of classical
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realizability, we prefer to turn to a more modular presentation of adequacy [Gui08], where the
focus is not given to the global deduction system of PA2 but rather to each inference rule. This
way, we can use different sets of rules provided they are all adequate. The above statement is
then a direct corollary of Theorem 2.8.9. Notice that this is simply a different presentation and
that the proof is essentially the same of the one given by Jean-Louis Krivine.

2.8.2 Modular adequacy
We present here the previous theorem in a modular way that will make extensions and modifications
of the system very easy. The idea, that can be used for any proof by induction, is simply to split
the induction into pieces and prove each inductive case separately. Then, any combination of the
rules for which we have proven the inductive step forms a system for which the induction is valid.
Extending the proof system to incorporate new constructions then simply amounts to proving
the inductive step for these new constructions.

Definition 2.8.6 (Adequate sequent)
A sequent Γ ` t : A is adequate with respect to a pole ⊥⊥ when for all valuations ρ and all closed
substitutions σ realizing Γ[ρ], we have t[σ] ⊥⊥ A[ρ].

Definition 2.8.7 (Adequate inference rule)
An inference rule is adequate with respect to a pole ⊥⊥ if whenever the premise sequents are
adequate with respect to ⊥⊥, the conclusion sequent is adequate with respect to ⊥⊥.

Proposition 2.8.8 (Modular adequacy lemma)
Any sequent, proven using only adequate rules with respect to a pole ⊥⊥, is itself adequate with
respect to ⊥⊥.

Proof. Direct by induction on the proof, since each rule is adequate.

Theorem 2.8.9 (Adequacy of PA2)
All the rules of PA2 (given in Fig. 2.6) are adequate with respect to any pole. This entails
Lemma 2.8.5 by Proposition 2.8.8.

Proof. It is the original proof [Kri09] with different notations, replacing in each case any use of
the induction hypothesis by the hypothesis that the premises of the rules are adequate proofs.

Let ⊥⊥ be an arbitrary pole. We prove that each rule of PA2 is adequate with respect to ⊥⊥.

Axiom Any proof ending by the axiom rule is of the shape Γ ` x : A with (x : A) ∈ Γ. Let ρ
and σ be such that σ  Γ[ρ]. This gives in particular x[σ] ≡ σ(x)  A[ρ].

Peirce’s law This is exactly the proof of Lemma 2.4.6 except that we also take care of the
cases where the formulæ A and B are not closed. We first prove that for all A, B, ρ
and π, if π ∈ ‖A[ρ]‖, then kπ  A[ρ] ⇒ B[ρ]. Let t  A[ρ] and π′ ∈ ‖B[ρ]‖ so that
t · π′ ∈ ‖A[ρ]⇒ B[ρ]‖. We have kπ ? t · π′ � t ? π ∈ ⊥⊥. By anti-evaluation, kπ ? t · π′ ∈ ⊥⊥
and kπ  A[ρ]⇒ B[ρ].
We now turn to the proof for callcc. Let t  (A[ρ]⇒ B[ρ])⇒ A[ρ] and π ∈ ‖A[ρ]‖ so that
t·π ∈ ‖((A[ρ]⇒ B[ρ])⇒ A[ρ])⇒ A[ρ]‖. We have callcc ? t·π � t ? kπ ·π and t ? kπ ·π ∈ ⊥⊥
because π ∈ ‖A[ρ]‖ and kπ  A[ρ] ⇒ B[ρ] so that kπ · π ∈ ‖(A[ρ]⇒ B[ρ])⇒ A[ρ]‖. We
conclude by anti-evaluation.

Introduction of ⇒ Assume that the sequent Γ, x : A ` t : B is adequate. Let ρ and σ be
such that σ  Γ[ρ]. We want to prove that λx. t  (A ⇒ B)[ρ], i.e. λx. t  A[ρ] ⇒ B[ρ].
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Let u  A[ρ] and π ∈ ‖B[ρ]‖ so that u · π ∈ ‖(A⇒ B)[ρ]‖. Since σ  Γ[ρ] and x does not
belong to the domain of Γ (otherwise the context Γ, x : A would not be defined), we get
σ, x ← u  Γ[ρ], x : A[ρ], i.e. σ, x ← u  (Γ, x : A)[ρ]. By adequacy of Γ, x : A ` t : B,
we have t[σ, x← u]  B[ρ] and thus t[σ, x← u] ? π ∈ ⊥⊥. Finally, as σ is closed, we have
(λx. t)[σ] ? u · π ≡ λx. t[σ, x← x] ? u · π � (t[σ, x← x])[u/x] ? π ≡ t[σ, x← u] ? π ∈ ⊥⊥ and
by anti-evaluation, (λx. t)[σ]  (A⇒ B)[ρ].

Elimination of ⇒ Assume that the sequents Γ ` t : A⇒ B and Γ ` u : A are adequate. Let ρ
and σ be such that σ  Γ[ρ]. We want to prove that (t u)[σ]  B[ρ], i.e. t[σ]u[σ]  B[ρ].
Let π ∈ ‖B[ρ]‖. By adequacy, we have t[σ]  (A ⇒ B)[ρ] and u[σ]  A[ρ] so that
u[σ] · π ∈ ‖(A⇒ B)[ρ]‖. Therefore we have t[σ]u[σ] ? π � t[σ] ? u[σ] · π ∈ ⊥⊥ and we
conclude by anti-evaluation.

Introduction of ∀1 Assume that the sequent Γ ` t : A is adequate. Let x be a first-order
variable not appearing in FV(Γ) and let ρ and σ be such that σ  Γ[ρ]. We want to prove
that t[σ]  (∀x.A)[ρ], i.e. that for any n ∈ N, t[σ]  A[ρ, x← n]. Let π ∈ ‖A[ρ, x← n]‖.
Since x /∈ FV(Γ), we have σ  Γ[ρ, x← n] and by adequacy t[σ]  A[ρ, x← n].

Elimination of ∀1 Assume that the sequent Γ ` t : ∀x.A is adequate. Let ρ and σ be such that
σ  Γ[ρ]. We want to show that for any n ∈ N, t[σ]  A[ρ, x← n]. Let π ∈ ‖A[ρ, x← n]‖.
We have π ∈

⋃
n∈N ‖A[ρ, x← n]‖ = ‖(∀x.A)[ρ]‖ and we conclude by adequacy of the

premise.

Introduction and elimination of ∀2 The proofs are exactly the same as for ∀1, we just need
to change the first-order variable x into a second-order variable X, the integer n by a falsity
function F and the interpretation domain from N to Nk → P(Π) (where k is the common
arity of X and F ).

Remarks 2.8.10
1. The adequacy for individual rules is useful in itself because it essentially says what we need

to prove to build a realizer of the conclusion using realizers of the premises:

⇒i if t[u/x]9  B for any u  A, then λx. t  A⇒ B ;
⇒e if t  A⇒ B and u  A, then t u  B;
∀i if t  A for any x, then t  ∀x.A (similarly for ∀X.A);
∀e if t  ∀x.A, then t  A[e/x] for any e (similarly for ∀X.A).

Therefore, when we want to prove that a λc-term realizes a formula, we can use these
remarks rather than taking a stack in the falsity value, reducing the process to get to a
process in the pole and concluding by anti-evaluation.

2. The notion of modular adequacy can be easily generalized to realizability algebras [Kri11,
Kri12] as was done by Alexandre Miquel [Miq13].

2.9 Realizing Peano Arithmetic
The adequacy theorem says that every provable tautology of second-order logic admits a universal
realizer. Although this gives universal realizers for quite a lot of formulæ, we do not have classical
analysis yet. On the path to full mathematical reasoning, the next step is arithmetic.

9Note that we use t[u/x] and not (λx. t)u on purpose. See Section 2.5.
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To move from predicate calculus to Peano arithmetic, we add axioms to the proof system
expressing the basic properties of integers given in Figure 2.11 (when we restrict function symbols
to zero, successor, addition and multiplication). If we have more function symbols (associated
to primitive recursive functions), we simply need to add their defining equations to the theory.
There are two differences with the first-order presentation of arithmetic: recurrence is an axiom
and not an axiom scheme, thanks to second-order quantification; there is no axiom about equality.
Indeed, equality is defined by Leibniz rule x = y := ∀Z.Z(x)⇒ Z(y) which is an equivalence
(see Figure 2.3) and is substitutive by definition: ∀x∀y. x = y ⇒ ∀P. P (x)⇒ P (y) is proven by
λx. x.

Successor ∀nm. s n = sm⇒ n = m
∀n.¬(s n = 0)

Recurrence ∀n.∀Z.Z(0)⇒ (∀m.Z(m)⇒ Z(sm))⇒ Z(n)
Function Symbols
Addition ∀nm. n+ 0 = n

∀nm. n+ sm = s (n+m)
Multiplication ∀nm. n ∗ 0 = 0

∀nm. n ∗ sm = n ∗m+ n
f prim. rec. ∀~n. f(. . .) = . . .

Figure 2.11: Peano axioms in second-order logic.

Therefore, to realize arithmetic, we need to realize all these axioms. As we can see from
Figure 2.11, equality has a prominent role and it is natural to first look into the interpretation
and realization of equalities.

2.9.1 Realizers of equalities
Lemma 2.9.1 (Interpretation of closed equalities)
If e1 and e2 are closed arithmetical expressions, we have

‖e1 = e2‖ =
{
‖1‖ = {t · π | t ? π ∈ ⊥⊥} if Je1K = Je2K
‖> ⇒ ⊥‖ = Λ ·Π if Je1K 6= Je2K

Proof. Recall that e1 = e2 := ∀Z.Z(e1)⇒ Z(e2).

• If Je1K = Je2K, then we have

‖e1 = e2‖ =
⋃

F :N→P(Π)

∥∥Ḟ (e1)⇒ Ḟ (e2)
∥∥ =

⋃
F :N→P(Π)

(F Je1K)⊥⊥ · F Je2K =
⋃

F :P(Π)

∥∥Ḟ ⇒ Ḟ
∥∥ = ‖1‖

• If Je1K 6= Je2K, taking F0 such that F0 Je1K = ∅ and F0 Je2K = Π, we have

‖e1 = e2‖ =
⋃

F :N→P(Π)

∥∥Ḟ (e1)⇒ Ḟ (e2)
∥∥ ⊇ ∥∥Ḟ0 e1 ⇒ Ḟ0 e2

∥∥ = Λ ·Π

We easily check that > ⇒ ⊥ is a subtype of A⇒ B for all formulæ A and B. Therefore,
‖A⇒ B‖ ⊆ ‖> ⇒ ⊥‖ and Λ ·Π is the biggest possible falsity value for e1 = e2 so that we
have the equality: ‖e1 = e2‖ = Λ ·Π = ‖> ⇒ ⊥‖.
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From a computational point of view, this means that an equality behaves like some sort of
breakpoint: we can use it as a guard condition. If the equality holds, then its realizer behaves like
the identity (see Lemma 2.7.2): “we pass the breakpoint”. If the equality does not hold, then its
realizer takes any argument (a realizer of >, representing the rest of the code) and backtracks (it
realizes ⊥): “the breakpoint prevents the execution of the rest of the code”. Therefore, applying
a realizer of an equality to a term does behave like a guard condition: the term is evaluated only
when the equality holds10.

Let us extend this result to open arithmetical expressions.

Lemma 2.9.2 (Realizing equalities and inequalities)
Let e(~x) and e′(~x) be arithmetical expressions depending only on the variables ~x.

(i) If for all integer tuples ~n, Je(~n)K = Je′(~n)K then we have λx. x � ∀~x. e(~x) = e′(~x).

(ii) If for all integer tuples ~n, Je(~n)K 6= Je′(~n)K then for any (possibly open) λc-term u, we have
λx. x u � ∀~x.¬(e(~x) = e′(~x)).

Proof.
(i) It is a direct consequence of the previous lemma and the fact that λx. x � 1.

(ii) By Lemma 2.9.1, we know that for all integer tuples ~n, ‖¬(e(~n) = e′(~n))‖ = ‖(> ⇒ ⊥)⇒ ⊥‖.
It is a simple exercise to check that λx. x u  (> ⇒ ⊥)⇒ ⊥ for any λc-term u. In order to
close the resulting term λx. x u, we usually take u such that FV(u) ⊆ {x}. For instance,
letting u be x leads to the universal realizer δ := λx. x x.

Remark 2.9.3
In the particular case where e and e′ are closed, we have λx. x � e = e′ if the equality e = e′

holds in the standard model and λx. x u � ¬(e = e′) otherwise.

Theorem 2.9.4 (Realizing conditional equalities)
Let e0(~x), e′0(~x), e1(~x), e′1(~x), . . . , ek(~x), e′k(~x) be arithmetical expressions depending only on the
variables ~x. If for all integer tuples ~n, the implication

ek(~n) = e′k(~n)⇒ . . .⇒ e1(~n) = e′1(~n)⇒ e0(~n) = e′0(~n)

holds (in the standard model), then we have

λx. x � ∀~x. ek(~x) = e′k(~x)⇒ . . .⇒ e1(~x) = e′1(~x)⇒ e0(~x) = e′0(~x) .

Proof. For k = 0, this is exactly Lemma 2.9.2. For k ≥ 1, the proof is done by subtyping: we
prove the following facts:

1. > ⇒ ⊥ ≤ ek(~n) = e′k(~n)⇒ . . .⇒ e1(~n) = e′1(~n)⇒ e0(~n) = e′0(~n) for any integer tuple ~n;

2. 1 ≤ ek(~n) = e′k(~n) ⇒ . . . ⇒ e1(~n) = e′1(~n) ⇒ e0(~n) = e′0(~n) for any integer tuple ~n for
which the implication holds in the standard model.

If the implication holds in the standard model for all integer tuples ~n, then 1 is a subtype for all
integer tuples ~n and therefore λx. x is a universal realizer. Let us prove the two subtyping facts,
assuming k ≥ 1.

10This intuition is not completely correct because realizers of ⊥ do not always trigger backtracks. Nevertheless,
from the point of view of realizability, we only have to consider the case where the equality holds since ⊥ is a
subtype of any formula.
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1. We easily check that the formula > ⇒ ⊥ is a subtype of A⇒ B for any formulæ A and B.
Therefore, we can take B := ek−1(~n) = e′k−1(~n) ⇒ . . . ⇒ e1(~n) = e′1(~n) ⇒ e0(~n) = e′0(~n)
and A := ek(~n) = e′k(~n) to have the result.

2. The second part is proven by recurrence over k, starting at 0. For k = 0, given an integer
tuple ~n, if e0(~n) = e′0(~n) holds in the standard model, we simply use Lemma 2.9.1 on
e0(~n) = e′0(~n). For k ≥ 1, given an integer tuple ~n such that the implication holds in the
standard modelM, we consider two cases depending on whether ek(~n) = e′k(~n) holds inM
or not.

• IfM |= ek(~n) = e′k(~n), by Lemma 2.9.1, we have ek(~n) = e′k(~n) ≈ 1. Since the overall
implication holds, it means that ek−1(~n) = e′k−1(~n)⇒ . . .⇒ e0(~n) = e′0(~n) must hold
too. By induction hypothesis, we have 1 ≤ ek−1(~n) = e′k−1(~n)⇒ . . .⇒ e0(~n) = e′0(~n).
Therefore, 1 ⇒ 1 is a subtype of the overall implication and we just check that
1 ≤ 1⇒ 1 to conclude.
• IfM 6|= ek(~n) = e′k(~n), by Lemma 2.9.1, we have ek(~n) = e′k(~n) ≈ > ⇒ ⊥. Using the
previous point, we have > ⇒ ⊥ ≤ ek−1(~n) = e′k−1(~n)⇒ . . .⇒ e0(~n) = e′0(~n) so that
(> ⇒ ⊥)⇒ >⇒ ⊥ is a subtype of the overall implication. Finally, we just check that
1 ≤ (> ⇒ ⊥)⇒ >⇒ ⊥ to conclude.

Using Lemma 2.9.2 and Theorem 2.9.4, we can realize all Peano axioms except the recurrence
axiom which will be the focus of the next section.

Proposition 2.9.5 (Realizing PA2−)
Letting PA2− be the subset of Peano axioms where we remove the recurrence axiom, we can
universally realize PA2−. The realizers are given in Figure 2.12.

Successor λx. x � ∀nm.Sn = Sm⇒ n = m
λx. x x � ∀n.¬(Sn = 0)

Addition λx. x � ∀nm. n+ 0 = n
λx. x � ∀nm. n+ Sm = S(n+m)

Multiplication λx. x � ∀nm. n ∗ 0 = 0
λx. x � ∀nm. n ∗ Sm = n ∗m+ n

Figure 2.12: Realizers for Peano axioms without recurrence.

Horn formulæ Theorem 2.9.4 shows how simple are the universal realizers of true equalities
in the standard model: they carry no information. How far does this template go? What is
the class of formulæ for which universal realizers carrying no information? Drawing inspiration
from intuitionistic realizability, a good candidate is Harrop formulæ. Unluckily, we cannot take
this definition because any negated formula is a Harrop formula and we have the equivalence
A ⇐⇒ ¬¬A in classical logic. It would imply that all formulæ are equivalent to a Harrop
formula and therefore should have a trivial computational behavior. The solution is to take Horn
formulæ, i.e. the class of formulæ where at most one atomic formula is in positive position. This
is still the case for formulæ with one inequality as premise and an inequality as conclusion:

¬(e(~x) = e′(~x))⇒ e1(~x) = e′1(~x)⇒ . . .⇒ en(~x) = e′n(~x)⇒ ⊥ (*)

since it is logically equivalent to

e1(~x) = e′1(~x)⇒ . . .⇒ en(~x) = e′n(~x)⇒ e(~x) = e′(~x) (**)
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by the following proof-like terms:

λyx1 . . . xn. callcc (λk. y k x1 . . . xn) : (∗)⇒ (∗∗)
λykx1 . . . xn. k (y x1 . . . xn) : (∗∗)⇒ (∗) .

Although we use callcc in one of the conversion terms, which may not be considered as carrying
no information, the computational intuition behind it is clear: move the information about
e(~x) = e′(~x) from a negated premise to the conclusion. In both cases, there is only one reasonable
universal realizer. On the contrary, in a formula with two or more equalities in positive position,
we have to make a choice between them: which one we will prove. This is the case for example
with e1 ≤ e2 ∨ e2 < e1 := ∀Z. (e1 ≤ e2 ⇒ Z) ⇒ (e2 < e1 ⇒ Z) ⇒ Z where both e1 ≤ e2 and
e2 < e1 are in positive positions.

2.9.2 The recurrence axiom
The axiom of recurrence is the last axiom remaining to fully realize classical arithmetic. Un-
fortunately, this single axiom strikes a serious blow to our original plan of realizing Peano
arithmetic. Indeed, there is no universal realizer of the recurrence axiom if the reduction relation
is deterministic.

Theorem 2.9.6 (No universal realizer of the recurrence axiom)
If the evaluation relation is deterministic11, i.e. p � p1 and p � p2 entail that p1 � p2 or p2 � p1,
then there is no universal realizer of the recurrence axiom (not even as a new instruction).

Proof. The proof is adapted from [Kri09]. Assume for contradiction that there exists a universal
realizer trec of the recurrence axiom. If we abbreviate ∀Z.Z(0)⇒ (∀y. Z(y)⇒ Z(s y))⇒ Z(x) by
rec(x), this means that trec � ∀x. rec(x). In particular, we have trec � rec(0) and trec � rec(1).
Letting δ := λx. x x and Ω := δ δ, we recover the famous looping term: for any stack π, we have

Ω ? π ≡ δ δ ? π � δ ? δ · π � δ δ ? π ≡ Ω ? π

In particular, the thread of any process with Ω in head position contains only the processes in
this reduction chain and thus is finite (although the reduction is not!). Let π by any stack and t0
be any λc-term. The thread Thd(Ω ? t0 · π) is finite so that there exists a λc-term t1 such that
Ω ? t1 · π does not belong to Thd(Ω ? t0 · π). We consider two realizability models defined by the
poles ⊥⊥0 := {p | p � Ω ? t0 · π} and ⊥⊥1 := {p | p � Ω ? t1 · π} and two unary falsity functions P
and Q defined by P (0) := {π}, Q(0) := ∅ and for all i > 0, P (i) := ∅ and Q(i) := {π}.

In the realizability model defined by ⊥⊥0, we have Ω t0  Ṗ (0) by definition of ⊥⊥0 and
t  ∀y. Ṗ (y)⇒ P (s y) for any term t since∥∥∀y. Ṗ (y)⇒ Ṗ (s y)

∥∥ =
⋃
m∈N

∣∣Ṗ (m)
∣∣ · ∥∥Ṗ (sm)

∥∥ =
⋃
m∈N

∣∣Ṗ (m)
∣∣ · ∅ = ∅

In particular, λx.Ω t1  ∀y. Ṗ (y) ⇒ Ṗ (s y). Specializing trec � rec(0) for Ṗ , we get trec 
Ṗ (0)⇒ (∀y. Ṗ (y)⇒ Ṗ (s y))⇒ Ṗ (0). Therefore, trec ? Ω t0 · λx.Ω t1 · π ∈ ⊥⊥0 which means that
trec ? Ω t0 · λx.Ω t1 · π � Ω ? t0 · π.

In the realizability model defined by ⊥⊥1, we have t  Q̇(0) for any term t since Q(0) = ∅, in
particular, Ω t0  Q̇(0). By definition of ⊥⊥1, λx.Ω t1  ∀y. Q̇(y)⇒ Q̇(s y) as for any integer m
and any t  Q̇(m), λx.Ω t1 ? t · π � Ω ? t1 · π ∈ ⊥⊥1 and that t · π ∈

∥∥Q̇(y)⇒ Q̇(s y)
∥∥ because

11We cannot take the usual definition of a deterministic relation, namely p � p1 and p � p2 entail that p1 = p2
because this requires � to be a one step reduction, whereas we use its transitive closure.
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Q(i) = {π} if i > 0. Specializing trec � rec(1) for Q̇, we get trec  Q̇(0)⇒ (∀y. Q̇(y)⇒ Q̇(s y))⇒
Q̇(1). Therefore, trec ? Ω t0 ·λx.Ω t1 ·π ∈ ⊥⊥1 which means that trec ? Ω t0 ·λx.Ω t1 ·π � Ω ? t1 ·π.

This a contradiction since the process trec ? Ω t0 · λx.Ω t1 · π cannot reduce to both Ω ? t0 · π
and Ω ? t1 · π. Indeed, by definition of t1, the process Ω ? t1 · π does not belong to the thread of
Ω ? t0 ·π and therefore Ω ? t0 ·π is different from Ω ? t1 ·π and the reduction Ω ? t0 ·π � Ω ? t1 ·π
is not possible. Since � is deterministic, assuming that trec ? Ω t0 · λx.Ω t1 · π can reduce to both
processes, we must then have Ω ? t1 · π � Ω ? t0 · π:

trec ? Ω t0 · λx.Ω t1 · π � Ω ? t1 · π � Ω ? t0 · π .

As Ω ? t1 · π is a looping term, its thread is cyclic. In particular, Ω ? t0 · π ∈ Thd(Ω ? t1 · π) gives
Ω ? t0 · π � Ω ? t1 · π � Ω ? t0 · π. This is a contradiction with the definition of t1.

The hypothesis that � is deterministic is critical here since we can realize the recurrence axiom
with a non-deterministic choice operator (Theorem 3.3.3). Non-determinism also has dramatic
consequences on classical realizability models, see Section 3.3.1.

The consequence of this result is that classical realizability models are not models of PA2 but
only of PA2−. Since we cannot realize the axiom of recurrence, let us see if we can get rid of it.

2.9.3 Logical interlude: solving the problem of the recurrence axiom
Meaning of the recurrence axiom The intuitive meaning of the recurrence axiom is to
limit the size of the universe. Indeed, the recurrence axiom expresses that we can reach any
individual by iterating the successor function from the constant 0. Said otherwise, it restricts
individuals to integers. Therefore, being unable to universally realize the recurrence axiom simply
means that classical realizability generates too big universes, at least if we are only interested
in integers. Objects outside integers are interesting to realize unusual properties and building
unusual objects like a well-order on R [Kri11]. To cast out the individuals that are not integers,
we use a well-known technique: relativization.

Relativization To restrict our formulæ to only consider integers, it is enough to ensure that
any individual that may appear is an integer. It is therefore necessary to have a formula expressing
that an individual is an integer. Since we have second-order logic, we can use Dedekind’s definition
of natural numbers: natural numbers are the elements that are part of any set containing 0 and
closed under successor:

N := {x | ∀X. 0 ∈ X ⇒ (∀y. y ∈ X ⇒ (y + 1) ∈ X)⇒ x ∈ X} .

In our logical framework, it directly translates to the following formula n ∈ N expressing that n
is an integer:

Integers n ∈ N := ∀Z.Z(0)⇒ (∀m.Z(m)⇒ Z(sm))⇒ Z(n)

Notice that with this definition, the recurrence axiom is simply ∀x. x ∈ N, which illustrates the
idea that it restricts individuals to integers.

To ensure that we only quantify over integers, we introduce a relativized first-order univer-
sal quantification, with a suggestive notation, and directly extend it to first-order existential
quantification.

Relativized quantifications ∀x ∈ N. A := ∀x. x ∈ N⇒ A
∃x ∈ N. A := ∀Z. (∀x. x ∈ N⇒ A⇒ Z)⇒ Z
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Formulæ where all first-order quantifications are relativized to integers are called arithmetical
formulæ. As usual, we write AN the relativized formula of A, which denotes the formula A where
every (plain) first-order quantification has been replaced by a relativized one. By definition, AN
is arithmetical.

Recovering the standard model of integers Relativization restricts the individuals that
we quantify over to be integers, allowing us to use the recurrence axiom on them. Therefore, we
would expect this to be enough to get back all the theorems of PA2. More precisely, we want to
prove the following theorem:

Theorem 2.9.7 (Relativization in PA2−)
For any formula A, if PA2 ` A, then PA2− ` AN.

Notice that we cannot directly write this statement with explicit proof terms because the
axioms of PA2 do not have some. Doing so requires to introduce ad-hoc constants to be their proof
terms. The statement becomes then: for any formula A and any proof-like term t, if PA2 ` t : A,
then there exists a proof-like term t′ such that PA2− ` t′ : AN.

Proof. We only give here the sketch of the proof, which is roughly the same as for the adequacy
theorem. We first need to strengthen the statement into: for any context Γ, any formula A
and any proof-like term t, if PA2,Γ ` t : A, then there exists a proof-like term t′ such that
PA2−,ΓN ` t′ : AN. The context ΓN is obtained not only by pointwise extending Γ, but also by
adding hypotheses xN : x ∈ N for all first-order variables x in FV(Γ) ∪ FV(A). As expected, the
proof then goes by induction on the derivation of the sequent PA2,Γ ` t : A. Most cases are
straightforward and we only focus on the interesting ones, namely the recurrence axiom and the
introduction and elimination rules of first-order quantification.

Recurrence We have PA2,Γ ` � : ∀x. x ∈ N where � is the ad-hoc constant for the recurrence
axiom. Since (∀x. x ∈ N)N ≡ ∀x. x ∈ N ⇒ x ∈ N, we take t′ := λx. x and easily build a
proof of PA2−,ΓN ` λx. x : ∀x. x ∈ N⇒ x ∈ N.

Introduction of ∀1 By induction hypothesis, we have PA2−,ΓN ` t′ : AN. Let x be the variable
that we want to quantify over. We necessarily have x /∈ FV(Γ) because of the side condition
of the rule ∀1

i . If x ∈ FV(A), by definition of ΓN, we have the binding xN : x ∈ N in ΓN.
Otherwise, we can use weakening to make it appear. In both cases, ΓN can be written
Γ′, xN : x ∈ N. We then build the proof tree:

PA2−,Γ′, xN : x ∈ N ` t′ : AN

PA2−,Γ′ ` λxN. t′ : x ∈ N⇒ AN

PA2−,Γ′ ` λxN. t′ : ∀x. x ∈ N⇒ AN

which is exactly the proof we want because ∀x. x ∈ N⇒ AN ≡ (∀x.A)N and x /∈ FV(∀x.A).

Elimination of ∀1 By induction hypothesis, we have a proof of ΓN ` t′ : ∀x. x ∈ N⇒ AN and
we want to get a proof of ΓN ` t′′ : (A[e/x])N for some t′′. Since (A[e/x])N ≡ (AN)[e/x],
we can instantiate x by e but we still need to build a proof of PA2−,ΓN ` e ∈ N. This last
problem is solved thanks to the following lemma.

Lemma 2.9.8
For any arithmetical expression e(x1, . . . , xk) depending only on the variables x1, . . . , xk, we have
PA2− ` ∀x1 ∈ N. . . .∀xk ∈ N. e(x1, . . . , xk) ∈ N.

By a simple induction on e, this lemma reduces to the following one:
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Lemma 2.9.9 (Totality of the first-order function symbols)
PA2− can prove the totality of all function symbols of the first-order signature. Formally, for any
function symbol f of arity k, we have PA2− ` ∀x1 ∈ N. . . .∀xk ∈ N. f(x1, . . . , xk) ∈ N.

This lemma can be proven when the function symbols correspond to primitive recursive
functions thanks to their defining equations [CL01]. This is the very reason of the restriction
over function symbols in the first-order signature given at the beginning of Section 2.2.

Theorem 2.9.7 and Lemma 2.9.9 terminate our logical study of the problem with the recurrence
axiom. Its conclusion is that second-order logic (with defining equations of function symbols) is
so expressive that it contains second-order arithmetic. In particular, recurrence is not necessary
because we can prove the recurrence axiom for arithmetical formulæ with a small restriction on
the first-order signature.

2.9.4 Back to realizability: the meaning of relativization
Thanks to the adequacy theorem (Theorem 2.8.2), the purely logical analysis of the previous
section gives the solution to our initial problem with the recurrence axiom. If the function symbols
of the first-order signature describe primitive recursive functions, then we can universally realize
all arithmetical theorems.

Theorem 2.9.10 (Realizing PA2 theorems)
If a closed formula A is provable in PA2 (with the recurrence axiom), then the formula AN is
universally realizable by a proof-like term.

As we think in terms of classical realizability and no longer in terms of provability, two
questions naturally arise: first what is the computational interpretation of the analysis of the
previous section and second, can we do better? Both the recurrence axiom and the relativization
revolve around the formula n ∈ N. Let us first study its universal realizers and its computational
interpretation.

Computational interpretation of n ∈ N The formula n ∈ N distinguishes n as an integer
among all individuals, so that its realizer should be a witness of this property. Furthermore, if we
erase the first-order part of n ∈ N, we get back the type of Church integers12: ∀Z.Z ⇒ (Z ⇒
Z)⇒ Z. Therefore, we can expect universal realizers of n ∈ N to be the Church representation
of the integer n.

Church integer n := λxf. fn x

The notation fn x is recursively defined by f0 x := x and fm+1 x := f(fm x). In this setting, we
recall some usual arithmetical functions:

zero 0 := λxf. x
successor s := λnxf. f (nx f)
addition + := λnmxf.m (nx f) f
multiplication ∗ := λnmxf.mx (λx. n x f)

Nevertheless, for a reason that will become clear in Section 2.10.1 (the lack of storage operator
for Church integers), we take instead Krivine integers.

Krivine integer n := (s)n 0
12In fact, compared to the usual presentation [Chu85], the arguments are swapped here to match more closely

the recurrence axiom.
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This is only a cosmetic change since they are β-equivalent to their Church counterpart. Let us
check that 0 and s realize the expected formulæ.

Lemma 2.9.11 (Computational behavior of 0 and s)
The proof-like terms 0 and s realize the following formulæ.

(i) 0 � 0 ∈ N

(ii) s � ∀n. n ∈ N⇒ (s n) ∈ N

Proof. One possible proof uses the adequacy theorem and simply requires to prove the sequents
` 0 : 0 ∈ N and ` s : ∀n. n ∈ N⇒ s n ∈ N. Instead, we turn to a direct proof by realizability.

(i) Let F be a falsity value, t  Ḟ (0), u  ∀n. Ḟ (n) ⇒ Ḟ (s n) and π ∈ F (0). Then we have
t · u · π ∈

∥∥Ḟ (0)⇒ (∀n. Ḟ (n)⇒ Ḟ (s n))⇒ Ḟ (0)
∥∥ ⊆ ‖0 ∈ N‖ and the following reduction

sequence allows us to conclude by anti-evaluation: 0 ? t ·u ·π ≡ λxf. x ? t ·u ·π � t ? π ∈ ⊥⊥.

(ii) Let F be a unary falsity function,m an integer, t  m ∈ N, u  Ḟ (0), v  ∀n. Ḟ (n)⇒ Ḟ (s n)
and π ∈ F (m+1), so that t·u·v ·π ∈

∥∥m ∈ N⇒ Ḟ (0)⇒ (∀n. Ḟ (n)⇒ Ḟ (s n))⇒ Ḟ (sm)
∥∥ ⊆

‖m ∈ N⇒ (sm) ∈ N‖. By anti-evaluation, since s ? t · u · v · π � v ? (t u v) · π, we only
need to prove that v ? (t u v) · π ∈ ⊥⊥. As v  ∀n. Ḟ (n) ⇒ Ḟ (s n) and π ∈ F (m+ 1), this
amounts to proving t u v  Ḟ (m). If π′ ∈ F (m), we have both t u v ? π′ � t ? u · v · π′ and
u · v · π′ ∈ ‖m ∈ N‖, and therefore t ? u · v · π′ ∈ ⊥⊥.

As an immediate corollary, we get by Remark 2.8.10 the validity of our integer representation.

Corollary 2.9.12 (Representation of integers)
For any integer n, n � n ∈ N.

We can widen the class of integer representations because it is stable under β-equivalence.

Theorem 2.9.13 (Integers up to β-equivalence)
If t is a λc-term that is β-equivalent to n for some integer n, then t � n ∈ N.

This theorem implies in particular that Church integers are also valid representations of
integers. The proof relies mostly on the following lemma and on Theorem 2.1.6 relating weak-head
reduction of the λ-calculus and reduction in the KAM.

Lemma 2.9.14
Let n be an integer, F a unary falsity function, t0 and ts closed λc-terms. If t0  Ḟ (0) and
ts  ∀m. Ḟ (m) ⇒ Ḟ (sm), then for any λc-term t and any substitution σ such that t 'β fn x,
σ(f) = ts and σ(x) = t0 for some variables f and x, we have t[σ]  Ḟ (n).

Proof. Let n, F , t0, ts, t and σ be as above. The proof is done by recurrence on n. Recall that
we denote weak head reduction by whr−−→.

• n = 0: We have t 'β x and therefore t whr−−→ x. If π ∈ F (0), then by Theorem 2.1.6,
t[σ] ? π � x[σ] ? π ≡ t0 ? π ∈ ⊥⊥.

• n = m+1: We have t 'β fm+1 x and therefore t whr−−→ f t′ with t′ 'β fm x. Let π be a stack
in F (m+ 1). By Theorem 2.1.6, we have t[σ] � f [σ] ? t′[σ] · π ≡ ts ? t′[σ] · π. By induction
hypothesis, t′[σ]  Ḟ (m) so that t′[σ] · π ∈

∥∥Ḟ (m)⇒ Ḟ (sm)
∥∥ ⊆ ∥∥∀m. Ḟ (m)⇒ Ḟ (sm)

∥∥
and we can conclude by anti-evaluation as ts  ∀m. Ḟ (m)⇒ Ḟ (sm).
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Proof of Theorem 2.9.13. Let ⊥⊥ be a pole, F a unary falsity function, u  Ḟ (0), v  ∀m. Ḟ (m)⇒
Ḟ (sm) and π ∈ F (n). We want to show that t ? u · v · π ∈ ⊥⊥. Since t 'β n 'β λxf. fn x and
λxf. fn x is a normal form, we have t β−−→ λxf. fn x. Using weak head reduction instead, this
becomes t whr−−→ λx. t′ with t′ whr−−→ λf. t′′ and t′′ 'β fn x. From Theorem 2.1.6, we get for any
closed substitution σ, t[σ] ? u · v · π � (λx. t′)[σ] ? u · v · π ≡ λx. t′[σ, x ← x] ? u · v · π and
t′[σ] ? v · π � (λf. t′′)[σ] ? v · π ≡ λf. t′′[σ, f ← f ] ? v · π. We have the following reduction
sequence:

t[σ] ? u · v · π � λx. t′[σ, x← x] ? u · v · π
� t′[σ, x← u] ? v · π
� λf. t′′[σ, x← u, f ← f ] ? v · π
� t′′[σ, x← u, f ← v] ? π

By Lemma 2.9.14, we have t′′[σ, x← u, f ← v]  Ḟ (n) and we conclude by anti-evaluation.

Computational interpretations of relativization and the recurrence axiom As univer-
sal realizers of n ∈ N intuitively correspond to concrete representations of integers in the KAM,
we can deduce from it the meaning of relativization: it explicitly puts the integers on the stack,
so that we can compute with them. It is a way to embody a semantic integer n into a concrete
realizer n. Similarly, a universal realizer of the recurrence axiom ∀x. x ∈ N would produce
simultaneously all natural numbers. Thus, it is no longer surprising that we cannot universally
realize it. It also explains why we can universally realize it if evaluation is not deterministic: with
a non-deterministic choice operator, we can spawn in parallel a universal realizer for each natural
number.

The last step of the computational interpretation of the logical analysis of Section 2.9.3 is the
totality of first-order function symbols.

Specification of the totality of arithmetical functions Given a k-ary function symbol f ,
the formula expressing the totality of f , namely ∀x1 ∈ N . . . ∀xk ∈ N. f(x1, . . . , xk) ∈ N, is the
specification of an algorithm computing f . Indeed, this formula is semantically equivalent to
∀x1 . . . ∀xk. x1 ∈ N ⇒ . . . ⇒ xk ∈ N ⇒ f(x1, . . . xk) ∈ N, which exactly expresses that given k
integers n1, . . . nk, f(n1, . . . , nk) is an integer. Thus, its universal realizers are programs that,
given k arguments realizing integers n1, . . . nk, compute a realizer of the integer f(n1, . . . , nk).
Recovering this integer is the topic of witness extraction, studied in Section 2.10, which will also
formalize the intuition given here.

Going further than primitive recursive functions The only limitation of Theorem 2.9.10
is that the first-order signature must contain only primitive recursive functions. The critical point
is Lemma 2.9.9 that is true only for primitive recursive functions. As the adequacy theorem
(Theorem 2.8.2) is valid with a non-empty context Γ, we can leave the totality of function symbols
as hypotheses. Instead of proving their totality, we could universally realize it and still get
universal realizers for all theorems of PA2. Thus, to go further than primitive recursive functions,
we simply need a wider class of functions where the totality can be universally realized.

Theorem 2.9.15 (Universal realizers of total computable functions)
Every total computable function admits a universal realizer of its totality, which is a pure λ-term.

Proof. Let g be a computable function from Nk to N. By definition of computability, we
have a pure λ-term g that computes it: for any tuple of integers ~n := (n1, . . . , nk), we have
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g n1 . . . nk 'β g(~n) 'β λxf. fg(~n) x. This equation is normally stated with Church integers and
not Krivine ones but because they are β-equivalent and that computability is defined up to
β-equivalence, this change is completely transparent. Since λxf. fg(~n) x is a normal form, we have
g n1 . . . nk

β−−→ λxf. fg(~n) x. With weak head reduction, this becomes g n1 . . . nk
whr−−→ λx. t with

t 'β λf. fg(~n) x. By Theorem 2.1.6, this implies that for any stack π, g n1 . . . nk ? π � λx. t ? π.
Theorem 2.9.13 gives us that λx. t � g(~n) ∈ N because λx. t 'β g(~n). Therefore, by anti-
evaluation, g n1 . . . nk � g(~n) ∈ N and more precisely g ? n1 · . . . · nk · π ∈ ⊥⊥ for any pole and
any π ∈ ‖g(~n) ∈ N‖. We want to prove that some term tg depending on g universally realizes
∀n1, . . . , nk. n1 ∈ N⇒ . . .⇒ nk ∈ N⇒ g(n1, . . . , nk) ∈ N. Let ⊥⊥ be a pole, π ∈ ‖g(~n) ∈ N‖ and
for all 1 ≤ i ≤ k, ai  ni ∈ N. Notice that the ai are not necessarily of the shape ni, which means
that we cannot directly use g. Using the storage operators from Section 2.10.1, we can solve this
problem (using the notation { . } ⇒ . from this section): g n1 . . . nk−1  {nk} ⇒ g(~n) ∈ N gives
that MN (g n1 . . . nk−1)  nk ∈ N ⇒ g(~n) ∈ N, in particular MN (g n1 . . . nk−1) ? ak · π ∈ ⊥⊥.
By a trivial recurrence on k, we can perform this for all k arguments and build a pure λ-term tg
such that tg ? a1 · . . . · ak · π ∈ ⊥⊥.

This is the strongest result we can hope for. Indeed, as we universally realize the totality of a
function, this function must be total. Furthermore, a universal realizer of totality is an algorithm
computing the function, so the function must be computable.

Another consequence of this result is that universal realizability in second-order arithmetic
is strictly stronger than provability in second-order arithmetic, as stated at the beginning of
Section 2.8.

The last steps to get full classical analysis are the countable and dependent choice axioms.
Both can be solved with the same technique (a new instruction quote) that will be the topic of
Section 3.3.2.

2.10 Witness extraction
In this section, we come to one of the practical interests of realizability: to extract a meaningful
result from the execution of a universal realizer. This is a point where intuitionistic and classical
realizability differ drastically.

Intuitionistic and classical witness extraction In intuitionistic realizability, as soon as
we have a realizer of an existential formula ∃x.A(x), we know that it will reduce to a pair
〈n, t〉 where n is an integer satisfying A(n) and t is a realizer of A(n) called the certificate. In
particular, as soon as we get the integer n, we have our witness and there is no need to evaluate
the realizer t of A(n)13. In classical realizability, a realizer of an existential formula ∃x ∈ N. A(x)
also reduces to a pair (encoded by its elimination scheme) of an integer n and a realizer t of
A(n). Nevertheless, this integer has no reason to satisfy the formula A(n). Indeed, if it were
so, we would have a decision procedure for any PA2 formula C: use a universal realizer of the
formula ∃x ∈ N. (x = 1 ∧ C) ∨ (x = 0 ∧ ¬C), which is always provable using excluded middle.
This is clearly impossible when C is undecidable. Therefore, the realizer t of A(n) is no longer
a certificate and we cannot trust the witness n produced by the evaluation. Why is it so? The
problem comes from the instruction callcc14 and more precisely from continuation constants kπ
that may be lurking in t: when trying to certify n, t may become aware that its witness is
incorrect, use a continuation constant to backtrack and produce a new witness. As such, the

13This is the reason why the realizer t can be safely erased during extraction, like in the Coq proof assistant.
14Obviously, since everything else is intuitionistic!
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analogy of the certificate is no longer accurate for t and we must think of it as an insurance policy
that we can use whenever the witness is not correct to get another one. The solution to this
problem is intuitively to flush out all backtracks from inside t to ensure that n can no longer
change. But first, we need a way to recover the value of the integer n from a universal realizer of
n ∈ N.

2.10.1 Storage operators
When we have a realizer of n ∈ N, we know that it represents an integer. Yet, this integer is
the return value of the realizer and it is not directly readable from the realizer: it is present as
a computation and not as a value. A value is a canonical representative for some realizers, in
our case the realizers of n ∈ N for a fixed n. As natural numbers are represented by iterators,
the most obvious choice for values would be Church integers. Yet, there is no storage operator
(see definition 2.10.1 below for them as was shown by Mauricio Guillermo [Gui08]. This is
why we have chosen instead Krivine integers which are β-equivalent to Church integers. Using
Remark 2.4.2 (iii), we can define a new asymmetrical implication where the left member must be
an integer value, and the interpretation of this new implication.

Formulæ A,B := . . . | {e} ⇒ A

Falsity value ‖{e} ⇒ A‖ρ :=
{
n · π

∣∣∣ n = JeKρ and π ∈ ‖A‖ρ
}

Because the Krivine integer n is a universal realizer of n ∈ N (Theorem 2.9.12), e ∈ N⇒ A is
a subtype of {e} ⇒ A. This simply means that a function taking as input an arbitrary realizer
of e ∈ N (a non-computed integer) can take as input the Krivine integer n where n = JeK (the
corresponding value). A storage operator is then a λc-term universally realizing the converse
implication.

Definition 2.10.1 (Storage operator)
A storage operator is a universal realizer of the formula ∀e∀Z. ({e} ⇒ Z)⇒ e ∈ N⇒ Z.

A storage operator converts a function taking only integer values into a function taking any
realizer of e ∈ N: it basically evaluates the realizer of e ∈ N to get its canonical form and then
gives it to its function argument. Said otherwise, it simulates a call-by-value strategy in the
call-by-name setting of the KAM. Storage operators are necessary both to recover witnesses and
to prove specification theorems about functions returning integers since an arbitrary universal
realizer of e ∈ N can have any shape. They can be seen as a way to flush out all computations
and backtracks from inside universal realizers of natural numbers.

Theorem 2.10.2 (Usage of storage operators)
Let MN be a storage operator. Then, for any integer n, any universal realizer t of n ∈ N,
any λc-term u and any stack π, we have MN ? u · t · π � u ? n · π.

Proof. Let us consider the pole ⊥⊥ := {p | p � u ? n · π}. We want to prove thatMN ? u · t ·π ∈ ⊥⊥.
Consider the predicate π̇. The stack n · π belongs to ‖{n} ⇒ π̇‖ so that u  {n} ⇒ π̇ and
u · t · π ∈ ‖({n} ⇒ π̇)⇒ n ∈ N⇒ π̇‖. By subtyping, MN � ({n} ⇒ π̇) ⇒ n ∈ N ⇒ π̇ and we
can conclude that MN ? u · t · π ∈ ⊥⊥.

Example 2.10.3 (Storage operator for integers)
The λ-term MN := λfn. n f (λhx. h (s x)) 0 is a storage operator for integers.
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Proof. Let us prove λfn. n f (λhx. h (s x)) 0 � ∀e∀Z. ({e} ⇒ Z)⇒ e ∈ N⇒ Z. Let ⊥⊥, n and F
be respectively a pole, an integer and a falsity value. Let tf be a realizer of {n} ⇒ Ḟ , tn be a
realizer of n ∈ N and π be a stack in F . We define the predicate Ṗ by letting for 1 ≤ i ≤ n,
P i = {n− i · π} and P i = ∅ for i > n. In particular, we have P n ≡ {0 · π} ⊆

∥∥{0} ⇒ Ḟ
∥∥ and

P 0 ≡ {n · π} ⊆
∥∥{n} ⇒ Ḟ

∥∥. Since tf  {n} ⇒ Ḟ , we get tf  Ṗ (0). The reduction sequence15

λfn. n f(λhx. h(s x)) 0 ? tf · tn · π � tn tf (λhx. h(s x)) 0 ? π
� tn ? tf · λhx. h(s x) · 0 · π

tells us that we only have to prove tf  Ṗ (0), λhx. h(s x)  ∀x. Ṗ (n)⇒ Ṗ (s x) and 0 · π ∈ P n to
conclude, because n ∈ N ≤ Ṗ (0) ⇒ (∀x. Ṗ (n) ⇒ Ṗ (s x)) ⇒ Ṗ (n). We already have tf  Ṗ (0)
and 0 · π ∈ P n so that we turn now to the proof of λhx. h(s x)  ∀x. Ṗ (n)⇒ Ṗ (s x). Let m be
an integer, u be a realizer of Ṗ (m) and π′ be a stack in P (sm) = {n− sm · π}.

λhx. h(s x) ? u · π′ ≡ λhx. h(s x) ? u · n− sm · π � u ? s n− sm · π

The definition of Krivine integers gives s n− sm ≡ n−m and we have n−m · π ∈
∥∥Ṗ (m)

∥∥.
Since u  Ṗ (m), we finally get u ? n−m · π ∈ ⊥⊥.

Remark 2.10.4
The concept of a storage operator can be defined for any datatype (list, tree, . . . ). See Section 3.4
for the example of native integers. Moreover, in classical realizability, datatypes can be defined as
predicates which admit storage operators. Indeed, storage operators perform the essential operation
required on a datatype: being able to retrieve a canonical representation (i.e., a value) from an
arbitrary realizer.

2.10.2 Extraction of Σ0
1 formulæ

Let us consider a universal realizer t of the formula ∃x ∈ N. f(x) = 0 where f is a function symbol
of the first-order signature, i.e. it represents a total computable function. Given an instruction
stop with no evaluation rule16, the term MN (λnp. p (stop n)) allows us to extract the witness:
for any stack π, the process t ? MN (λnp. p (stop n)) · π stops on the state stop ? n · π where n
is the expected witness.

Theorem 2.10.5 (Extraction of Σ1
0 formulæ)

Let t be a universal realizer of ∃x ∈ N. f(x) = 0 and π be any stack. Then there exists an
integer m such that t ? MN (λnp. p (stop n)) · π � stop ? m · π and f(m) = 0.

Proof. Take ⊥⊥ := {p | ∃n. f(n) = 0 and p � stop ? n · π}. We want to show that the process
t ? MN (λnp. p (stop n)) · π belongs to ⊥⊥. Unfolding the definition of ∃x ∈ N. f(x) = 0, we
get ∀Z. (∀x. x ∈ N ⇒ f(x) = 0 ⇒ Z) ⇒ Z. Letting Z be π̇, we only need to prove that
MN (λnp. p (stop n)) realizes ∀x. x ∈ N ⇒ f(x) = 0 ⇒ π̇. As MN is a storage operator,
this amounts to proving that λnp. p (stop n)  ∀x. {x} ⇒ f(x) = 0 ⇒ π̇. Let m be an
integer and e be a realizer of f(m) = 0. We have m · e · π′ ∈ ‖{m} ⇒ f(m) = 0⇒ π̇‖ and
λnp. p (stop n) ? m · e · π′ � e ? stopm · π′. If the closed equality f(m) = 0 does not hold in the
standard model, e  > ⇒ ⊥. We trivially have π′ ∈ ‖⊥‖ and stopm  > and we can conclude. If
f(m) = 0 holds in the standard model, e  1 and, by definition of ⊥⊥, the term stop m realizes π̇
as f(m) = 0 and stop m ? π � stop ? m · π ∈ ⊥⊥. Therefore, stopm · π ∈ ‖π̇ ⇒ π̇‖ ⊆ ‖1‖ and
we can conclude.

15Remember that, as the relation � is transitive, we can do several evaluation steps at once. Here, we use twice
the Grab rule in the first step.

16Therefore, the instruction stop interrupts evaluation when reaching head position.
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Remarks 2.10.6

1. The pattern f(x) = 0 is generic enough to encode all equations: simply transform f(x) = g(x)
into (f − g)(x) = 0.

2. In the above proof, the instruction stop plays no role and can be replaced by an arbitrary
closed λc-term if we want to use the witness for further computation.

3. We can effortlessly lift this result to Π0
2 formulæ as a realizer of a universal formula ∀~x.A(~x)

is simply a realizer of all its instances A(~n). Since the instances of a Π0
2 formula are Σ0

1,
we simply need to apply the previous method to the instances of interest.

2.10.3 Going beyond Σ0
1 and Π0

2 formulæ
Impossibility of extraction for Σ0

2 formulæ A generic extraction procedure for Σ0
2 formulæ

cannot exist for a very simple reason: we can encode undecidable problems with Σ0
2 formulæ.

Since we are in a logical environment, we consider the example of the logical consistency of
first-order Peano arithmetic (PA) but we could instead take the halting problem.

Encoding the logical consistency of PA amounts to proving that there is no closed proof of
the formula ⊥ in PA. We can enumerate closed derivation trees of PA by a primitive recursive
function. Similarly, we can build a primitive recursive function (returning an integer) checking
whether a given closed derivation tree is not a proof of ⊥. Combining both, we have a total
recursive function f taking an integer n and returning 1 if and only if the nth closed proof is not
a proof of ⊥. Up to this point, everything is intuitionistic (thus decidable), so we must introduce
some classical reasoning. This key argument is to use the drinker’s paradox, ∃x. (P x⇒ ∀y. P y),
which is provable in classical logic but not in intuitionistic logic. Taking P (x) to be f(x) = 1, the
drinker’s paradox states in this case that we have an integer p which, provided the pth closed
derivation tree is not a proof of ⊥, ensures that no such proof exists in PA, i.e. that PA is
consistent. If we could extract such a p in PA2, we would just need to compute f(p) to decide
whether PA is consistent or not. Because of Gödel’s second incompleteness theorem, we know
that this is not possible and therefore no generic extraction procedure for Σ0

2 formulæ can exist.

Extraction for decidable refutable formulæ Although the extraction for Σ0
1 formulæ is

enough for most cases, we consider here a generalization to decidable and refutable formulæ17.
The decidability of a formula A(x) means that we have a λc-terms dA satisfying the following
evaluation rule:

dA ? n · u · v · π �

{
u ? π if A(n) holds
v ? π otherwise

Remember that the evaluation relation is transitive so that this only means that eventually
dA ? n · u · v · π reduces to one of these processes. The refutability of the formula A(x) means that
there exists a λc-term rA such that for all n, if A(n) does not hold (in the standard model), then
rA n � ¬A(n). Computationally, dA will check the correctness of the witness and rA will trigger
the backtrack leading to the production of a new witness. In this case, the λc-term performing
the extraction is MN (λnp. dA n (stop n)(rA n p)).

17Although, one could say that if A(x) is decidable, we have a decision procedure f such that f(x) = 1 if
and only if A(x) holds and we could use the Σ0

1 extraction on the formula ∃x. 1− f(x) = 0. For instance, take
f(x) = λx. dA x 1 0.
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Theorem 2.10.7 (Decidable refutable extraction)
If t � ∃x ∈ N. A(x) and dA and rA are as above, then, for any stack π, there exists an integer m
such that A(n) holds and

t ? MN (λnp. dA n (stop n)(rA n p)) · π � stop ? m · π .

Proof. Identical to the proof of Theorem 2.10.5.

If decidability is a clear notion and we understand the role of its realizers, it is not so clear
with refutability. How can we build a refutation? An effective solution in most cases is to use the
fact that every arithmetical formula true in the standard model admits a universal realizer [Kri09].
Indeed, if we apply this result to a negated formula ¬A, we exactly get a refutation for A: this
result automatically builds refutations for all arithmetical formulæ false in the standard model.

Kamikaze extraction18 The idea of this method introduced by Alexandre Miquel [Miq09b]
is to relax the decidability hypothesis of the previous method and see what we can get. We
cannot get rid of both decidability and refutability as there is no generic extraction procedure.
In this case, lifting the restriction of decidability means that we can no longer test whether a
given witness is valid or not. Therefore, the only thing we can do is to refute using rA every
single witness that gets produced. Since this refutation process will go on indefinitely, this process
might never stop. In particular, if we want to notice the sequence of witnesses produced, we need
a specific instruction to be able to track or display them like print or write. As long as the
produced witness is incorrect, we are still within the specification of rA and we correctly get a new
witness. On the opposite, if the produced witness is correct, rA is invoked outside its specification
and the process can do anything from this point on (loop, crash, . . . ). Nevertheless, this is still a
sound extraction method in the sense that a correct witness will appear in finite time.

Theorem 2.10.8 (Kamikaze extraction)
Given an instruction print to display or store witnesses that has the following evaluation rule19

print ? x · u · π � u ? π, if t is a universal realizer of ∃x ∈ N. A(x) and rA is as above, then
for all stack π, there exists an integer m and a closed λc-term u such that A(m) holds and
t ? MN (λnp. print n (rA n p)) · π � print ? m · rAmu · π.

Proof. Identical to the proof of Theorem 2.10.5.

From a practical point of view, this theorem says that we can produce a (possibly infinite)
sequence of witnesses among which one will be correct but we do not know which one.

2.10.4 A concrete example of extraction: the minimum principle
In this section, we illustrate the witness extraction technique for Σ0

1 formulæ on a simple but
convincing example: the minimum principle. This principle expresses that any function from N

to N reaches a minimum.

∀f : N→ N.∃n ∈ N.∀m ∈ N. f(n) ≤ f(m)

The inequality x ≤ y can be encoded as y −̇x = 0 where −̇ is the truncated subtraction from N

to N. The minimum principle cannot be expressed as a formula because we cannot quantify
18This terminology was coined by Alexandre Miquel in reference to the behavior of the extraction process.
19The display or printing effect of the instruction is an external effect and is not part of the formal specification

of the rule, which therefore looks like an erasing operation.
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over functions in PA2. The proof of this result is classical and relies on the fact that any subset
of N, like the image of f , admits a minimum. We can give a direct realizer that will be more
efficient than the one obtained by adequacy. We lack one ingredient to be able to formally express
it, namely a fixpoint operator, which will be introduced in Section 3.2.2. Instead, we give the
computational intuition of the realizer and write it as a recursive program with the primitive
programming construct ifthenelse and the integer test ≤. All these constructs could be encoded
in the λc-calculus. We will assume a λc-term f that computes values of the function f .

The overall intuition is to give an approximation n of the minimum and to use callcc to be
able to backtrack and improve it if necessary. The universal realizer of ∀m ∈ N. f(n) ≤ f(m)
compares the values of f(n) and f(m): if f(n) ≤ f(m) then the inequality is universally realized
by λx. x (Theorem 2.9.2); otherwise, m is a better approximation than n and we backtrack to
use it instead of n. The universal realizer of the minimum principle is then:

min_rec k n := λg. g n (λm. if f n ≤ f m thenλx. x else k (min_rec km))
min_principle := callcc (λk. min_rec 0 k)

The value 0 is the starting approximation of the minimum and is completely arbitrary. The full
term in the plain λc-calculus and its proof are given in the Coq formalization (see Section 3.7).

Given a function f , the minimum principle expresses that ∃n ∈ N.∀m ∈ N. f(n) ≤ f(m).
This formula is Σ0

2 and therefore cannot be extracted in general. Nevertheless, we can use it
to prove Σ0

1 statements, like for example ∃n ∈ N.f(n) ≤ f(2n + 1). Indeed, taking for n the
minimum of f , the inequality is clearly satisfied. Let us take f(n) := |n− 100| and look at the
successive approximation of the minimum, given in Figure 2.13. As we can see, the minimum
increases according to a geometrical progression that is dictated by the function n 7→ 2n+ 1 used
in the test. Therefore, this backtrack mechanism is smarter than a blind search that would try
all numbers increasingly. Furthermore, the sequence f(n) is strictly decreasing, which ensures the
termination of this process.

n m f(n) f(m) f(n) ≤ f(m)
0 1 100 99 false
1 3 99 97 false
3 7 97 93 false
7 15 93 85 false
15 31 85 69 false
31 63 69 37 false
63 127 37 27 false
127 255 27 155 true

Figure 2.13: Important evaluation steps of the minimum principle.

2.11 Realizability as a model transformation
Up to this point, the classical realizability interpretation of first-order objects was done according
to the standard model. This was a reasonable choice since, even in this most simple setting,
we already have a very rich theory. Yet, the classical realizability model construction does not
depend on this particular choice and we can use instead any model of PA2. From this point of
view, classical realizability can be seen as a model transformation20 that starts from a base Tarski

20This model transformation has a lot in common with the forcing model transformation. In fact, there is a
generalization of both, called realizability algebras [Kri11, Kri12] thanks to which we can see forcing as a degenerate
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modelM used to interpret first-order expressions and builds a classical realizability model. This
classical realizability model can then be used to build a new Tarski model, denotedM⊥⊥ where a
formula is valid if and only if it has a proof-like realizer.

M⊥⊥ |= A := there exists t ∈ PL. t ⊥⊥ A

We consider only proof-like realizers because, as soon as the pole is not empty, we have realizers
of the formula ⊥ (see Theorem 2.4.5) and thus of any formula. Therefore, if t could be any
closed realizer, M⊥⊥ would no longer be a model if ⊥⊥ 6= ∅ as we would have M⊥⊥ |= ⊥. The
whole construction would only give the modelM∅, which would be uninteresting because it is
isomorphic to the base modelM (see Theorem 2.11.2).

As the adequacy theorem already gives closure under deduction, the only condition under
whichM⊥⊥ is indeed of model of PA2 is that it must not validate the ⊥ formula.

Definition 2.11.1 (Coherent pole)
A pole ⊥⊥ is said coherent when for any proof-like term t, there exists a stack π such that t ? π /∈ ⊥⊥.
By misuse of language, we also say that a realizability model is coherent when its pole is.

Since ‖⊥‖ = Π, this implies in particular that no proof-like term realizes ⊥, hence the
modelM⊥⊥ is well-defined.

The simplest coherent pole is the empty pole. Nevertheless, it does not yield a very interesting
modelM∅ because it is isomorphic to the base modelM.

Theorem 2.11.2 (isomorphism between M and M∅)
The modelsM andM∅ are isomorphic.

Proof. By construction of the realizability model, first-order objects have the same interpretation
inM and inM⊥⊥ for any pole ⊥⊥, in particular for the empty pole. Therefore we only have to
prove thatM andM∅ validate the same formulæ. We first prove that there are only two possible
truth values inM∅: Λ and ∅. Indeed, given a formula A, if ‖A‖ is empty, A ≈ > and |A| is Λ.
Otherwise, take a stack π in ‖A‖. There is no process t ? π in the pole since it is empty, therefore
|A| = ∅. We finally haveM∅ |= A ⇐⇒ |A| = Λ.

It remains to prove that M |= A =⇒ |A| = Λ and M 6|= A =⇒ |A| = ∅. This proof is
done by induction on A. As for the adequacy lemma, we need to strengthen the statement by
introducing valuations to make it suitable for a proof by induction because of quantifiers. The
difficulty is to connect realizability valuations, where formulæ are interpreted by sets of stacks, to
boolean valuations, where formulæ are interpreted in {0, 1}. We also need to extend the notion of
validity in a boolean model to take care of realizability parameters which may appear in formulæ.
We tackle all these problems in the following lemma.

Lemma 2.11.3
Let A be a formula and ρ a valuation of the realizability modelM∅. Let ρ̃ be the boolean valuation
defined as ρ on first-order variables and by ρ̃(X) :=

{
(n1, . . . , nk) ∈ Nk

∣∣ ρ(X)(n1, . . . , nk) = ∅
}

on second-order variables. We extend the definition of boolean validity to formulæ with parameters
by letting:

q
Ḟ (x1, . . . , xk)

y
ρ

:=
{

1 if
∥∥Ḟ (x1, . . . , xk)

∥∥ ≡ F (ρ(x1), . . . , ρ(xk)) = ∅
0 otherwise

case of classical realizability where the language of realizers is reduced to a point, see Footnote 4 in Section 3.3.
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We can use here the boolean valuation ρ as if it were a realizability valuation because it is only
used to interpret first-order variables. We then have the following equality, for any realizability
valuation ρ:

|A[ρ]| =
{

Λ ifM |= A[ρ̃]
∅ otherwise

Proof. The proof is done by induction on the formula A.

A ≡ B ⇒ C: IfM |= A[ρ̃], then eitherM |= C[ρ̃] orM |= ¬B[ρ̃]. IfM |= C[ρ̃], by IH we have
|C[ρ]| = Λ. This means that ‖C[ρ]‖ = ∅ and therefore ‖(B ⇒ C)[ρ]‖ = |B[ρ]| · ‖C[ρ]‖ = ∅
which gives |(B ⇒ C)[ρ]| = Λ. If M |= ¬B[ρ̃], by IH we have |B[ρ]| = ∅ which gives
‖(B ⇒ C)[ρ]‖ = |B[ρ]| · ‖C[ρ]‖ = ∅ and again |(B ⇒ C)[ρ]| = Λ.
If M does not validate A[ρ̃], then it validates B[ρ̃] but not C[ρ̃]. By IH, we get that
|B[ρ]| = Λ and |C[ρ]| = ∅, i.e. ‖C[ρ]‖ 6= ∅. Therefore, ‖A[ρ]‖ = |B[ρ]| · ‖C[ρ]‖ 6= ∅ which
means that |A[ρ]| = ∅.

A ≡ ∀x.B: IfM |= A[ρ̃], then for any point v in the carry |M| ofM,M |= B[ρ̃, x← v] and by
IH, we have |B[ρ, x← v]| = Λ. Using Remark 2.4.2, |(∀x.B)[ρ]| =

⋂
v∈|M| |B[ρ, x← v]| =⋂

v∈|M| Λ = Λ.

If M does not validate A[ρ̃], then there exists a point v ∈ |M| such that M does not
validate B[v/x][ρ] ≡ B[ρ, x ← v]. By IH, we have |B[ρ, x← v]| = ∅ and therefore, using
Remark 2.4.2, |(∀x.B)[ρ]| =

⋂
v∈|M| |B[ρ, x← v]| = ∅.

A ≡ ∀X.B: Same as A = ∀x.B, taking care that the boolean valuation ρ̃, X ← F built from
the realizability valuation ρ,X ← F ′ with F ′ a function from Nk to P(Π) is defined by
~n ∈ F ⇐⇒ F ′(~n) 6= ∅.

A ≡ X(~e ): If X(~e ) contains parameters (i.e. X ≡ Ḟ ), the property holds by definition of
the validity of Ḟ (~e ) in the Tarski model M. If X(~e ) does not contain parameters, the
interpretation is defined by the valuation ρ̃:

M |= X(~e ) ⇐⇒ J~e K ∈ ρ̃(X) ⇐⇒ ρ(X)(J~e K) = ‖X(~e )‖ = ∅ ⇐⇒ |X(~e )| = Λ .

The last equivalence comes from the fact that the realizability model defined by the empty
pole only has two truth values.

The simplest solution to get a non-empty coherent pole is to add in the definition of the KAM
a stack constant αt for each proof-like term t and define the pole in such a way that it does not
contain the processes t ? αt. Since a pole must be closed under anti-evaluation, this will also
require to exclude the whole thread of t ? αt. The biggest such pole is defined as the complement
of the union of the threads Thd(t ? αt). This is exactly the definition of the thread model.

Corollary 2.11.4
The thread model is coherent.

Of course, excluding more threads still results in a coherent pole.

Some properties of the models M⊥⊥ Seeing realizability as a model transformation, a
natural question is: what are the properties of these new models, with respect to the base model?
We give here some properties that illustrates the richness of realizability models. In Section 2.9.2,
we saw that the recurrence axiom is not realized as soon as the evaluation relation is deterministic.
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This suggests that there are individuals that are not integers in the modelM⊥⊥. It is indeed the
case, given the following sufficient condition on the pole ⊥⊥:

for all stack constant α, there exists a proof-like term t such that t ? α ∈ ⊥⊥ . (H⊥⊥)

Theorem 2.11.5 (Non standard individuals)
Let (πn)n∈N be an enumeration of stacks. We define the unary predicate G by ‖G(n)‖ := {πn}.
We then have:

1. λx. x � ¬(∀x.G(x)) and therefore callcc (λkg. g k) � ∃x.¬G(x);

2. If (H⊥⊥) holds, the formula G(n) is realized by a proof-like term for all n.

Proof.
1. We have ‖∀x.G(x)‖ ≡

⋃
n∈N{πn} = Π. Therefore ∀x.G(x) ≈ ⊥ and λx. x  ⊥ ⇒ ⊥.

Given a pole ⊥⊥ and a nullary predicate Z, let u  ∀x.¬G(x) ⇒ Z and π ∈ ‖Z‖ so that
u · π ∈ ‖∃x.¬G(x)‖. By anti-evaluation, we only have to prove u ? ku·π · π ∈ ⊥⊥, that is to
prove ku·π · π ∈ ‖∀x.¬G(x)⇒ Z‖. Since n 7→ πn is an enumeration, there exists an index n
such that πn = u · π. We prove ku·π · π ∈ ‖¬G(n)⇒ Z‖. By assumption, π ∈ ‖Z‖ and
because u · π ∈ ‖G(n)‖ = {u · π}, we have ku·π  ¬G(n) by Lemma 2.4.6.

2. Let n be an integer. We want to build a proof-like term u such that u  G(n). We have
‖G(n)‖ = {πn}. Writing t1 · . . . · tk · α the stack πn, by (H⊥⊥) there is a proof-like term t
such that t ? α ∈ ⊥⊥. We just need to let u := λx1 . . . xk. t to conclude.

Remark 2.11.6
The realizer callcc (λkg. g k) can be obtained as follows. Start from a (necessarily classical) proof
of the sequent ¬(∀x.A) ` ∃x.¬A. For instance, take callcc (λk. f (callcc (λk′. k (λg. g k′)))),
where f is the free variable for the hypothesis ¬(∀x.A). By adequacy, for A := G(x) and
λx. x � ¬(∀x.A), we have callcc (λk. (λx. x) (callcc (λk′. k (λg. g k′)))) � ∃x.¬Gx. Simplify
the identity to get the proof-like term callcc (λk. (callcc (λk′. k (λg. g k′)))). Notice that this
simplification is not sound in general since realizers are not closed under β-equivalence. Therefore,
we need to check that the final term is indeed a realizer of ∃x.¬Gx, which is done precisely in
Theorem 2.11.5. The two consecutive calls to callcc save the same stack and therefore we can
replace k′ by k and remove one callcc to get callcc (λk. (k (λg. g k))). Finally, restoring a stack
just after saving it is useless.

The previous theorem says that ∃x.¬Gx is valid inM⊥⊥. This means that there exists an
individual satisfying ¬Gx but, provided (H⊥⊥) holds, it cannot be a standard integer sinceM⊥⊥
validates Gn. Therefore there are non standard individuals in realizability models.

Using the instruction quote21 (see Section 3.3.2), we can be more precise and prove that this
non standard individual is in fact a non standard integer. We still need the hypothesis (H⊥⊥) to
prove that this integer is non standard.

Theorem 2.11.7 (Non standard integer)
With (πn)n∈N and G defined as previously, the proof-like term λf. quote (λn. callcc (λk. f n k))
uniformly realizes ∃x ∈ N.¬G(x).

Proof. Given a pole ⊥⊥, a falsity value F , a stack π ∈ Z and t  ∀x ∈ N.¬G(x)⇒ Ḟ , we want
to prove that λf. quote (λn. callcc (λk. f n k)) ? t · π ∈ ⊥⊥. By anti-evaluation, it is enough
to prove t ? nπ · kπ · π ∈ ⊥⊥. We have ‖G(nπ)‖ = {π} thus kπ  ¬G(nπ) by Proposition 2.4.6.
Therefore, nπ · kπ · π ∈

∥∥nπ ∈ N⇒ ¬G(nπ)⇒ Ḟ
∥∥ ⊆ ∥∥∀x. x ∈ N⇒ ¬G(x)⇒ Ḟ

∥∥.
21In fact, its variant that operates on stacks: quote′ ? t · π � t ? nπ · π.
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We can have even finer properties by imposing stronger conditions on the pole like determinism
of the evaluation relation and restricting to some particular models like the thread model. For
example, we can prove the existence of an individual that is not an integer or build a generic
thread containing all threads of terminating proof-like terms. See [Kri09] for details.
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Chapter 3

Extensions of realizability in PA2

Chapter 2 introduced classical realizability and its main results, the fact that theorems of PA2 are
universally realized by proof-like terms and the possibility to extract computational information
from them. The present chapter goes deeper into this subject, by presenting several extensions.
The goal here is twofold: on the one hand, illustrate the claim that classical realizability is a
very flexible framework; on the other hand, extend its expressiveness. Sections 3.1 to 3.3 present
increasingly more complex extensions with new instructions. Some of them are folklore and
others are due to Jean-Louis Krivine and Alexandre Miquel. To the best of our knowledge, the
semantic implication was previously only presented in its limited e1 = e2 7→ A form, even for the
specification of a fixpoint operator, although the semantic relativization were already present in
Jean-Louis Krivine’s work [Kri09], written as intersections. Sections 3.4 to 3.5 focus on efficient
representations of numbers in classical realizability. Primitive integers have been sketched by
Alexandre Miquel [Miq09b] but their systematic study and extension to rational numbers is
original. Real numbers have never been considered in classical realizability, aside from streams
of integers presented by Jean-Louis Krivine [Kri09]. Finally, all these extensions have been
formalized in the Coq proof assistant (when this made sense according to our formalization),
creating a full-fledged classical realizability library, which we will presented in Section 3.7.

3.1 Syntactic subtyping
In addition to the semantic subtyping defined in Section 2.4.2, we can introduce subtyping at the
syntactic level. To do so, we define a subtyping judgment ` A ≤ B with the usual rules given in
Figure 2.8. We also introduce the equivalence ≈ generated by the preorder ≤ with the expected
following three rules:

` A ≤ B ` B ≤ A
` A ≈ B

` A ≈ B
` A ≤ B

` A ≈ B
` B ≤ A

Of course, the interpretation of syntactic subtyping judgments will be the semantic notion of
subtyping and similarly for subtyping equivalence judgments. To use subtyping in the typing
judgments, we add to the proof system of PA2 (Figure 2.6) the following subsumption rule:

Γ ` t : A ` A ≤ B
Γ ` t : B

To match syntactic and semantic subtyping through soundness (adequacy), the first thing to
do is to give the interpretation of subtyping judgments.

57
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Subtyping ‖A ≤ B‖⊥⊥ := for all valuations ρ, ‖B‖ρ,⊥⊥ ⊆ ‖B‖ρ,⊥⊥

Right after that, we need to ensure that the subtyping rules of Figure 2.8 are semantically valid.
This is exactly Theorem 2.4.11. Then, extending the adequacy lemma to the subsumption rule
only requires proving that the subsumption rule is adequate, as we use modular adequacy.

Proposition 3.1.1 (Adequacy of subsumption)
The subsumption rule is adequate.

Proof. Assume that the sequent Γ ` t : A is adequate, which means that for all valuations ρ
and all substitutions σ such that σ  Γ[ρ], we have t[σ]  A[ρ]. Let ρ be any valuation and σ
a substitution realizing Γ[ρ]. Since Γ ` t : A is adequate, we have t[σ]  A[ρ], that is, for any
stack πA in ‖A[ρ]‖, t[σ] ? πA ∈ ⊥⊥. By definition of A ≤ B, we have ‖B[ρ]‖ ⊆ ‖A[ρ]‖ so that any
stack πB in ‖B[ρ]‖ belongs to ‖A[ρ]‖ and therefore t[ρ] ? πB ∈ ⊥⊥.

By design, A ≈ B trivially entails |A|⊥⊥ = |B|⊥⊥ for any pole ⊥⊥.

Remark 3.1.2
We have now two kinds of judgments, on the one hand typing judgments and on the other hand
subtyping judgments and subtyping equivalence judgments. Thus, the adequacy lemma becomes
twofold: for a typing judgment Γ ` t : A it means that if σ  Γ[ρ], then t[σ]  A[ρ]; for a subtyping
judgment ` A ≤ B (resp. a subtyping equivalence judgment ` A ≈ B), it means that, for all
valuations ρ, ‖A[ρ]‖ ⊆ ‖B[ρ]‖ (resp. ‖A[ρ]‖ = ‖B[ρ]‖).

Subtyping equivalence is the strongest equivalence we have, as depicted in Figure 3.1.

subtyping equivalence
A ≈ B

semantic equivalence
‖A‖ = ‖B‖

logical equivalence
` A⇔ B

universal equivalence
� A⇔ B

Figure 3.1: Connections between the four equivalences.

3.2 New connectives
In Tarski semantics, the image of the interpretation function for propositions contains only
two points: one for true formulæ (usually denoted > or 1) and one for false formulæ (usually
denoted ⊥ or 0). These models are only interested in provability, i.e. whether a formula can
be proven or not, and do not distinguish different proofs. In this setting, there are only a very
limited number of logical connectives. For instance, there are exactly 8 binary connectives and
they can all be built from a single one (either “NOR” or “NAND”). On the opposite, in classical
realizability, we have a much richer set of interpretations for propositions: P(Π). This means
that there are far more connectives (an uncountable number of them) and it can be useful to
introduce new ones to capture interesting computational behaviors. This is specially true for the
semantic implication (see Section 3.2.2), which has far reaching consequences.
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3.2.1 Simple connectives
Primitive ∧ and ∨ One of the so-called “defects” of classical realizability that is often raised
is its lack of primitive connectives, since everything is done through second-order encodings. This
is just a matter of simplicity and they can be safely added to the system at little cost. For
example, let us add conjunction and disjunction as primitive connectives. Their computational
counterparts are pairs 〈t, u〉 and sum types ι1(t), ι2(u) respectively. We introduce them in the
KAM by adding their constructors and destructors, namely pairing pair and projections proj1
and proj2 for conjunction; injections inj1 and inj2 and case analysis case for disjunction. Their
evaluation rules are no surprise if we remember that we are in a stack machine and that, being
data, 〈t, u〉, ι1(t), and ι2(u) should not get in head position: we use a CPS style. The rules are
given in Figure 3.2.

Pairing pair ? t · u · k · π � k ? 〈t, u〉 · π
Projection 1 proj1 ? 〈t, u〉 · k · π � k ? t · π
Projection 2 proj2 ? 〈t, u〉 · k · π � k ? u · π
Injection 1 inj1 ? t · k · π � k ? ι1(t) · π
Injection 2 inj2 ? u · k · π � k ? ι2(u) · π
Case 1 case ? ι1(t) · k1 · k2 · π � k1 ? t · π
Case 2 case ? ι2(t) · k1 · k2 · π � k2 ? u · π

Figure 3.2: Evaluation rules for conjunction and disjunction.

For simplicity, we use the same notations 〈 , 〉, ι1 and ι2 for the semantic interpretation
and for its implementation in the KAM. To be perfectly precise and coherent with our previous
notations, we should use: 〈 , 〉, ι1 and ι2 for the semantics, the dotted notation ˙〈 , 〉, ι̇1, and
ι̇2 for the formulæ and the overlined notation 〈 , 〉, ι1 and ι2 for the KAM. Tradition and the
Curry-Howard correspondence tend to use A × B and A + B for formulæ and we stick to it.
Although A×B and A+B looks like formulæ, they always appear on the left of an arrow and, by
Remark 2.4.2 (iii), we do not need to give them a falsity value, only a truth value. In fact, they
are particular cases of datatypes, which will be presented in Section 3.4 for native integers and in
Section 4.3 in their full generality. The semantics of these connectives is thus the usual one: an
injection from Λ×Λ to Λ to interpret pairing and its inverse for the two projections; an injection
from the disjoint union Λ ]Λ to Λ to interpret the two injections and its inverse for case analysis.

We can easily check that the new instructions realize the following formulæ:

pair � A⇒ B ⇒ ∀Z. (A×B ⇒ Z)⇒ Z

proj1 � A×B ⇒ ∀Z. (A⇒ Z)⇒ Z

proj2 � A×B ⇒ ∀Z. (B ⇒ Z)⇒ Z

inj1 � A⇒ ∀Z. (A+B ⇒ Z)⇒ Z

inj2 � B ⇒ ∀Z. (A+B ⇒ Z)⇒ Z

case � A+B ⇒ ∀Z. (A⇒ Z)⇒ (B ⇒ Z)⇒ Z

We can notice that the formulæ for destructors look a lot like the definitions of conjunction and
disjunction, given in Figure 2.2. Indeed, the meaning of the encoding of Section 2.2 is precisely to
define a connective by its elimination scheme. It also suggests that the encoding is quite efficient
(from the point of view of execution time) since primitive connectives use it as their destructors.
In fact, it shows that with a weak head reduction machine like the KAM, native conjunction and
disjunction are no more efficient than second-order encodings.
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Finally, primitive and encoded conjunctions (resp. disjunctions) are universally equivalent via
the following λc-terms:

λcf. proj1 c f (proj2 c) � A×B ⇒ A ∧B
λc. c pair � A ∧B ⇒ ∀Z. (A×B ⇒ Z)⇒ Z

λc. c � A+B ⇒ A ∨B
λc. c inj1 inj2 � A ∨B ⇒ ∀Z. (A+B ⇒ Z)⇒ Z

Intersection type The idea of the intersection type A ∩B is to have the same term t prove
two different formulæ A and B. It is the greatest lower bound of A and B on the poset of formulæ
ordered by ≤. The derivation rules for this connective looks like the ones (we could have) for
conjunction except that the proof term is the same on both side. Its semantic interpretation is
completely straightforward.

Γ ` t : A Γ ` t : B
Γ ` t : A ∩B

Γ ` t : A ∩B
Γ ` t : A

Γ ` t : A ∩B
Γ ` t : B

Falsity value ‖A ∩B‖ := ‖A‖ ∪ ‖B‖

As with universal quantification, this interpretation implies that |A ∩B| = |A| ∩ |B|, as expected.
With these definitions, subtyping can be extended to encompass intersection types and it satisfies
the following rules:

` A ∩B ≤ A ` A ∩A ≈ A ` A ∩B ≤ B
` C ≤ A ` C ≤ B

` C ≤ A ∩B
` A ≤ B ` C ≤ D
` A ∩ C ≤ B ∩D

` (A⇒ B) ∩ (A⇒ C) ≈ A⇒ (B ∩ C) ` (∀x.A) ∩ (∀x.B) ≈ ∀x. (A ∩B)

This set of rules is not minimal, as for example ` A ∩A ≈ A and ` A ≤ B ` C ≤ D
` A ∩ C ≤ B ∩D

can be defined from the previous ones and transitivity.
Although less useful, we can also define the dual connective A ∪ B in a similar fashion by

‖A ∪B‖ := ‖A‖ ∩ ‖B‖. We choose not to do it because we will not use it.

A primitive inequality 6= The connective . 6= . is meant to replace the negation of equality.
Its falsity value will be different but they are universally equivalent, that is, we can universally
realize their equivalence. The interest of such a transformation is that . 6= . is designed to have
much simpler falsity values than the negation of equality: either everything or nothing. This
implies that its set of realizers is also much simpler: either the realizers that are valid for all
formulæ or all λc-terms.

Falsity value ‖e1 6= e2‖ :=
{
‖>‖ = ∅ if Je1K 6= Je2K
‖⊥‖ = Π if Je1K = Je2K

Proposition 3.2.1 (Equivalence between 6= and ¬ =)
We can universally realize the equivalence between e1 6= e2 and ¬(e1 = e2) for any arithmetical
expressions e1 and e2 by the following proof-like terms:

• λx. x (λy. y) � ¬(e1 = e2)⇒ e1 6= e2

• λxy. y x � e1 6= e2 ⇒ ¬(e1 = e2)
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Proof. Notice that we use Remark 2.8.10 in order to avoid the burden of introducing stacks,
evaluating processes and concluding by anti-evaluation.

• λx. x (λy. y) � ¬(e1 = e2)⇒ e1 6= e2: We consider two cases, whether Je1K = Je2K or not,
and prove that λx. x (λy. y) realizes the correct formula in both cases. Simplifying the
implication ¬(e1 = e2)⇒ e1 6= e2 in these two cases, we get ¬(> ⇒ ⊥)⇒ > and ¬1⇒ ⊥.
Summing up, we want to prove that λx. x (λy. y) � (¬(> ⇒ ⊥)⇒ >) ∩ (¬1⇒ ⊥). Let ⊥⊥
be an arbitrary pole.

– ¬(> ⇒ ⊥) ⇒ >: With x realizing ¬(> ⇒ ⊥), we want to prove that x (λy. y)  >.
This is trivial because any term realizes >.

– ¬1⇒ ⊥: With x realizing ¬1, we want to prove that x (λy. y)  ⊥. Since λy. y � 1,
we indeed have x (λy. y)  ⊥.

• λxy. y x � e1 6= e2 ⇒ ¬(e1 = e2): Rewriting it with an intersection, we want to prove
λxy. y x � (⊥ ⇒ ¬1) ∩ (> ⇒ ¬(> ⇒ ⊥)). Let ⊥⊥ be an arbitrary pole.

– > ⇒ ¬(> ⇒ ⊥): With x  > and y  > ⇒ ⊥, we want to prove that y x  ⊥ which
is straightforward.

– ⊥ ⇒ ¬1: With x  ⊥ and y  1, we want to prove that y x  ⊥. Since 1 ≤ ⊥ ⇒ ⊥,
we have y  ⊥ ⇒ ⊥ and therefore y x  ⊥.

We could go one step further in our use of 6=: why not use it to define equality? Let us pose
e1 + e2 := ¬(e1 6= e2) and see what are the falsity values of this equality.

Falsity value ‖e1 + e2‖ :=
{
⊥ ⇒ ⊥ if Je1K = Je2K holds
> ⇒ ⊥ otherwise

The difference with Leibniz equality is that we have ⊥ ⇒ ⊥ instead of 1 when the equality holds
in the standard model. Does this introduce a big difference in the way we use equalities? Alas, yes
it does, because 1 and ⊥ ⇒ ⊥ do not have the same specification as proven in Propositions 2.7.2
and 2.7.3. In practice, if universal realizers of ⊥ ⇒ ⊥ do put their argument in head position,
they can do absolutely anything with the remaining part of the stack. As a consequence, we
cannot use these realizers as guard conditions because they annihilate the argument stack. The
solution to this problem is to save the stack beforehand and restore it afterward.

Proposition 3.2.2
The proof-like term λu. callcc (λk. t (k u)) is a universal realizer of (⊥ ⇒ ⊥)⇒ 1.

Proof. Let ⊥⊥ be a pole, t a realizer of ⊥ ⇒ ⊥, F a falsity value, u a realizer of Ḟ and π a stack
in F . We have then t · u · π ∈ ‖(⊥ ⇒ ⊥)⇒ 1‖. Let us reduce the process.

λu. callcc (λk. t (k u)) ? u · π � callcc (λk. t (k u)) ? π � t (kπ u)) ? π � t ? (kπ u) · π

Since t  ⊥ ⇒ ⊥ and that π ∈ ‖⊥‖ is trivial, we just have to prove that kπ u  ⊥. Let π′ be an
arbitrary stack. We have kπ u ? π′ � u ? π which belongs to the pole since u  Ḟ and π ∈ F and
the result follows by anti-evaluation.

It is straightforward to check that it is also a universal realizer of (> ⇒ ⊥) ⇒ (> ⇒ ⊥).
Therefore, λu. callcc (λk. t (k u)) universally realizes ((⊥ ⇒ ⊥)⇒ 1) ∩ ((> ⇒ ⊥)⇒ (> ⇒ ⊥))
and converts any realizer of e1 + e2 into a realizer of e1 = e2.

In the end, we are not better off with this definition because we cannot use it as a guard
condition and we need callcc to get back to the original one. Therefore, there is no point in
switching to + and we keep instead Leibniz equality.
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Remark 3.2.3
The fact that we need callcc to get back to the original definition is normal because, as . 6= .
is equivalent to ¬(. = .), ¬(. 6= .) is equivalent to ¬¬(. = .). Using callcc to universally realize
¬¬(. = .)⇒ (. = .) is no surprise.

The falsity values of primitive inequality stem from semantic considerations on the standard
model M: does the equality hold in M? We can generalize this idea and build a semantic
implication that can modulate the interpretation of a formula according to a semantic condition,
as we do in the next paragraph. This new connective subsumes primitive inequality1.

3.2.2 The semantic implication 7→
Definition The idea of this connective is to build a variant of the usual implication A ⇒ B
having realizers that do not need an argument. Indeed, whenever the computational content of A
is trivial, we would like to avoid passing it around. In fact, this seemingly binary connective
c 7→ A is in fact a family of unary connectives c 7→ where c can be thought of as a precondition
rather than an argument. Notice that, contrary to A, c is not a formula but a semantic condition.
These semantic conditions are very flexible, the only requirement being that closed semantic
conditions must have a semantic in the standard model, i.e. a boolean. Technically, they form
a new syntactic category, extensible and distinct from formulæ, but they share the same free
variables. A possible grammar for them is

Semantic conditions c := e1 = e1 | e1 < e2 | . . .

Using the intuition of a precondition, the realizability interpretation of a semantic implication
is completely straightforward:

Falsity value ‖c 7→ A‖ :=
{
‖A‖ if c holds
‖>‖ = ∅ otherwise

Nevertheless, there is no satisfactory way to accommodate these connectives in the proof system
since they would spawn arbitrary side conditions c. Following Christophe Raffalli and Frédéric
Ruyer [RR08] and their connective⇀, a solution would be to define two different kind of formulæ:
informative and non informative ones. Then, we would duplicate the proof system: one copy for
informative formulæ, and another copy for non informative formulæ, which would not have proof
terms. These systems would interact through the connective 7→.

Nevertheless, in our framework, we can still characterize the realizers of c 7→ A.

Proposition 3.2.4 (Realizers of a semantic implication)
We have the following equivalence: t  c 7→ A if and only if the condition c entails that t  A.

Proof. Assuming t  c 7→ A and c, we want to prove that t  A. Since c holds, we have
‖c 7→ A‖ ≡ ‖A‖, that is c 7→ A ≈ A, which entails that t  A.

Conversely, assuming that the condition c entails that t  A, we want to prove that t  c 7→ A.
Let us consider two cases, whether c holds or not. If c holds, c 7→ A ≈ A and, as the condition c
entails t  A, we have t  A and therefore t  c 7→ A. If c does not hold, c 7→ A ≈ > and any
term realizes >, in particular t.

Like ⇒, 7→ is right-associative and it has the same precedence. Since the intuition behind
this connective is semantic, the subtyping rules do not characterize it very well as it did for

1In fact, using notation from the next section, primitive inequality can be defined as e1 6= e2 := e1 = e2 7→ ⊥.
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intersection types, and we have mostly simplification rules given below, with ∼ c denoting the
negation of the condition c.

A ≤ c 7→ A

A ≤ B
c 7→ A ≤ c 7→ B

c 7→∼ c 7→ A ≈ > c 7→ (A ∩B) ≈ (c 7→ A) ∩ (c 7→ B) (c 7→ A) ∩ (∼ c 7→ A) ≈ A

c 7→ c 7→ A ≈ c 7→ A
x /∈ FV(c)

∀x. c 7→ A ≈ c 7→ ∀x.A A⇒ c 7→ B ≈ c 7→ A⇒ B

Remark 3.2.5
The second rule can be strengthened into M |= c′ ⇒ c A ≤ B

c 7→ A ≤ c′ 7→ B
whereM |= c′ ⇒ c denotes

validity in the standard model.

The semantic implication allows us to write “for free” relativization in the model:

‖∀x. c(x) 7→ A(x)‖ =
⋃
v

‖c(v) 7→ A(v)‖ =
⋃
v

{
‖A(v)‖ if c(v) holds
∅ otherwise

=
⋃

v s.t. c(v)

‖A(v)‖ .

As a consequence, its truth value satisfies the equality: |∀x. c(x) 7→ A(x)| =
⋂
c st c(x) |A(x)|.

In order to use this new implication more conveniently with existential quantification, we
introduce a new notation. Recall that the notation ∃x1 . . . ∃xk. A1∧. . .∧An is defined in Figure 2.5
as ∀Z. (∀x1 . . . ∀xk. A1 ⇒ . . .⇒ An ⇒ Z)⇒ Z. We may want to replace some of the implications
by semantic ones. In this case, we will use & instead of ∧. Of course, this notation can be
combined with relativization. For instance, ∃q1, q2, n ∈ Q2 ×N. q1 + q2 ≤ n & A ∧B stands for
∀Z.(∀q1∀q2∀n. q1 ∈ Q ⇒ q2 ∈ Q ⇒ n ∈ N ⇒ q1 + q1 ≤ n 7→ A ⇒ B ⇒ Z) ⇒ Z. The notation
∃x. c & A intuitively performs relativization at the semantic level, just like ∀x. c 7→ A does.

When c is an equality e1 = e2
2, (e1 = e2 7→ A) and (e1 = e2 ⇒ A) are universally equivalent

because the falsity values of equality are simple enough. In fact, in this case, e1 = e2 7→ A can also
be defined as e1 6= e2 ∪A, and it is a particular case of the equational implication of Section 4.1.1
(in the higher-order framework of PAω+).

Proposition 3.2.6 (Equivalence between e1 = e2 7→ A and e1 = e2 ⇒ A)
The propositions e1 = e2 7→ A and e1 = e2 ⇒ A are universally equivalent through the following
proof-like terms.

• λxe. e x � (e1 = e2 7→ A)⇒ (e1 = e2 ⇒ A)

• λx. x (λy. y) � (e1 = e2 ⇒ A)⇒ (e1 = e2 7→ A)

Proof. Let us consider an arbitrary pole ⊥⊥. The proof uses Remark 2.8.10 to avoid explicitly
dealing with stacks.

• λxe. e x  (e1 = e2 7→ A)⇒ (e1 = e2 ⇒ A):

– If Je1K = Je2K, then e1 = e2 7→ A ≈ A and e1 = e2 ≈ 1 ≤ A ⇒ A. Therefore, if
x  e1 = e2 7→ A and e  e1 = e2, we have x  A and e  A ⇒ A so that e x  A.
Computationally, we use the equality as a guard condition.

2Although we use the same notation as Leibniz equality, this is the semantic equality of the model. One should
not confuse e1 = e2 7→ A (semantic equality) and e1 = e2 ⇒ A (Leibniz equality). Indeed, although it is desirable
to confuse them from a logical point of view, they do not have the same falsity value and thus should not be
confused in the semantics.
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– If Je1K 6= Je2K, then e1 = e2 ≈ > ⇒ ⊥ ≤ (e1 = e2 7→ A) ⇒ A. Therefore, given
x  e1 = e2 7→ A and e  e1 = e2, we have e x  A.

• λx. x (λy. y)  (e1 = e2 ⇒ A)⇒ (e1 = e2 7→ A):

– If Je1K = Je2K, then e1 = e2 7→ A ≈ A and e1 = e2 ⇒ A ≈ 1 ⇒ A. Therefore, given
x  e1 = e2 ⇒ A, we have x (λy. y)  e1 = e2 7→ A because λy. y � 1.

– If Je1K 6= Je2K, then e1 = e2 7→ A ≈ >. As any term realizes >, we have in particular
xλy. y  >.

The specification of a fixpoint combinator Since the proof system of PA2 only types
strongly normalizing terms [Kri93], we have no hope of typing Y in it. Nevertheless, using
the semantic implication defined beforehand, classical realizability permits to specify a fixpoint
combinator. We consider Turing fixpoint Y := (λxy. y (xx y)) (λxy. y (xx y)) instead of the more
usual Church fixpoint Y ′ := λx. (λy. x (y y)) (λy. x (y y)). Indeed, Y ′ F is only β-equivalent to
F (Y ′ F ) but does not reduce to it:

Y ′ F ≡ λx. (λy. x (y y)) (λy. x (y y))F
� (λy. F (y y)) (λy. F (y y))
� F ((λy. F (y y)) (λy. F (y y)))

In the last term, we have already performed a β-reduction compared to F (Y ′ F ). Since realizability
is only closed under anti-evaluation and not β-equivalence, we cannot use Church fixpoint Y ′. On
the opposite, Y F does reduce to F (Y F ). Furthermore, it only uses weak-head reduction for
doing so, so that we can use Turing fixpoint in the KAM.

Y F ≡ (λxy. y (xx y)) (λxy. y (xx y))F
� (λy. y ((λxy. y (xx y)) (λxy. y (xx y)) y))F
� F ((λxy. y (xx y)) (λxy. y (xx y))F )
≡ F (Y F )

When programming in a broad sense, to define a function by recursion, we need to prove that it
terminates on any valid input to ensure that it is total. To do so, the usual technique is to use a
well-founded relation R and prove that some quantity decreases according to R along all recursive
calls3. Therefore, provided recursive arguments are decreasing with respect to a well-founded
relation, we should be able to use a fixpoint combinator Y to define recursive functions. In fact,
we will see that Y universally realizes the well-founded induction principle for any well-founded
relation R.

∀x. (∀y.R y x⇒ P y)⇒ P x R well-founded
Well-Founded Induction∀x. P x

The big difference between this formulation and the one we use is that the well-founded relation R
need not be describable in our syntax: we only need it to exist to ensure termination but it has
no computational role. Therefore, we can take it as a semantic object of the standard model to
have no computational counterpart. To embed it into formulæ, we use the semantic implication.

3A common such relation (although quite crude) is to use structurally smaller arguments as it is currently done
in the Coq proof assistant for instance.
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Theorem 3.2.7 (Specification of Y )
If the semantic relation R is well-founded in the model, then Turing fixpoint Y universally realizes
∀P. (∀x. (∀y.R y x 7→ P (y))⇒ P (x))⇒ ∀x. P (x).

Proof. Let ⊥⊥ be a pole, P a predicate and t  ∀x. (∀y.R y x 7→ P (y))⇒ P (x). We want to prove
that Y t  ∀x0. P (x0). The proof will use well-founded induction in the base model on x0. The
induction hypothesis is: “for any y such that Ry x0, Y t  P (y)” and we show Y t  P (x0).

Y t ? π � t (Y t) ? π � t ? Y t · π

Since t  ∀x. (∀y.R y x 7→ P (y)) ⇒ P (x), by specializing x to x0, it realizes in particular
(∀y.R y x0 7→ P (y))⇒ P (x0). Therefore, it only remains to show that Y t  ∀y.R y x0 7→ P (y),
that is, given an arbitrary y, Y t  Ry x0 7→ P (y). Using Lemma 3.2.4, this is the same as
proving that provided Ry x0, we have Y t  P (y) which is exactly the induction hypothesis.

Another way to realize the induction principle In Section 2.9, we have shown that the
recurrence axiom ∀x∀Z.Z(0)⇒ (∀y. Z(y)⇒ Z(s y))⇒ Z(x) is not valid in general, and therefore
we need to relativize individuals to get natural numbers, following Dedekind’s definition. From
the point of view of the theory induced by the realizability model, that is formulæ realized by a
proof-like term, it means that we have more individuals than integers. An alternative solution
to the recurrence axiom to perform induction on individuals is then to transform any relation
that is well-founded on integers in the standard model into a relation that is well-founded on
individuals in the induced theory. For instance, using Theorem 3.2.7 on the well-founded relation
Ry x := s y = x, we get the so-called weak recurrence axiom [Kri09].

Y � ∀P. (∀x. (∀y. s y = x 7→ P (y))⇒ P (x))⇒ ∀x. P (x)

Notice that the terminology of “weak recurrence axiom” is somewhat misleading because this
induction scheme is not restricted to integers but works for all individuals. This broader range is
very useful when we want to study the properties of individuals outside integers.

Writing x ' 0 := ∀y. x 6= s y, we have x ' 0 ≈ > if x cannot be written as a successor and
x ' 0 ≈ ⊥ otherwise. In the first case, we say that x is an minimal individual. If we split the
premise of this recurrence scheme depending whether x is minimal or not, we have:

∀x. (∀y. s y = x 7→ P (y))⇒ P (x) ≈
{
∀x. P (x)⇒ P (s x) if x is minimal
∀x.> ⇒ P (x) otherwise

In the latter case, > ≈ x ' 0 and we would like to write this weak recurrence axiom in the
following form: ((∀x. x ' 0⇒ P (x)) ∩ (∀x. P (x)⇒ P (s x)))⇒ ∀x. P (x). Notice that this is not
directly true because we have x ' 0 ⇒ P (x) only when x is not a successor. Also, to recover
the usual recurrence axiom, we would like to use different realizers for the base case and the
inductive case. We can correct both problems and build another form of the weak recurrence
axiom, written WRA, which is closer to the usual recurrence axiom.

Proposition 3.2.8 (Realizer of WRA)
The formula (∀x. x ' 0⇒ P (x))⇒ (∀x. P (x)⇒ P (s x))⇒ ∀x. P (x) is universally realized by the
proof-like term λxy. Y (λz. callcc (λk. x (k (y z)))).

Proof. Let ⊥⊥ be a pole. Assuming realizers t  ∀x. x ' 0⇒ P (x) and u  ∀x. P (x)⇒ P (s x), we
prove that Y (λz. callcc (λk. t (k (u z))))  ∀x. P (x). Since Y realizes the weak recurrence axiom,
this amounts to proving that λz. callcc (λk. t (k (u z)))  ∀x. (∀y. s y = x 7→ P (y)) ⇒ P (x).



66 CHAPTER 3. EXTENSIONS OF REALIZABILITY IN PA2

Let n be an integer, v a realizer of ∀y. s y = n 7→ P (y) and π a stack in ‖P (n)‖. By anti-evaluation,
we only have to prove t ? kπ (u v) ·π ∈ ⊥⊥. If n is not a successor, this is trivial since t  > ⇒ P (n).
Otherwise, let n = sm. We have t  ⊥ ⇒ P (n), v  P (m) and we need to prove that kπ (u v)  ⊥.
For any stack π′, kπ (u v) ? π′ � u ? v · π and v · π ∈ ‖P (m)⇒ P (n)‖ ⊆ ‖∀x. P (x)⇒ P (s x)‖
which concludes the proof since u  ∀x. P (x)⇒ P (s x).

Although the difference between the usual recurrence axiom and the WRA seems syntactically
small, the semantic difference is important. Indeed the premise x ' 0 does not mean at all that x
is 0! In fact, instead of rejecting all individuals that are not integers, which is what we do with
relativization, WRA restrict instead the predicates: they must accept not only 0 as a base case
but all minimal individuals. This means that any individual y that can be written y = sn x for
some n and some minimal individual x can be reached by this recurrence principle. Thanks to
the following theorem, all individuals are of this form: they can be partitioned into equivalence
classes with the successor function. WRA is then a valid alternative to the recurrence axiom
∀x. x ∈ N where we choose to restrict predicates instead of individuals.

Theorem 3.2.9 (Rank of individuals)
The formula ∀x. ∃!n.∃!y. n ∈ N & y ' 0 & x = n+ y is universally realized.
The rank of x is then n.

The notation ∃!x. F (x) means both existence and uniqueness and is defined as the conjunction
of ∃x. F (x) and ∀x∀x′. F (x) ⇒ F (x′) ⇒ x = x′. It is naturally extended to several variables
and several formulæ as was done in Figure 2.5 for conjunction and disjunction. Notice that this
decomposition is not algebraic as the sum of two minimal individuals is not necessarily minimal.

Proof. We do not write explicitly the proof term since it would be very big. Let us abbreviate by
F (x) the formula ∃!n.∃!y. n ∈ N & y ' 0 & x = n+ y. To prove ∀x. F (x), we use WRA so that
we only need to prove ∀x. F (x)⇒ F (s x) and ∀x. x ' 0⇒ F (x).

∀x. F (x)⇒ F (s x): From the existence part of F (x), we have n and y such that n ∈ N, y ' 0 and
x = n+ y. From n ∈ N, we can prove s n ∈ N which gives s x = s n+ y. For the uniqueness
part, let n′ and y′ be another set of acceptable values. The integer n′ cannot be 0, otherwise
we would have s x = n′ + y′ = y′ and y′ ' 0 ≡ ∀z. s z 6= y′ which is impossible. Therefore,
we can write n′ = sm′ and we have x = m′ + y′. The uniqueness part of F x gives us that
m′ = n (thus m = s n) and y′ = y.

∀x. x ' 0⇒ F (x): We have the trivial solution n = 0 and y = x which satisfies n ∈ N, y ' 0 and
x = n+ y. For uniqueness, let n′ and y′ be another set of acceptable values. The integer n′
cannot be a successor, as sm+ y = s (m+ y) and x would be a successor. Therefore n′ = 0
and x = n′ + y′ gives y′ = x.

3.3 New instructions for new axioms
3.3.1 Non deterministic choice operator
Let us add to the KAM a forking instruction t with two evaluation rules.

Fork t ? t · u · π � t ? π
t ? t · u · π � u ? π
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Notice that the rules for t are the same as the ones for non-deterministic choice. The difference
lies in the interpretation we give to these rules: in the former case, both reductions happen and
the process is duplicated (hence the name of the rules) whereas in the latter only one evaluation
path is taken but both are possible. Nevertheless, in both cases, the anti-evaluation closure of
the pole is interpreted as “there exists an evaluation path such that p ∈ ⊥⊥”, whether the path is
factual or potential does not matter.

Specification We can specify the instruction t with the formula ∀A∀B.A⇒ B ⇒ A ∩B.

Remark 3.3.1
Instead of ∀A∀B.A ⇒ B ⇒ A ∩ B, we can use other formulæ to specify a non-deterministic
choice operator, like ∀A∀B. (A⇒ B ⇒ A) ∩ (A⇒ B ⇒ B) and (0 ∈ B) ∩ (1 ∈ B). They are all
semantically equivalent (see the last paragraph of this section).

Theorem 3.3.2 (Specification of a non-deterministic choice operator)
Universal realizers of ∀A∀B.A ⇒ B ⇒ A ∩ B, ∀A∀B. (A ⇒ B ⇒ A) ∩ (A ⇒ B ⇒ B), or
(0 ∈ B) ∩ (1 ∈ B) are exactly the λc-terms t such that for any λc-terms u, v and any stack π, we
have t ? u · v · π � u ? π and t ? u · v · π � v ? π.

Proof. We just need to combine the specification of 0 ∈ B and 1 ∈ B (Proposition 2.7.4) and the
fact that t � A ∩B ⇐⇒ t � A and t � B.

This operator has very strong consequences, as it allows us for instance to universally realize
the recurrence axiom.

Universal realizer of the non relativized recurrence axiom The instruction t gives a
realizer of the non relativized recurrence axiom with the proof-like term Y (λn.t 0 (s n)). Indeed,
from a computational point of view, it simply amounts to spawning in parallel realizers for all
natural numbers, which is easy when we have a non-deterministic boolean.

Theorem 3.3.3 (Universal realizer of the recurrence axiom)
The axiom of recurrence can be universally realized by the proof-like term Y (λn.t 0 (s n)) where Y
is a fixpoint combinator (see Section 3.2.2).

Proof. We want to prove Y (λn.t 0 (s n)) � ∀n. n ∈ N. For readability, let us abbreviate by f
the λc-term λn.t 0 (s n). Let us prove by recurrence over n that Y f � n ∈ N.

• n = 0: For any stack π in ‖0 ∈ N‖, we have the following reduction sequence:

Y f ? π � f (Y f) ? π ≡ (λn.t 0 (s n)) (Y f) ? π
� (λn.t 0 (s n)) ? (Y f) · π
� t 0 (s (Y f)) ? π
� 0 ? π ∈ ⊥⊥

Therefore, by anti-evaluation Y f � 0 ∈ N.

• inductive step: Assuming that Y f � n ∈ N, we want to show that Y f � (s n) ∈ N. For
any stack π in ‖(s n) ∈ N‖, we have the following reduction sequence:

Y f ? π � f (Y f) ? π ≡ (λn.t 0 (s n)) (Y f) ? π
� (λn.t 0 (s n)) ? (Y f) · π
� t 0 (s (Y f)) ? π
� s (Y f) ? π
� s ? Y f · π
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The last process belongs to ⊥⊥ as Y f ·π ∈ ‖n ∈ N⇒ (s n) ∈ N‖ ⊆ ‖∀n. n ∈ N⇒ (s n) ∈ N‖.
Therefore, by anti-evaluation, Y f � (s n) ∈ N.

However, a universal realizer of the recurrence axiom, albeit not jeopardizing the validity of any
of the theorems of Section 2.9 (with the exception of Theorem 2.9.6 which assumes deterministic
evaluation), greatly reduces the interest of witness extraction.

Witness extraction with non-deterministic choice The technique of Section 2.10.2 shows
that if t � ∃n ∈ N. f(n) = 0 with f primitive recursive, then we can extract a canonical
representation m of an integer m such that f(m) is 0 in the standard model. In the presence of
non-deterministic choice, we have a universal realizer tN of the recurrence axiom ∀n. n ∈ N (see
Theorem 3.3.3) and this realizer is a program that generates non-deterministically all natural
numbers. It is then easy to realize any formula ∃n. f(n) = 0 true in the standard model: take
λf. f tN (λx. x). Indeed, given a value m such that f(m) is 0 in the standard model, this process
does have an execution path computing m because it can compute any number and we know
by assumption that there exists such an integer m. In this case, λx. x  f(m) = 0 thanks
to Theorem 2.9.2. Nevertheless, there is no reason that the execution path taken during an
evaluation of this proof-like term is one that leads to the correct value. To get a correct witness
would necessitate to look at every possible execution path. This basically amounts to trying all
natural numbers and the existence of a universal realizer gives in fact no information.

Therefore, in order to keep extraction meaningful, we choose not to introduce a universal
realizer of the recurrence axiom, a fortiori a non-deterministic boolean. There are other reason
to avoid the latter: they collapse models.

Consequences of t on the models The existence of a non-deterministic boolean collapses
realizability models to forcing models4. Because it realizes ∀A∀B.A ⇒ B ⇒ A ∩ B, from a
semantic point of view, the instruction t combines the specification of two formulæ into one.
In particular, it allows us to identify conjunction and intersection with the proof-like terms
λxf. f x x � ∀A∀B.A ∩ B ⇒ A ∧ B and λx. xt � ∀A∀B.A ∧ B ⇒ A ∩ B. The presence of t
is actually equivalent to this identification as we have λgab. g (λf. f a b) � ∀A∀B. (A ∧ B ⇒
A ∩B)⇒ A⇒ B ⇒ A ∩B. It also performs the unification of the two boolean pairs5. Indeed,
being the truest and falsest formulæ, > and ⊥ are good candidates to represent boolean predicates.
Yet, we have seen that equality uses another pair of boolean values: 1 and > ⇒ ⊥6. The difficulty
to merge these two pairs is to have a proof-like term that converts both > into 1 and ⊥ into
> ⇒ ⊥ at the same time (and another term for the converse translation). We can do it separately
with λx. (λy. y)  > ⇒ 1 and λx. x  ⊥ ⇒ > ⇒ ⊥ (since ⊥ ≤ > ⇒ ⊥) but not at once. This is
where t comes into play: it combines both proof-like terms into one and therefore makes the

4 To the best of our knowledge, there is no reference for this result. The proof can be sketched as follows.
Following the idea of the construction of the Lindenbaum algebra [TC83], we can build a Boolean algebra by
quotienting the realizability model by the equivalence induced by the preorder A ≤ B := ∃t ∈ PL. t  A⇒ B.
This algebra is not complete in general and the interpretation of universal quantification is not the infinite meet,
consider for instance the formula x ∈ N. Nevertheless, when we have a universal proof-like term, this Boolean
algebra becomes complete and the interpretation of universal quantification becomes the infinite meet. Therefore,
we get a Boolean model, which could be built directly by interpreting atomic formulæ in it and propagating this
interpretation to connectives. This last interpretation is known to be equivalent to forcing [Bel85].

5When we want to translate a predicate of the base model into the realizability model, we need to make a
choice between these pairs. Depending on the choice, different properties of the predicate will be transported.
For instance, given a boolean well-ordering, 1/> ⇒ ⊥ will preserve its well-foundedness in the realizability model
whereas >/⊥ will keep its connexity.

6We can find several universally equivalent pairs to this one. For example, 1/⊥ via the proof terms λx. x �
(1⇒ 1) ∩ (⊥ ⇒ (> ⇒ ⊥)) (in fact, subtyping is enough) and λx. x (λy. y) � ((> ⇒ ⊥)⇒ ⊥) ∩ (1⇒ 1).
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translation possible: t (λx. (λy. y)) (λy. y)  (> ⇒ 1) ∩ (⊥ ⇒ > ⇒ ⊥). Again, this is in fact
equivalent since > ⇒ 1 ≤ > ⇒ (⊥ ⇒ ⊥) and that (> ⇒ ⊥ ⇒ ⊥) ∩ (⊥ ⇒ > ⇒ ⊥) is universally
equivalent to 1 ∈ B ∩ 0 ∈ B (see last paragraph of this section), and the latter formula is a
specification for t.

Remark 3.3.4
We could weaken our definition of a non-deterministic choice operator to only put one of its two
arguments in head position without preserving the stack, just like we did for 1 to get to ⊥ ⇒ ⊥
in Section 2.7. Doing so, t would realize the formula (> ⇒ ⊥ ⇒ ⊥) ∩ (⊥ ⇒ > ⇒ ⊥) instead,
but we could recover the more precise specification by using callcc to restore the original stack,
using the same trick as in Proposition 3.2.2.

Existence of a universal proof-like term With t, all closed proof-like terms can be gener-
ated from a single one Θ that we will define shortly. This implies in particular that the definition
of validity in the boolean modelM⊥⊥ of Section 2.11 is reduced toM⊥⊥ |= A := Θ  A and the
whole structure of realizers no longer plays any role.

The proof-like term Θ follows the same intuition as the universal realizer of the recurrence
axiom: build in parallel all proof-like terms. To that end, we need proof-like terms to be generated
by variables and a finite set of combinators. We borrow (and simplify) this presentation of
λc-terms from classical realizability algebras [Kri11] where they are described as a combinatory
algebra. Because the KAM does not use β-reduction but weak head reduction, we cannot use
only S and K to define the λ-calculus, we need more combinators. The full list of combinators for
proof-like terms consists of the Curry combinators B,C,K,W [Cur30] plus all the instructions of
the KAM. Their evaluation rules are given in Figure 3.3. In the λ-calculus, this set of combinators
is minimal because each implement a basic functionality: B builds applications, C swaps the order
of arguments, K erases a term, and W duplicates a term. Nevertheless, it is not the case here
because of instructions: we can define W as B callcc (C B). Rather than take them as primitive,
we define them in the λc-calculus in the straightforward way given by their evaluation rules. The
universal proof-like term Θ is then defined by recursively spawning in parallel an application and
all these combinators and instructions. When we have callcc as the only instruction, this gives:

Universal PL-term Θ := Y (λF.t (F F ) (tB (tC (tK (tW callcc)))))

It remains to prove that this generative procedure indeed defines all closed proof-like terms and
can simulate their evaluation.

Theorem 3.3.5 (Representation of proof-like terms by combinators)
Any (open) proof-like term t can be represented as t̃ by application, variables, instructions and
the combinators B, C, K, and W .
Furthermore, for any stack π, if t ? π � t′ ? π′, then we have t̃ ? π � t̃′ ? π′.

Proof. The term t̃ is build by induction on t. The only non trivial case is abstraction. Instead of
following the original construction [Kri11], we optimize it through a CPS: we let λ̃x. t be 〈λx. t | I〉
with 〈λx. t | r〉 inductively defined as follows:

B ? t · u · v · π � t ? u v · π
C ? t · u · v · π � t ? v · u · π
K ? t · u · π � t ? π
W ? t · u · π � t ? u · u · π

Figure 3.3: Evaluation rules of Curry combinators.
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〈λx. t | r〉 := K t̃ r if x /∈ FV(t)
〈λx. x | r〉 := r

〈λx. t u | r〉 :=
〈
λx. u

∣∣B r t̃〉 if x /∈ FV(t) and x ∈ FV(u)
〈λx. t u | r〉 := 〈λx. t |C (B r) ũ〉 if x ∈ FV(t) and x /∈ FV(u)
〈λx. t u | r〉 := W 〈λx. u |C 〈λx. t |B r〉〉 if x ∈ FV(t) ∩ FV(u)

Again, the proof of simulation is done by induction on t and its only non trivial case is abstraction,
which is solved by the following lemma.

Lemma 3.3.6 ([Kri11, Theorem 2])
If t is a term built from only combinators and the variables x1, . . . , xn and if ξ1, . . . , ξn are closed
terms, then ˜λx1 . . . xn. t ? ξ1 · . . . · ξn · π � t̃[ξ1/x1, . . . , ξn/xn] ? π.

Universally equivalent formulæ Because it has such dire consequences, 1 ∈ B ∩ 0 ∈ B is
called the critical formula. It has several equivalent forms:

• ∀A∀B.A ⇒ B ⇒ (A ∩ B) and ∀A∀B. (A ⇒ B ⇒ A) ∩ (A ⇒ B ⇒ B) are semantically
equivalent to 1 ∈ B ∩ 0 ∈ B;

• ∀x. x ∈ N, ∀x. x = 0 ∨ ∃y. x = s y and (> ⇒ ⊥ ⇒ ⊥) ∩ (⊥ ⇒ > ⇒ ⊥) are universally
equivalent to 1 ∈ B ∩ 0 ∈ B.

3.3.2 Quote
In Section 2.9, we have seen how we can realize all the axioms of Peano arithmetic, solving the
problem of the recurrence axiom either by relativization (i.e. restricting individuals to integers),
or using a fixpoint combinator (by restricting the predicates on which we use recurrence to be
valid for all ranks of individuals). Nevertheless, we do not have yet the full power of classical
analysis because we lack the countable choice and dependent choice axioms. This is the very
aim of the instruction quote and its variant quote′. We will see that these axioms correspond
to very natural computational primitives such as time stamps, a fresh name generator or a
hashing mechanism, as was discovered by Jean-Louis Krivine [Kri03]. We consider here only
the case of the countable choice axiom, but dependent choice follows the same technique [Kri09].
Realizing the countable choice axiom uses the countable choice in the model and it gives a nice
computational interpretation to the axiom.

The quote and quote′ instructions Assume recursive bijections7 n 7→ tn from N onto closed
λc-terms and n 7→ πn from N onto stacks being given. We write respectively t 7→ nt and π 7→ nπ
their inverse functions. Then, we define two instructions quote and quote′ with the following
reduction rules:

Quote quote ? t · π � t ? nt · π
Quote’ quote′ ? t · π � t ? nπ · π

The first rule is the usual quote instruction which can be found in some programming languages
like LISP [MBE+60] (hence the name of the instructions). The second one is the one usually
presented in classical realizability [Kri03, Kri09, GM11]. It is slightly more general because it
can encode the first one. Indeed, given a arbitrary continuation constant kπ, we define quote as
λt. callcc λk. kπ (quote (λn. k (t n)) t) and it is a simple exercise to check that it satisfies the
evaluation rule of quote (for the bijection t 7→ nt·π). In the literature, quote and quote′ are

7Enumerations are enough, but bijections directly give the inverse functions t 7→ nt and π 7→ nπ .
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called respectively χ∗ and χ. We prefer to stick to quote and quote′ as they are more explicit
and that χ is sometimes used with another meaning [Kri11].

The crucial property of these evaluation rules is that quote and quote′ must be injective:
different λc-terms t and t′ must give different integers nt and nt′ and similarly for stacks. We do
not need the converse functions retrieving a λc-term or a stack from an integer. This suggest
to interpret quote as a hashing mechanism, provided we ignore conflicts (considering them too
unlikely). Furthermore, the integer associated to a λc-term need not be unique. This means
that we only need a surjective function n 7→ tn, and in that case quote gives an integer in the
preimage of its argument. These integers can be different for two calls on the same argument.
In the extreme case, quote may return a different integer on each call, without even looking at
its argument: it implements a fresh name generator. Another possibility to generate different
integers at each call is to use the current time, in which case quote represents a time stamp
mechanism.

When defined by bijections, quote and quote′ can be used to encode more common instructions
like physical equality eq that has the following reduction rule:

Physical equality eq ? t · t′ · u · v · π �

{
u ? π if t ≡ t′

v ? π otherwise

Recall that ≡ denotes syntactic equality up to α-equivalence. For instance, we may define eq
as λtt′uv. quote′(λn . quote′(λm . int_eqnmuv) t′) t, where int_eq implements an equality
test on integers. This instruction is clearly not compatible with β-reduction, i.e. we cannot
replace a realizer by a β-equivalent one as eq will not behave in the same way in both cases. This
implies more generally that β-equivalent λc-terms may not behave in the same way and therefore
may not universally realize the same formulæ. Nevertheless, there is a class of universal realizers
which are closed under β-equivalence: realizers extracted from proofs. Indeed, the cut elimination
property of the proof system of PA2 allows us to β-reduce proofs terms and, by adequacy, they
are β-equivalent universal realizers of the same formula.

The countable choice axiom This axiom is formalized by the following scheme expressing
that if for all n, we can find a set X satisfying some property A depending on both n and X, then
we have a function F of n giving those sets. Intuitively, F gives a witness for ∃X.A. Formally, F
is represented by a binary relation and we have:

(∀n.∃X.A)⇒ ∃F.∀n.A[λy. F (n, y)/X])

We reformulate it to have a more flexible statement:

∃F.∀n. (∃X.A)⇒ A[λy. F (n, y)/X])

where the formula A may not be satisfiable for all n but only for some of them. The “witness
property” of F then only considers the integers n for which a witness exists.

It is easier to consider the contrapositive form of this axiom, seeing B as the negation of A:

∃F.∀n.B[λy. F (n, y)/X]⇒ ∀X.B

The intuition behind this axiom is that F produces counterexamples to B for any n, if some
exists. This formulation is equivalent to the previous one because we are in classical logic.

Like for well-founded induction, universally realizing the countable choice axiom requires to
use it in the meta-theory. We first give the formula realized by quote′:
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Lemma 3.3.7 ([Kri09, Theorem 31])
For any formula A, there exists a ternary predicate P such that:

quote′ � ∀n. ∀m. (m ∈ N⇒ A[λy. P (n,m, y)/X])⇒ ∀X.A
Proof. The crux of the proof is to find the predicate P . This is the point where the countable
choice axiom is used in the model. Indeed, π ∈ ‖∀X.A‖ means be definition that there exists a
unary falsity function R such that π ∈

∥∥A[Ṙ/X]
∥∥. Let B be the statement π ∈ ‖∀X.A‖ ⇔ π ∈∥∥A[Ṙ/X]

∥∥, depending on n, m, π and R. The countable axiom of choice applied to the formula
∀n∀m.∃R.B, gives8 a function U : N3 → P(Π) such that the statement ∀n∀m. (∃X.B) ⇒
A[U(n,m,_)/X] holds. Then, we simply let P := U̇ and check that quote′ indeed realizes the
expected formula.

Thus, λx. x quote′ uniformly realizes ∃P.∀n. (∀m.m ∈ N⇒ A[λy. P (n,m, y)/X])⇒ ∀X.A.
To get the contrapositive form of the axiom of choice, we need to get rid of the extra integer m.
This is done by the drinker paradox: find a value m0 such that if A[λy. P (n,m0, y)/X] holds,
then A[λy. P (n,m, y)/X] holds for all integers m. More precisely, we define F (n, y) as “P (n,m, y)
for the smallest integer m such that ¬A[λy. P (n,m, y)/X] if there is one and 0 otherwise”.

The technique using quote instead of quote′ follows the same pattern, the only difference
being that the proof of Lemma 3.3.7 is a little bit more complicated, see [Kri09, Theorem 34].

The computational interpretation of the countable choice axiom If we are not careful
in the proof of the previous paragraph, we get a universal realizer for the countable axiom of
choice that does not have very clear expression and computational behaviors. If we try to optimize
it, we get the following result:
Theorem 3.3.8 ([Kri09, Theorem 33])
Let dec be an ordering test on integers, i.e. an instruction with the following evaluation rule:

dec ? n ·m · u · v · w · π �


u ? π if m < n

v ? π if m = n

w ? π if m > n

For readability, let 〈x, n, k〉, handlerxn k, and CCA be the following terms:

〈x, n, k〉 := λv. v x n k

handlerxn k := λux′n′k′. decnn′ (k (x′ n))u (k′ (xn))
CCA := λf. quote′ (Y (λxn. callcc λk. f 〈x, n, k〉 (handlerxn k)))

Then λx. xCCA is a universal realizer of the countable choice axiom: given a formula A, there
exists a binary predicate F such that CCA � ∀n. (∀X. (∀y. F (n, y)⇔ X y)⇒ A)⇒ ∀X.A.
The hypothesis ∀y. F (n, y)⇔ X y forces to consider A as extensional in X.

To give an intuition of the computational behavior of CCA, let us consider its evaluation on
an arbitrary argument f . For readability, we write CCA := λf. quote′ (Y rec(f)), abbreviating
by rec(f) the λc-term λxn. callcc λk. f 〈x, n, k〉 (handlerxn k).

CCA ? f · π � quote′ ? Y rec(f) · π
� Y rec(f) ? nπ · π
� rec f ? Y rec(f) · nπ · π
� f ? 〈Y rec(f), nπ, kπ〉 · handler (Y rec(f))nπ kπ · π

8To apply directly the countable choice axiom as presented earlier, we need to combine both quantifications
over n and m into one by using a bijection between N2 and N. For readability, we hide this technicality.
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The λc-term 〈Y rec(f), nπ, kπ〉 simply stores the state Y rec(f) ? nπ · π. The behavior of
handler (Y rec(f))nπ kπ on a stack u·Y rec(f ′)·nπ′ ·kπ′ ·π′′, containing the state Y rec(f ′) ? nπ′ ·kπ′ ,
is the following: it compares the indexes nπ and nπ′ and,

• if nπ = nπ′ , it merely returns u (the states match);

• if nπ < nπ′ , it reboots the second program in the first state: it reduces to Y rec(f ′) ? nπ · π,
which will evaluate to f ′ ? 〈Y rec(f ′), nπ, kπ〉 · handler (Y rec(f ′))nπ kπ · π;

• if nπ > nπ′ , it reboots the first program in the second state: it reduces to Y rec(f) ? nπ′ ·π′,
which will evaluate to f ? 〈Y rec(f), nπ′ , kπ′〉 · handler (Y rec(f))nπ′ kπ′ · π′.

In a nutshell, CCA synchronizes two states by selecting the smallest index and rebooting the
program which had the wrong state (the biggest index) on the correct one (the smallest index).
This is very similar to the interpretation of the choice axiom in HOL by Christophe Raffalli
and Frédéric Ruyer [RR08].

3.4 Primitive Integers
Up to this point, we have used natural numbers in proof terms through Krivine’s encoding.
Although this is correct, it is quite inefficient and ill-suited for extraction. Moreover, although
we could use smarter encodings like binary words, the source of the problem is that we need
to define them whereas they should be a primitive notion. In this section, following Alexandre
Miquel [Miq09b], we will investigate how we can introduce primitive integers in order to avoid
costly encodings and recover witnesses as meaningful but more compact. Introducing primitive
integers also requires adding primitive operations to manipulate them. This should be seen as a
positive point as it means that we can use efficient algorithms on our primitive integers and do
not have to stick to the usually much less efficient algorithms manipulating the encodings. The
ideas of this section are in fact more general and can be used to introduce any primitive datatype.

3.4.1 Primitive integers in the KAM
Because they are data, inside the machine, primitive integers are just inert instructions, i.e.
instructions with no evaluation rule.

λc-Terms t, u := x | λx. t | t u | κ | kπ | n̂

For readability, they are added explicitly in the grammar of terms but in fact they are instructions
and as such should appear as κ, so that no modification of the definition of λc-terms is really
required. For each natural number n, we add a new instruction n̂. As n̂ is inert, were it to
appear in head position of a process, the KAM would stop. This error should be understood as a
segmentation fault: we tried to execute an integer.

To manipulate these integers, we need primitive operations, like for instance the ones provided
by a processor. We will take the four usual operations: addition, subtraction, multiplication
and division but we could add others. To be able to test the value of primitive integers, we
also introduce three comparison operators: =, < and ≤. Their evaluation rules are presented in
Figure 3.4. Notice that as primitive integers cannot appear in head position but only on the stack,
we need to use a call-by-value CPS style for these operators. The aim of a call-by-value CPS in
a call-by-name calculus is precisely to embed call-by-value code into the call-by-name setting.
Indeed, a CPS transform is always independent of the evaluation order because it completely
explicit the evaluation order. Therefore, if the evaluation order of the CPS is call-by-value, we can
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embed call-by-value computation inside the KAM. Notice that the converse works as well: if the
CPS transform is call-by-name, we can embed call-by-name computations inside a call-by-value
calculus.

In this CPS style, comparison operators behave as if then else statements where the condi-
tion is the corresponding comparison. Using these primitive tests, we can implement more elaborate
functions like squaring (λx. int_mulxx), absolute value (λx. int_lex 0̂x (int_sub 0̂x)), or
exponentiation (Y λEnmk. int_lem 0̂ (k 1̂) (int_subm1̂ (E n) int_mul nk)).

Addition int_add ? n̂ · m̂ · u · π � u ? n̂+m · π
Subtraction int_sub ? n̂ · m̂ · u · π � u ? n̂−m · π
Multiplication int_mul ? n̂ · m̂ · u · π � u ? n̂ ∗m · π
Division int_div ? n̂ · m̂ · u · π � u ? n̂/m · π

Test eq int_eq ? n̂ · m̂ · u · v · π �

{
u ? π if m = n

v ? π if m 6= n

Test lt int_lt ? n̂ · m̂ · u · v · π �

{
u ? π if m < n

v ? π if m 6< n

Test le int_le ? n̂ · m̂ · u · v · π �

{
u ? π if m ≤ n
v ? π if m 6≤ n

Figure 3.4: Operations on primitive integers in the KAM.

In fact, we can embed in this fashion any function on integers with any arity. The argument u
on the stack can be understood as a return block, which is put on the stack at each function call
in machine languages. In this respect, assembly languages are call-by-name, which explains why
compilers for call-by-value programming languages sometimes need to perform CPS transforms.
Furthermore, we can even consider partial functions (which do not have evaluation rules in all
cases) and even non computable functions, such as oracles (Turing degrees) or peripheral devices.

3.4.2 Primitive integers in the logic
Definition In order to specify and reason about the new instructions manipulating primitive
integers and any function we might define with them, we need to introduce primitive integers
in the logic. Since they must not appear in head position, we cannot define them by a formula
because we would have realizers of this formula (for instance any realizer of ⊥) whereas they are
not meant to be programs. Therefore, using Remark 2.4.2 iii, we introduce them by a new logical
construction where they can only appear on the left side of an implication, that is as arguments
or on the stack. This is the same operation than in Section 2.10.1 where we introduced {n} ⇒ A.

Formulæ A,B := X(e, . . . , e′) | Ḟ (e, . . . , e′) | A⇒ B
| ∀x.A | ∀X.A | [e]⇒ A

Falsity value ‖[e]⇒ A‖ := {n̂ · π | n = JeK ∧ π ∈ ‖A‖}

Since primitive integers are not programs, in particular they cannot realize the specification
of Peano integers: n̂ 6� n ∈ N. In addition to that, no function can produce n̂ as its return
value because it would be put in head position. A natural question is then “how can we return
primitive integers?” The answer is again by a CPS style: we produce them as functions expecting
a continuation.
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Primitive integer n ∈ N̂ := ∀Z. ([n]⇒ Z)⇒ Z

This definition means that a realizer of n ∈ N̂ is a lazy integer that will be evaluated only when
applied to a return continuation. It is easy to embed the concrete integer n̂ into a lazy one with
the proof-like term λx. x n̂ � n ∈ N̂.

Specification We can now write the specification of all our primitive arithmetical operations.

int_add � ∀n∀m. [n]⇒ [m]⇒ (n+m) ∈ N̂

int_sub � ∀n∀m. [n]⇒ [m]⇒ (n−m) ∈ N̂

int_mul � ∀n∀m. [n]⇒ [m]⇒ (n ∗m) ∈ N̂

int_div � ∀n∀m. [n]⇒ [m]⇒ (n/m) ∈ N̂

These specifications are correct thanks to the following theorem, solving the specification
problem for all functions over primitive integers.

Theorem 3.4.1 (Specification of functions over primitive integers)
Let k be a non negative integer and f be a total computable function from Nk to N. Universal
realizers of the formula ∀x1 . . . ∀xk. [x1] ⇒ . . . ⇒ [xk] ⇒ f(x1, . . . , xk) ∈ N̂ are exactly the
closed λc-terms t such that for any tuple of integers ~n := (n1, . . . , nk), any closed λc-term u, and
any stack π, we have t ? n̂1 · . . . · n̂k · u · π � u ? f̂(~n) · π.

Proof.
=⇒ Let k, f , t, ~n, u and π be as in the statement of the theorem. Let ⊥⊥ be

{
p
∣∣∣ p � u ? f̂(~n) · π

}
.

We prove that t ? n̂1·. . .·n̂k·u·π ∈ ⊥⊥. We have u  [f(~n)]⇒ π̇ which gives u·π ∈
∥∥∥f(~n) ∈ N̂

∥∥∥
and we conclude since the stack n̂1 · . . . · n̂k · u · π exactly belongs to the good falsity value.

⇐= Let ⊥⊥ be a pole, ~n := (n1, . . . , nk) a tuple of integers, u a realizer of [f(~n)]⇒ Z for some Z,
and π a stack in ‖Z‖. We want to prove that t ? n̂1 · . . . · n̂k · u · π ∈ ⊥⊥. By anti-evaluation
and hypothesis on t, it is enough to prove u ? f̂(~n) ·π ∈ ⊥⊥. This is trivial as u  [f(~n)]⇒ Z

and f̂(~n) · π ∈ ‖[f(~n)]⇒ Z‖.

Contrary to Krivine integers, we do not need complex storage operators for primitive integers.
Indeed, the formula denoting primitive integers n ∈ N̂ ≡ ∀Z. ([n]⇒ Z)⇒ Z expects a continua-
tion taking a computed value as argument. Therefore, it is enough to apply a lazy integer to the
function of interest: the storage operator is simply M

N̂
:= λfn. n f .

The specification for comparison operators is similar:

int_eq � ∀n∀m∀Z. [n]⇒ [m]⇒ (n = m 7→ Z)⇒ (n 6= m 7→ Z)⇒ Z

int_lt � ∀n∀m∀Z. [n]⇒ [m]⇒ (n < m 7→ Z)⇒ (n 6< m 7→ Z)⇒ Z

int_le � ∀n∀m∀Z. [n]⇒ [m]⇒ (n ≤ m 7→ Z)⇒ (n 6≤ m 7→ Z)⇒ Z

It is also proven with a general theorem for primitive integer comparison operators.

Theorem 3.4.2 (Specification of comparisons over primitive integers)
Let c(~x) be a semantic condition depending only on the variables ~x := (x1, . . . , xk). Universal
realizers of ∀x1 . . . ∀xk∀Z. [x1]⇒ . . .⇒ [xk]⇒ (c(~x) 7→ Z)⇒ (∼ c(~x) 7→ Z)⇒ Z are exactly the
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closed λc-terms t such that, for any tuple of integers ~n := (n1, . . . , nk), any stack π, and any
closed λc-terms u and v, we have:

t ? n̂1 · . . . · n̂k · u · v · π �

{
u ? π if c(~n) holds in the standard model
v ? π otherwise

Proof.
=⇒ Let c, t, ~n, u, v, and π be as in the statement of the theorem. Assuming that c(~n) holds,

we have (c(~x)→ Z)⇒ (∼ c(~x)→ Z)⇒ Z ≈ Z ⇒ >⇒ Z and we let ⊥⊥ := {p | p � u ? π}.
We prove that t ? n̂1 · . . . ·n̂k ·u ·v ·π ∈ ⊥⊥. We have u  π̇ which gives u ·v ·π ∈ ‖π̇ ⇒ >⇒ π̇‖
and we conclude since the stack n̂1 · . . . · n̂k · u · v · π exactly belongs to the good falsity
value. If c(~n) does not hold, we have (c(~x)→ Z)⇒ (∼ c(~x)→ Z)⇒ Z ≈ > ⇒ Z ⇒ Z and
we take instead ⊥⊥ := {p | p � v ? π} to have u · v · π ∈ ‖> ⇒ π̇ ⇒ π̇‖.

⇐= Let ⊥⊥ be a pole and ~n := (n1, . . . , nk), u  c(~n) 7→ Z, v ∼ c(~n) 7→ Z, and π ∈ ‖Z‖ for
some Z. We want to prove that t ? n̂1 · . . . · n̂k · u · v · π ∈ ⊥⊥. By anti-evaluation and
hypothesis on t, it is enough to prove u ? π ∈ ⊥⊥ if c(~n) holds and v ? π ∈ ⊥⊥ otherwise. This
is straightforward as π ∈ ‖Z‖, u  Z if c(~n) holds, and v  Z if c(~n) does not hold.

Remark 3.4.3
It is sometimes convenient to have different formulæ for the two branches of the test. In these
cases, we use the following specifications which are semantically equivalent to the previous ones.

int_eq � ∀n∀m∀A∀B.[n]⇒ [m]⇒ (n = m 7→ A)⇒ (n 6= m 7→ B)⇒
(n = m 7→ A) ∩ (n 6= m 7→ B)

int_lt � ∀n∀m∀A∀B.[n]⇒ [m]⇒ (n < m 7→ A)⇒ (n 6< m 7→ B)⇒
(n < m 7→ A) ∩ (n 6< m 7→ B)

int_le � ∀n∀m∀A∀B.[n]⇒ [m]⇒ (n ≤ m 7→ A)⇒ (n 6≤ m 7→ B)⇒
(n ≤ m 7→ A) ∩ (n 6≤ m 7→ B)

3.4.3 Link with Krivine integers
As these new integers are data and not programs, they cannot realize Dedekind’s definition of
natural numbers (the recurrence principle). Nevertheless, the formulæ n ∈ N and n ∈ N̂ are
universally equivalent.

Proposition 3.4.4 (Equivalence of n ∈ N and n ∈ N̂)
Recalling 0 := λxf. x and s := λnxf. f (nx f) from Section 2.9, we have

• λn. n (λx. x 0̂) (λy. y (int_add 1̂)) � ∀n. n ∈ N⇒ n ∈ N̂

• Y (λrf. f (λn. int_eq n 0̂ 0 (s (r (int_sub n 1̂))))) � ∀n. n ∈ N̂⇒ n ∈ N

Proof.
• Using the definition of n ∈ N given in Section 2.9.3, we only need to prove λx. x 0̂ � 0 ∈ N̂
and λy. y (int_add 1̂) � ∀n. n ∈ N̂ ⇒ s n ∈ N̂. The first part is exactly the embedding
of concrete primitive integers into lazy primitive integers so let us focus on the second
part. Let ⊥⊥ be an arbitrary pole, n an integer, t  n ∈ N̂ and π ∈

∥∥∥s n ∈ N̂∥∥∥. We want
to show that λy. y (int_add 1̂) ? t · π ∈ ⊥⊥. By anti-evaluation, we just have to prove
that t ? (int_add 1̂) · π ∈ ⊥⊥. Since n ∈ N̂ ≤ ([n] ⇒ (s n) ∈ N̂) ⇒ s n ∈ N̂, we have
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t  ([n]⇒ s n ∈ N̂)⇒ s n ∈ N̂ and we only have to show that int_add 1̂  [n]⇒ s n ∈ N̂.
Let Z be a predicate, f  [s n] ⇒ Z and π′ ∈ ‖Z‖. We have n̂ · f · π′ ∈

∥∥∥[n]⇒ s n ∈ N̂
∥∥∥

and we conclude by anti-evaluation thanks to the following reduction sequence:

int_add 1̂ ? n̂ · f · π′ � int_add ? 1̂ · n̂ · f · π′ � f ? ŝ n · π′ ∈ ⊥⊥

• In this case, we need to use Y to recursively build the iterator depending on the value of
the concrete integer. The proof is done by induction on the value of n and we will only
sketch it. The variable r is used for recursive calls whereas f is a lazy integer, its concrete
value being stored in n. When this concrete value is 0̂, we return 0 which is a universal
realizer of 0 ∈ N. Otherwise, we compute the concrete value of the predecessor p of n
(int_sub n 1̂), then make a recursive call on it (r (int_sub n 1̂)) to compute a realizer of
p ∈ N and finally apply the successor of Church’s integers. (s (r (int_sub n 1̂))).

Therefore, wherever we use Krivine integers, we can now use primitive integers instead.
Nevertheless, since algorithms on primitive integers are usually more efficient and we want to
avoid conversion back and forth between representations, it is usually worthwhile to rewrite
realizers to use only primitive integers. At the very least, we should point out the computational
bottlenecks and use realizer optimization (see Section 3.6) to replace unary integers with primitive
ones in these critical places.

3.4.4 Primitive rational numbers
Introducing primitive rational numbers in the KAM follows exactly the same pattern. It is
so similar that there is no reason to repeat it here. In fact, both methods are instances of
a more generic framework to introduce primitive datatypes in PAω+(see Section 4.3), which
cannot be fully expressed in PA2 since first-order objects represent integers and not more general
data structures. As the only addition, we can mention how subtyping combined with semantic
implication allows for an easy definition of usual subsets of rational numbers. In practice, integers
and rational numbers need not be implemented in the same way and therefore we use a notation
〈q〉 ⇒ A for rational numbers different from [n]⇒ A for integers.

Rational numbers q ∈ Q := ∀Z. (〈q〉 ⇒ Z)⇒ Z
Positive rat. num. q ∈ Q+∗ := ∀Z. (0 < q 7→ 〈q〉 ⇒ Z)⇒ Z
Non neg. rat. num. q ∈ Q+ := ∀Z. (0 ≤ q 7→ 〈q〉 ⇒ Z)⇒ Z

With these definitions, we have q ∈ Q+∗ ≤ q ∈ Q+ ≤ q ∈ Q so that we can freely use realizers of
q ∈ Q+∗ as realizers of q ∈ Q: the extra information is not computational, and therefore it is
transparent from the point of view of realizers.

3.5 Real numbers
With the instruction quote, the expressiveness of classical realizability is enough to encompass
a good part of mathematics, notably most of analysis. Nevertheless, if our aim is extraction,
we also need to have efficient data structures on which computation is not unreasonably slow.
The previous section achieved just that for integers and rational numbers. We turn here to the
next most important set of numbers, real numbers. The novelty and difficulty of this question,
compared to previous works implementing real numbers, is that we want to encompass all real
numbers and not only computable ones. In this section, we will use the notation N instead of N̂
to denote primitive integers. They are universally equivalent and, since we are concerned with
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computational efficiency, Krivine integers will never be used so that it makes no sense to keep the
distinction.

3.5.1 Constructive and non constructive real numbers
Why do we want to encompass all real numbers if our ultimate goal is extraction? Indeed,
whatever definition we take, in the end, we will be able to extract only computable numbers (by
their very definition!). Therefore, it may seem useless to work hard in order to integrate non
computable real numbers. The reason is the following: if extraction must be restricted to Π0

2
formulæ to be meaningful, there is no restriction on the intermediate realizers we can use. In
particular, some very common mathematical theorems do no hold in intuitionistic logic because
equality of real numbers is not decidable. We can give as an example the intermediate value
theorem saying that for each function from [a, b] to R with a < b, and each y ∈ f([a, b]), we
can find x ∈ [a, b] such that the equality f(x) = y holds9. Within the framework of classical
realizability, we can use undecidable numbers as convenient intermediate values as long as we
know how to extract a witness from the end formula, i.e., this end formula must be Π0

2 (see
Section 2.10). Furthermore, if we want to faithfully realize usual mathematics, we better choose
definitions and statements as close as possible to what we write on paper.

The most straightforward solution is to use one of the classical real number constructions. These
constructions can be split into two big categories, depending on how we build real numbers: as an
order completion or as a topological completion. This gives the two most famous constructions
of R, through Dedekind cuts [Ded01] or Cauchy sequences [Mér69] respectively. There are many
variants of each of these constructions, for example the Exodus real numbers [Art04] or the
Harthong-Reeb real line [Har83, Cho10]. The interest of these variants is mostly to avoid rational
numbers and build real numbers directly from Z. Since in classical realizability, rational numbers
can be made primitive (see Section 3.4.4), there is no point in using a variant rather than a vanilla
construction. Let us then take a look at what Dedekind cuts and Cauchy sequences can offer.

3.5.2 Dedekind cuts
Dedekind cuts were historically defined as partitions of Q in two non-empty sets C- and C+ such
that C- is open and every element of C- is smaller than every element of C+. Then, the real
number defined by this cut is the number “lying in the middle”. More modern presentations
drop C+, as C- is enough to define the cut (take C+ := Q \ C-). A cut is then a non-empty,
non-total, downward closed, open subset of Q and the real number it defines is its least upper
bound.

The direct translation of this in PA2 is to define a cut as a predicate on Q and ensure that
it is non empty, non total, downward closed and open. To distinguish real numbers from usual
predicates, we write x[q] the membership of q to the real number x instead of q ∈ x or x q. The
main strength of Dedekind construction is that the definition of the ordering is very simple:
inclusion of predicates.

Order on real numbers x ≤ y := ∀q ∈ Q. x[q]⇒ y[q]
9In intuitionistic logic, we have instead a weaker version stating that for all precision ε, we can find a value x

such that |f(x)− y| < ε. The problem is that, during the proof, we cannot exactly compare y with the value of f
on the middle point of the interval [a, b]. It is linked to the convergence problem one can face when implementing
dichotomy in an algorithm. This problem is usually solved by fixing a precision ε and considering numbers closer
than ε as equal. This algorithmic modification exactly matches the difference between the classical and the
intuitionistic statement of the theorem. We can recover the usual statement if we strengthen the hypothesis on f ,
for instance when f is strictly monotonous. In this case, instead of cutting the interval [a, b] in two halves, we
make the intervals overlap so that y is always inside the interior of one these two intervals.
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Notice that this very simple definition makes sense for all predicates on Q and it does not requires
relativization to R. We directly get trivial realizers for transitivity and reflexivity:

λqx. x � x ≤ x
λxyqz. y q (x q z) � x ≤ y ⇒ y ≤ z ⇒ x ≤ z

Nevertheless, to build a proper real number from a unary predicate on Q, we need to realize the
properties a cut must satisfy, namely non vacuity, non totality, downward closure and openness.
This can be done by relativization, like for integers, but there are far more properties to check.
To alleviate the burden of manipulating all of them, let us see if we can get rid of some.

Toward a simpler relativization predicate Let us first look at the non vacuity and non
totality conditions. What “number” is represented by the total predicate? If we come back
to the definition of ordering, this “number” must be greater than all others, therefore it must
represent +∞. Similarly, an empty predicate represents −∞. If we accept to work on R instead
of R, we can momentarily drop these two conditions. Nevertheless, they are still necessarily if we
want a true real number.

Second, we turn toward the openness condition. It serves to ensure uniqueness of the
representation of rational numbers inside real numbers. Indeed, given a rational number q, the
cuts P x := x ≤ q and Qx := x < q both represent q. This uniqueness is necessary only to
compare real numbers, so that if we modify comparison operators to consider only the interior of
the predicates, we can also safely drop this condition.

Finally, let us look at the downward closure. A first solution would be to modify the semantics
of the predicates over Q used to build R and interpret them always by downward closed unary
predicates. A downward closed unary predicate is a unary predicate P such that for all q < q′,
the subtyping relation P (q′) ≤ P (q) holds10. Doing so requires to distinguish between usual
predicates on rational numbers (that have no reason to be downward closed) and predicates
representing real numbers. This distinction can be done by moving to a multi-sorted logic where,
in addition to the sort ι for first-order objects, o for formulæ and predicate constants, and κn for
second-order predicates of arity n ≥ 1, we introduce a new sort ρ interpreted by a subset of the
interpretation of κ1 where all falsity functions are non-decreasing.

A second solution is to use a smoothing operator that turn any predicate into a downward
closed one. Compared to the previous solution, it amounts to internalizing in the syntax the
transformation of an arbitrary predicate into a downward closed one. It simply makes explicit
the conversion from a predicate over rational numbers (of sort κ1) to a predicate representing
a real number (of sort ρ). Intuitively, a smoothing operator turns the falsity function of any
predicate into a non-decreasing one. There are two natural choices to do so: either “cut the
mountains” or “fill the valleys”. This gives two possible definitions for a smoothing operator:
F ↓(x)[q] := ∀q′. q′ ≤ q ⇒ x[q′] and F ↑(x)[q] := ∃q′. q ≤ q′ ∧ x[q′]. Since universal quantifiers are
easier to handle in classical realizability, we choose the first possibility. We can improve it with a
semantic implication: F ↓(x)[q] := ∀q′. q′ ≤ q 7→ x[q′]. Computationally, it avoids an unwanted
additional argument realizing q′ ≤ q. It also ensures that the interpretation of F ↓(x) is closer to
the one of x: we have

∥∥F ↓(x)[q]
∥∥ =

⋃
q′≤q ‖x[q′]‖. Notice that the use of strict inequality also

implies openness: F ↓(x) is always open, no matter if x is or not.
10Since the interpretation of formulæ is falsity values that intuitively represents the “negation” of the formula, a

predicate is interpreted a function from individuals to falsity values. In particular, a downward closed predicate is
defined by an increasing falsity function. More precisely, we must have ‖x[q]‖ ⊆ ‖x[q′]‖ for q < q′, which entails
|x[q′]| ⊆ |x[q]|. Therefore, a realizer of x[q′] is also a realizer of x[q] whenever q < q′, hence the name downward
closed.
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As a conclusion, the relativization predicate finally covers only non vacuity and non totality:
x ∈ R := (∃q ∈ Q. x[q])∧ (∃q′ ∈ Q.¬x[q′]). The downward closure is built-in11 and for operations
that do not preserve it (e.g., opposite), we use a smoothing operator F ↓ to recover it. Openness
can be avoided if we are careful in the definition of comparison operators.

Definition of operations and comparisons Since we decided to drop openness from the
relativization predicate, we must change the definition of ordering to consider only the interior of
cuts and avoid problems with their boundary. We can no longer define equality extensionally by
letting x = y := ∀q ∈ Q. x[q]⇔ y[q] for the same reason.

Large Order x ≤ y := ∀q ∈ Q.∀q′ ∈ Q. q′ < q 7→ x[q]⇒ y[q′]
Equality x = y := x ≤ y ∧ y ≤ x

Thanks again to semantic implication, the change in ≤ is almost transparent: we only add a
second rational argument. Therefore, the realizers for reflexivity and transitivity are mostly the
same12. The ones for equality are directly derived from them. Given an instruction average
computing the average of two rational numbers13, the universal realizers that ≤ is an order and =
an equivalence relation are given in Figure 3.5.

swap := λfxy. f y x

trans := λxyqq′z. average q q′ (λq′′. y q′′ q′ (x q q′′ z))

λ x. x � x ≤ x
trans � x ≤ y ⇒ y ≤ z ⇒ x ≤ z

λxyf. f x y � x ≤ y ⇒ y ≤ x⇒ x = y

λf. f (λ x. x) (λ x. x) � x = x

λfg. f (swap g) � x = y ⇒ y = x

λxyf. x λx1x2. y λy1y2. f (trans x1 y1) (trans x2 y2) � x = y ⇒ y = z ⇒ x = z

Figure 3.5: Universal realizers of the order and equivalence properties of ≤ and =.

We also have a rather simple universal realizer D (see Theorem 3.5.1) for the dichotomy prop-
erty: ∀x∀y. x ≤ y ∨ y ≤ x. Although the proof-like term D looks complicated, the computational
intuition behind it is indeed simple. We first get the arguments on both branches x ≤ y and
y ≤ x by using a continuation to backtrack when needed. At that point, we have arguments q1, q2
and x[q1] from the first branch and q3, q4 and y[q3] from the second one. We also know that the
inequalities q2 < q1 and q4 < q3 hold. We can choose to realize either y[q2] or x[q4]. If q3 < q2,
then q4 < q1 and by downward closure of x, x[q1] is a subtype of x[q4]. On the opposite, if q2 ≤ q3,
then the downward closure of y gives that y[q2] is a subtype of y[q3].

As we can see, the relative position of the real numbers x and y is known for sure only after
executing both branches and testing the validity of the inequality once in each branch.

11This is essential, as the relativization predicate requires that x is already a downward closed predicate. Indeed,
if x were not, smoothing operators could turn it into a empty predicate (if we use F ↓) or a total one (if we use
F ↑). Take for instance a finite or co-finite subset of Q.

12Notice that the downward closure of cuts is essential here.
13By Theorem 3.4.1, it must universally realize 〈q〉 ⇒ 〈q′〉 ⇒ q+q′

2 ∈ Q and can be implemented from the more
primitive operations of addition and division.
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Theorem 3.5.1 (Universal realizer of dichotomy)
Let rat_lt be a strict comparison operator on primitive rational numbers, i.e. by Theorem 3.4.1
a universal realizer of ∀q ∈ Q.∀q′ ∈ Q. (q < q′ 7→ A) ⇒ (q ≤ q′ 7→ A) ⇒ A. The proof-like
term D := λlr. callcc (λk. (l (λqxq′xx. callcc (λk′. k (r (λqyq′yy. rat_lt qy q′x x (k′ y))))))) is a
universal realizer of ∀x∀y. x ≤ y ∨ y ≤ x.

Remarks 3.5.2
(i) This universal realizer is almost a proof term for dichotomy, except for the hypotheses of

downward closure on x and y.

(ii) Dichotomy is uncomputable, intuitively because we would need to check the infinite number
of decimals. Therefore, it is non provable in intuitionistic logic, which means that callcc
is mandatory to realize it.

Proof of Theorem 3.5.1. Remember that x and y are of sort ρ and therefore, seen as unary
predicates, they are downward closed. Let ⊥⊥ be a pole, Z a nullary predicate, t  x ≤ y ⇒ Z, u 
y ≤ x⇒ Z and π ∈ ‖Z‖. We want to show that D ? t ·u ·π ∈ ⊥⊥. By anti-evaluation, it is enough
to prove t ? λqxq′xx. callcc (λk′. k (u (λqyq′yy. rat_lt qy q′x x (k′ y)))) ·π ∈ ⊥⊥. By definition of t,
it amounts to proving that λqxq′xx. callcc (λk′. k (u (λqyq′yy. rat_lt qy q′x x (k′ y)))) realizes the
formula x ≤ y which is defined as ∀q ∈ Q.∀q′ ∈ Q. q′ < q 7→ x[q]⇒ y[q′]. Let q1 and q2 be rational
numbers such that q2 < q1, r1, r2, v be realizers of q1 ∈ Q, q2 ∈ Q, x[q1] respectively and π′ be a
stack in ‖y[q2]‖. By anti-evaluation, it is enough to prove u ? (λqyq′yy. rat_lt qy r2 v (kπ′ y)) ·π ∈
⊥⊥, which reduces to λqyq′yy. rat_lt qy r2 v (kπ′ y)  y ≤ x. Let q3 and q4 be rational numbers
such that q4 < q3, r3, r4, w be realizers of q3 ∈ Q, q4 ∈ Q, y[q3] respectively and π′′ be a stack
in ‖x[q4]‖. By anti-evaluation, it is enough to show rat_lt ? r3 · r2 · v · (kπ′ w) · π′′. Because
rat_lt is a strict comparison operator, it is enough to prove that v  q3 < q2 7→ x[q4] and
kπ′ w  q2 ≤ q3 7→ x[q4]. Assuming that q3 < q2, let us show v  x[q4]. Combining inequalities,
we have q4 < q3 < q2 < q1 and by downward closure of x, v  x[q1] entails v  x[q4]. Assume now
that q2 ≤ q3 and let us prove kπ′ w  x[q4]. By anti-evaluation, we just have to show w ? π′ ∈ ⊥⊥.
Since π ∈ ‖y[q2]‖, the downward closure of y, the inequality q2 ≤ q3 and the hypothesis w  y[q3]
entail w  y[q2] hence the result.

Let us now turn to the definition of operations, starting with addition and opposite.

Addition (x+ y)[q] := ∃q′. x[q′] ∧ y[q − q′]
Opposite (−x)[q] := F ↓(¬x[−q])

We need to use the smoothing operator for the opposite because negation changes an open
predicate into a closed one. The definition of multiplication is voluntarily missing because it is
quite difficult as is well known with Dedekind cuts: we need to define it first on positive real
numbers and then extend the definition by the sign rule.

Real axioms With only addition and opposite at our disposal, we can still start to realize the
algebraic properties of the additive group of real numbers. The commutativity of addition follows
directly from the symmetry of its definition. Its associativity is a simple rewiring of arguments.

λ xf. x (swap f) � x+ y ≤ y + x

λ pf. p (λxp′. p′ (λyz. f (λg. g x y) z)) � x+ (y + z) ≤ (x+ y) + z

λ pf. p (λp′z. p′ (λxy. f x (λg. g y z))) � (x+ y) + z ≤ x+ (y + z)
λ xf. f x � x ≤ −(−x)

λ . callcc � −(−x) ≤ x
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The last property of opposite is a serious blow to our formalization plan. Indeed, if the realizer
of x ≤ −(−x) is fairly simple, the realizer for the converse inequality is callcc that will trigger
backtracks. This is unacceptable: if we already need backtrack for algebraic properties as simple
as this one, seemingly straightforward algebraic computations might have very complex and
inefficient behaviors. Furthermore, callcc is unavoidable because opposite is defined through
negation and callcc is necessary to realize the double negation elimination. This is the very
reason for dropping Dedekind cuts and turning toward Cauchy sequences. Indeed, their ring
properties are directly inherited from Q as the ring of functions from N to Q. Of course, we will
lose some of the simplicity of the definition of Dedekind cuts, especially with respect to the order.

3.5.3 Cauchy sequences
Cauchy built the real numbers as the limits of converging rational sequences. In order to avoid a
vicious circle, we need to define a converging sequence without referring to its limit, which does
not exist yet. To do so, we use the Cauchy condition saying that terms of the sequence becomes
arbitrarily close to each other as their index increases (formal definition below). Sequences of
rational numbers that satisfy the Cauchy condition are said to be Cauchy sequences. Several
Cauchy sequences can produce the same real numbers, as soon as their difference tends to zero.
Therefore, real numbers are equivalence classes of Cauchy sequences to ensure uniqueness of
representation.

As Cauchy sequences are widely used to build intuitionistic constructions of real numbers
(e.g., [Koh08]), we are in more familiar ground and some of the problems they faced and solved
may be relevant in our present case. Moreover, such constructions were formalized, for instance
in the Coq proof assistant as the library C-CoRN [CFGW04], which ensures that all details have
been worked out. Yet, we must not forget the main differences between intuitionistic and classical
realizabilities: we can use excluded middle whereas they cannot; they can extract witnesses from
any formula whereas we can only do so from Π0

2 statements.
Let us first look at the Cauchy condition, used to define real numbers out of rational sequences.

Cauchy condition C x := ∀ε > 0.∃N ∈ N.∀m, p ≥ N. |xm − xp| ≤ ε

From a computational point of view, it gives the modulus of convergence of the sequence x. More
precisely, given a precision ε > 0, it gives an index N such that all terms of the sequence after
that index are at most ε apart from each other. Therefore, any term xn with n ≥ N can be used
as an ε-approximation of the real number represented by x. This is exactly what we want to
extract in the end: rational approximations at any precision. Nevertheless, this formula is Π0

3,
therefore we cannot extract witnesses from it. A simple but effective solution is to turn it into
a Π0

2 formula, or at least a formula that can be considered as a Π0
2 formula from the point of view

of extraction. To do so, we use the following proposition.

Proposition 3.5.3 (Universal closure of equalities)
Let A be a formula and ~x some first-order variables. Assume that the interpretation of A is
either ‖1‖ or ‖> ⇒ ⊥‖ depending on the interpretation of ~x. Then, we have:

‖∀~x.A‖ =
{
‖1‖ if for all ~n, ‖A[~n/~x]‖ = ‖1‖
‖> ⇒ ⊥‖ otherwise

Proof. By assumption on A, for any integer tuple ~n, we have ‖1‖ ⊆ ‖A[~n/~x]‖ ⊆ ‖> ⇒ ⊥‖. Since
‖∀~x.A‖ =

⋃
~n∈N ‖A[~n/~x]‖, this entails that ‖1‖ ⊆ ‖∀~x.A‖ ⊆ ‖> ⇒ ⊥‖. If for all integers ~n, we

have ‖A[~n/~x]‖ = ‖1‖, then we get ‖∀~x.A‖ =
⋃
~n∈N ‖A[~n/~x]‖ =

⋃
~n∈N ‖1‖ = ‖1‖. Otherwise,
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there exists ~n0 such that ‖A[ ~n0/~x]‖ = ‖> ⇒ ⊥‖. The inclusions ‖> ⇒ ⊥‖ = ‖A[ ~n0/~x]‖ ⊆
‖∀~x.A‖ ⊆ ‖> ⇒ ⊥‖ finally give ‖∀~x.A‖ = ‖> ⇒ ⊥‖.

The formula |xm − xp| ≤ ε has the same denotation as an equality14: ‖1‖ if it holds in
the standard model and ‖> ⇒ ⊥‖ otherwise. By proposition 3.5.3, the same is true of the
formula ∀mp. |xm − xp| ≤ ε with no relativization on m and p. We can put back some sort of
relativization through semantic implication, which performs semantic relativization as described
in Section 3.2.215: ‖∀mp. n ≥ N 7→ p ≥ N 7→ |xm − xp| ≤ ε‖ =

⋃
m,p≥N ‖|xm − xp| ≤ ε‖. Intuiti-

vely, removing relativization means that we consider sequences on all individuals rather than only
on integers.

Functions vs. predicates Another very important difference with intuitionistic constructions
is the notion of function that we are going to use. In intuitionistic realizability, we use computable
functions, whereas we want to have here the whole range of mathematical functions. If we define
functions from A to B as λc-terms realizing A ⇒ B as in intuitionistic logic, we will restrict
ourselves to computable (and total) functions. Therefore, we instead represent functions by their
set-theoretic definition: by total functional relations between A and B. The rational Cauchy
sequences are then represented by binary predicates that are assumed both total and functional.
This means that the Cauchy condition must be restated for predicates.

Totality Totx := ∀n ∈ N.∃q ∈ Q. x n q
Functionality Funx := ∀n ∈ N.∀p ∈ Q.∀q ∈ Q. x n p⇒ xn q ⇒ p = q
Cauchy condition C x := ∀ε ∈ Q+∗.∃N ∈ N.∀m∀p∀q∀r.

m ≥ N 7→ p ≥ N 7→ xmq ⇒ x p r ⇒ |q − r| ≤ ε

With this formulation, the Cauchy condition still means that q and r are valid ε-approximations
but we can no longer extract them from C x! Indeed, extracting a value is done with the
relativization predicates m ∈ N and q ∈ Q which contains a concrete representation of the values
of m and q. But we precisely had to remove relativization on m, p, q and r in order to recover
a Π0

2 formula for extraction! Hopefully, this is not a problem because we can recover the values
with the totality of the relation once we have the index N . As Totx must be Π0

2 for extraction,
this means that the formula defining x must be Σ0

1. The Cauchy condition is still required for
extraction to get N . We would like to avoid extracting this intermediate index N that is not part
of the extraction result. To do so, we need to incorporate it inside the totality of the relation.
One solution is to use a fixed modulus of convergence: by definition, the value in xn will be
a 2−n-approximation. In practice, this means that the precision ε is no longer required since it
is given by the sequence index n, so that we can drop N . Taking this idea one step further, we
could replace the index n of the sequence by a precision ε. Real numbers then become Cauchy
relations between rational numbers, what we call Cauchy approximations.

3.5.4 Cauchy approximations
Definition 3.5.4 (Cauchy approximation)
A Cauchy approximation is a total relation over Q+∗ × Q satisfying the following Cauchy
condition:

14Indeed, q ≤ q′ can be defined as max(q, q′) = q′ or as 2q + |q − q′|+ |q′ − q| = 2q′.
15This is correct because the semantic conditions n ≥ N and p ≥ N are not uniformly false in the standard

model. Otherwise, the union
⋃
m,p≥N would be empty and we would get an empty falsity value, i.e. > instead

of 1 or > ⇒ ⊥.
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Cauchy condition C x := ∀ε1 ∈ Q+∗.∀ε2 ∈ Q+∗.∀q1 ∈ Q.∀q2 ∈ Q.
x ε1 q1 ⇒ x ε2 q2 ⇒ |q1 − q2| ≤ ε1 + ε2 .

The totality ensures that approximations always exist, whereas the Cauchy condition ensures
their convergence. From now on, real numbers are defined as modified Cauchy sequences, called
Cauchy approximations.

Remarks 3.5.5
(i) Cauchy approximations are not functional relations: x ε is a set of valid ε-approximations.

Indeed, functionality is useless here: in set theory, its only purpose is to consider the
relation x as a function. Since we have to use relations here and not functions, we can drop
this requirement.

(ii) Cauchy approximations are not assumed to be monotonous, that is, given two precisions ε
and ε′ such that ε < ε′, an ε-approximation is not necessarily an ε′-approximation. Mono-
tonicity intuitively makes sense but it is not necessary so there is no reason to assume it.
Furthermore, if necessary, we can craft arithmetical operations in a way that enforces it.

Equality and ordering The definitions are adapted from the previous ones.

Equality x = y := ∀ε1 ∈ Q+∗.∀ε2 ∈ Q+∗.∀q1 ∈ Q.∀q2 ∈ Q.
x ε1 q1 ⇒ y ε2 q2 ⇒ |q1 − q2| ≤ ε1 + ε2

Large order x ≤ y := ∀ε1 ∈ Q+∗.∀ε2 ∈ Q+∗.∀q1 ∈ Q.∀q2 ∈ Q.
x ε1 q1 ⇒ y ε2 q2 ⇒ q1 ≤ q2 + ε1 + ε2

We directly notice that equality x = y is a subtype of inequality x ≤ y. Indeed, the condition
|q1 − q2| ≤ ε1 + ε2 entails q1 ≤ q2 + ε1 + ε2 so that ‖q1 ≤ q2 + ε1 + ε2‖ ⊆ ‖|q1 − q2| ≤ ε1 + ε2‖.
We even have the stronger result: |q1 − q2| ≤ ε1 + ε2 ≈ (q1 ≤ q2 + ε1 + ε2) ∩ (q2 ≤ q1 + ε1 + ε2).
Therefore, we do not need to convert realizers of equalities into realizers of inequalities.

It is worth pointing out that the Cauchy condition can be defined in terms of equality: by
C x := (x = x). This means in particular that equality defines a PER (Partial Equivalence
Relation) on total relations over Q+∗×Q and that the Cauchy condition makes it an equivalence.
Indeed, symmetry of equality follows from the symmetry of the definition and amounts to swapping
arguments. Transitivity requires to “cut ε in half”, and only uses totality and the following
tightening lemma: ∀q1 ∈ Q.∀q2 ∈ Q.(∀ε ∈ Q+∗. q1 ≤ q2 + ε)⇒ q1 ≤ q2.

Ring operations Addition, opposite and multiplication are directly lifted from the ones of Q.

Addition (x+ y) ε q := ∃ε1, ε2, q1, q2 ∈ Q+∗ ×Q+∗ ×Q×Q.
ε1 + ε2 ≤ ε & q = q1 + q2 & x ε1 q1 ∧ y ε2 q2

Opposite (−x) ε q := x ε (−q)
Multiplication (x ∗ y) ε q := ∃ε1, ε2, q1, q2 ∈ Q+∗ ×Q+∗ ×Q×Q.

ε1ε2 + |q2|ε1 + |q1|ε2 ≤ ε &
q = q1 + q2 & x ε1 q1 ∧ y ε2 q2

Observe that we use inequalities for the precision constraints, to be as flexible as possible and this
makes the resulting real number monotonous. Contrary to Dedekind cuts, Cauchy approximations
greatly simplify the algebraic properties of addition, opposite and multiplication. The problem
with Dedekind cuts is here trivially solved: −(−x) ε q ≡ x ε (−(−q)) ≈ x ε q because J−− qK
is JqK. The usual ring properties of addition and opposite, namely associativity, commutativity,
compatibility with equality, etc., are easily universally realized. Nevertheless, the universal
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realizers are quite big16 because the definition of equality is not an atomic formula, hence we do
not give them here. They are all given in the formalization of Cauchy approximations based on
the Coq formalization of classical realizability (see Section 3.7).

The problems with multiplication and division The very same properties for multipli-
cation are much more difficult to realize. This difficulty comes from the combination of three
factors: first, we need to explicitly give an error bound for our approximations; second, we use
absolute errors; third, we compare two approximations and not an approximation and the limit.
This problem does not appear as acutely in the original Cauchy construction. Indeed, Cauchy
sequences have a simple definition of multiplication: (x ∗ y)n := xn ∗ yn. It is then necessary to
prove that this new sequence is still a Cauchy sequence. The error we make is:

|xy − xnyn| = |(x− xn)(y − yn) + xn(y − yn) + yn(x− xn)| ≤ εxεy + |xn|εy + |yn|εx

As we can see, the error bound depends on the values of xn and yn. Hopefully, these values
can be bounded uniformly in n by the Cauchy property of x and y. On the opposite, Cauchy
approximations require to find an approximation within a given absolute error ε. It means that
we must control the error bound of the product depending on the error bounds of x and y. One
difficulty arises from the conversion of absolute errors on approximations of x and y into relative
errors by the multiplication between xn and yn. The other one stems from our definition of the
Cauchy condition that contains two different precisions ε and two approximations, instead of an
approximation and the limit. For example, to universally realize that multiplication is compatible
with equality, namely the formula ∀x1∀x2∀x3∀x4. x1 = x2 ⇒ x3 = x4 ⇒ x1x3 = x2x4, we
essentially have to prove |q1q2−q3q4| ≤ ε+ε′ under the following four assumptions |q1−q2| ≤ ε1+ε2,
|q3 − q4| ≤ ε3 + ε4, ε1ε3 + |q3|ε1 + |q1|ε3 ≤ ε and ε2ε4 + |q4|ε2 + |q2|ε4 ≤ ε′, plus the positivity
of ε1, ε2, ε3 and ε4. The problem intuitively comes from a lack of symmetry in the premises.
Indeed, in the conclusion, q1 and q2 play a symmetrical role whereas it is not the case in the
premises: we have |q1|ε3 but not |q2|ε3. The solution is to strengthen the inequality on ε in
the definition of multiplication, so that we can swap q1 for q2. We get the following condition:
2ε2(|q1|+ 2ε1) + 2ε1(|q2|+ 2ε2) ≤ ε.

Inverse is even more problematic around zero. Indeed, the absolute error bound on 1
x

depends on how close to zero x is. This motivates the introduction of a well-known predicate
in intuitionistic real analysis: apartness 6= . It is intuitionistically stronger than inequality but
classically equivalent17. Instead of asserting that two numbers are not equal, it gives a lower
bound on their difference. Therefore, if x and 0 are apart, we know an upper bound on the
absolute value of the inverse of x. This may require to be very precise with the apartness bound.

This intuition underlying apartness is also used to define strict ordering: we require a lower
bound on the difference between the two numbers considered. The definitions are all gathered
in Figure 3.6. The realization of the ring properties of real numbers follows roughly the usual
classical proofs, the subtleties being mostly to find the minimal hypotheses required. For example,
transitivity of ≤ requires totality only on the middle term whereas transitivity of < requires the
Cauchy condition on the middle term.

Caveat The definitions of multiplication and inverse are not given here because they are
currently not satisfactory. The difficulty here is to invent an inequality on the error bounds of the

16The smallest such realizer is λcε1ε2q1q2fg. f (λε3ε4q3q4xo. o c ε3 ε2 q3 q2 x g); it realizes ∀x.C x⇒ x+ 0 = x.
17In fact, in intuitionistic real numbers, apartness is the primitive predicate and equality is defined as its negation.

Inequality is therefore the double negation of apartness. Since the double negation elimination is a classical
reasoning principle, this explains why they are logically equivalent in classical logic but not in intuitionistic logic.
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Equality x = y := ∀ε1 ∈ Q+∗.∀ε2 ∈ Q+∗.∀q1 ∈ Q.∀q2 ∈ Q.
x ε1 q1 ⇒ y ε2 q2 ⇒ |q1 − q2| ≤ ε1 + ε2

Large order x ≤ y := ∀ε1 ∈ Q+∗.∀ε2 ∈ Q+∗.∀q1 ∈ Q.∀q2 ∈ Q.
x ε1 q1 ⇒ y ε2 q2 ⇒ q1 ≤ q2 + ε1 + ε2

Strict order x < y := ∃ε1, ε, ε2, q1, q2 ∈ (Q+∗)3 ×Q2.
x ε1 q1 & y ε2 q2 & q1 + ε1 + ε+ ε2 ≤ q2

Apartness x 6= y := ∃ε1, ε, ε2, q1, q2 ∈ (Q+∗)3 ×Q2.
x ε1 q1 & y ε2 q2 & ε1 + ε+ ε2 ≤ |q1 − q2|

Embedding of Q q′ ε q := 0 ≤ ε ∩ q = q′

Addition (x+ y) ε q := ∃ε1, ε2, q1, q2 ∈ (Q+∗)2 ×Q2.
ε1 + ε2 ≤ ε & q = q1 + q2 & x ε1 q1 ∧ y ε2 q2

Opposite (−x) ε q := x ε (−q)

Figure 3.6: Main definitions for Cauchy approximations.

arguments of the operation that ensure the adequate precision on the result. Furthermore, this
inequality must be simple enough to be convenient to manipulate inside proofs, notably the proofs
of the real axioms. As we have seen, the condition initially found for multiplication was not strong
enough to prove the compatibility with equality. The same problem may happen again with other
properties. Nevertheless, although these conditions on error bounds may be complex, they will
induce no computational overhead since they are transparent thanks to semantic implication.

A possible solution to solve the asymmetry problem in the definition of multiplication is
to follow Russel O’Connor’s regular functions [O’C07], and define equality with respect to
the same precision ε in both variables. The drawback is a loss of flexibility. For instance,
equality is no longer a subtype of inequality, unless we also define inequality with only one
precision. Transitivities are also more complex: for equality, we need to “cut ε in six parts” and
use the Cauchy condition. This computational cost can be reduced if we assume that Cauchy
approximation are monotonous, that is, ∀x∀ε∀q. ε < ε′ ⇒ x ε q ⇒ x ε′ q, which seems a reasonable
assumption but was not necessary until now. Furthermore, multiplication and inverse remain
more difficult than addition and opposite: for example, the definition of multiplication uses |q0|+1
with x 1 q0 as an absolute bound on q2. Maybe this additional complexity is unavoidable as both
operations are not uniformly continuous on their full domain, unlike addition and opposite.

3.5.5 Extraction and polynomials

Extractable real numbers The main contribution of this new classical formalization of
real numbers is to be oriented toward extraction. In particular, it must be efficient from a
computational point of view. Contrary to intuitionistic constructions where all definitions are
extractable, classical realizability does not allow us to extract all the real numbers we might define.
As we saw in Section 2.10, the formulæ that we can extract are the Π0

2 ones. This means that
we need to restrict the complexity of formulæ defining real numbers if we want to extract them.
More precisely, what we ultimately want to extract are ε-approximations of real numbers. They
are exactly given by the totality predicate Totx := ∀ε ∈ Q+∗.∃q ∈ Q. x ε q: its universal realizers
are programs that give an ε-approximation of the real number x for any positive precision ε.
Restricting this formula to be Π0

2 means that x must be given by a Σ0
1 formula. This suggest

to define the class of extractable real numbers as the real numbers defined by Σ0
1 formulæ. It is

important to notice that the previous definitions of arithmetical operations on real numbers do
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preserve extractable real numbers18. Extractable real numbers are complete: they encompass all
computable real numbers. Indeed, given a total computable function from Q to Q representing
approximations of a real number we can realize its totality thanks to Theorem 2.9.15 adapted
to Q instead of N, which makes no essential difference. For example, all algebraic numbers
can be represented by quantifier-free formulæ: to define a root of a polynomial P ∈ Q[X], take
xP ε q := |P (q)| ≤ kP ε where kP is the minimum of |P ′| over any compact interval I containing
the root we are looking for and on which P ′ does not cancel. This defines an atomic formula
semantically equivalent to an equality, because all the operations inside P are done over rational
numbers. The constant kP is necessary to avoid “flat polynomials” with so small derivatives
that a good precision on P (q) gives only a very poor precision for q. In fact, this is the only
assumption we need to make on P : the root α that we try to compute must be simple. It entails
that P ′ does not vanish on a neighborhood of α. This is not a restriction in general as multiple
roots of P are also roots of P ′ and of their gcd. Therefore, we can always divide P by the gcd of
its derivative and itself to eliminate multiple roots.

Root extraction from polynomials over Q We know how to express that a real number
is a root of a polynomial over Q. Nevertheless, we have not yet given explicitly an algorithm
to compute such a root, that is, a universal realizer of its totality. Moreover, to realize that the
unary predicate xP is indeed a real number, we also need to realize that it satisfies the Cauchy
condition and that the real number P (xP ) is zero. Let us look at how we can universally realize
these three formulæ. To this end, we consider a polynomial P in Q[X] admitting a simple root α.
We want xP to represent α. We write KP (resp. kP ) the maximum (resp. minimum) of |P ′|
over a compact interval I containing α and on which P ′ does not vanish. Such an interval exists
because α is taken to be a simple root of P . Intuitively, the smaller this interval, the better,
because the bounds KP and kP will be closer. By definition, we always have kP

KP
≤ 1. We first

consider the formula P (xP ) = 0. We can optimize equality a little bit since we compare P (xP )
to a rational number: taking rational approximations of 0 is useless.

Equality to q′ ∈ Q x = q′ := ∀ε ∈ Q+∗.∀q ∈ Q. x ε q ⇒ |q − q′| ≤ ε .

Evaluating P on a rational number q′ is simple because it produces a rational number. On
the opposite, evaluating P at a real point y (xP for instance) gives a real number defined by
P (y) ε q := ∃q′ ∈ Q. q = P (q′) & y

(
ε
‖P‖1

)
q′. Note that we again need to bound the growth

of P to find a suitable precision for y.

Lemma 3.5.6 (Universal realizer of P (xP ) = 0)
Given a polynomial P over Q admitting a simple root, the proof-like term λ f. f (λ x. x) is a
universal realizer of the formula P (xP ) = 0.

Proof. Let us first look at the shape of the formula P (xP ) = 0.

P (xP ) = 0 ≡ ∀ε ∈ Q+∗.∀q ∈ Q. P (xP ) ε q ⇒ |q| ≤ ε

≡ ∀ε ∈ Q+∗.∀q ∈ Q. (∃q′ ∈ Q. q = P (q′) & xP

(
ε

‖P‖1

)
q′)⇒ |q| ≤ ε

≡ ∀ε ∈ Q+∗.∀q ∈ Q. (∃q′ ∈ Q. q = P (q′) & |P (q′)| ≤
(

kP
‖P‖1

)
ε)⇒ |q| ≤ ε

18In fact, the source of non-computability is the completeness theorem (or any equivalent statement). Indeed,
all the other real axioms are satisfied by Q which is a decidable field. Thus, completeness is the very place where
non-computability enters the stage. Nevertheless, starting here, it then spreads into other axioms like dichotomy.
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Unfolding the existential quantifier, we finally get:

∀ε ∈ Q+∗.∀q ∈ Q. (∀Z. (∀q′ ∈ Q. q = P (q′) 7→ |P (q′)| ≤
(

kP
‖P‖1

)
ε⇒ Z)⇒ Z)⇒ |q| ≤ ε

The first two erasing abstractions are for the realizers of ε ∈ Q+∗ and q ∈ Q that will not be used.
Next we have f  ∀Z. (∀q′ ∈ Q. q = P (q′) 7→ |P (q′)| ≤

(
kP
‖P‖1

)
ε⇒ Z)⇒ Z. Taking Z := |q| ≤ ε,

applying f means we only have to realize ∀q′ ∈ Q. q = P (q′) 7→ |P (q′)| ≤
(

kP
‖P‖1

)
ε ⇒ |q| ≤ ε.

Again, the erasing abstraction removes the useless realizer of q′ ∈ Q. Under the assumption
q = P (q′), the implication |P (q′)| ≤

(
kP
‖P‖1

)
ε ⇒ |q| ≤ ε holds in the standard model since

kP
‖P‖1

≤ 1 and it is therefore realized by the identity.

Lemma 3.5.7 (Universal realizer of xP = xP )
Given a polynomial P over Q admitting a simple root, the proof-like term λ x. x is a
universal realizer of xP = xP .

Proof. The formula xP = xP expands as

∀ε1 ∈ Q+∗.∀ε2 ∈ Q+∗.∀q1 ∈ Q.∀q2 ∈ Q. |P (q1)| ≤ kP ε1 ⇒ |P (q2)| ≤ kP ε2 ⇒ |q1−q2| ≤ ε1 +ε2 .

The first four erasing abstractions remove the realizers of ε1 ∈ Q+∗, ε2 ∈ Q+∗, q1 ∈ Q and q2 ∈ Q.
Only the implication |P (q1)| ≤ kP ε1 ⇒ |P (q2)| ≤ kP ε2 ⇒ |q1 − q2| ≤ ε1 + ε2 remains, which is
realized by the identity because it holds in the standard model. Indeed, by the triangular inequality,
the inequalities |P (q1)| ≤ kP ε1 and |P (q2)| ≤ kP ε2 entail that |P (q1) − P (q2)| ≤ kP (ε1 + ε2).
Since kP > 0 by assumption on I and kP |q1− q2| ≤ |P (q1)−P (q2)| by definition of kP , we deduce
that |q1 − q2| ≤ ε1 + ε2.

The totality of xP is the only formula for which we do not need to give explicitly a universal
realizer because they already exist. Intuitively, such a universal realizer is an algorithm computing
the root of P . The formula is only a specification which means that any algorithm computing
correct roots of polynomials will work, for example Newton’s iteration. It is easy to formalize this
intuition by transforming the formula into an universally equivalent one. The totality condition
∀ε ∈ Q+∗∃q ∈ Q. xP ε q unfolds to ∀ε ∈ Q+∗.∀Z.(∀q. [q]⇒ xP ε q ⇒ Z)⇒ Z. Since the definition
of xP ε q is the inequality |P (q)| ≤ kP ε over Q, we can replace the implication following it by a
semantic implication. If we also swap the order of arguments (using A 7→ B ⇒ C ≈ B ⇒ A 7→ C),
we get ∀ε ∈ Q+∗.∀Z.(∀q. |P (q)| ≤ kP ε 7→ [q] ⇒ Z) ⇒ Z. Given an algorithm t computing
approximations of a root of P , let us write f : Q→ Q the mathematical function it computes.
By Theorem 3.4.1 (adapted19 to Q instead of N), t is a universal realizer of ∀ε ∈ Q+∗. f(ε) ∈ Q.
By definition, the function f validates the semantic condition P (f(ε)) ≤ KP ε. Unfolding
f(ε) ∈ Q into ∀Z. ([f(ε)] ⇒ Z) ⇒ Z, we see that ∀ε ∈ Q+∗. f( kPKP ε) ∈ Q is a subtype of
∀ε ∈ Q+∗∀Z.(∀q. |P (q)| ≤ kP ε 7→ [q]⇒ Z)⇒ Z. Therefore, t � ∀ε ∈ Q+∗. f( kPKP ε) ∈ Q entails
that t � ∀ε ∈ Q+∗∀Z.(∀q. |P (q)| ≤ kP ε 7→ [q] ⇒ Z) ⇒ Z. In practice, this means that we can
use any existing algorithm computing polynomial roots to realize the totality of xP with a slight
loss of precision, the factor kP

KP
, due to our logical description of the problem. Moreover, there is

no need to translate this algorithm into the KAM language. Indeed, we can introduce instead a
new instruction root with the following evaluation rule:

Polynomial roots root ? q̂ · k · π � k ? f̂(q) · π
19In fact, it is a particular case of Theorem 4.3.3, applied to the datatype Q(s) := {s is a rational number}.
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It is an abstract view of the algorithm. Then, every time this instruction reaches head position,
we read the value q from q̂, we compute the desired root by the external algorithm and we plug it
back into the stack.

Root extraction from polynomials over R The technique presented in the last paragraph
allows us to extract simple real roots from polynomials over Q. We want to extend this result to
polynomials over R. The main difference is that polynomials are no longer defined by a finite
sequence of rational numbers but by a finite sequence of real numbers. In particular, this means
that a polynomial P is computationally approximated by a family of polynomials Pε for each
precision ε. The polynomials Pε are obtained from P by taking approximations of its coefficients.
There are two possible definitions for Pε: either take ε-approximations of the coefficients of P
or find suitable approximations of the coefficients of P such that ‖P − Pε‖1 ≤ ε. It amounts to
choosing what the meaning of ε is: an error bound on the coefficients or on the polynomial norm.
Of course, both are related since we work on a compact interval I. Indeed, if ε is an error bound
on the coefficients ai of P , we have:

|P (x)− Pε(x)| =

∣∣∣∣∣
n∑
i=0

(ai − (ai)ε) · xi
∣∣∣∣∣ ≤

n∑
i=0
|ai − (ai)ε| · |x|i = ε

n∑
i=0
|x|i

By symmetry, we only consider the case x ≥ 0. As a sum of increasing functions,
∑n
k=0 |x|k

is increasing on R+. Therefore the bound on ‖P − Pε‖1 is ε
∑n
k=0M

k = Mn+1−1
M−1 ε where n is

the degree of P and M is the maximum of the absolute values of the extremities of I20. The
important point here is that this bound only depends on P and I. Because they are both inputs
to the problem, it can be computed without additional information. To stay consistent with the
notation on real numbers, we choose to let ε denote an error bound on the polynomial norm.
This requires to approximate the coefficients of P with a precision M−1

Mn−1ε to build Pε.
Evaluation of a real polynomial P =

∑n
k=0 aix

i at a rational point r is then defined in a
symmetrical fashion compared with the evaluation of a rational polynomial at a real point: we
need to approximate the polynomial instead of the point. In detail, this gives:

P (r) ε q := ∃b1, . . . , bn ∈ Qn. q =
n∑
k=0

bir
i & a1

(
M − 1
Mn − 1ε

)
b1 ∧ . . . ∧ an

(
M − 1
Mn − 1ε

)
bn (*)

Evaluation of a real polynomial at a real point simply combines approximations for both the
polynomial and the evaluation point. In the end, the root for a real polynomial is again defined
by xP ε q := |P (q)| ≤ kP ε except that here P (q) is no longer an atomic formula. Therefore the
notation |P (q)| ≤ kP ε must be defined in this case. It is done with no difficulty by adding the
conjunct |q| ≤ kP ε to (*). Provided the coefficients ai are all extractable, it is also the case of xP .
Nevertheless, the universal realizers of xP = xP , P (xP ) = 0 and TotxP will not be as simple as
before because of xP is now a Σ0

1 formula.

3.5.6 Conclusion
The real number construction presented in this section is still incomplete but its design is
motivated by comparisons to the existing constructions. It combines the expressiveness of
a classical mathematical definition and the computational intuitions given by intuitionistic

20We implicitly assume that M 6= 1. To ensure this and have a smaller M , we can translate the polynomial P
so that the interval I is centered around 0.
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constructions. On the specific problem of root extraction, we do not get new or better algorithms
but instead can take advantage of the previous ones thanks to the extensibility of the KAM and
of the whole framework in general. The conclusion here is that classical realizability is no magic
bullet solving more efficiently well-studied problems like root extraction, but it can directly take
advantage of past research in the domain and easily integrate it.

Absolute and relative errors Following Cauchy’s construction of real numbers in mathema-
tics, we have defined real number approximations with respect to an absolute error. This choice
is mathematically speaking the most natural one. Nevertheless, in numerical analysis, we prefer
in practice relative error bounds to absolute ones. Therefore, we may wonder how simpler, more
practical or more efficient such a definition would be. The most obvious change would be to move
some of the difficulty of defining multiplication toward addition because it is there that absolute
and relative errors would mix. Indeed, the complicated bound on absolute errors for multiplication
given by the inequality 2ε2(|q1|+ 2ε1) + 2ε1(|q2|+ 2ε2) ≤ ε then becomes the much simpler bound
ε1 + ε2 + ε1ε2 ≤ ε on relative errors which no longer refers to values. In this setting, defining the
Cauchy condition is no longer as straightforward, again because we cannot make reference to the
exact value of the real number: |x− xε| <= ε · |x| is replaced by |x1 − x2| ≤ (ε1 + ε2) · | ? |. What
should we put for ?, x1 or x2? A combination of both (arithmetical mean, geometrical mean,
etc.)? The only choice seems to be the strongest condition, namely min(x1, x2), because we can
find counter-examples for the other reasonable choices. Furthermore, this definition does not
solve the problem of asymmetry between premises and conclusion as we saw in the compatibility
of multiplication with equality.

Generalizing both absolute and relative errors, it might be interesting to consider the error
model defined by |x − q| ≤ ε|q| + µ. This is currently a research topic in floating-point arith-
metic [Dem84, BN10, Ngu12] and is known to be harder but more flexible than both absolute
and relative errors. This is not surprising since it combines both into one and there is no longer a
“good case” as we always mix absolute and relative errors. Nevertheless, we hope that in the end
it will prove more convenient for the user who will be able to choose appropriate precisions ε
and µ when building new real numbers.

3.6 Realizer optimization and classical extraction
Realizer optimization Currently, our main technique to produce realizers, apart from building
them by hand (and proving that they are indeed realizer), is to use the adequacy lemma. The
version used most often is the one for closed terms (Theorem 2.8.3) which says that ` t : A entails
t � A and allows us to produce ready-to-use universal realizers. Nevertheless, we must not forget
the full adequacy lemma which is more flexible because it allows for replacing free variables of t
by realizers that can be specific to the current realizability model. Here we are interested in
optimizing part of a proof, that is replacing it by a more efficient universal realizer. From the
point of view of the proof, it amounts to removing the part we want to optimize and putting it
as a hypothesis in the context. This hypothesis will stay in the context for the whole proof and
end up in its conclusion sequent. Then, the adequacy lemma on this new proof with an extra
hypothesis will allows us to replace the hypothesis by any realizer of its type. Seen from the
realizer point of view, we have replaced some piece of code by a hopefully more efficient version.
In the extreme case, we can even replace full proofs by more efficient realizers. The main interest
of the methodology is that it is correct by construction. Indeed, the proof point of view ensures,
by the adequacy lemma, that the resulting λc-term is correct. These optimizations can have
a very important impact on performance because they can improve the complexity by several
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exponents. Indeed, computation performed by realizers extracted from proofs are sometimes
useless and we can simply erase them.

If we want to replace realizers by more efficient ones, we must have more efficient realizers.
One solution is to build them by hand but it does not scale very well. The other solution is to look
for a class of formulæ for which we know efficient realizers. Such a class is given by Theorem 2.9.4
which says that every valid implication chain of equalities is realized by the identity. In particular,
thanks to logical consistency (Theorem 2.6.2), every provable linear implication chain of equalities
is realized by the identity. We can widen this class to relativization: if a closed linear implication
chain of equalities is valid, the relativization only adds useless arguments that can be ignored21.
In particular, this applies to equations about functions over individuals which are all realized by
the identity, even though their definition may be complex or recursive.

As an example, let us consider the case of commutativity of addition: the formula ∀x ∈
N.∀y ∈ N. x + y = y + x. According to Theorem 2.9.4, it admits λ x. x as a universal
realizer, containing two erasing abstractions to take care of the useless relativizations on x
and y. Let us now sketch the realizer extracted from the proof of this formula, as building
the full formal proof would be too large. After introducing the universal quantifiers and their
relativizations, we have to prove x : m ∈ N, y : n ∈ N ` ?? : m + n = n + m. This is done
by induction on n, that is, by applying y. We than have to prove both m + 0 = 0 + m and
∀x.m+ x = x+m⇒ m+ s x = s x+m. Using the axioms on + given in Figure 2.1122, we prove
instead m = 0 +m and ∀x.m+ x = x+m⇒ s (m+ x) = s x+m. Both cases are then done by
induction on m, that is by applying x, and the resulting proofs combine as their main ingredients
the induction hypothesis (when there is one), axioms on + and properties of Leibniz equality
given Figure 2.3. In a nutshell, we use three inductions and more precisely two nested levels of
induction. This means that the resulting realizer is quadratic in the values of n and m23! As
we can see in this case, realizer optimization indeed allows us to remove a quadratic term and
replace it with a constant one. This difference is very clearly illustrated in Figure 3.7 where we
compare the size of the realizer obtained by classical extraction (see next paragraph) and the
optimized one.

Classical extraction The adequacy theorem is a technique to extract a universal realizer
from a proof. If this process was restricted to PA2, it would not be very useful since proofs
are often done in more expressive systems. Chapter 4 exposes one such system to which
classical realizability is extended: higher-order Peano arithmetic. Other usual systems include for
instance Zermelo-Fraenkel set theory and the Calculus of Constructions with universes (the logic
underlying the Coq proof assistant24). Classical realizability models have been developed for
these frameworks [Kri01, Miq07] but, without surprise, these models are more complex than the
one of PA2 because the underlying theories are much more powerful. Nevertheless, our results
do translate in these settings because both contain a fragment isomorphic to PA2. This is in
particular interesting for classical extraction from the Coq proof assistant as was developed by
Alexandre Miquel [Miq09a]. In his plugin kextraction, Coq terms are translated into λc-terms
and some extracted terms are overridden by more efficient realizers, according to the ideas of the
previous paragraph. It also implements primitive integers as described in Section 3.4. Extracted
realizers can then be executed in the λc-calculus interpreter Jivaro [Miq09c]. Note that the
extraction plugin encompasses also (co-)inductive definitions, although the theoretic framework

21This is true because our only quantifier is universal quantification.
22This presentation is slightly different from the one of the Coq proof assistant because the recursive argument

is the second one.
23No matter what it representation of n and m is, even by binary words or as a primitive datatype.
24This is no longer completely accurate because of several extensions like inductive and coinductive types.
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Figure 3.7: Extracted and optimized realizers of the commutativity of addition.

justifying such extensions does not exist yet. They are completely experimental and were proven
sound only for the case of natural numbers. This soundness result can be adapted to a finite
number of inductive definitions but the general setting remains to be built.

3.7 Coq formalization
Classical realizability has been formalized in the Coq proof assistant [CDT12]. This work has
nothing to do with the classical extraction feature presented earlier. Indeed, classical extraction
allows us to build λc-terms as realizers extracted from proofs, whereas here we are interested
in formalizing the theory of classical realizability. The former uses Coq as a source of PA2
proof terms to get universal realizers whereas the latter uses Coq to check and automate the
construction of realizability proofs. The main idea of this formalization is to be as generic and
extensible as what the classical realizability framework permits. In particular, this means that all
the parameters of the paper construction are kept as parameters in the formalization. This Coq
development is available at http://perso.ens-lyon.fr/lionel.rieg/thesis/.

3.7.1 Formalization of the KAM
Instead of the presentation given in Section 2.1.1, we prefer to use the historical KAM, which is
more low-level and thus easier to implement.

Historical KAM The KAM was initially designed as a real machine and therefore did not
rely on as complex an operation as substitution. Instead, an environment was carried around
and looked into when evaluating a variable. Notice that it is not an extension as advocated in
Section 2.1.1 because we change the definition of the terms. This presentation has the advantage of
using only atomic operations (i.e. their execution does not depend on the size of their arguments)
and is resumed in Figure 3.8. We also do not need an external method to perform substitution
on terms as it is implemented by environments. Intuitively, environments are a form of explicit
substitutions [ACCL91], with the difference that they are finite. On the opposite, the presentation

http://perso.ens-lyon.fr/lionel.rieg/thesis/
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of Section 2.1.1 is more suited to pen and paper classical realizability, because it does not have
the burden of explicitly managing substitutions with environments. Proofs are also easier because
we can then reason directly on t[u/x] without having to decompose it into several steps.

Terms t, u := x | λx. t | t u | κ
Environments e := ∅ | e, x← c
Closures c := t[e] | kπ
Stacks π := α | c · π
Processes p := c ? π

Skip x[e, y ← c] ? π � x[e] ? π when x 6= y

Access x[e, x← c] ? π � c ? π
Push (t u)[e] ? π � t[e] ? u[e] · π
Grab (λx. t)[e] ? c · π � t[e, x← c] ? π
Save callcc[e] ? c · π � c ? kπ · π
Restore kπ′ ? c · π � c ? π′

Figure 3.8: Historical presentation of the KAM.

Formalization There is no big surprise for the definition of the KAM once we know that we use
the historical version with environments. Notice that we use a named syntax for the λc-calculus.
The reason for this choice is that we will never perform substitution as we use environments and
we will never have to deal with α-equivalence since all terms are closed. Therefore, we might as
well use the usual paper notations which are much more readable than De Bruijn indexes and
more usable than Parametric HOAS [Chl08].

Parameter const : Set.
Parameter callcc : const .
Parameter stack_const : Set.

(∗∗ Proof−like terms ∗∗)
Inductive term : Set :=
| Cst : const _ term
| Lam : string _ term _ term
| Var : string _ term
| App : term _ term _ term.

(∗∗ Closures , stacks and environments ∗∗)
Inductive Λ : Set :=
| Closed : term _ env _ Λ
| Cont : Π _ Λ

with Π : Set :=
| Scst : stack_const _ Π
| Scons : Λ _ Π _ Π

with env : Set :=
| Enil : env
| Econs : string _ Λ _ env _ env.

For convenience, we declare Cst, Var, and Scst as coercions in order to use instructions, variables
and stack constants without their constructors. We also define usual notations.
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Notation "’λ’ n t" := (Lam n t).
Notation "t @ s" := (App t s ).
Notation "t ↓ e" := (Closed t e).
Notation "k[ π ]" := (Cont π).
Notation "t · s" := (Scons t s ).
Notation "x ← c ; e" := (Econs x c e).
Notation "∅" := Enil.

The notation x ← c ; e is written in the opposite order as its intended meaning e, x← c because
it is closer to the notation for lists, which are the underlying data structure.

After defining a function get reading the value of a variable in an environment, follow the
definition of processes and the axiomatization of the reduction relation �. It needs to be a
transitive relation that satisfies five axioms. There are only five axioms instead of the six of
Figure 3.8 because the two axioms for variables (Skip and Access) are combined into one.
(∗∗ Processes ∗∗)
Inductive process := Process : Λ _ Π _ process .
Notation "c ’?’ s" := (Process c s) (at level 55).

(∗∗ ∗∗ Reduction rules ∗∗)

Parameter red : process _ process _ Prop.
Axiom red_trans : forall p1 p2 p3 , red p1 p2 _ red p2 p3 _ red p1 p3 .
(∗ reduction rules: grab, push, save, restore , variable ∗)
Axiom red_Lam : forall n t c e π, red ((λ n t) ↓ e ? c ·π) (t ↓ (n←c;e) ? π).
Axiom red_App : forall t t ’ e π, red ((t @ t ’) ↓ e ? π) (t ↓ e ? t ’ ↓ e · π).
Axiom red_cc : forall t e π, red ( callcc ↓ e ? t ·π) (t ? k[π] ·π).
Axiom red_k : forall t π π ’, red (k[π] ? t ·π’) (t ? π).
Axiom red_Var : forall n e π, red (Var n ↓ e ? π) (get n e ? π).

We can finally define some common λc-terms.
Definition Id := λ"x" "x".
Definition nId := λ"x" ("x" @ "x"). (∗ or any λx. x u ∗)
Definition tt := λ"x" λ"y" "x".
Definition ff := λ"x" λ"y" "y".
(∗∗ A universal realizer of excluded middle ∗∗)
Definition em := λ"f" λ"g" callcc @ λ"k" "g" @ λ"i" "k" @ ("f" @ "i" ).
(∗∗ Turing’ s fixpoint operator ∗∗)
Definition Y := (λ"x" λ"y" "y" @ ("x" @ "x" @ "y")) @

(λ"x" λ"y" "y" @ ("x" @ "x" @ "y")).

3.7.2 The realizability model
Definition of the realizability model As expected, we first define the pole as an abstract
parameter satisfying the anti-evaluation property together with some notation.
Parameter pole : process _ Prop.
Notation "p ’∈’ ’⊥⊥’" := (pole p).
Axiom anti_evaluation : forall p p ’, red p p’ _ p’ ∈ ⊥⊥_ p ∈ ⊥⊥.

Before defining the realizability model, we should first define what are the formulæ and what
is their interpretation. Since we have universal quantifications (of first- and second-order), this
means taking care of substitutions inside formulæ. Furthermore, such a definition would be a
closed inductive type so that we could not add connectives on the fly and the proofs would be
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much less generic. Indeed, they would hold for this specific language of formulæ and not for any
language containing at least the connectives used, regardless of its full definition. For these two
reasons, we prefer to avoid defining formulæ syntactically and rather use a shallow embedding to
define formulæ by their interpretation.

The main drawback of this decision is that when the interpretation of a connective depends on
the realizability model (e.g. implication), then this connective cannot be defined outside a given
realizability model. In particular, we cannot properly define universal realizers since formulæ do
not exists outside the reference realizability model. In fact, there is a solution to this problem:
to parametrize connectives by a realizability model, which is implicitly done by the discharge
mechanism of Coq that we use. Indeed, we can recover then the usual meaning of universal
realizers, albeit with an upside-down definitional structure: formulæ depend on realizability
models. As a consequence, proving most specification results is not easy since they usually rely
on several well-chosen realizability models. Yet, we can still work in a specific realizability model
by adding assumption about the pole. This is enough to prove the specification of 1 because,
given t and π, we only use the pole ⊥⊥ := {p | p � t ? π}. What is currently difficult is to use
several realizability models at once.

Nevertheless, this design choice has two very valuable advantages. First, to define a new
connective, it suffices to give its falsity value (and from Coq’s point of view, the connective
will simply be a notation for its falsity value) so that we can define connectives on the fly. In
particular, parameters are already included in this syntax. Second, we no longer need to define
an interpretation function.

As falsity values are sets of stack, they are naturally represented by predicates over stacks.
Definition formula := Π _ Prop.
We can now roll out the definitions of classical realizability.
Definition Fval (F : formula) (π : Π) := F π.
Notation "π ’∈’ ’‖’ F ’‖’" := (Fval F π).

Definition realizes t F := forall π, π ∈ ‖F‖ _ t?π ∈⊥⊥.
Notation "t  F" := ( realizes t F).
Notice that t is a closure and not a term. In particular, what we wrote t  A in the previous
chapters requires here to quantify over environments: ∀e. t ↓e  A.

Logical connectives Logical connectives must be defined in the right order: first implication,
then universal quantification (with its numerous notations) and finally everything else (existential
quantification, conjunction, disjunction, . . . ). In order not to mix connectives between classical
realizability and Coq, we do not use exactly the same symbols: ∀,∃,∧,∨,¬,→ are used for
classical realizability (the object language) whereas forall, exists, f , g , ∼, _ are used for Coq
(the meta-language).
Definition Impl A B := fun π⇒
match π with
| Scst _ ⇒ False
| t ·π’ ⇒ t A f π’ ∈‖B‖

end.
Notation "A ’→ ’ B" := (Impl A B).

Definition Forall T f : formula := fun π ⇒ exists t : T, π ∈ ‖f t‖.
Remember that the falsity value of universal quantification is the union of the falsity values of
all its possible instances. Binding is done by Coq since we use a shallow embedding and the
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union naturally converts to an existential quantification. Note that this universal quantification is
parametrized by the type of the object being quantified, so that it covers both first- and second-
order quantifications. At this point, we introduce notations for iterated universal quantification,
existential (possibly iterated) quantification and their relativization according to the end of
Section 2.2. Since Coq’s notations are not flexible enough, we need to define the relativized
notations for every arity of quantification, hence the use of ∀n and ∃n.

∀a1 . . . an, F := exists a1 . . . exists an. F

∃a1 . . . an, F := ∀Z, (∀a1 . . . an, F → Z)→ Z

∀na1, . . . , an ∈ P1 ×· · ·× Pn, F := ∀a1 . . . an, P1 a1 → . . .→ Pn an → F

∃na1, . . . , an ∈ P1 ×· · ·× Pn, F := ∀Z, (∀a1 . . . an ∈ P1 ×· · ·× Pn, F → Z)→ Z

Next come the definitions of the other connectives, together with propositional constants.

Definition Top : formula := fun _ ⇒ False .
Notation ">" := Top.

Definition bot := ∀ Z, Z. (∗ or fun _ ⇒ True ∗)
Notation "⊥" := bot.

Definition one := ∀ Z, (Z → Z).

Notation "¬ F" := (F → ⊥).

Definition and A B := ∀Z, (A → B → Z) → Z.
Notation "A ∧ B" := (and A B).

Definition or A B := ∀Z, (A → Z) → (B → Z) → Z.
Notation "A ∨ B" := (or A B).

Notice that conjunction and disjunction are non associative because we optimize them for
the n-ary version in the same way as what we did for existential quantification. For instance,
A1 ∧ . . .∧An := ∀Z, (A1 → . . .→ An → Z)→ Z is the optimized form of (A1 ∧A2)∧ . . .∧An ≡
∀Zn−1, (. . . (∀Z1, (A1 → A2 → Z1) → Z1) → . . .) → An → Zn−1) → Zn−1. We also define the
intersection and the semantic implication exactly according to their paper definition.

Definition mapsto (c : Prop) F := fun π ⇒ c f π∈ ‖F‖.
Notation "c ’ 7→’ F" := (mapsto c F).

Definition inter A B := fun π⇒ π ∈ ‖A‖ g π∈ ‖B‖.
Notation "A ’∩ ’ B" := ( inter A B).

Note that 7→ is indeed the correct connective: if c holds, c 7→ F is the same as F and if it does
not, no stack belong to c 7→ F , i.e. c 7→ F ≈ >.

A first formalized proof At this point, everything is set up to build our first proof of
classical realizability in Coq. Let us prove for instance that the identity term realizes the
formula 1 := ∀Z.Z ⇒ Z, called one here to distinguish it from the integer.

Lemma Id_realizer_by_hand : forall e, Id ↓ e  one.

First of all, we need to unfold Id and one.
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1 subgoal
______________________________________(1/1)
forall e : env, (λ"x" "x")↓e (∀Z : formula, Z → Z)

1 subgoal
e : env
π : Π
Hπ : π∈ ‖∀Z : formula, Z → Z‖
______________________________________(1/1)
(λ"x" "x")↓e ? π ∈ ⊥⊥

Now since π ∈ ‖∀Z : formula, Z → Z‖, we know that π can be written t · π′ with t  Z and
π′ ∈ ‖Z‖ for some Z. We destruct first Hπ to get Z and then π.
2 subgoals
e : env
Z : formula
Hπ : Snil ∈‖Z → Z‖
______________________________________(1/2)
(λ"x" "x")↓e ? Snil ∈⊥⊥
______________________________________(2/2)
(λ"x" "x")↓e ? t · π ∈ ⊥⊥

This first branch is contradictory since an empty stack cannot realize Z → Z.
1 subgoal
e : env
t : Λ
π’ : Π
Z : formula
Hπ : t · π’ ∈‖Z → Z‖
______________________________________(1/1)
(λ"x" "x")↓e ? t · π ∈ ⊥⊥

For this second branch, we can now destruct Hπ again to get the properties about t and π′.
1 subgoal
e : env
t : Λ
π’ : Π
Z : formula
Ht : t Z
Hπ : π’ ∈‖Z‖
______________________________________(1/1)
(λ"x" "x")↓e ? t · π’ ∈⊥⊥

Now we want to evaluate this process, that is to use the closure of ⊥⊥ under anti-evaluation to
reach t ? π′. But we have to do it in two steps, first by the red_Lam rule to get the intermediate
process ”x” ↓(”x”← t; e) ? π′ and then by the red_Var rule.
1 subgoal
e : env
t : Λ
π’ : Π
Z : formula
Ht : t Z
Hπ : π’ ∈‖Z‖
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______________________________________(1/1)
t ? π’ ∈⊥⊥

Now we use the assumption Ht and are left with π′ ∈ ‖Z‖ to prove, which is exactly the hypothesis
Hπ’. All in all, here is the full proof script.
Lemma Id_realizer_by_hand : forall e, Id ↓ e  one.
Proof.
unfold one, Id .
intros e π Hπ.
destruct Hπ as [Z Hπ].
destruct π as [| t π ’].
contradiction Hπ.
destruct Hπ as [Ht Hπ’].
apply anti_evaluation with (t?π ’).
apply red_trans with ("x" ↓ ("x"←t;e) ? π ’).
apply red_Lam.
apply red_Var.

apply Ht.
assumption.

Qed.

As we can see, most of the steps in this proof are not the essential part of the paper proof.
Indeed, destructing the stack and applying anti-evaluation each takes four lines out of twelve,
whereas they should be done in one step. This observation calls for some automation of these
“administrative” parts of proofs.

3.7.3 Automation tactics
As with the definition of classical realizability, we want our tactics to be both as modular as
possible and extensible to encompass new user-defined connectives. To do so, we will provide
simple ways for the user to extend the low-level tactics to his new connectives and the higher-level
tactics will automatically take advantage of these modifications.

The low-level tactics only take care of the two most basic “administrative” steps: namely
exhibiting the first element of a stack and performing “one step”25 of evaluation. In order to allow
for extensibility, these tactics are written in CPS style: whenever they fail, they give control to a
tactic given as argument. This permits both to recover failure due usually to new instructions, and
to customize the order in which the low-level tactics are called, to improve efficiency. Furthermore,
it allows us to write very simple tactics that can manage only one specific instruction or logical
construction, making the whole development easier to debug and more modular.

On the opposite, the high-level tactics perform the high-level steps that we write in proofs,
like performing several or all steps of evaluation or fully decomposing a stack.

Stack decomposition Destructing a stack is a very simple operation that can be done by
looking at the shape of the falsity value it belongs to. The basic tactic doing this is basic_dstack
which takes two arguments. The second one is the hypothesis to be used for destruction (e.g.
Hπ : π ∈ ‖∀Z : formula, Z → Z‖). The first one is a “failure handler” tactic to apply on this
hypothesis in case of failure because of a new connective (e.g. the implication [e] → A for
primitive integers). The high-level tactic that fully decomposes a stack is dec that takes as only

25Performing one step of reduction means that we do not use the transitivity property of the evaluation relation,
we stick to the other axioms it satisfies. Initially, this covers the five axioms given in Section 3.7.1 but they can be
extended with reduction rules for other instructions added by the user.
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argument the stack to decompose. Extending them, for instance to deal with primitive integers
(see Section 3.7.4), can be done by defining a new basic tactic dealing with this new connective.
Ltac int_dstack tac Hπ := [...]

Ltac dstack ::= basic_dstack ltac: (int_dstack fail ).
The tactic dstack is the one used by dec so we just need to redefine26 it by incorporating
int_dstack and dec will be automatically updated. This is the place where we can choose which
tactics to use and their respective order. For instance, here basic_dstack is the first tactic called
because it is more likely to match the shape of a falsity value (implication and quantification are
more common than primitive integers).

Anti-evaluation It amounts to performing reduction of the process in the goal. Like for stack
decomposition, this is an operation that can be done syntactically by looking at the shape of
the process. The basic tactic doing this is basic_Keval which takes as only argument a “failure
handler” tactic. This handler is called when a user-defined instruction is in head position (e.g.
add_int, the addition of primitive integers). The high-level tactic performing all the evaluation
step is Kevals which is based on the one step evaluation tactic Keval. As in the case of stack
decomposition, extending them to deal with operations on primitive integers simply amounts to
defining a new tactic int_Keval and incorporating it to Keval, which will update Kevals.
Ltac Keval ::= basic_Keval ltac: (int_Keval fail ).

Using these two tactics, we can shorten the proof of our lemma and perform each kind of
administrative steps (stack destruction and anti-evaluation) in a single tactic call.
Lemma Id_realizer_intermediate : forall e, Id ↓ e  one.
Proof.
unfold one, Id .
intros e π Hπ.
dec π.
Kevals.
apply Ht.
assumption.
Qed.
Furthermore, this proof is so simple that it can be completely proven with a fully automated
tactic that will be presented in the next paragraph: Ksolve.
Theorem Id_realizer : forall e, Id ↓ e  one.
Proof.
unfold one, Id .
Ksolve.
Qed.

Higher-level tactics In addition to the tactics performing stack decomposition and anti-
evaluation, there are other tactics that help speeding up proofs and even try some automated
proof search or use subtyping. A short list is given in Figure 3.9. it is sometimes useful to restrict
the behavior of the tactics, for instance when we do not want a full reduction but only up to a
certain point, or when a guessed value is wrong. For this reason, there are also variants of the
start and find tactics, namely startn and findn that take an integer as argument giving the
limit of allowed steps.

26Hence the use of “::=” instead of “:=” as the definitional symbol.
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ok/eok Solve obvious goals (t  >, π ∈ ‖⊥‖), . . . ).
start Perform operations required at the beginning of a proof.

Contain dec and Kevals.
find Use eexists to guess instantiation of ∀ then use eok

to try solving the resulting goals (removing meta-variables).
Ksolve Automated procedure solving goals with simple guesses (it uses find).

Stop whenever creating a goal of the shape t  A.
Kmove Same as Ksolve but do not perform guesses.
subtyping Solve subtyping goals using the Ksubtype hint database.

Figure 3.9: High-level tactics of the Coq formalization.

Here are some examples of lemmas that can be proven (almost) automatically using the
high-level tactics and which illustrate some properties proven earlier in this document.
Theorem Impl_eta_realizer : forall A B t e,
( forall t ’ e, t ’ ↓ e A _ (t @ t ’) ↓ e B) _ (λ"x" t @ "x") ↓ e A → B.

Proof.
intros A B t e Ht. startn 1. apply (Ht "x"); Ksolve.
Qed.

Lemma k_realizer : forall A B, forall π, π ∈ ‖A‖ _ k[π] A → B.
Proof. Ksolve. Qed.

Lemma ex_falso : forall t , forall A, t ⊥_ t A.
Proof. Ksolve. Qed.

Theorem callcc_realizes_Peirce : forall e, callcc ↓ e  ∀A B, ((A → B) → A) → A.
Proof. Ksolve. now apply k_realizer . Qed.

Theorem excluded_middle : forall e, em↓e  ∀F, F ∨ ¬F.
Proof. do 2 Ksolve. Qed.

Corollary callcc_realizes_NNPP : forall e, callcc ↓ e  ∀P, (¬¬P) → P.
Proof.
intro e. apply (sub_term ( callcc_realizes_Peirce e )).
subtyping .
Qed.

Lemma inter_equiv : forall A B t e, t ↓ e A∩B ] t ↓ e A f t↓e B.
Proof.
intros A B t e. split ; intro Ht.
split ; subtyping .
destruct Ht as [Ht1 Ht2 ]. start ; (now apply Ht1) || (now apply Ht2).

Qed.

Lemma mapsto_equiv : forall c A t e, (t ↓ e  c 7→ A) ] (c _ t ↓ e A).
Proof.
intros c A t e.
split ; intro Ht.
now Ksolve.
start . now apply Ht.

Qed.
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To conclude this section about tactic automation, let us make a more complicated proof, the
specification of Turing’s fixpoint (see Section 3.2.2).

Theorem Y_realizer T (R : T _ T _ Prop) (Hwf : well_founded R) :
forall e, Y↓e  ∀P, (∀x, (∀y, R y x 7→ P y) → P x) → ∀z, P z.

Proof.
intro e; start .
revert z π Hπ.
induction z as [z Hrec] using (well_founded_ind Hwf); intros .
apply Ht.
find .
start .
eapply Hrec; eok.
Qed.

As we can see, the proof script is focused on the essential steps of the proof:

• strengthening the induction hypothesis by generalization;

• using well-founded induction;

• apply hypotheses (including induction hypothesis) at the right time.

3.7.4 Native datatypes
Native integers Primitive integers are added to the KAM following the ideas presented in
Section 3.4. Notice that, as primitive integers are data and do not depend on an environment,
they could be introduced as closures and not as terms. This would have the advantage of avoiding
dummy environments around integers and would match the intuition of Remark 2.4.2 (iii) that we
can put “something else” than realizers on the stack. The drawback of this choice would be not
being able to put integers directly inside proof-like terms: we would need another construction.
Therefore, we choose to stick to presentation of Section 3.4 and define integers as inert instructions.
Then, we need to add primitive operations and comparisons to manipulate native integers, together
with their evaluation rules.

Parameter Int : Z _ instruction .
Parameter Zeq Z le Zadd Zsub Zmul Zdiv : const .

Section EvalAxioms.
Variables (e e’ e ’’ : env) (n m : Z) (u v k : Λ ) (π : Π ).

Axiom red_Zeq :
red (Zeq ↓ e ? Int n ↓ e’ · Int m↓e ’’ ·u·v·π) (( if Z_eq_dec n m then u else v) ? π).

Axiom red_Zle :
red (Z le ↓ e ? Int n ↓ e’ · Int m↓e ’’ ·u·v·π) (( if Z_le_dec n m then u else v) ? π).

Axiom red_Zadd : red (Zadd↓e ? Int n ↓ e’ · Int m↓e ’’ ·k·π) (k ? Int (n+m)↓∅ ·π).
Axiom red_Zsub : red (Zsub ↓ e ? Int n ↓ e’ · Int m↓e ’’ ·k·π) (k ? Int (n−m)↓∅ ·π).
Axiom red_Zmul : red (Zmul↓e ? Int n ↓ e’ · Int m↓e ’’ ·k·π) (k ? Int (n∗m)↓∅ · π).
Axiom red_Zdiv : red (Z div ↓ e ? Int n ↓ e’ · Int m↓e ’’ ·k·π) (k ? Int (n/m)↓∅ · π).
End EvalAxioms.

On the logical side, we only have to define: the new implication [e]→ A, the type of lazy integers,
and their storage operator. Notice that [e]→ A is written {e} → A in the formalization, as the
notation [e]→ A will be used for rational numbers.



102 CHAPTER 3. EXTENSIONS OF REALIZABILITY IN PA2

Definition IntArg n F := fun π ⇒
exists e, exists π ’, π = Int n ↓ e ·π’ f π’ ∈ ‖F‖.

Notation " ’{’ e ’}’ ’→ ’ F" := (IntArg e F).

Definition Z n : formula := ∀Z, ({n} → Z) → Z.

Definition MZ := λ"f" λ"n" "n" @ "f".
Property MZ_storage : forall e, MZ↓e  ∀n, ∀Z, ({n} → Z) → (Z n → Z).
Proof. Ksolve. Qed.

Contrary to the definition of relativized quantification given Section 2.2, we define the notation
∀1n ∈ Z , A by ∀n, {n} → A rather than ∀n, Z n → A. Indeed, primitive integers are meant to
represent evaluated data and not realizers, so that it makes more sense to quantify over evaluated
integers rather than lazy ones. After updating the automation tactics as explained in Section 3.7.3,
we prove that the native operations realize their specifications, given by Proposition 3.4.1.
Lemma Zadd_realizer : forall e, Zadd↓e  ∀2n,m ∈Z×Z, Z (n+m).
Proof. unfold Z . Ksolve. Qed.
Lemma Zsub_realizer : forall e, Zsub ↓ e  ∀2n,m ∈Z×Z, Z (n−m).
Proof. unfold Z . Ksolve. Qed.
Lemma Zmul_realizer : forall e, Zmul↓e  ∀2n,m ∈Z×Z, Z (n∗m).
Proof. unfold Z . Ksolve. Qed.
Lemma Zdiv_realizer : forall e, Z div ↓ e  ∀2n,m ∈Z×Z, Z (n/m).
Proof. unfold Z . Ksolve. Qed.

We do the same thing for the two comparison operators = and ≤ on native integers. For
maximum flexibility, we specify the branches of the test with their own formula, according to
Remark 3.4.3.
Lemma Zeq_realizer : forall e, Zeq ↓ e  ∀2n,m∈Z×Z,
∀ A B, (n = m 7→A) → (∼n = m 7→B) → (n = m 7→A) ∩ (∼n = m 7→B).

Proof. intro ; start ; destruct (Z.eq_dec n m); Ksolve; contradiction . Qed.

Lemma Zle_realizer : forall e, Z le ↓ e  ∀2n,m∈Z×Z,
∀ A B, ((n <= m)%Z 7→A) → ((∼n <= m)%Z 7→B) →
((n <= m)%Z 7→A) ∩((∼n <= m)%Z 7→B).

Proof. intro ; start ; destruct (Z_le_dec n m); Ksolve; contradiction . Qed.
Finally, we can start working with integers, for instance implement other functions (e.g.

maximum, minimum, opposite and strict comparison) and prove that these functions meet their
expected specifications. The proof are omitted here for brevity. We first need a term turning an
evaluated integer into a lazy one, to return an argument as output value in Zmax and Zmin.
Definition mZ := λ"n" λ"f" "f" @ "n".
Property mZ_storage : forall e, mZ↓e  ∀1n∈Z, Z n.
Proof. unfold Z . Ksolve. Qed.

Definition Zmax := λ"n" λ"m" Zle @ "n" @ "m" @ (mZ @ "m") @ (mZ @ "n").
Definition Zmin := λ"n" λ"m" Zle @ "n" @ "m" @ (mZ @ "n") @ (mZ @ "m").
Definition Zopp := Zn 0 @ Zsub.
Definition Z lt := λ"n" λ"m" Zn 1 @ Zadd @ "n" @ Zle @ "m".

Lemma Zmax_realizer : forall e, Zmax↓e  ∀2n,m∈Z×Z, Z (Z.max n m).
Lemma Zmin_realizer : forall e, Zmin↓e  ∀2n,m∈Z×Z, Z (Z.min n m).
Lemma Zopp_realizer : forall e, Zopp↓e  ∀1n∈Z, Z (− n).
Lemma Z lt_realizer : forall e, Z lt ↓ e  ∀2n,m∈Z×Z,
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∀ A B, ((n < m)%Z 7→A) → ((∼n < m)%Z 7→B) →
((n < m)%Z 7→A) ∩ ((∼n < m)%Z 7→B).

Primitive natural numbers What we have defined so far is native integers, which can be
negative. Indeed, their definition inside the KAM uses the type Z of Coq. Nevertheless, what we
want for Peano arithmetic is primitive natural numbers (the type nat in Coq). As it is a subset
of relative integers, we would like to reuse native integers in the KAM, without defining a new
representation. The simplest solution is to convert between nat and Z in the logical definition of
natural number.
Definition N n := ∀Z, ({Z.of_nat n} → Z) → Z.

This definition is possible because we have no connection between data in the realizability model
and its representation in the KAM. Thanks to this independence, most of the operations on N
are directly inherited from Z, with the exception of subtraction which must be truncated.
Definition Nsub :=
λ"n" λ"m" Zle @ "n" @ "m" @ mN 0 @ (Zsub @ "n" @ "m").

After proving that the operations on Z, when restricted to N, give a value in N, we get for free
the storage operator, the comparison operators, and more generally any function that is the
restriction of a function on Z. Of course, we may still want to re-define them to take advantage
of the non negativity of natural numbers.

Primitive rational numbers The introduction of primitive rational numbers follows exactly
the same pattern as for integers:

1. define a representation in the KAM with primitive operations;

2. define the connective [e]→ A, lazy numbers and storage operator;

3. prove that primitive operations and comparisons meet their specifications;

4. define new functions as required and prove their specifications.

Representation of subsets of numbers To conclude this section, we show how we can
conveniently define subsets of a datatype. Notice that this is not exactly the situation of N and Z,
because in Coq, nat is a different type than Z. As an illustration, we consider the case of the
subsets Q+ and Q+∗ of Q. Since the elements of Q+ are the non negative elements of Q, the
simplest definition for q ∈ Q+ is q ∈ Q ∧ 0 ≤ q ≡ ∀Z. (q ∈ Q⇒ 0 ≤ q ⇒ Z)⇒ Z. Yet, we would
like to avoid the realizer of 0 ≤ q. Indeed, its computational content is trivial because p ≤ q
can be defined as the equality Qmax (q − p) 0 = 0. Therefore, its existence will only require to
evaluate it as a guard condition to ensure that the property 0 ≤ q does hold in the standard
model. Instead, we use the semantic implication: q ∈ Q+ := ∀Z. (q ∈ Q ⇒ 0 ≤ q 7→ Z) ⇒ Z.
This transformation is sound thanks to Theorem 3.2.6.
Definition Qnneg q := ∀Z, (Q q → 0 <= q 7→Z) → Z. (∗ Q q ∧ 0 <= q ∗)
Definition Qpos q := ∀Z, (Q q → 0 < q 7→ Z) → Z. (∗ Q q ∧ 0 < q ∗)

There is another possible definition of subsets: define them as subtypes of Q by adding a
constraint on the value as follows.
Definition Qnneg q := ∀Z, ([q] → 0 <= q 7→Z) → Z. (∗ ⊆ Q q ∗)
Definition Qpos q := ∀Z, ([q] → 0 < q 7→ Z) → Z. (∗ ⊆ Q q ∗)
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Both choices are sensible but they induce notable changes, especially at the level of relativized
quantifications. With the first definition, ∀q ∈ Q+. A is defined by ∀q. q ∈ Q ⇒ 0 ≤ q 7→ A
whereas with the second definition, it is defined as ∀q. [q]⇒ 0 ≤ q 7→ A. The difference is that the
rational number is given lazily in the first case and explicitly in the second one27. Although the
second definition is slightly more efficient (no unboxing required) and more transparent for Coq
(no guess required for rational number values), it requires to use a CPS style for computation.
On the opposite, the first style is heavier but allows for programming in a more comfortable way
since we can nest computation in a direct style. As an example, consider a universal realizer
leQ_tight of the tightness of large inequalities.
Theorem leQ_tight_realizer : forall e,

leQ_tight ↓ e  ∀2 q1 ,q2 ∈Q×Q, (∀1ε∈Q+∗, q1 ≤q2 + ε) → q1 ≤q2 .

Let us first give the computational behavior of such a realizer. It has to build a realizer of q1 ≤ q2
using three arguments, two of which are concrete representations for q1 and q2 given by the
relativization, the last one being a realizer t of ∀ε ∈ Q+∗. q1 ≤ q2 + ε. We first test whether
q1 ≤ q2 hold by a primitive comparison on the concrete representations of q1 and q2. If q1 ≤ q2
holds, then q1 ≤ q2 ≈ 1 and we simply return the identity. If q1 ≤ q2 does not hold, we have
q1 ≤ q2 ≈ > ⇒ ⊥ and by taking ε := q1−q2

2 , the inequality q1 ≤ q2 + ε does not hold and t gives
a realizer of q1 ≤ q2 + ε ≈ > ⇒ ⊥ which is exactly what we need.

The definition of leQ_tight is easy to read with the first definition of subsets.
Definition leQ_tight :=
λ"q1" λ"q2" λ"f" Q le @ "q1" @ "q2" (∗ test of q1 ≤q2 ∗)
@ Id
@ ("f" @ (divQ @ (subQ @ "q1" @ "q2") @ Rat 2)).

The term Rat is an analogous of Int for rational numbers, i.e. the constructor giving the concrete
representation (in the KAM) of a rational number (in the semantics). The operations subQ and
divQ are lifted operations from Qsub and Qdiv that work on lazy integers: they universally
realize ∀p∀q. p ∈ Q⇒ q ∈ Q⇒ (p� q) ∈ Q. We can see the nested computation of q1−q2

2 exactly
appear as we would write it on paper. On the opposite, with the second (more low-level) definition
of subsets, this computation is done in a CPS style which is slightly harder to read, especially
with deeply nested computation.
Definition leQ_tight :=
λ"q1" λ"q2" λ"f" Q le @ "q1" @ "q2" (∗ test of q1 ≤q2 ∗)
@ Id
@ (Qsub @ "q1" @ "q2" @ Qdiv @ Rat 2 @ "f" ).

Nevertheless, we opt for this second possibility because is more coherent with our choice to always
represent integers in evaluated form.

3.7.5 Conclusion
This library provides a very extensive formalization of classical realizability, including the most
common extensions, such as subtyping, primitive integers, or semantic implication. It is designed
to be very extensible, according to the philosophy of classical realizability. This flexibility has a
cost, which is that all computations must be done at the level of the tactic language, since the
construction is built on top of parameters. This can be annoying for complex proofs, for which a
single call to the automated tactics can take several seconds, even for the simple ones like Kevals.

27This difference between lazy/eager quantifications already appears for Q and Z in our choice of defining
∀1n∈Z, A by ∀n, {n} → A rather than ∀n, n∈Z → A.
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On the positive side, it completely relieves the Coq user to perform administrative steps, and
one can focus more on the interesting steps. Unicode characters also give an interface very similar
to the pen and paper proofs. It is completely general and can accept arbitrary extension of the
KAM. The ability to add connectives on the fly as notations for their interpretation also leave
open a wide area of possible experimentation, which is one of the strength of classical realizability?

Finally, although we have formalized classical realizability for PA2, in fact, the definition of
universal quantification accepts any type. In particular, the formalization is ready to move on to
classical realizability for higher-order arithmetic (PAω+), which is the topic of the next chapter.
The library is freely available from http://perso.ens-lyon.fr/lionel.rieg/thesis/.

http://perso.ens-lyon.fr/lionel.rieg/thesis/
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Chapter 4

Higher-order classical realizability

Chapters 2 and 3 presented classical realizability for second-order arithmetic (PA2). This setting
is already quite expressive and we were able to specify all the programs that we were interested in.
Nevertheless, this framework is not well-suited for studying logical transformations or program
transformations1. Indeed, logical transformations like forcing [Coh63, Coh64], which is discussed
in Chapter 5, can increase the order of a formula and, in PA2, we are by definition restricted
to second-order. Therefore, it is necessary to move to a more expressive setting in which we
can express formulæ at all orders2. To prevent meaningless sentences like 3 ⇒ +, we do not
mix completely individuals and formulæ, and we separate them by a sorting system, i.e. a
typing system for types. Within these constraints, the natural extension of PA2 is higher-order
Peano arithmetic (PAω). It features a hierarchy of kinds which lets us separate individuals from
propositions but both are still part of the same syntactical category: mathematical expressions.

This framework is expressive enough to contain primitive recursive functions so that, contrary
to PA2, there is no need to introduce a first-order signature. Although the logical language is
much more expressive, it is worth noticing that the language of realizers is not modified at all:
still the λc-calculus. This means that the programs we specify remain the same, we can simply
express finer properties. Furthermore, as classical realizability models are defined mostly from
the KAM which is not modified at all, we can expect a great similarity between the second-order
fragment of models of PAω+ and the models of PA2. Consequently, most of the study done in
Chapters 2 and 3 should be readily valid in the higher-order setting.

This chapter has the same structure as the previous two and we mostly highlight the differences
between the second- and higher-order settings. Our main contribution in this chapter is the
introduction of datatypes into PAω+. It requires extending both the typing system and the
realizability interpretation, but its most interesting feature is the computational interpretation,
which is the topic of Section 4.3. Other contributions are the introduction of subtyping and of
the subsumption rule, and the transport of the various extensions of Chapter 3 to PAω+.

4.1 The higher-order arithmetic PAω+

PAω+ is a presentation of classical higher-order arithmetic with explicit (classical) proof terms,
inspired by Alonzo Church’s theory of simple types. In addition, it features a congruence on
types, in the spirit of deduction modulo [DHK03], in order to relieve the proof system from

1They are the two sides of the same coin by the Curry-Howard correspondence.
2All orders are necessary to iterate logical transformations that increase the order of a formula
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managing some semantic equivalences between propositions, that are transparent from the proof
term point of view.

The first presentation of Jean-Louis Krivine’s classical realizability into higher-order logic
was done by Christophe Raffalli and Frédéric Ruyer [RR08], with an expressive system that
contains both informative and non informative formulæ. We consider here a simpler system,
which is in fact a subsystem, designed by Alexandre Miquel [Miq11, Miq13] to encompass only
what is needed for the forcing translation, which we will present in the next chapter. We adapt
his definition to accommodate the presence of primitive datatypes, which will be fully explained
in Section 4.3.

In this system, datatypes are the natural generalization of primitive numbers of Sections 3.4
and 3.5. This means that they emerge from a computational need and are a priori logically
meaningless. In particular, unlike in Emmanuel Beffara’s PhD thesis [Bef05, Section 2.2], we are
not interested in introducing datatypes in the semantics but only in their efficient representation in
the KAM. Therefore, we assume that datatypes are already present in the semantics and we only
build a logical framework to accommodate their existence in the logic and their representation by
arbitrary λc-terms in the KAM.

4.1.1 Syntax
PAω+ and PA2 are syntactically very similar, the main difference being that the we do not
duplicate quantifiers (∀1 and ∀2) for different order of variables but instead annotate variables
with a sort. This allows us to have a unified framework for all orders. We also introduce two new
connectives, equational implication and data implication.

PAω+ distinguishes three categories of syntactic entities: sorts (also called kinds), mathematical
expressions, and proof terms, their grammar begin given in Figure 4.1. At this level, datatypes
are a special kind of predicates symbols, collected in a set D, that are inert and do not interact
with the proof system. In particular, from a logical point of view, they can be seen as abstract
constants that have neither conversion rules nor typing rules: they can only be used as black-boxes.
Notice that, by design, datatypes can only appear on the left-hand side of the data implication ⇒v.
This ensures that, in the KAM, data can only appear on the stack and not in head position.

Sorts τ, σ := ι | o | τ → σ

Math. Expressions M,N,A,B := xτ | λxτ.M | M N
| 0 | S | recτ
| A⇒ B | ∀xτ. A | M

.=τ N 7→ A
| DN ⇒v B with D ∈ D

Proof-terms the λc-calculus (see Section 2.1)

Figure 4.1: Syntax of PAω+.

Sorts Kinds are simple types (in Church’s sense [Chu40]) formed from two basic sorts ι and o.
We use ι for individuals and o for propositions. Individuals represent the basic objects that our
theory speaks of: integers in the case of arithmetic, sets in the case of set theory. Propositions
denote the logical statement that we can express. Sorts ensure that the mathematical expressions
we are allowed to write always make sense, avoiding meaningless expressions like 3⇒ +. The
corresponding type system is implicit and is given by the formation rules of mathematical
expressions.
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Remark 4.1.1
We could instead define raw mathematical expressions as untyped terms built from the syntactic
constructions λ, @, 0, S, rec,⇒, ∀, .= 7→,⇒v, and use the explicit type system given in Figure 4.2
to define well-formed mathematical expressions. Notice that we write tτ instead of the usual t : τ
in this type system in order not to confuse it with the type system of Section 4.1.4, which types
proof terms with propositions. We would get the same (well-formed) expressions in the end but it
would require stating two proof systems (or one proof system with two kinds of judgments) instead
of one. Moreover, since non well-formed expressions are useless to us, there is no point in being
allowed to write them down.

Mathematical expressions Inhabiting sorts, mathematical expressions (expressions for short)
are intended to represent mathematical objects, including individuals and propositions. They are
formed as simply-typed λ-terms (à la Church) with constants. We use propositions to type proof
terms (see Figure 4.6). Nevertheless, as only propositions are valid types, we do not call all these
mathematical objects “types” but “mathematical expressions” instead. Their formation rules are
summarized in Figure 4.2 and can be split into four categories:

λ-calculus the usual Church-style simply-typed λ-calculus, where the role of types is played by
sorts, used to build and apply higher-order expressions:

• variable of any sort τ , giving an expression of sort τ ,
• abstraction λxσ.M of sort σ → τ , where the variable x is of sort σ and M is an
expression of sort τ ,
• application M N of sort τ , where M is of sort σ → τ and N is of sort σ.

Arithmetical constructions that build and use individuals, using:

• the zero constant 0 of sort ι,
• the successor function S of sort ι→ ι,
• recursors recτ of sort τ → (ι→ τ → τ)→ ι→ τ at all kinds τ .

Logical constructions that build propositions, using:

• implication A⇒ B, where A and B are propositions,
• universal quantification ∀xτ. A, where x is a variable of sort τ and A is a proposition,
• equational implication M .=τ N 7→ A, where M and N are expressions of sort τ and A
is a proposition.

Data construction that has no logical meaning and represents data on the stack of the KAM:

• data implication DN ⇒v A of sort o, where D ∈ D is a datatype, N is an individual
and A is a proposition.

In order to distinguish them from arbitrary expressions, propositions are written A,B,C rather
than M,N . The new logical connective .=τ 7→ is a partial internalization of the semantic
implication of Section 3.2.2, when the semantic condition is an equality. It can be thought of as an
implication giving more compact proof terms. Its intuitive meaning is the following: if M is equal
to N , then M .=τ N 7→ A is A, otherwise, it is the truest formula >. It does not increase logical
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expressiveness and it is logically equivalent3 to the usual implication M =τ N ⇒ A (where =τ is
Leibniz equality, see below), via the proof terms (see Figure 4.6 for the proof system):

λxy. y x : (M .= N 7→ A)⇒ (M = N ⇒ A)
λx. x (λy. y) : (M = N ⇒ A)⇒ (M .= N 7→ A)

As we will see in Chapter 5, this new connective makes the computational content of the forcing
translation more transparent and much more readable by avoiding to drag around proofs of
equalities that carry a trivial computational content and only clutter proof terms.

λ-calculus
Γ, xτ ` xτ

Γ, xσ ` tτ

Γ ` (λxσ. t)σ→τ
Γ ` tσ→τ Γ ` uσ

Γ ` (t u)τ

Arithmetic Γ ` 0ι Γ ` Sι→ι Γ ` recτ→(ι→τ→τ)→ι→τ

Logic Γ ` Ao Γ ` Bo
Γ ` (A⇒ B)o

Γ, xτ ` Ao

Γ ` (∀xτ. A)o
Γ `Mτ Γ ` Nτ Γ ` Ao

Γ ` (M .=τ N 7→ A)o

Datatypes Γ ` N ι Γ ` Ao
D ∈ D

Γ ` (DN ⇒v A)o

Figure 4.2: Explicit type system for mathematical expressions.

We often omit the sort annotation on variables and equational implication to ease reading when
this does not hinder understanding. One can usually recover this information from the context
whenever necessary. On the opposite, when we want to give explicitly the sort of an expression
(not necessarily a variable), we write it in exponent, for example Mτ, Ao, or recτ→(ι→τ→τ)→ι→τ

τ .
We define as usual open and closed expressions as well as the set of free variables of an

expression M , written FV(M). Similarly, given two expressions M and Nτ , we write M [Nτ/xτ ]
the capture-avoiding substitution of a variable xτ by Nτ in M .

Notations and connectives We define exactly the same notations and connectives as we did
for PA2, for convenience summarized again in Figure 4.3. The only two differences, in addition to
sort annotations on variables, are Leibniz equality and existential quantification. Indeed, Leibniz
equality applies here to mathematical expressions of any kind, not just to individuals. Existential
quantification is encoded classically by De Morgan laws rather than second-order encoding. Both
formulations are logically equivalent, using callcc for the non trivial direction4. As before,
application is left associative and implication, equational implication and data-implication are all
right associative and have the same precedence: A⇒M

.= M ′ 7→ DN ⇒v B ⇒ C must be read
as A⇒ (M .= M ′ 7→ (DN ⇒v (B ⇒ C)))).

As in the conjunction of PA2, we use & instead of ∧ when we want to replace a use of ⇒
by 7→, which denotes here equational implication. Compared to the semantic implication of PA2,
the advantage is that we can use it in proofs whereas semantic implication is only usable with
realizability. For instance, M .= N & A ∧B unfolds to ∀Zo. (M .= N 7→ A⇒ B ⇒ Z)⇒ Z. On
the opposite, as they both have a computational content, we do not make a distinction between
data implication and regular implication and we use the same symbol ∧ in both cases. This
overloading is never ambiguous since D ~N is not a formula.

3This is simply Theorem 3.2.6 expressed syntactically in PAω+.
4In fact, ∀Zo. (∀xτ. A ⇒ Z) ⇒ Z is a subtype of ¬(∀xτ.¬A) (in the sense of Section 4.2.4), so that λx. x is

a proof term for the implication (∀Zo. (∀xτ. A ⇒ Z) ⇒ Z) ⇒ ¬(∀xτ.¬A). The converse direction is proved by
λxy. callcc (λk. x (λa. k (y a))).
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1 := ∀Zo. Z ⇒ Z

⊥ := ∀Zo. Z
¬A := A⇒ ⊥

x =τ y := ∀Zτ→o. Z x⇒ Z y

A1 ∧ . . . ∧An := ∀Zo. (A1 ⇒ . . .⇒ An ⇒ Z)⇒ Z

A1 ∨ . . . ∨An := ∀Zo. ((A1 ⇒ Z)⇒ . . .⇒ (An ⇒ Z)⇒ Z)⇒ Z

∃x1 . . . ∃xk. A1 ∧ . . . ∧An := ∀Zo. (∀x1 . . . ∀xk. A1 ⇒ . . .⇒ An ⇒ Z)⇒ Z

Figure 4.3: Encoding of usual connectives into minimal logic.

Sets and datatypes Whereas in PA2 sets were just a convenient notation, in PAω+ they have
a more dignified status:

Definition 4.1.2 (Set)
In PAω+, a set is given by a sort τ together with a relativization predicate P of kind τ → o
expressing membership in the set.

For instance, the set of total relations between individuals is given by the sort ι→ ι→ o and
the predicate Tot := λR.∀xι.∃yι. R x y. As the sort τ is written in the kind of P , we omit it and
we identify sets with their relativization predicates5. Since datatypes are syntactically seen as
inert predicates, we can assimilate them as a special kind of sets. For convenience, we use the
following suggestive notations whenever P is a set or a datatype, replacing ⇒ with ⇒v when
appropriate:

x ∈ P := P x
∀x ∈ P.A := ∀x. x ∈ P ⇒ A
∃x ∈ P.A := ∃x. x ∈ P ∧A

Notice that there is no need to write the kind of the variable x because it can be inferred from
the one of P . This notation matches the one in PA2, the difference being that here predicates
(and thus sets) are part of the syntax, and not a convenient way of seeing some formulæ.

4.1.2 System T is a fragment of PAω+

Kurt Gödel’s system T [Göd58] can be recovered from the mathematical expressions of PAω+

as its computational fragment, that is, as the subsystem where sorts are restricted to contain ι as
the only base sort. For instance, the following kinds are allowed: ι, ι→ ι and ((ι→ ι)→ ι)→ ι,
but not (ι→ o)→ ι. By analogy, we call such sorts T-sorts or T-kinds. This constraint casts out
all logical constructions (namely A⇒ B, ∀xτ. A, and M .=τ N 7→ A) and the data construction,
which all build expressions of sort o. We thus limit the expression construction rules to those of
system T, given in Figure 4.4. Recall that the expressiveness of system T is exactly the functions
that are provably total in first-order arithmetic [SU06], which include (and exceed) all primitive
recursive functions. Beware that we recover the terms of system T in the expressions of PAω+,
which correspond to types and not to proof terms, those being the λc-calculus. This means
that expressions (and thus propositions) are indeed very expressive and that we do not need to
introduce a first-order signature: functions can be defined instead. For instance:

5This is exactly a definition by comprehension.
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Addition +ι→ι→ι := λnm. recιm (λ . S)n
Multiplication ×ι→ι→ι := λnm. recι 0 (λ . + m)n
Predecessor predι→ι := recι 0 (λx . x)
Nullity test nullι→o := reco (∀Z.Z ⇒ Z) (λ .> ⇒ ⊥)

4.1.3 Congruence
PAω+ differs from higher-order arithmetic by the addition of a congruence ≈E to the proof
system. We use almost the same notation as for subtyping equivalence because, as we will see in
Section 4.2.4, they coincide on propositions. It allows us to reason modulo some equivalences
on expressions (hence on propositions), without polluting proof terms with computationally
irrelevant parts. Indeed, we are interested in the computations at the proof term level and not at
the type (or expression) level. Therefore, we wish to remove all computations at the type level
from our proofs, and in fact, they are part of the congruence on expressions.

The rules for the congruence ≈E are given in Figure 4.5. They deal with computation inside
expressions though the usual βη-conversion for λ-terms and ι-conversion for recursors. In addition
to these computational rules, the congruence contains semantic equivalences on propositions
(mostly commutations) and an equational theory E that give us the liberty to equate arbitrary
expressions. An equational theory is a finite set of equations E := M1 = N1, . . . ,Mk = Nk,
where Mi and Ni are mathematical expressions of the same sort (and E considers them equal).
Notice that the equality symbol is just a notation and has no connection with Leibniz equality, we
could use pairs (Mi, Ni) instead, but “=” reminds us that these expressions must be considered
equal.

Free variables of E , written FV(E), are the union of free variables of expressions inside E and
substitutions on equational theories is the pointwise extension of substitutions on expressions.
Whenever the equational theory is empty, we write M ≈ N rather than M ≈∅ N .

Proposition 4.1.3
The congruence ≈E enjoys the following properties:

• Monotonicity: if M ≈E N and E ⊆ E ′, then M ≈E′ N .

• Substitutivity: if M ≈E M ′ and N ≈E N ′, then M [N/x] ≈E[N/x] M
′[N ′/x].

• Congruence: if E is closed, i.e. FV(E) = ∅, then ≈E is a congruence.

Types τ, σ := ι | τ → σ

Terms M,N := x | λx.M | M N
| 0 | S | recτ

Reduction rules (λx.M)N � M [N/x]
recM N 0 � M

recM N (SP ) � N P (recM N P )
Typing rules

Γ, x : A ` x : A
Γ, x : A ` t : B

Γ ` λx. t : A→ B
Γ ` t : A→ B Γ ` u : A

Γ ` t u : B

Γ ` 0 : ι Γ ` S : ι→ ι Γ ` rec : τ → (ι→ τ → τ)→ ι→ τ

Figure 4.4: Gödel’s System T.
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Reflexivity, symmetry, transitivity and base case

M ≈E M
M ≈E N
N ≈E M

M ≈E N N ≈E P
M ≈E P

(M = N) ∈ E
M ≈E N

Context closure
M ≈E N

λxτ.M ≈E λxτ. N
M ≈E N P ≈E Q

M P ≈E N Q

A ≈E B C ≈E D
A⇒ C ≈E B ⇒ D

M ≈E N P ≈E Q A ≈E,M=P B

M
.= P 7→ A ≈E N

.= Q 7→ B

A ≈E B
∀xτ. A ≈E ∀xτ. B

A ≈E B
D ~N ⇒v A ≈E D ~N ⇒v B

βηι-conversion

(λxτ.M)Nτ ≈E M [Nτ/xτ ]
xτ /∈ FV(M)

λxτ.M xτ ≈E M

recτ M N 0 ≈E M recτ M N(S P ) ≈E N P (recτ M N P )

Semantically equivalent propositions

∀xτ∀yσ. A ≈E ∀yσ∀xτ. A
xτ /∈ FV(A)

∀xτ. A ≈E A

M
.=τ M 7→ A ≈E A M

.=τ N 7→ A ≈E N
.=τ M 7→ A

M
.=τ N 7→ P

.=σ Q 7→ A ≈E P
.=σ Q 7→M

.=τ N 7→ A

A⇒M
.=τ N 7→ B ≈E M

.=τ N 7→ A⇒ B

D ~N ⇒v M
.=τ N 7→ B ≈E M

.=τ N 7→ D ~N ⇒v A

xτ /∈ FV(A)
∀xτ. A⇒ B ≈E A⇒ ∀xτ. B

xσ /∈ FV(M,N)
∀xσ.M .=τ N 7→ A ≈E M

.=τ N 7→ ∀xσ. A
xτ /∈ FV( ~N)

∀xτ. D ~N ⇒v A ≈E D ~N ⇒v ∀xτ. A

Figure 4.5: Inference rules for the congruence ≈E .
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Remark 4.1.4
The proofs by Alexandre Miquel [Miq13] need to be slightly adapted to handle the new connectives:
equational implication and data implication. This is not a problem: they both behave like a regular
implication in this respect.

4.1.4 Proof system
The proof system of PAω+ types proof terms with propositions. It is defined around a typing
judgment E ; Γ ` t : A, where:

• E is an equational theory,

• Γ is a context,

• t is a proof term,

• A is a proposition.

As usual, contexts contain bindings from distinct proof variables xi to propositions Ai. To
deal with data implication, we introduce a new family of bindings inside contexts: from a proof
variable x to a data DN . Therefore, contexts are finite sets of bindings of proof variables xi
either to propositions Ai or to data DiNi.

Contexts Γ := ∅ | Γ, x : A | Γ, x : DN A a proposition, D a datatype,
N an individual

The inference rules of PAω+, given in Figure 4.6, are the usual ones of higher-order arithmetic,
with new rules to deal with congruence, equational implication and data implication.

Axiom E ; Γ, x : A ` x : A
Peirce

E ; Γ ` callcc : ((A⇒ B)⇒ A)⇒ A

E ; Γ ` t : A A ≈E A′Congruence
E ; Γ ` t : A′

E ; Γ, x : A ` t : B
⇒i

E ; Γ ` λx. t : A⇒ B

E ; Γ ` t : A⇒ B E ; Γ ` u : A
⇒e

E ; Γ ` t u : B

E ,M = N ; Γ ` t : A
7→i

E ; Γ ` t : M .=τ N 7→ A

E ; Γ ` t : M .=τ M 7→ A
7→e

E ; Γ ` t : A

E ; Γ ` t : A
∀i x /∈ FV(Γ, E)
E ; Γ ` t : ∀xτ. A

E ; Γ ` t : ∀xτ. A
∀eE ; Γ ` t : A[Nτ/xτ ]

E ; Γ, x : DN ` t : A
(⇒v)i E ; Γ ` λx. t : DN ⇒v A

E ; Γ, x : DN ` t : DN ⇒v A (⇒v)eE ; Γ, x : DN ` t x : A

Figure 4.6: Inference rules for PAω+.

Remarks 4.1.5

1. The elimination rule of equational implication is a particular case of the congruence rule
because we have M .=τ M 7→ A ≈ A.
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2. The only inference rules that alter proof terms are the axiom, Peirce’s law and the introduc-
tion and elimination rules of implication. The remaining rules do not affect proof terms
and are said to be computationally transparent or computationally irrelevant.

3. This proof system features full classical reasoning thanks to Peirce’s law.

4. The elimination rule of data implication is an optimized version of the expected one,
forgetting for a moment that u : DN does not make sense as DN is not a proposition:

E ; Γ ` t : DN ⇒v A E ; Γ ` u : DN

E ; Γ ` t u : A
Indeed, no closed proof term can build data because intuitively data must not appear in head
position in the KAM. Therefore, the only way to build a “proof” of DN is by a variable
in Γ, which directly gives the optimized version. Another benefit of this formulation is that
it does not require to define the judgment E ; Γ ` x : DN , where DN is not a formula.
In practice, complex datatypes are built and returned in CPS style. Exactly like for primitive
integers in PA2, we have primitive instructions performing basic operations and we compose
them by the regular application to build more complex functions.

Proposition 4.1.6 (Properties of derivability in PAω+)
This proof system enjoys the usual properties: weakening, expression substitutivity and proof
substitutivity, that is, the following rules are admissible:

Weakening
E ; Γ ` t : A

E ⊆ E′,Γ ⊆ Γ′
E ′; Γ′ ` t : A

Expression substitutivity
E ; Γ ` t : A

E [N/xτ ]; Γ[N/xτ ] ` t : A[N/xτ ]

proof substitutivity
E ; Γ, z : B ` t : A E ; Γ ` u : B

E ′; Γ′ ` t[u/z] : A

The existence of a derivation of the sequent ∅; ∅ ` t : A is abbreviated into ` t : A or t : A.
Thanks to weakening, this is the same as saying that the sequent E ; Γ ` t : A is derivable for
all E and Γ. When t is not relevant, we also write it ` A.

We sometimes use the same letter as a proof variable and as an expression variable when
there is a strong connection between both variables. For instance, the proof of membership of an
element a to a set P is usually written a as well because it contains the computational content of
the element a: we have a : a ∈ P .

No normalization It is worth noticing that the proof system of PAω+ enjoys no normalization
property since the proposition > defined by > := λxy. x

.=o→o→o λxy. y 7→ ⊥ acts as a type of
all λc-terms, in particular for Ω := (λx. x x) (λx. x x).

Proposition 4.1.7 (Universal type >)
For any λc-term t, any equational theory E, and any context Γ, if FV(t) ⊆ dom Γ, we have
E ; Γ ` t : >. In particular, for any closed λc-term t, ` t : >.

Proof. The intuition of the proof is that the congruence λxy. x ≈E λxy. y permits to equate any
two types, because it equates the first and second projections on propositions. In particular,
any type is equivalent to ⊥. Therefore, the proof starts by an application of the introduction
of equational implication and we need to prove E , λxy. x = λxy. y; Γ ` t : ⊥. This is done by
induction over t. For readability, we abbreviate E , λxy. x = λxy. y into E ′.
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• If t is a variable x, as FV(t) ⊆ dom Γ, there is a binding x : A in Γ for some proposition A.
Therefore, we build the following proof tree:

E ′; Γ ` x : A
A ≈E′ ⊥E ′; Γ ` x : ⊥

• If t is an abstraction λx. t′, the induction hypothesis gives us a proof tree for the sequent
E ′; Γ, x : ⊥ ` t′ : ⊥. We complete it as follows:

E ′; Γ, x : ⊥ ` t′ : ⊥
E ′; Γ ` λx. t′ : ⊥ ⇒ ⊥

⊥ ⇒ ⊥ ≈E′ ⊥E ′; Γ ` λx. t′ : ⊥

• If t is an application u v, the induction hypotheses give us proof trees for the sequents
E ′; Γ ` u : ⊥ and E ′; Γ ` v : ⊥. We combine them as follows:

E ′; Γ ` u : ⊥
⊥ ≈E′ ⊥ ⇒ ⊥E ′; Γ ` u : ⊥ ⇒ ⊥ E ′; Γ ` v : ⊥

E ′; Γ ` u v : ⊥

Nevertheless, the proof system is correct with respect to the intended classical realizability
semantics (see Section 4.2). In particular, it is correct with respect to two-valued models because,
like in PA2, two-valued models are particular cases of classical realizability models where the
pole is empty.

Arithmetical reasoning The predecessor function and the nullity test defined earlier enable
us to prove most of the Peano axioms for PA2, given in Section 2.9.

Proposition 4.1.8
The axioms of PA2−, i.e. the axioms of PA2 without the recurrence axiom, are provable in PAω+.

Proof. The defining equations of primitive recursive functions are handled by the congruence,
and more precisely by the βι-conversion, because these functions are definable in system T, which
is contained in mathematical expressions. Remain only the injectivity and non surjectivity of the
successor function which are proved by the following λc-terms:

λx. x : ∀xι∀yι. S x =ι S y ⇒ x =ι y

λx. x (λy. y)x : ∀xι.¬(0 =ι S x)

The first proof stems from the congruence pred (S x) ≈ x and the second one from the congruences
null 0 ≈ ∀Z.Z ⇒ Z, null (S x) ≈ > ⇒ ⊥ and from the proof λy. y : ∀Z.Z ⇒ Z.

Exactly like in PA2, the problem comes from the recurrence axiom. The solution is the
same: reasoning by induction can be simulated by relativizing all quantifications over ι with the
predicate N := λxι.∀Zι→o. Z 0⇒ (∀yι. Z y ⇒ Z (S y))⇒ Z x. Formulæ where all quantifications
over ι are relativized are called arithmetical formulæ. We can then prove the induction principle
on arithmetical formulæ (with 〈x, y〉 denoting λf. f x y):

λxfn. n
〈
0, x
〉

(λp. p (λxy.
〈
S x, f x y

〉
)) (λxy. y)

: ∀Zι→o. Z 0⇒ ∀x ∈ N. (Z x⇒ Z (S x))⇒ ∀x ∈ N. Z x

We use here Krivine integers because datatypes will be fully explained only in Section 4.3.
Nevertheless, there is no essential difference and the same results holds with native integers.
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With arithmetical formulæ, elimination of universal quantification requires to prove that
the expression substituting the quantified variable is a Dedekind integer. Doing so requires to
propagate this information from variables to arbitrary individuals. This problem is the analog of
the one of Section 2.9.3, solved by Lemma 2.9.9. The difference here is that we need to propagate
relativization into higher order expressions that produce individuals. Let us define a ι-sort as any
sort ending by ι, i.e. of the form ~τ → ι, and similarly an o-sort as any sort of the form ~τ → o.
Higher-order relativization is then defined by:

HO-Relativization relι := N

relσ→τ :=
{
λfσ→τ.∀xσ. relσ x⇒ relτ (f x) if σ is a ι-sort
λfσ→τ.∀xσ. relτ (f x) if σ is a o-sort

Using it, Lemma 2.9.9 can be translated in PAω+ as follows:

Proposition 4.1.9
Let M be an expression of kind σ and xτ1

1 , . . . , x
τk
k its free variables of kinds τ1, . . . , τk, where the

sorts σ, τ1, . . . , τk are ι-kinds. (The other free variables of M do not need to be considered.) Then
there exists a proof term M with free variables x1, . . . , xk such that the judgment

∅;x1 : relτ1 x
τ1 , . . . , xk : relτk x

τk
k `M : relσM

is derivable in PAω+.

4.2 Classical realizability interpretation
The general structure of classical realizability models for PAω+ is the same as the one for PA2.
The main difference is that, besides propositions and predicates, there are only individuals
to interpret in PA2 whereas we need to interpret the whole hierarchy of kinds in PAω+. In
addition, PAω+ has datatypes. We want to keep arbitrary the representation of datatypes in the
KAM because we may want to choose different representations. To get a given arbitrary set of
realizers as representation, this set must be given by the data itself. Therefore, whereas they were
just considered as inert predicates in the proof system, now we take datatypes to be functions
from the interpretation of individuals (the semantics of data) to sets of λc-terms (their possible
representations). Using a set of λc-terms rather than a single λc-term allows us to have multiple
representations of the same data, and to forbid data by taking an empty set. For instance, if
we represent sets by lists without duplicates, all permutations of the representation of a set give
valid representations of the same set and we do not have to choose a canonical representative.

All the other definitions of classical realizability (parameters, universal realizers, etc.) and
their notations are inherited and adapted from the ones of PA2. As a rule of thumb, any missing
definition is the same as the one of PA2. By analogy, we use the same notation J K for the
interpretation of sorts, datatypes and expressions.

4.2.1 Definition of the interpretation
The first step is to interpret sorts. Since we want datatypes to belong to the interpretation of
individuals without resorting to costly encodings into integers, we cannot interpret ι by N. Thus,
we take instead the set Vω of hereditary finite sets, which contains all familiar datatypes. We
assume that usual datatypes (in the informal sense), like N, Z, and Q, are defined in such a
way that they are included in Vω. In fact, this inclusion is the very reason to consider Vω in
the first place. If we do not need datatypes, i.e. D = ∅, we can take N as usual. The kind o
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is interpreted by P(Π), like in PA2. Finally, the arrow sort σ → τ is interpreted by the set of
functions between JσK and JτK. This entails that the interpretation of expressions is almost the
usual one of higher-order arithmetic, except for propositions and datatypes which are respectively
interpreted by sets of stacks and hereditary finite sets.

The interpretation of mathematical expressions associates to every expression M of sort τ a
denotation JMKρ that belongs to JτK and depends on a valuation ρ. It merges both the first- and
second-order interpretations of PA2, and in particular, the falsity value ‖A‖ of PA2 is written JAK
in PAω+. Nevertheless, the truth value of A is still written |A|. Some constructions are directly
inherited from PA2, namely logical ones (implication and universal quantification) and the ones
coming from the first-order signature (zero and the successor function), and their interpretation is
the same as in PA2. Datatypes come with their interpretation and only the equational implication,
the recursors, and the λ-calculus part remain. According to the intuition given before, equational
implication is interpreted exactly like semantic implication in PA2, which justifies to use the
same notation for both connectives. The λ-calculus is interpreted as expected: abstraction builds
a function, application uses it and variables are given by a valuation ρ that associates to each
variable of kind τ a denotation in JτK. Finally, the recursor recτ is interpreted by the function
RecJτK uniquely defined from the ι-conversion rules (given in Figure 4.5) seen as definitional
equalities.

Kinds JιK := Vω
JoK := P(Π)

Jσ → τK := JσK → JτK
Expressions Jxτ Kρ := ρ(xτ )

Jλxσ.MKρ := v 7→ JMKρ,xσ←v
JM NKρ := JMKρ(JNKρ)

J0Kρ := 0
JSKρ := n 7→ n+ 1

Jrecτ Kρ := RecJτK

JA⇒ BKρ :=
{
t · π

∣∣∣ t ∈ |A|ρ , π ∈ JBKρ
}

J∀xσ. AKρ :=
⋃

v∈JσK

JAKρ,xσ←v

JM .=τ N 7→ AKρ :=
{

JAKρ if JMKρ = JNKρ
∅ otherwise

JDN ⇒v AKρ :=
{
v · π

∣∣∣ v ∈ D(JNKρ), π ∈ JBKρ
}

Truth value |A|ρ :=
{
t ∈ Λ

∣∣∣ ∀π ∈ JAKρ . t ? π ∈ ⊥⊥
}

Figure 4.7: Classical realizability interpretation of PAω+.

The formal definition is written in Figure 4.7. The notation ρ, xτ← v means that we replace
the binding of xτ in ρ by v. The notations of the right-hand side are the usual mathematical ones,
notably the symbols→ and 7→, which respectively represent the function space and the functional
abstraction. For instance, the interpretation of (λxσ.M)σ→τ, v 7→ JMKρ,xσ←v, represents the
(set-theoretic) function from JσK to JτK mapping v to JMKρ,xσ←v.

If M is closed, its interpretation does not depend on the valuation ρ and we drop the subscript.
Like in PA2, we can use a valuation ρ to close an expression M , written M [ρ] and inductively
defined in the expected way.
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By straightforward inductions, we prove the following lemma:

Lemma 4.2.1
Let M and N be expressions of respective kind σ and τ . For all valuations ρ and ρ′, we have:

Interpretation closure We have JMKρ = JM [ρ]K.

Free variable dependence If for any free variable xθ of M we have ρ(xθ) = ρ′(xθ), then we
also have JMKρ = JMKρ′ .

Substitutivity We have JM [N/xσ]Kρ =
r
M [ρ, xσ← JNKρ]

z
.

Parameters Like in PA2, we introduce parameters v̇ in the expressions to force their interpre-
tation to be the desired one. More precisely, for each sort τ and each denotation v ∈ JτK, we
add a constant v̇ of kind τ in the language of mathematical expressions and we define, for any
valuation ρ, Jv̇Kρ as v. Contrary to PA2 though, parameters range over the whole spectrum of
expressions, and not only falsity functions. This means for instance that we can use the non
standard integers of Section 2.11 in the syntax. They also allow us to rewrite the interpretation
of closed expressions in a lighter way, that is without mentioning a valuation, as evaluated
expressions are always closed. This closed interpretation is valid thanks to Lemma 4.2.1 and its
three corner cases are the following:

Closed interpretation Jv̇K := v
Jλxσ.MK := v 7→ JM [v̇/xσ]K
J∀xσ. AK :=

⋃
v∈JσK

JA[v̇/xσ]K

Notice that the case of variables disappears because they are not closed and it is replaced by the
case of parameters.

Parameters also give an intuition on the nature of datatypes: the reification of a function
from hereditary finite sets into λc-terms. The only difference is that we do not write them with a
dot in the syntax.

Classical realizability models The switch of logical framework does not affect much the
classical realizability models. Indeed, their main ingredient is the pole ⊥⊥ which has not been
affected as it only depends on the KAM which was not modified at all. This stability entails that
the structure of the models at the first- and second-order is very similar to the structure of the
models for PA2. In particular, the goal-oriented and thread-oriented model construction are still
valid, as is the thread model.

4.2.2 The adequacy theorem
Because of the equational theory E , typing judgments in PAω+ are different from the ones in
PA2. Indeed, an equational theory is intuitively meant to equate arbitrary expressions of the
same sort, and it can be used inside proofs through the congruence rule. This implies that the
adequacy theorem must constrain E to be empty to retain the same meaning.

Theorem 4.2.2 (Adequacy)
If the sequent ∅; Γ ` t : A is derivable in PAω+where Γ and A are closed, then for all substitutions σ
realizing Γ, we have t[σ]  A.
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Like in PA2, this theorem is a corollary of the adequacy lemma (Lemma 4.2.6 hereinafter),
which must deal with the general case, i.e. open formulæ and contexts, non empty equational
theories. Therefore, an interpretation validating a sequent E ; Γ ` t : A must also satisfy the
equational theory E :

Definition 4.2.3 (Valuation modeling an equational theory)
A valuation ρ models an equational theory E, written ρ |= E, when for any equation M = N in E,
we have JMKρ = JNKρ.

With such a valuation, every equation in E is interpreted as a valid equality in the model. We
also need to adapt the definition a substitution realizing a context because contexts contain data
bindings in addition to proof bindings.

Definition 4.2.4 (Substitution realizing a context)
A closed substitution σ realizes a closed context Γ, written σ  Γ, when for all (x : A) ∈ Γ where A
is a proposition, we have σ(x)  A and for all (x : DN) ∈ Γ where D is a datatype, we have
σ(x) ∈ D JNK.

Remark 4.2.5
We can keep the same definition for substitution realizing a context if we choose to extend the
concept of realizability to datatype by letting r  DN := r ∈ D JNK. Following this line of
thought, we would also define proof terms for datatypes and extend adequacy to proofs of a datatype
in addition to proofs of a proposition.

These are the only modifications we need to make to the adequacy lemma:

Lemma 4.2.6 (Adequacy lemma)
Let Γ be an open context and E an equational theory. If the sequent E ; Γ ` t : A is derivable in
PAω+, then for all ρ and all closed σ such that ρ |= E and σ  Γ[ρ], we have t[σ]  A[ρ].

The notations Γ[ρ] and σ  Γ[ρ] are defined exactly like in PA2 (Definition 2.8.1). The proof
of the adequacy lemma is again done in a modular way. Most cases are the same as for PA2,
taking into account the new constraint ρ |= E on valuations, which is transparent as most rules
do not use E . The full proof is written in Appendix A. Instead, we only give here the new cases,
namely congruence, introduction of equational implication, and introduction and elimination of
data implication. As elimination of equational implication is a particular case of congruence,
there is no need to consider it.

Proof.
Introduction of equational implication Assume that the sequent E ,M1 = M2; Γ ` t : A is

adequate. Let ρ and σ be such that ρ |= E and σ  Γ[ρ]. We consider two cases:

• JM1Kρ = JM2Kρ: We then have ρ |= (E ,M1 = M2) and ‖M1
.= M2 7→ A‖ρ = ‖A‖ρ. By

adequacy, we have t[σ]  A[ρ], i.e. t[σ]  (M1
.= M2 7→ A)[ρ].

• JM1Kρ 6= JM2Kρ: We then have ‖M1
.= M2 7→ A‖ρ = ∅ so that any closed λc-term

belongs to |M1
.= M2 7→ A|ρ, in particular t[σ].

Introduction of data implication The proof is essentially the same as for the introduction
of regular implication. Assume that the sequent E ; Γ, x : DN ` t : A is adequate. Let ρ
and σ be such that ρ |= E and σ  Γ[ρ]. We want to prove that λx. t  (DN ⇒v B)[ρ],
i.e. λx. t  DN [ρ]⇒ B[ρ]. Let u ∈ D(JNKρ) and π ∈ JBKρ so that u · π ∈ JDN ⇒v BKρ.
Since σ  Γ[ρ] and x does not belong to the domain of Γ (otherwise the context Γ, x : DN
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would not be defined), we get σ, x ← u  Γ[ρ], x : DN [ρ]. By adequacy, t[σ, x ← u]
realizes B[ρ] and thus t[σ, x ← u] ? π ∈ ⊥⊥. Because σ is a closed substitution, we have
(λx. t)[σ] ? u · π ≡ λx. t[σ, x← x] ? u · π � (t[σ, x← x])[u/x] ? π ≡ t[σ, x← u] ? π ∈ ⊥⊥ and
by anti-evaluation, we finally get (λx. t)[σ]  (A⇒ B)[ρ].

Elimination of data implication Again, the proof is essentially the same as for the elimination
of regular implication. Assume that the sequent E ; Γ ` t : DN ⇒ B is adequate and that
there exists a variable x such that (x : DN) ∈ Γ. Let ρ and σ be such that ρ |= E and
σ  Γ[ρ]. We want to prove that (t x)[σ]  B[ρ], i.e. t[σ]x[σ]  B[ρ]. Let π ∈ JBKρ. By
adequacy, we have t[σ]  (A ⇒ B)[ρ], and σ  Γ[ρ] gives x[σ] ≡ σ(x) ∈ D(JNKρ) so that
x[σ] · π ∈ JA⇒ BKρ. Therefore we have t[σ]x[σ] ? π � t[σ] ? x[σ] · π ∈ ⊥⊥ and we conclude
by anti-evaluation.

Congruence Assume that the sequent E ; Γ ` t : A is adequate and let ρ and σ be such that
ρ |= E and σ  Γ[ρ]. By adequacy, we have t[σ]  A[ρ]. Assuming JA[ρ]K = JA′[ρ]K, we
have |A[ρ]| = |B[ρ]| and t[σ]  B[ρ] holds trivially. It remains to prove that A ≈E B entails
‖A[ρ]‖ = ‖A′[ρ]‖, which is exactly the following lemma.

Lemma 4.2.7
If A ≈E B, then for any valuation ρ modeling E, we have JAKρ = JBKρ.

Proof. By induction on the derivation of A ≈E B. The assumption on ρ is used for the base case:
if (A = B) ∈ E , then it gives JAKρ = JBKρ. We also use Lemma 4.2.1 for βη-conversion and the
definition of Jrecτ K ≡ RecJτK for ι-conversion.

4.2.3 Results
PAω+ is clearly an extension of PA2: any classical realizability model of PAω+ contains a fragment
that is isomorphic to the classical realizability model of PA2 presented in Chapter 2. The intuition
behind this isomorphism is that classical realizability is a semantic theory: all the realizers that
can be extracted from proofs in a very powerful theory (say, ZF) are already present in the model
of PA2. This is due to the fact that the realizability relation is defined on formulæ and not on
proofs. In fact, its expressiveness is limited by the meta-theory in which classical realizability is
developed.

Formally, we first identify this fragment in PAω+ as follows:

• Translate formulæ of PA2 into propositions of PAω+. It is only a cosmetic change which
simply amounts to interpreting first-order quantification by quantification over the sort ι and
second-order quantification of various arity by quantification over the kinds ι→ . . .→ ι→ o.

• Translate the classical realizability model of PA2 into the one of PAω+. We just need
to observe that the definition of the classical realizability interpretation in Section 2.4 is
included in the one of Figure 4.7.

Then, we can prove by a straightforward induction on formulæ the following theorem:

Theorem 4.2.8
Let t be a closed λc-term, A a formula in PA2, and A† its translation in PAω+. For any pole ⊥⊥,
we have:

t ⊥⊥ A in PA2 ⇐⇒ t ⊥⊥ A
† in PAω+

This means that all the results of Chapter 2 apply to the second-order fragment of PAω+ and
therefore can be seamlessly imported into the PAω+. This includes:
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• the various specifications (>, ⊥, 1, ⊥ ⇒ ⊥, etc.)6;

• the realization of arithmetic: equalities and the recurrence axiom;

• the computational interpretation of arithmetic;

• witness extraction techniques and their limitation to Π0
2 formulæ.

4.2.4 Other extensions of classical realizability for PAω+

In this section, we sketch how we can adapt to the higher-order framework of PAω+ the extensions
of classical realizability for PA2 that have been presented in Chapter 3.

Subtyping Syntactic and semantic subtyping can be imported as is from PA2: the same
definitions, the same inference rules (given in Figure 2.8), the same interpretation, the same
modification to the adequacy lemma. There are only two minor differences: on the one hand,
deal with the equational theory E in the interpretation of subtyping; on the other hand, deal
with the new constructions for propositions, namely congruence, equational implication and data
implication.

The adaptation of the semantic interpretation of subtyping incorporates the same modification
as the adequacy lemma:

Semantic subtyping A ≤E,⊥⊥ B := for any ρ, if ρ |= E then JBKρ ⊆ JAKρ

Data implication requires no effort because it is logically inert: the only rule added is
compatibility.

`M ≈E N ` A ≈E B
` DM ⇒v A ≈E DN ⇒v B

Congruence and equational implication are strongly linked and must be treated at the same
time. The congruence rule of the proof system of PAω+ entails that the congruence relation is
included in subtyping equivalence. Furthermore, as the objectives of congruence and subtyping
equivalence are the same, namely to replace a formula by a semantically equivalent one, it makes
more sense to identify them. This is the reason for choosing the same notation in the first place.
In particular, as congruence depends on an equational theory E , the subtyping equivalence also
depends on E , which de facto becomes a context for subtyping: we write now E ` A ≤ B. To
be consistent in our notations, we can also replace A ≈E B with E ` A ≈ B and fully integrate
congruence, or subtyping equivalence, into the proof system of PAω+. Drawing inspiration from
the semantic interpretation of equational implication, we have the following rules in addition to
all the congruence rules given in Figure 4.5:

E ,M = N ` A ≤ B
E ` A ≤M .= N 7→ B

E ; Γ ` t : A E ` A ≤ B
E ; Γ ` t : B

Remarks 4.2.9
1. Notice that the subsumption rule subsumes the congruence one, which can therefore be

removed.
6For >, we first need to check that its interpretation is indeed ∅ since it was defined as ∅̇ in PA2. This amounts

to proving that Jλxoyo. xoK is different from Jλxoyo. yoK in all models. These functions are the first and second
projections on propositions and they are equal if and only if the underlying set is at most a singleton. As this set
is JoK ≡ P(Π), this is clearly false because Π is non empty.
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2. The subtyping rules only make sense for propositions. In particular, we must be cautious
when identifying congruence and subtype equivalence as both are not defined on the same
objects.

3. There is no subtyping rule for equational implication as a supertype and we use the compa-
tibility and commutativity rules given in the congruence instead. The semantic reason for
this is that we would need to prove very different inclusions whether JMKρ = JNKρ holds or
not, and we have to way to syntactically express that JMKρ 6= JNKρ. This problem does not
appear with E ` A ≤M .= N 7→ B because the problematic inclusion is trivial in that case:
∅ ⊆ JBKρ.

As an illustration, let us consider an alternative characterization of booleans and prove that it
is subtype equivalent to the usual one:
Example 4.2.10 (Equivalence between two characterizations of booleans)
In addition to the standard definition of booleans, we can write a second one that takes advantage
of the equational implication:

Old booleans b ∈ B′ := ∀Zι→o. Z 1⇒ Z 0⇒ Z b
New Booleans b ∈ B := ∀Zo. (b .= 1 7→ Z)⇒ (b .= 0 7→ Z)⇒ Z

The benefit of the second definition is that we can replace b by 0 or 1 in any formula substituting
the variable Z, whereas in the first definition we need to transform it into a unary predicate
beforehand. The proof trees proving both subtyping judgments are given in Figure 4.8.

Without subtyping, we can only prove their logical equivalence, i.e. λzxy. z x y : b ∈ B⇒ b ∈ B′
and λx. x : b ∈ B′ ⇒ b ∈ B. In particular, we need to apply identities, or η-expansion thereof, to
convert one formula into the other, which adds a useless computational overhead and produces
bigger terms.

New instructions In Chapter 3, several instructions were introduced, either to add new
programming features or to realize new axioms. In the first group, we find primitive pairs and
disjoint unions, non-deterministic booleans and primitive numbers whereas in the second one,
we have the axioms of countable or dependent choice. Some are in both categories, like the
specification of a fixpoint operator which is used to realize the foundation axiom in classical
realizability models of ZF set theory [Kri09]. As the KAM is the same, these instructions can
also be considered in PAω+. Finally, as their specifications only use second-order formulæ which
are also expressible in PAω+, the results of Chapter 3 directly extend to the higher-order setting.

4.3 Primitive datatypes
As we have seen, primitive datatypes are added to the syntax of PAω+ as a black box: they do
not interact with the proof system. Nevertheless, if we want to use them, we need operations
to act on them. Following the ideas of Section 3.4 for primitive integers, we assume primitive
operations on datatypes being given. As the KAM is a stack machine, these primitive operations
need to return their result in a CPS style, otherwise data may end up in head position, triggering
a kind of segmentation fault error. As in PA2, we write D̂ the CPS form of the datatype D,
that is D̂ := λx. ∀Zo. (Dx⇒v Z)⇒ Z. Of course, we allow ourselves to use the set notations
x ∈ D̂ because D̂ is still meant to denote a datatype. Notice that ∀x ∈ D̂. A and ∃x ∈ D̂. A are
unnecessary since on both cases the datatype appears on the left of an implication, which simply
needs to be turned into a data implication. This is the same remark as in the Coq formalization
of primitive integers in Section 3.7.4.
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Example 4.3.1
Integers N It is a rewriting of Section 3.4 into the unified framework for datatypes in PAω+. We

still have a specific instruction n̂ for each integer n and primitive operations for addition,
subtraction, multiplication, pattern matching, etc. The datatype N is simply defined as
N(s) := {n̂} when s is the set-theoretic representation of n, and N(s) := ∅ otherwise.
Indeed, the interpretation of individuals is hereditary finite sets, which contains much more
inhabitants than integers. It simply means that we only interpret integers and that each
integer n is only represented by the instruction n̂. The type of binary primitive operations
is then ∀n ∈ N.∀m ∈ N. (n�m) ∈ N̂, with � an operation on expressions (addition,
subtraction, . . . ).

Booleans B We can take for instance the convention of the C programming language and define
B(false) = { 0̂ }, B(true) = {n̂ | n 6= 0}, and B(s) = ∅ otherwise. Notice that true and false
denote here the booleans in Vω, but their exact definition is not relevant. In practice, this is
only marginally more efficient and is useful mostly as a typing discipline. Therefore, we
stick to the usual representation by λ-terms. Notice that even this representation can be
defined as a datatype, see the last item.

Sets of integers I The interest of separating the level of mathematical expressions from the
level of realizers appears clearly when we come to the description of the datatype of finite
sets of integers.
Remember that we have assumed that datatypes are already present in the semantics, giving
the usual denotations ∅, {.}, and ∪ for the empty set, the singleton construction and the
union of finite sets. We can therefore lift them into expressions as parameters and get ∅̇, ˙{ }
and ∪̇ of respective kinds ι, ι→ ι and ι→ ι→ ι. At this level, ∪̇ is a syntactic representation
of the usual set-theoretic union of finite sets, which is present in the semantics. In particular,
we can assume that ∪̇ possesses all the expected properties like commutativity, associativity
and idempotence, because they hold in the semantics: they are semantic equivalences. We
can do so either by introducing a syntactic symbol for ∪ and defining the congruence as
containing these three semantic equivalences, or we can simply add them locally as equational
axiom schemes. The second solution essentially amounts to consider that any equational
theory E always contain these three equalities. As we do not intend to change the set of
interpretations for individuals, the best solution is the first one. Nevertheless, the second
one can be used to locally add equational axioms whereas the first one is necessarily global
and definitive.
At the level of the KAM, we implement sets by finite lists, on which concatenation is neither
associative, nor commutative, nor idempotent. Therefore, I(s) is the set of all lists of
integers that contain exactly the elements of s:

I(s) := {l | for all n, n̂, if n̂ ∈ N(n) then l contains n̂ if and only if s contains n}

On this datatype, induction can be performed either at the level of the KAM on the structure
of the list, or at the level of expressions on the cardinal of the set. This justifies that I(s) is
well-defined because we can use recurrence on the cardinal of s.
The strict separation between a set and its implementation allows for different properties for
each one. We could also choose to make the representation of sets in the KAM idempotent
by removing duplicates, and also associative and commutative by ordering the elements. We
would then get a canonical representation of each set but this is absolutely not required in
general for datatypes.
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Primitive operations on sets may include for example:

λk. k nil : ∅ ∈ Î

λnlk. k (cons n l) : ∀n ∈ N ∀s ∈ I. ({n} ∪ s) ∈ Î

λl1l2k. k (concat l1 l2) : ∀x ∈ I∀y ∈ I. (x ∪ y) ∈ Î

In this presentation, the constructions nil, cons and concat are the usual ones of pro-
gramming languages and they are not in CPS style. Hence we need to explicitly add the
continuation argument k. In practice, we directly define their CPS version.

Cartesian product of datatypes Given two datatypes D1 and D2, we can define a datatype
that represents the Cartesian product of D1 and D2. In fact, it simply amounts to translating
the definition of primitive conjunction given in Section 3.2.1 in PAω+ with datatypes. We
define (D1 ×D2)(s) := {(n1, n2) | s is a pair 〈s1, s2〉, n1 ∈ D1(s1), n2 ∈ D2(s2)} and we
have the following three primitive operations:

pair � ∀x ∈ D1 ∀y ∈ D2. 〈x, y〉 ∈ ̂D1 ×D2

proj1 � ∀x ∈ D1 ×D2. ˙proj1 x ∈ D̂1

proj2 � ∀x ∈ D1 ×D2. ˙proj2 x ∈ D̂2

with ˙proj1 and ˙proj2 the parameters coming from the first and second semantic projections.

A set of individuals we can embed an arbitrary set S of individuals from PAω+ (in the formal
sense of Definition 4.1.2) into a datatype by letting D(s) := |ṡ ∈ S|. In this case, data
implication coincides with regular implication and we do not need to introduce primitive
operations.

As we can expect, a datatype D is logically equivalent to its CPS translation D̂. Logical
equivalence cannot be taken to have exactly the usual meaning because Dx is not a formula.
More precisely, we have the following result:

Proposition 4.3.2
For any datatype D, any individual i, and any proposition A, we have:

λxy. y x : (D i⇒v A)⇒ i ∈ D̂ ⇒ A

λxy. x (λz. z y) : (i ∈ D̂ ⇒ A)⇒ D i⇒v A

Specification Let us now specify functions on datatypes, subsuming Theorem 3.4.1:

Theorem 4.3.3 (Specification of functions on datatypes)
Let D0, D1, . . . , Dk be datatypes and let f be a k-ary function from individuals to individuals.
Universal realizers of the proposition ∀x1 ∈ D1 . . . ∀xk ∈ Dk. f(x1, . . . , xk) ∈ D̂0 are exactly
the λc-terms t such that for any λc-term u, any stack π and any hereditary finite sets s1, . . . , sk,
if n1 ∈ D1(s1), . . . , nk ∈ Dk(sk), then there exists m ∈ D0(JfK(s1, . . . , sk)) such that we have
t ? n1 · . . . · nk · u · π � u ? m · π.

Proof. The proof is similar to its particular case for primitive integers in PA2 (Theorem 3.4.1).
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=⇒ Let f , t, u, π, s1, . . . , sk, and n1, . . . , nk be as in the statement of the theorem. Let ⊥⊥ be
{p | there exists m ∈ D0(JfK(s1, . . . , sk)) such that p � u ? m · π}. We need to prove that
t ? n1 · . . . · nk · u · π ∈ ⊥⊥. By definition of ⊥⊥, we have u  f(s1, . . . , sk) ∈ D0 ⇒v π̇ which
gives u · π ∈

∥∥∥f(s1, . . . , sk) ∈ D̂0

∥∥∥ and we conclude since the stack n1 · . . . · nk · u · π exactly

belongs to the good falsity value, i.e. to D1 s1 ⇒v . . .⇒v Dk sk ⇒v f(s1, . . . , sk) ∈ D̂0.

⇐= Let ⊥⊥ be a pole, s1, . . . sk hereditary finite sets, u a realizer of f(s1, . . . , sk) ∈ D0 ⇒v Z
for some Z, and π a stack in ‖Z‖. We want to prove that t is a realizer of the formula
D s1 ⇒v . . . ⇒v Dk sk ⇒v f(s1, . . . , sk) ∈ D̂0. Letting ni be any representation of Di(si)
for 1 ≤ i ≤ k, it amounts to proving that t ? n1 · . . . · nk · u · π ∈ ⊥⊥. By anti-evaluation and
assumption on t, it is enough to prove that for any representation m of D0(JfK(s1, .., sk)),
u ? m · π ∈ ⊥⊥. This is trivial as we have both m · π ∈ ‖f(s1, . . . , sk) ∈ D0 ⇒v Z‖ and
u  f(s1, . . . , sk) ∈ D0 ⇒v Z.

In a similar way, we can prove an analogous of Theorem 3.4.2 to handle semantic conditions
(see Section 3.4.2), which includes all comparison operators as particular cases.

Theorem 4.3.4 (Specification of tests on semantic conditions over datatypes)
Let D0, D1, . . . , Dk be datatypes and let c(~x) be a semantic condition depending only on the
variables ~x := (x1, . . . , xk). Universal realizers of the formula

∀x1 ∈ D1 . . . ∀xk ∈ Dk ∀Z. (c(~x) 7→ Z)⇒ (∼ c(~x) 7→ Z)⇒ Z

are exactly the λc-terms t such that, for any tuple of hereditary finite sets ~s := (s1, . . . , sk), any
stack π, and any λc-terms u and v, we have, for any representation ni of Di(si) for 1 ≤ i ≤ k:

t ? n1 · . . . · nk · u · v · π �

{
u ? π if c(~s) holds in the standard model
v ? π otherwise

Remark 4.3.5
For inductive types, the pattern matching function is a generalization of the previous theorem.
Instead of having only two cases, one for c and one for ∼ c, we have one premise by constructor:
if Ci are the constructors of an inductive type I, its pattern matching has the following type:

matchI : ∀x ∈ D. (∀x1 ∈ D1 . . . ∀xk ∈ Dk. x
.= C1 x1 . . . xk 7→ Z)⇒ . . .⇒ Z

For example, on lists of integers, we get:

matchlist : ∀l ∈ L. (l .= nil 7→ Z)⇒ (∀n ∈ I∀l′ ∈ L. l .= consn l′ 7→ Z)⇒ Z

We can recover the usual pattern matching of ML. Let us illustrate this on lists. In ML, we
have match l with [ ] → t | a :: l′ → u. In the KAM, it becomes matchlist l t (λal′. u). The main
difference is that the KAM only handle closed terms, so that we need to abstract u on a and l′,
the free variables bound by pattern matching. The match operator then takes care of passing the
correct arguments.

In the case of integers, we have an equivalence theorem between Krivine integers and native
integers seen as a datatype, like in PA2 (Theorem 3.4.4). Nevertheless, it makes more sense to
completely avoid Krivine integers and implement everything from datatypes. The basic operations
must be at least the constant zero, the successor function and a universal realizer of the recurrence
axiom, which can be built from a fixpoint operator, the nullity test instruction and the predecessor
instruction.
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Witness extraction The main motivation to introduce primitive datatypes is to improve the
representation of data and to simplify witness extraction by avoiding storage operators. Indeed,
the extraction method given in Section 2.10 uses the λc-term MN (λnp. p (stopn)) to perform
extraction, with MN a storage operator for Krivine integers. This storage operator is necessary
to flush out all computations inside realizers of m ∈ N and to ensure that the term we extract is
indeed a Krivine integer, i.e. an evaluated integer. On the opposite, if N denotes a datatype for
primitive integers which only gives one representation for each integer (which was the case in
Section 3.4), then a realizer of m ∈ N̂ must contain this unique representation and therefore be
evaluated. More precisely, we have the following witness extraction procedure:

Theorem 4.3.6 (Witness extraction for datatypes)
Let f be a function between hereditary finite sets, D be a datatype, u be a λc-term, π be a stack
and t be a universal realizer of

∃x ∈ D. ḟ x = 0 ≡ ∀Z. (∀x.D x⇒v ḟ x = 0⇒ Z)⇒ Z

Then there exists an hereditary finite set s and a representation m of D(s) such that f(s) = 0
and t ? λnp. p (un) · π � u ? m · π.

Proof. We take ⊥⊥ := {p | there exists m ∈ D(s) such that p � u ? m · π} and we want to prove
t ? λnp. p (un) ·π ∈ ⊥⊥. By assumption on t, we have t  (∀x.D x⇒v ḟ x = 0⇒ π̇)⇒ π̇. We only
need to show that λnp. p (un)  ∀x.D x⇒v ḟ x = 0⇒ π̇. Let s be an hereditary finite set, m a
representation of D(s), and v a realizer of ḟ s = 0. Let us prove that λnp. p (un) ? m · v · π ∈ ⊥⊥.
By anti-evaluation, it is enough to show v ? um · π ∈ ⊥⊥. If f(s) is zero, then v  1 and we need
to show that um  π̇. This is clear by anti-evaluation and definition of ⊥⊥. If f(s) is not zero,
then v  > ⇒ ⊥ and we conclude because um · π ∈ J> ⇒ ⊥K.



Chapter 5

Forcing in classical realizability

Chapter 4 presented higher-order Peano arithmetic and its classical realizability semantics, strongly
inspired from the realizability for the second-order case. In this chapter, we use it to analyze the
computational interpretation of Paul Cohen’s theory of classical forcing [Coh63, Coh64]. This
computational interpretation comes from the Curry-Howard correspondence: initially a logical
transformation, classical forcing can be seen as a transformation on types. What is remarkable
though, is that this transformation can be lifted to a transformation of Curry-style proof terms,
that is on raw λc-terms without having to refer to its typing tree. This allows us to consider
classical forcing as a program transformation, and not only a typing tree transformation.

Other examples of lifting logical translations into program translations exist. For instance,
Andrey Kolmogorov’s double negation translation, and more generally Harvey Friedman’s
A-translation, translates into a call-by-name CPS transform.

The interpretation of forcing as a program transformation was discovered by Jean-Louis
Krivine who expressed it in a set theoretic framework [Kri11]. His goal was not to use it as a
program transformation, but rather to use intuition from program compilation and inject them into
the forcing translation. The transformation was later reformulated by Alexandre Miquel [Miq11,
Miq13] in higher-order Peano arithmetic (PAω+). In this setting, the program transformation
was presented in a fully-typed way, thus generalizing the computational interpretation of forcing
to any interpretation of PAω+, not necessarily the classical realizability one. The focus of these
papers is really on the program transformation, highlighting it and studying its properties, from
logical and computational perspectives. One major contribution is the definition of a modified
KAM, called the Krivine Forcing Abstract Machine (KFAM) (see Section 5.1.4), which avoids the
forcing translation by hard-wiring it into the abstract machine.

Both presentations of the program transformation underlying forcing are obtained by unfolding
the construction of a forcing model from a ground model. We will follow the same guiding principle
and extend the forcing transformation to generic filters. The present work is based on the works
of Paul Cohen [Coh63, Coh64] who invented forcing, Jean-Louis Krivine [Kri12] who gave the
first computational interpretation, and Alexandre Miquel [Miq13] who reformulated it in PAω+.
The contributions of this chapter are the following:
• Following our presentation of PAω+, the introduction of datatypes in the forcing translation
(Section 5.1),

• The treatment of generic filters and their computational interpretation, the missing link to
get a complete computational translation (Section 5.2),

• The general method to use proofs by forcing toward a computational goal (Section 5.2.3).
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5.1 Forcing in PAω+

This section is a reformulation of Paul Cohen’s forcing theory [Coh63, Coh64], initially developed
for Zermelo-Fraenkel set theory (ZF), into the framework of higher-order Peano arithmetic. We
follow the presentation of [Miq13] with one main difference: datatypes. Technically, we first
present the forcing translation as a theory translation from PAω+into itself, before extending it
to generic filters in Section 5.2.

Intuition of Cohen’s forcing In its original presentation, forcing is a model transformation
that takes a model of ZF, called the ground model, and builds a bigger model, called the forcing
model. Intuitively, this new model is built from the ground model by adding a new set g to it,
see Figure 5.1. Of course, we cannot add an arbitrary set out of the blue if we want to get a
model of ZF, we need to be cautious. To make a parallel with group theory, we cannot take just
any group and adjoin an arbitrary extra element and hope that the result will still be a group.
Nevertheless, under some conditions on g and if we are careful to add enough sets, we do obtain
a new model of ZF. The conditions on g are flexible and with creative choices, we can give to the
forcing model properties that are false in the ground model.

For example, Paul Cohen designed this powerful technique to build a model of ZFC, i.e. ZF
plus the axiom of choice, where the negation of the continuum hypothesis (CH) is valid. The
negation of CH states that there is a cardinal lying strictly between ℵ0, the cardinal of N, and
the cardinal of P(N). His choice of g come from the following reasoning: to invalidate CH, we
need to add a lot of subsets of N, enough to make P(N) at least of the size of ℵ2, the second
uncountable cardinal. Therefore, he took g to represent an injection of a set of cardinal ℵ2 into
P(N), which gives that ℵ1 lies strictly between ℵ0 and the cardinal of P(N). To conclude, he
needed to make sure that the forcing model does no collapse ℵ2 on ℵ1, by proving that cardinals
in the ground and forcing models are the same. This effectively prove that CH is independent
from the axioms of ZFC, since Kurt Gödel had built a model of ZFC where CH does holds with
his technique of constructible sets [Göd38, Göd39].

Base universe Forcing universe

g

Figure 5.1: High-level view of the forcing construction.

Reformulation in PAω+ Unlike the original presentation, we see forcing in a dual1 perspective:
not as a model construction but rather as a translation between theories, where we unfold the
definition of the forcing model into the base model. More precisely, in PAω+, forcing is a
translation of facts about objects living in an extended (or forcing) universe, corresponding to the

1It is an instance of the Galois connection between syntax and semantics given by William Lawvere [Law69].
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forcing model, where sorts contain much more inhabitants, into facts about objects living into a
base universe, corresponding to the ground model. As its name suggests, the extended universe is
an extension of the base universe: compared to the base universe, the language of the extended
universe contains an additional symbol for the object g. The theory of the extended universe also
contains axioms about g that assert the properties normally ensured by the forcing construction.
This syntactic presentation allows us to be more generic than sticking to realizability models, and
the forcing translation presented here can be computationally interpreted in any calculus that
realizes PAω+.

Translating the extended universe into the base one requires in particular to translate g. As
the very idea of forcing is to add this new object g, it does not exist in the base universe (unless
we are in a degenerate case). Therefore, we cannot translate it directly and we choose instead to
approximate g in the base universe by finite objects, called forcing conditions or simply conditions.
These finite approximations are collected in a set G from which g is built as a limit. This is
the reason why Paul Cohen considers G as the set to introduce and forgets about g. Similarly,
we take G to be the object that we want to add to PAω+ and we keep g only as a source of
intuitions.

5.1.1 Representation of forcing conditions
Paul Cohen introduced the set of forcing conditions as a poset (P,≤). The preorder ≤ on
conditions represents a comparison of the amount of information about G that each condition
contains: p ≤ q, read “p is stronger than q”, means that p contains more information than q. A
very common case for this preorder is reversed inclusion2: whenever p and q are sets of pieces of
information, p being more informative than q means that q ⊆ p. This preorder is partial because
different conditions can give information about different parts of G. In particular, it is natural to
combine two forcing conditions into one and merge their information, which suggests to see P also
as an upward closed subset of a meet-semilattice. In fact, the meet operation has a computational
interpretation which is more important then the one of the preorder, and therefore, following
Jean-Louis Krivine and Alexandre Miquel [Kri11, Miq11, Miq13], we prefer to define the set of
forcing conditions as an upward-closed subset of a meet-semilattice. This presentation is slightly
more restrictive than the one of Paul Cohen because not all orders are generated in this way.
Nevertheless, all interesting forcing posets are of this type in practice. In fact, this presentation
is also better suited to PAω+: a set is defined both by a sort and a relativization predicate. By
putting as much structure as possible in the sort, we keep the relativization predicate as simple
as possible and we can enjoy the operations (here the meet) in the syntax as a constant acting
over all elements of the sort, not only the ones satisfying the relativization predicate.

Definition 5.1.1 (Forcing structure)
A forcing structure is given by:

• a sort κ for forcing conditions,

• a set Cκ→o of well-formed forcing conditions (p ∈ C being usually written C[p]),

• an operation · of sort κ→ κ→ κ to form the meet, or product, of two conditions (denoted
by juxtaposition),

• a greatest condition 1,
2This apparently reversed order can be put in parallel with Dana Scott’s denotational models where f ≤ g

means that the function f is more defined than g and that they coincide where g is defined, i.e. f contains more
information than g. In fact, it corresponds to the logical order of implication where A < B means that A⇒ B.
Nevertheless, some other authors use the opposite definition.
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• nine closed proof terms, called combinators, representing the axioms that must be satisfied
by the forcing structure:

α0 : C[1]
α1 : ∀pκ∀qκ. C[pq]⇒ C[p]
α2 : ∀pκ∀qκ. C[pq]⇒ C[q]
α3 : ∀pκ∀qκ. C[pq]⇒ C[qp]
α4 : ∀pκ. C[p]⇒ C[pp]
α5 : ∀pκ∀qκ∀rκ. C[(pq)r]⇒ C[p(qr)]
α6 : ∀pκ∀qκ∀rκ. C[p(qr)]⇒ C[(pq)r]
α7 : ∀pκ. C[p]⇒ C[p1]
α8 : ∀pκ. C[p]⇒ C[1p]

The above axioms essentially express three properties:

• the set C is non empty (α0),

• the set C is upward-closed with respect to the preorder p ≤ q (α1 and α2),

• on C, the meet operation is associative (α5 and α6), commutative (α6), idempotent (α4),
and admits 1 as a neutral element (α7 and α8).

Notice that the set C is not assumed to be stable under the meet. This property is of critical
importance because when C is closed under product, the forcing model is the same as the ground
model [Bel85].

Remarks 5.1.2

1. This set of axioms is not minimal, since α2, α6 and α8 can be defined from the others
combinators:

α2 := α1 ◦ α3

α6 := α3 ◦ α5 ◦ α3 ◦ α5 ◦ α3

α8 := α3 ◦ α7

2. Although we use the same notation 1 for both the integer and the forcing condition, it will
always be clear from the context which one is intended.

We write αi ◦ . . . ◦ αj ◦ αk to denote the composition of combinators, namely the proof term
λc. αi (. . . (αj (αk c)) . . .) with c a fresh proof variable. In what follows, we will also need the
following derived combinators:

α9 := α3 ◦ α1 ◦ α6 ◦ α3 : ∀p∀q∀r. C[(pq)r]⇒ C[pr]
α10 := α2 ◦ α5 : ∀p∀q∀r. C[(pq)r]⇒ C[qr]
α11 := α9 ◦ α4 : ∀p∀q. C[pq]⇒ C[p(pq)]
α12 := α5 ◦ α3 : ∀p∀q∀r. C[p(qr)]⇒ C[q(rp)]
α13 := α3 ◦ α12 : ∀p∀q∀r. C[p(qr)]⇒ C[(rp)q]
α14 := α12 ◦ α10 ◦ α4 ◦ α2 : ∀p∀q∀r. C[p(qr)]⇒ C[q(rr)]
α15 := α9 ◦ α3 : ∀p∀q∀r. C[p(qr)]⇒ C[qp]
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Preorder We can reconstruct the preorder that Paul Cohen takes as primitive in his definition
of a forcing poset as follows:

Preorder p ≤ q := ∀r. C[p · r]⇒ C[q · r]

We easily check that pq is the meet of p and q and that 1 is the greatest element. Furthermore,
all the elements of sort κ outside C are equivalent with respect to the preorder ≤, and they
intuitively represent an “inconsistent condition” stronger than all well-formed conditions. The
intuition behind this choice is that different pieces of information may be incompatible and
forming their product leads to inconsistencies. When the product p · q of two conditions belongs
to C, we say that p and q are compatible.

Proposition 5.1.3

1. The relation ≤ defines a preorder with 1 as greatest element.

2. The meet p · q is the greatest lower bound of p and q.

3. Any expression p of sort κ not in C is a minimal element for ≤.
In particular, if p and q are both outside C, we have p ≤ q and q ≤ p.

Proof.
1. • Reflexivity p ≤ p: λx. x : C[pr]⇒ C[pr]

• Transitivity p ≤ q ⇒ q ≤ r ⇒ p ≤ r: With x : p ≤ q and y : q ≤ r, we get
C[ps] x−−→ C[qs] y−−→ C[rs]

• Maximal element p ≤ 1: C[pr] α2−−−→ C[r] α8−−−→ C[1r]

2. • Left lower bound pq ≤ p: C[(pq)r] α9−−−→ C[pr]

• Right lower bound pq ≤ q: C[(pq)r] α10−−−→ C[qr]
• Greatest one r ≤ p⇒ r ≤ q ⇒ r ≤ pq: With x : r ≤ p and y : r ≤ q, we get
C[rs] α11−−−→ C[r(rs)] x−−→ C[p(rs)] α12−−−→ C[r(sp)] y−−→ C[q(sp)] α13−−−→ C[(pq)s]

3. We want to show ¬C[p]⇒ p ≤ q. With x : ¬C[p], we get C[pr] α1−−−→ C[p] x−−→ ⊥ and ⊥ is
a subtype of C[qr].

Example 5.1.4 (Forcing structure for a Cohen real number)
A standard exercise in forcing consist in building the forcing structure which adds a new real
number. Intuitively, this means that g represents a real number different from the ones already
present. As real numbers are logically represented as subsets of natural numbers, which are
naturally given by their characteristic function, it amounts to building a function from integers
to booleans which is different from all existing functions. Since forcing conditions are meant
to represent finite approximations of g, they are here finite functions from natural numbers to
booleans. We can represent them by hereditary finite sets, and therefore we take the kind κ of
forcing condition to be ι, the sort of individuals. The set C must describe the forcing conditions as
individuals representing finite functions, that is it must describe their domain and their functional
nature. In this setting, the product is naturally the union of functions. Such a union may not
result in a function, for instance when two finite functions map the same point to different values,
and therefore C is not closed under product. The greatest condition 1 is the empty function. This
example will be expanded in Example 5.2.8 and formally defined in Definition 6.1.9.
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5.1.2 The forcing translations
Our goal is to present both the forcing transformation mapping a proposition A to a set of forcing
conditions, written λp. p FA, and the corresponding translation t 7→ t∗ on programs. Intuitively,
pFA denotes the formula A augmented with information from p. Notice that we use the symbol F
for the forcing relation because the usual symbol  is already used for classical realizability.

The forcing translation on formulæ is defined by induction. As formulæ can use arbitrary
mathematical expressions, we must first define an auxiliary translation M 7→M∗ on expressions.
Furthermore, when mapping A to p F A, p is a free variable. This means that in fact we are
defining a family of forcing transformations, parametrized by forcing conditions. To integrate
the information of the forcing condition p into A, the translation M 7→M∗ on expressions must
turn a formula A into an expression A∗ that depends on p. In particular, the kind of A changes
during the translation and we therefore need to define first the translation at the level of kinds.
To remember their relationship, we write the translations on kinds, expressions and proof terms
with the same notation ( . )∗. To distinguish them from the overall transformation on formula
A 7→ p FA, we call the latter a forcing transformation and not a translation.

The translation on kinds This translation explains how the nature of mathematical expres-
sions changes along their translation. As we have just seen, propositions are mapped to sets
of forcing conditions, of sort κ → o. If we want to compute with the forcing transformation,
datatypes need to stay the same between the base and the extended universe, which suggests to
take ι∗ := ι. Therefore, the following definition is natural:

ι∗ := ι o∗ := κ→ o (σ → τ)∗ := σ∗ → τ∗

Of course, this choice is justified by the properties of Cohen forcing, especially the fact that
integers, and more generally ordinals, are invariant through the construction (see Section 5.2.1).

It is straightforward to check that T-kinds (from Section 4.1.2) are exactly the sorts that are
invariant under this translation.

The translation on expressions This translation is more complex and changes the sort of the
term: Nτ is turned into (N∗)τ∗. Thus, a variable of kind τ is mapped to an expression of sort τ∗.
As variables can be bound by abstraction or universal quantification, the expression translating a
variable must itself be a variable, and therefore we need a function to map a variable xτ to a
variable (x∗)τ∗. This function on variables is a parameter of the translation, exactly like valuations
are parameters for the realizability interpretation. As a consequence, the translation of a closed
expression does not depend on the choice of this function.

The forcing translation on expressions is defined in Figure 5.2. Implication is the key case of the
expression translation, which merely propagates through the other connectives. In particular, the
translation is trivial on arithmetical constructions. The case of the implication can be explained
as follows. First, the equational implication splits the forcing condition r into two parts q and r′.
Notice that these parts can be equal to r tanks to the combinator α4 : C[p]⇒ C[pp]. Then, q is
associated with A and r′ is associated with B. Looking back at the intuition of forcing conditions
as finite pieces of information about g, it means that we consider every splitting of the information
inside r between A and B, and then separately consider the translations of A and B.

This translation on expressions is extended pointwise to equational theories: E 7→ E∗, by
letting:

(M1 = N1, . . . ,Mk = Nk)∗ := M∗1 = N∗1 , . . . ,M
∗
k = N∗k
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(xτ )∗ := xτ
∗

(λxτ.M)∗ := λxτ
∗
.M∗

(M N)∗ := M∗N∗

0∗ := 0
S∗ := S

rec∗τ := recτ∗

(∀xτ. A)∗ := λrκ.∀xτ
∗
. A∗ r

(M .= N 7→ A)∗ := λrκ.M∗
.= N∗ 7→ A∗ r

(A⇒ B)∗ := λrκ.∀qκ∀(r′)κ. r .= qr′ 7→ (∀sκ. C[qs]⇒ A∗ s)⇒ B∗ r′

(DN ⇒v A)∗ := λrκ.∀qκ∀(r′)κ. r .= qr′ 7→ DN∗ ⇒v A
∗ r′

Figure 5.2: Forcing translation on expressions.

Remark 5.1.5
There are two possible choices for the translation on data implication:

(DN ⇒v A)∗ := λrκ. DN∗ ⇒v A
∗ r

(DN ⇒v A)∗ := λrκ.∀qκ∀(r′)κ. r .= qr′ 7→ DN∗ ⇒v A
∗ r′

In both cases, we see that datatypes are not affected by the translation. The difference lies in
the interpretation we give to data implication. In the first case, we want to make it completely
transparent to the forcing transformation, exactly like equational implication. In the second one,
we choose to make it closer to regular implication by splitting the forcing condition in two parts:
the first part is discarded because data implication does not need it, whereas the second part is
transmitted to A∗.

As proof terms for data implication use the same abstraction as regular implication, we choose
the second solution in order to have the soundness theorem (Theorem 5.1.12). Indeed, if data
implication and regular implication are translated differently, in order to have a well-defined
translation of Curry-style proof terms, we would need different abstraction and application for
each case. Since the computational meaning of regular implication and data implication is the
same, we prefer not to duplicate the proof term construction rules.

The forcing transformation on formulæ With these two translations, we can define the
forcing transformation on formulæ mapping A to p FA. It intuitively means that for any forcing
condition r compatible with p, r belongs to the set of forcing condition interpreting A.

Definition 5.1.6 (Forcing transformation)
The forcing transformation translating formulæ of the extended universe into the base universe is:

p FA := ∀rκ. C[pr]⇒ A∗ r

The translation of proof terms As the forcing transformation introduces an implication
before the translation of formulæ, their realizers will have to deal with this additional argument.
The translation of proof terms, given in Figure 5.3, is defined on λc-terms, that is without any
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reference to a typing derivation or a realized formula. To write it, we need some additional
combinators, namely β3, β4, γ1, γ3, and γ4, which we will properly define in Section 5.1.3.

The translation essentially modifies abstraction and application, as these are the two construc-
tions associated with implication, which was the cornerstone of the expression translation. On
applications, the translation only applies the combinator γ3, called “apply”. On abstraction, it
also applies a combinator, this time γ1, called “fold”, but changes variables as well by applying β3,
called “skip”, and β4 called “access”. In fact, these last two combinators make explicit the de
Bruijin structure of variables: if a variable has de Bruijin index n, it is translated into βn3 (β4 x).
This structure is important computationally, because it tells how far we need to look into an
environment to get the value of a variable. More precisely, we will see in Section 5.1.4 that α9
and α10, which underlie β3 and β4, appear in the evaluation rules of translated proof terms.

x∗ := x

(λx. t)∗ := γ1 (λx. t∗[β3 y/y][β4 x/x]) y ∈ FV(t) \ {x}
(t u)∗ := γ3 t

∗ u∗

callcc∗ := λcx. callcc (λk. x (α14 c) (γ4 k))
κ∗ (depends on each particular instruction)

Figure 5.3: Forcing translation on proof terms.

5.1.3 Properties of the forcing transformation
After giving all the formal definitions, we focus now on their logical properties, culminating with
Theorem 5.1.12 which expresses that the translations on proof terms and the transformation on
formulæ together preserve proofs.

Properties of the expression translation Since the expression translation is trivial on
arithmetical constructions and it only propagates through the λ-calculus constructions, it is
straightforward to check that we have M ≡ M∗ if and only if M is a T-expression (see Sec-
tion 4.1.2).

Moreover, equational implication and universal quantification are completely transparent to
the forcing translation:

(M .= N 7→ A)∗ r ≈ M∗
.= N∗ 7→ A∗ r

(∀xτ. A)∗ r ≈ ∀xτ
∗
. A∗ r

Proposition 5.1.7

1. (M [N/xτ ])∗ ≡M∗[N∗/xτ∗ ]

2. If M ≈E N , then M∗ ≈E∗ N∗.

Because of datatypes, this transformation is an extension of the one presented by Alexandre
Miquel, so that we cannot exactly reuse his proofs. Nevertheless, as data implication behaves
exactly like regular implication with respect to the forcing translation on expressions, the required
modifications are completely straightforward.
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Properties of the forcing transformation From the previous proposition and congruences,
we immediately get their extension to the forcing transformation:

Proposition 5.1.8 (Forcing commutations)
1. p F (M .=τ N 7→ A) ≈M∗ .=τ∗ N

∗ 7→ p FA

2. If xτ /∈ FV(p), then p F ∀xτ. A ≈ ∀xτ∗. p FA

3. If xτ /∈ FV(p), then p FA[N/xτ ] ≡ (p FA)[N∗/xτ∗ ]

4. If A ≈E B, then p FA ≈E∗ p FB.

It is important that these equivalences hold at the congruence level and not only at the logical
level: it means that these formulæ are really the same and therefore that we do not need a
proof term to convert between both sides. This is not the case for regular implication and data
implication. Computationally, this is due to the fact that the forcing transformation adds an
argument, in the form of the implication C[pr]⇒, and so does implication and data implication.
Therefore, we intuitively need to swap these arguments to commute forcing and implication or
data implication. This statement is formalized in the next two propositions.

Proposition 5.1.9 (Forcing an implication)

γ1 := λxcy. x y (α6 c) : ∀pκ. (∀qκ. q FA⇒ pq FB)⇒ p F (A⇒ B)
γ2 := λxyc. x (α5 c) y : ∀pκ. p F (A⇒ B)⇒ ∀qκ. q FA⇒ pq FB
γ3 := λxyc. x (α11 c) y : ∀pκ. p F (A⇒ B)⇒ p FA⇒ p FB
γ4 := λxcy. x (y (α15 c)) : ∀pκ.¬A∗ p⇒ p F (A⇒ B)

The first two proof terms prove that pF (A⇒ B) is logically equivalent to ∀qκ. q FA⇒ pq FB.
They respectively fold and unfold the definition, hence their name. The third proof term is a
particular case of the second one where q := p. The last one is necessary to translate continuations
because they realize negated formulæ, and we can find it in the translation of callcc. In fact, it
is convenient to write k∗ := γ4 k to denote the translation of a continuation constant.

Proposition 5.1.10 (Forcing a data implication)
Letting γ5 := λxcy. x y (α9 (α6 c)), we have:

γ3 : ∀pκ. p F (DN ⇒v A)⇒ DN∗ ⇒v p FA

γ5 : ∀pκ. (DN∗ ⇒v p FA)⇒ p F (DN ⇒v A)
γ1 : ∀pκ. (∀qκ. DN∗ ⇒v pq FA)⇒ p F (DN ⇒v A)

The proof term γ5 is an optimization of γ1 for data implication: we simply add α9 to erase a
part of the forcing condition that DN∗ does not use. This shows clearly that implication and
data implication are identical with respect to the forcing transformation.

Finally, as p is meant to denote information added to A in p FA, adding more information
should make p F A all the more provable. Therefore, we expect the forcing relation to be
anti-monotonous with respect to the forcing condition, which happens to be the case.

Proposition 5.1.11 (Anti-monotonicity of forcing)

β1 := λxyc. y (x c) : ∀pκ∀qκ. q ≤ p⇒ p FA⇒ q FA
β2 := λxc. x (α1 c) : ∀pκ.¬C[p]⇒ p FA
β3 := λxc. x (α9 c) : ∀pκ∀qκ. (p FA)⇒ (pq FA)
β4 := λxc. x (α10 c) : ∀pκ∀qκ. (q FA)⇒ (pq FA)
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The first proof term is the general one proving anti-monotonicity. The last two are particular
cases for the meet of two conditions. Finally, β2 expresses that all non well-formed conditions
forces any formula because the information they contain is already contradictory. It is the same
proof term as for the proposition ∀pκ∀qκ.¬C[p]⇒ p ≤ q.

These last four propositions clarify the meaning of p F A according to the structure of A.
The corresponding proof terms are used in the forcing translation on proof term (Figure 5.3).
Combining these propositions, we prove the main theorem:

Theorem 5.1.12 (Forcing soundness)
If the sequent E ; Γ ` t : A is derivable in PAω+, then E∗; p F Γ ` t∗ : p FA.

5.1.4 Computational interpretation of forcing
The definition of the forcing transformation p F A := ∀rκ. C[pr] ⇒ A∗ r suggests that the
computational effect of forcing is to add a new argument c on the stack, which realizes C[pr]
for any r. This argument is called a computational forcing condition because it contains the
computational content of well-formed forcing conditions. This intuition was also supported by
the previous section: computationally irrelevant logical connectives are transparent whereas the
ones that expect an argument, need to handle the computational condition. Let us study now
the computational behavior of translated proof terms in the KAM.

Computational interpretation in the KAM Evaluating translated closed proof terms in
the KAM leads to the following four rules, obtained by unfolding the definitions of γ1, γ3 and γ4:

Push∗ (t u)∗ ? c · π � t∗ ? α11 c · u∗ · π
Grab∗ (λx. t)∗ ? c · u · π � (t∗[β3 y/y])[β4 u/x] ? α6 c · π
Save∗ callcc∗ ? c · u · π � u ? α14 c · k∗π · π
Restore∗ k∗π′ ? c · u · π � u ? α15 c · π′

where k∗π is a notation for γ4 kπ. We observe that these rules are very similar to the usual ones,
with one major difference: the first slot of the stack is used to store the computational forcing
condition, which is modified at each step of evaluation. Notice that the inserted combinator is
different for each rule. In this sense, forcing is monitoring the behavior of the translated closed
proof term in the first slot of the stack. Furthermore, the computational condition is immune
to backtracks: callcc∗ does not save it and translated continuation constants do not restore it.
Intuitively, the monitoring device is not modified by the process under observation. This suggests
to use the computational condition to store information that should not be backtracked, and
indeed, this is the key that makes forcing proofs more efficient than direct ones. It also means
that the first slot of the stack can be seen as a memory cell. The case study of Herbrand theorem
(Chapter 6) will give an concrete example of this interpretation where this memory cell contains
the partial Herbrand tree under construction.

Nevertheless, this translation does not increase the expressive power of the λc-calculus, as
translated proof terms are plain λc-terms that could have been defined directly. The interest of
forcing to us is not to increase the expressiveness of PAω+ but rather to manage automatically
the first slot of the stack as an imperative memory cell.

The Krivine Forcing Abstract Machine Instead of applying the forcing translation on
proof terms and then evaluating them in the KAM, we can hard-wire the translation in the
abstract machine. Intuitively, this amounts to translating proof terms on the fly in the machine.
It gives a new abstract machine, the Krivine Forcing Abstract Machine (KFAM) [Miq13], which
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contains two sets of evaluation rules: one for usual proof terms which is directly taken from the
usual KAM, one for proof terms “that should be translated”, inspired from the above four rules.
These two sets of rules can be seen as two evaluation modes: a regular mode for regular λc-terms,
and a forcing mode for translated λc-terms. These execution modes may be considered as some
sort of protection rings like in operating systems, and we also call them respectively kernel mode
and user mode.

There is one difficulty however, the non locality of the translation of abstraction. Indeed,
λx. t is translated into γ1 (λx. t∗[β3 y/y][β4 x/x]) where y ranges over all variables except x. This
means that every variable of t is modified by inserting either β3 or β4 in front of it. The solution
is to delay these modifications to the moment a variable comes in head position. To that end,
rather than the KAM presented in Section 2.1.1, we use its historical presentation with explicit
environments, given in Figure 3.8. We then get two additional rules for variables in each evaluation
mode: Access and Access∗ for installing the topmost closure of the environment in head position
when it is associated with the variable currently in head position, Skip and Skip∗ for skipping
the topmost closure in the environment if it does not match the variable in head position. To
distinguish forcing conditions from other closures, we no longer write the former c but f instead.
The full definition of the KFAM is given in Figure 5.4.

Any closed λc-term can be evaluated either in regular mode or in forcing mode. Since the only
difference is in the evaluation rules, the choice of mode is made by a star “∗” as a superscript,
which is simply a mark distinguishing forcing closures from regular ones and remind us that
forcing closures behave like translated proof terms would. Notice that forcing and regular closures
coexist in the KAM and switching the evaluation mode is done by the Access and Access∗
rules: the new mode is the one of the installed closure.

Finally, the KFAM is a new evaluation machine and can be used as the basis for classical
realizability models. In fact, the kernel part of the KFAM is exactly the KAM with explicit
environments, and thus enjoys an adequacy lemma. Moreover, there is also an adequacy in user
mode derived from the soundness theorem (Theorem 5.1.12) and the adequacy in kernel mode.
See [Miq13] for details.

Computational interpretation of forcing conditions At the beginning of this chapter, we
used several times the intuition according to which forcing conditions add finite information
about G to formulæ. We justify now this intuition by analyzing the corresponding mechanism
on λc-terms: computational conditions add information to realizers. To that end, let us look at
the types of the combinators αi used in the evaluation rules of the forcing mode and associate
them with closures in the KFAM.

α9 : C[(pq)r]⇒ C[pr]
α10 : C[(pq)r]⇒ C[qr]
α11 : C[pq] ⇒ C[p(pq)]
α6 : C[p(qr)]⇒ C[(pq)r]
α14 : C[p(qr)]⇒ C[q(rr)]
α15 : C[p(qr)]⇒ C[qp]

We can first notice that the forcing conditions involved are always a product. In fact, the left
component of this product is associated with the closure in head position, usually an environment,
whereas its right component is associated with the closures in the stack. Then, we observe that
the changes on a forcing condition reflect the changes in the closures of corresponding rule of the
KFAM.
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Syntax of the KFAM

Terms t, u := x | λx. t | t u | κ κ an instruction
Environments e := ∅ | e, x← c
Closures c, f := t[e] | kπ | t[e]∗ | k∗π
Stacks π := α | c · π α a stack bottom
processes p := c ? π

Evaluation rules in regular (or kernel) mode

Skip x[e, y ← c] ? π � x[e] ? π when x 6= y

Access x[e, x← c] ? π � c ? π
Push (t u)[e] ? π � t[e] ? u[e] · π
Grab (λx. t)[e] ? c · π � t[e, x← c] ? π
Save callcc[e] ? c · π � c ? kπ · π
Restore kπ′ ? c · π � c ? π′

Evaluation rules in forcing (or user) mode

Skip∗ x∗[e, y ← c] ? f · π � x∗[e] ? α9 f · π when x 6= y

Access∗ x∗[e, x← c] ? f · π � c ? α10 f · π
Push∗ (t u)∗[e] ? f · π � t∗[e] ? α11 f · u∗[e] · π
Grab∗ (λx. t)∗[e] ? f · c · π � t∗[e, x← c] ? α6 f · π
Save∗ callcc∗[e] ? f · c · π � c ? α14 f · k∗π · π
Restore∗ k∗π′ ? f · c · π � c ? α15 f · π′

The notation αi f in the user mode evaluation rules is abusive because αi is a proof term whereas f
is a closure. The proper writing would be (αi x)[∅, x← f ] which is a closure but is harder to read.

Figure 5.4: Description of the KFAM.
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Skip∗ The forcing conditions p, q, and r are respectively mapped to e, c, and π. In this rule,
we drop the first closure of the environment, namely c, and therefore, in computational
condition, we also drop the associated forcing condition q.

Access∗ This case is the symmetrical of the previous one: instead of c, we drop e and this
directly reflects in the computational forcing condition.

Push∗ The forcing condition p associated with the environment e is duplicated and one copy is
left in head position for t[e] whereas the other one follows u[e] on the top of the stack.

Grab∗ The forcing condition q attached to c on the top of the stack is put in head position
with p, the one for (λx. t)[e].

Save∗ The forcing condition attached to callcc is erased because callcc does not need it
whereas q, the one for c, is put in head position. Finally, the condition r associated with
the stack π is duplicated: one copy for k∗π and one for π.

Restore∗ The forcing condition p attached to k∗π′ (and thus also to π′) replaces r, the one
for the stack π. As the closure c moves in head position, so does its associated forcing
condition q.

Remark 5.1.13
If we use the alternative forcing translation of data implication presented in Remark 5.1.5, the
computational rules attached to it in the KAM are the following:

Push∗v (t u)∗ ? c · π � t∗ ? c · u · π
Grab∗v (λ′x. t)∗ ? c · u · π � t∗[u/x] ? c · π

Computational conditions then contain no information about datatypes, which partly messes up
their previous interpretation as attaching information to closures. Notice that in this case, as
explained in Remark 5.1.5, λ′ is a different binder than λ for regular implication because it does
not have the same forcing translation.

This analysis justifies the interpretation of forcing conditions as pieces of information attached
to formulæ and realizers. Nevertheless, it does not give any hint on how information is managed or
split up into a product. Furthermore, if we stick to these rules, information inside computational
conditions flows between head position and the stack but it is never updated. In particular, it
seems useless for computation. It is not very surprising because decisive updates should depend
on the precise meaning and definition of the forcing structure and, up to now, the computational
interpretation works for any forcing structure.

The explanation is that g, the new object that is intuitively added to the base universe by the
forcing construction, is never used whereas it embodies the difference between the base universe
and the extended one. Indeed, forcing conditions are meant to denote finite approximations of g,
and therefore their computational content should depend on g. As we will see at the end of
Section 5.2.2, informative updates of computational conditions are done by the proofs that the
axioms of the generic filter G are forced. Remember that G is the set from which g is defined: it
collects the forcing conditions that are valid approximations of g.

Let us study now how we can handle generic filters in PAω+.

5.2 Handling generic filters
The forcing translation presented until now is a translation from PAω+ to itself. Indeed, the
translations on kinds, expressions, and proof terms given earlier all deal with the constructions
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of PAω+ but do not take into account G, the specificity of the extended universe. To complete
the forcing program transformation, we need to define what is the translation of G and how to
translate all the axioms that were added to the extended universe alongside G. We denote the
extended universe by PAω+

G to illustrate the fact that the extended universe essentially adds G
compared to the base universe PAω+.

We consider this problem first in a restricted case, forcing on an invariant set, where well-formed
forcing conditions are invariant under forcing, which we must first define.

5.2.1 Invariance under forcing
As the sort of an expression changes with the forcing translation, so does its computational content.
In particular, if we want to use the forcing transformation for computation, it is reasonable to
ask that the objects we compute with do not change with the translation, to ensure that they
are the same in the extended universe and in the base one. This remark motivates the study of
propositions that are invariant by forcing, that is, propositions A such that for any well-formed
forcing condition p, pFA is equivalent to A. The restriction to well-formed conditions is necessary
because of Proposition 5.1.11: non well-formed conditions force any formula. Invariant formulæ
are formally defined as follows:

Definition 5.2.1 (Invariance under forcing)
A formula A is said to be invariant under forcing, or invariant by forcing, or forcing invariant,
when pFA is logically equivalent to C[p]⇒ A, i.e. when we have proof terms ξA and ξ′A such that

ξA : ∀pκ. (p FA)⇒ C[p]⇒ A

ξ′A : ∀pκ. (C[p]⇒ A)⇒ p FA

With the results of the previous section, we already know that most logical constructions
preserve invariance by forcing. In fact, the only connectives that do not are implication and data
implication, which is not surprising as the expression translation is focused on implication and
that data implication mimics it.

In particular, first-order propositions, which contain arithmetical formulæ, are forcing invariant.

Proposition 5.2.2
First-order propositions are invariant by forcing. They are defined as

1st-order proposition A,B := ⊥ | M =τ N | A⇒ B | ∀xτ. A
| relτ M | M

.=τ N 7→ A | DN ⇒v A

with τ a T-sort and M , N T-expressions (see Section 4.1.2).

We extend the invariance under forcing to sets by stating intuitively that the set characterizes
the same objects in the base and in the extended universe. In particular, this requires that the
underlying sort is invariant by forcing.

Definition 5.2.3 (Sets invariant by forcing)
A set Sτ→o is said to be invariant by forcing when τ is a T-sort (that is, we have τ∗ ≡ τ) and
when for any T-expression M of sort τ , the proposition M ∈ S is invariant by forcing.

Invariance by forcing can be used to remove forcing from a proof. In particular, if we have
a proof of an implication A⇒ B with B invariant by forcing and a proof that its premise A is
forced by the condition 1, then we can build a proof of B.



5.2. HANDLING GENERIC FILTERS 143

Theorem 5.2.4 (Elimination of a forced hypothesis)
If t : A⇒ B and u : 1 FA with B invariant by forcing, then ξB (γ3 t

∗ u)α0 : B.

Proof. Straightforward, using the types of γ3, ξB and α0 and Theorem 5.1.12 to type t∗.

Remark 5.2.5
As 1 is the greatest condition and that forcing is anti-monotonic, the assumption 1 FA means in
fact that A is forced by any condition.

5.2.2 Forcing on an invariant set
In this section, we assume that the set C of well-formed forcing conditions is invariant by forcing.
In particular, the sort κ of forcing conditions is a T-kind. This amounts to assuming the existence
of two proof terms ξC and ξ′C such that:

ξC : ∀pκ∀qκ. p F C[q]⇒ C[p]⇒ C[q]
ξ′C : ∀pκ∀qκ. (C[p]⇒ C[q])⇒ p F C[q]

This is a technical restriction but an intuitive one: it means that well-formed forcing conditions
denote the same objects in the base and the extended universe. It is a natural requirement if we
want to use the computational content of forcing conditions to carry information: this information
should be the same everywhere to allow us to freely transfer it between both universes.

The forcing universe PAω+
G is defined from PAω+ by adding a new constant G in the syntax

and axiomatizing the properties of this new constant. These axioms are taken as abstract proof
terms in PAω+

G that we will translate into real proof terms in PAω+, thus extending the forcing
proof term translation.

Axioms on G Let us first state the properties of G that are assumed in PAω+
G. The first four

axioms express that G is a filter in C.

Axioms on G A1 : ∀p. p ∈ G⇒ C[p] G is a subset of C,
A2 : 1 ∈ G G is non empty,
A3 : ∀p∀q. pq ∈ G⇒ p ∈ G G is upward closed,
A4 : ∀p∀q. p ∈ G⇒ q ∈ G⇒ pq ∈ G G is closed under product.

These four properties permit us to define g from G. Indeed, since G is a filter, the product of
elements in G gives an element in G. This intuitively means that the forcing conditions in G are
compatible and therefore they can be seen as approximating a limit object: g. At the limit, we
can build the product of all the elements of G, which defines g:

g :=
∏
p∈G

p

Notice that this product is usually infinite and thus g does not belong to G or C in general.
The last axiom, called genericity, is the one that really characterizes G and is the key to most

of the properties of g. It relies on the following notion:

Definition 5.2.6 (Dense subset)
A set S of sort κ→ o is said to be dense in C if for every element p in C, there is an element q
in C belonging to S and smaller than p. Formally, we let:

S dense := ∀pκ. C[p]⇒ ∃qκ. C[q] ∧ q ∈ S ∧ q ≤ p
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Remark 5.2.7
When q ≤ p, C[q] is logically equivalent to C[pq] thanks to the proof terms α2 : C[pq] ⇒ C[q]
and λx. x ◦ α4 : p ≤ q ⇒ C[q]⇒ C[pq]. Therefore, we can rewrite the definition of density in a
simpler way: by replacing q with pq, which makes the inequality pq ≤ p trivial.

S dense := ∀pκ. C[p]⇒ ∃qκ. C[pq] ∧ pq ∈ S

As it is simpler than the original one, this is the definition that we are going to use.

The last axiom on the set G is then:

Axioms on G A5 : (∀pκ. C[p]⇒ ∃qκ. C[pq] ∧ pq ∈ S) ⇒ ∃pκ. p ∈ G ∧ p ∈ S
G intersects every set Sκ→o of the base universe dense in C

The restriction to sets of the base universe is made by assuming that S is invariant under forcing.
Indeed, it ensures that S exists as a set in the base universe, as we can write a predicate to
define it. Without this restriction, sets in the extended universe may use G and therefore not be
definable in PAω+, or they may have a different meaning in PAω+ and in PAω+

G. Axiom A5 is
therefore a axiom scheme on all invariant sets S. In fact, it can be presented as a unique axiom if
we abstract S and its invariance assumptions as follows:

∀Sκ→o. (∀p∀x. p F x ∈ S ⇒ C[p]⇒ x ∈ S)⇒ (∀p∀x. (C[p]⇒ x ∈ S)⇒ p F x ∈ S)⇒
(∀pκ. C[p]⇒ ∃qκ. C[pq] ∧ pq ∈ S)⇒ ∃pκ. p ∈ G ∧ p ∈ S

To illustrate the importance of this last axiom, let us resume Example 5.1.4 and prove some
properties of g.

Example 5.2.8
Using the forcing structure sketched in Example 5.1.4, we first note that G is meant to represent a
set of finite approximations of g, i.e. it contains finite functions from natural integers to booleans
that are all compatible. We then have the following results:

1. g is a total function from integers to booleans and therefore it defines a new real number.

2. This new real number is different from all previously existing real numbers.

3. As a subset of N, g intersects every infinite subset S of N.

4. The intersection of g and any infinite subset of N is infinite.

Proof. All these proofs use the genericity axiom as the key ingredient.

1. Since the product is union, g is by definition the union of G which contains finite functions
from N to booleans. Therefore g is a function from N to booleans but not necessarily total.
This is what we prove now. Consider n ∈ N and let us show that n ∈ dom g. We use the
genericity axiom on the set Sn := λp. n ∈ dom p. It is clearly dense in C because a finite
function p either contains n in its domain and we take q := p, or it does not and we take
q := p ∪ {n 7→ true}. The genericity axiom on Sn gives us a forcing condition pn belonging
to both G and Sn. By definition of Sn, we have n ∈ dom pn. Because g =

⋃
p∈G p, we get

pn ⊆ g and therefore n ∈ dom g.

2. A real number is logically defined as a function from N to booleans. Given a real number r,
we want to prove that g 6= r. To that end, we consider the set Sr of forcing conditions that
are not finite approximations of r, i.e. Sr := λp. ∃n ∈ N. p n 6= r n. It is clearly dense in C
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because given a well-formed forcing condition p, we can always extend it with a binding
n 7→ ¬(r n) for any n /∈ dom p. Therefore, by the genericity axiom, we have a forcing
condition pr in the intersection of G and Sr. This gives an integer nr such that pr nr 6= r nr,
and since pr ⊆ g, we deduce g nr 6= r nr, and thus g 6= r.

3. We consider the set S of forcing conditions that contain an element of S in their domain.
The rest of the proof (density of S in C and conclusion) is the same as for the first item.

4. The previous item gave us an integer n ∈ S ∩ dom g. To have an infinite number of them,
we build a sequence (ni)i∈N of distinct integers in the intersection. This is simply done by
induction on i, using at each step the set Si of forcing conditions that contain an integer
of S in their domain distinct from all nj for 0 ≤ j < i.

Translation in the base universe Now that the axioms of the generic filter G are formally
stated, we need to explain how the forcing translation on expressions extends to a translation
from PAω+

G to PAω+. When the set C of well-formed forcing conditions is invariant under forcing,
the expression translation on the generic filter G is

Translation of G G∗ := λpr. C[pr]
This surprisingly simple definition has the following consequence of critical importance:

p F q ∈ G := ∀r. C[pr]⇒ (q ∈ G)∗r ≈ ∀r. C[pr]⇒ C[qr] ≡ p ≤ q

In order to translate proofs of the extended universe that use axioms about the generic filter G,
we have to prove the proposition r FAi in the base universe (i.e. in PAω+) for each of the five
axioms A1 to A5 and for any forcing condition r. Notice that the proof terms justifying the filter
properties of G are small.
Proposition 5.2.9 (Forcing the filter properties of G)
Provided C is an invariant set, the filter properties of G, i.e. axioms A1 to A4, are forced with
the following proof terms:

γ1 (λx. ξ′C (α1 ◦ x ◦ α3)) : r F ∀p. p ∈ G⇒ C[p] (5.2.9.i)
α8 ◦ α2 : r F 1 ∈ G (5.2.9.ii)

γ1 (λx. α9 ◦ x ◦ α10) : r F ∀p∀q. pq ∈ G⇒ p ∈ G (5.2.9.iii)
γ1(λx. γ1 (λy. α13 ◦ y ◦ α12 ◦ x ◦ α2 ◦ α5 ◦ α5)) : r F ∀p∀q. p ∈ G⇒ q ∈ G⇒ pq ∈ G (5.2.9.iv)

Proof. The formal proofs in PAω+ are given in Annex B.

As genericity is the most complex and powerful property of the generic filter, the proof term
proving that A5 is forced is more complicated than the previous ones. To make it more readable, we
introduce an intermediate proof term ξ∃2 such that ξ∃2 ξA ξB : (pF∃n.A∧B)⇒ (C[p]⇒ ∃n.A∧B)
for two (open) propositions A and B invariant under forcing. It can be built using Theorem 5.2.2,
because ∃n.A ∧B is defined as (∀n.A⇒ B ⇒ ⊥)⇒ ⊥.
Proposition 5.2.10 (Forcing the genericity axiom)
Provided C and S are invariant sets, i.e. we have proof terms ξC , ξ′C , ξS, and ξ′S, the genericity
property is forced with the following proof term:

γ1 (λx. γ1 (λyc. ξ∃2 ξC ξS (γ3 x (ξ′c (λ . c))) (α2 (α1 (α1 c)))
(λc′d. γ3 (γ3 (β1 (α10 ◦ α9 ◦ α9) y) (λx. x))

(ξ′S (λ . d)) (α3 (α2 (α5 (α11 c
′)))))))

: r F (∀p. C[p]⇒ ∃q. C[pq] ∧ pq ∈ S)⇒ ∃p. p ∈ G ∧ p ∈ S
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Remark 5.2.11
Thanks to anti-monotonicity (Proposition 5.1.11), it would have been sufficient to prove that
1 FAi. But except for 1 ∈ G, the proof terms for r FAi and 1 FAi are the same and therefore we
have proven the most general case.

The computational interpretation of G The generic filter G and its limit g do not have a
computational counterpart because they are semantic objects. Furthermore, they live in PAω+

G

and only PAω+ has a computational part. In fact, the computational interpretation of G and g
comes from the realization of the axioms A1 to A5.

Nevertheless, the fact that p F q ∈ G ≈ p ≤ q still gives an intuition on the computational role
of G. Indeed, in the proposition p ≤ q, p and q are both seen at the same level. On the opposite,
in p F q ∈ G, p is a forcing condition used in PAω+ to emulate g whereas q is an object used
by the proposition q ∈ G in PAω+

G, which appears to be also a forcing condition. To make an
analogy with the KFAM, p is in kernel mode whereas q is in user mode. Therefore, G seems to be
an interface through which the two modes interact in proofs. In fact, the properties of G ensure
invariants on the computational condition: p F q ∈ G ≈ p ≤ q enforces that the current forcing
condition p is compatible with q. Furthermore, the possibilities of interaction with computational
conditions from PAω+

G are exactly given by the axioms A1 to A5, and the realizers of p FAi can
be seen as primitive instructions giving limited access to the memory cell that forcing implements.

Looking at the complexity of the propositions, we expect A5 to give the most permissive
access to the computational condition and a general computational interpretation is still unclear.
On the opposite, axioms A1 to A5 have clear interpretations:

• A1 : r F∀p. p ∈ G⇒ C[p] retrieves a part of the information of the computational condition,

• A2 : r F 1 ∈ G represents the empty invariant,

• A3 : r F∀p∀q. pq ∈ G⇒ p ∈ G partly discards the invariant on the computational condition,

• A4 : r F ∀p∀q. p ∈ G⇒ q ∈ G⇒ pq ∈ G merges two invariants into one.

It is tempting to replace “invariant about the computational condition” by “the content of
the computational condition”, which would give a much clearer computational interpretation.
Nevertheless, we cannot do it because in p ≤ q, p can contain much more information than q.

5.2.3 Using the forcing transformation to make proofs
We are not interested in using forcing to increase the expressive power of PAω+ or to prove more
results but rather to prove them in a simpler way, or to get more efficient proofs. The interest of
using forcing relies exclusively on G and its properties. As G is an abstract constant in PAω+

G, it
relies more precisely on both the definition of the set C and the fact that G is a generic filter
in C. Therefore, everything depends on our ability to craft a useful set of well-formed forcing
conditions, to make G captures useful information.

The high-level road map for using forcing to build proofs and realizers is summarized in
Figure 5.5, where we show the overall method for proving an implication A1 ⇒ . . .⇒ An ⇒ A,
with A invariant under forcing. The first step is usually the most difficult part of the method:
identify what should forcing conditions represent and what are well-formed forcing conditions.
Steps 2 and 3 do not require any work, as a proof in PAω+ in also valid in PAω+

G. In step 4,
we use the benefit of forcing, namely the set G and g, in addition to the premises A1, . . . , An in
order to build a proof t of A. The last steps are completely automatic. Indeed, step 5 uses the
forcing translations and the soundness theorem (Theorem 5.1.12) to build a proof of 1FA. Step 6
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Base universe

1. Build the forcing structure

2. Assume the premises x1, . . . , xn

5. Use the forcing translation
t∗(x∗1, . . . , x∗n) : 1 FA

6. Remove forcing
ξA t

∗(x∗1, . . . , x∗n)α0 : A

7. Extract a witness
(classical realizability)

Forcing universe

3. Lift the premises x1 . . . xn

4. Make the proof (using g/G)
t(x1, . . . , xn) : A

Figure 5.5: Global structure of proofs by forcing.

uses the invariance by forcing of A to recover a proof of A and step 7 uses the usual extraction
techniques presented in Section 2.10.2. The last step is the only place where classical realizability
enters the stage. In particular, any other technique for extracting witnesses from classical proofs
can be used instead.

Remark 5.2.12
In this process, we require that the conclusion A is invariant by forcing, but we make no as-
sumption on the premises A1 to An. When they are not invariant by forcing, we do not get a
proof of the implication A1 ⇒ . . . ⇒ An ⇒ A in the base universe but rather the logical rule
A1 . . . A1

A
which is a weaker result. Indeed, to get a proof of the implication, we should

abstract t(x1, . . . , xn) on the xi in the forcing universe. In step 6, removing forcing on the whole
implication A1 ⇒ . . . An ⇒ A would then require to have the forcing invariance of the Ai and to
use it according to Theorem 5.2.2.

Nevertheless, from a computational perspective, this is enough because we can still convert
realizers of the premises into a realizer of the conclusion.

5.2.4 General case of generic filters
In Section 5.2.2, we have studied the translation of generic filters in a particular case where the
set of forcing condition and the dense subsets of C we consider in Axiom (A5) are both invariant
sets. This is enough from a computational perspective but we may wonder what happens with
generic filters in the general case? This is the objective of this section. It is still work in progress
and is only intended as a presentation of the current general methodology, which may still prove
fruitless because of some unexpected difficulty.

To extend the treatment of the generic filter to arbitrary sets of well-formed forcing conditions,
and thus to any arbitrary kind κ of forcing conditions, we need to be able to express the genericity
axiom in its full generality. This calls for characterizing, in the extended universe, sets that
come from the base universe: we want to identify a copy of the base universe inside the forcing
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universe. To that end, following the original construction by Paul Cohen, we want to introduce
a predicateM stating that an expression of the forcing universe belongs to the base universe, see
Figure 5.6. The full genericity property, calledM-genericity to recall the relativization, is then
written as follows:

∀S ∈M. (∀pκ. C[p]⇒ ∃qκ. C[pq] ∧ pq ∈ S) ⇒ ∃pκ. p ∈ G ∧ p ∈ S

In addition, if we could get the same proof terms for A in PAω+ and for AM in PAω+
G, it would

avoid a wrapper to convert proofs between both universes.

Base universe

M

Forcing universe

g

G

Figure 5.6: The relativization to the base universe inside the forcing universe.

To define the predicateM, a possible idea is to embed PAω+ into PAω+
G and defineM as

the image of this embedding. Computationally, only the base universe is effective and therefore
such an embedding must go from PAω+ to the image of PAω+

G in PAω+ through the forcing
translation. To deal with abstraction, we also need the converse function collapsing a set in the
forcing universe to a set in the base universe. These two operations are called lift and unlift.
They are defined in the base universe and written respectively ↑ and ↓.

The lift and unlift operators They both go from the base universe to itself and are defined
by induction on sorts. The meaning of lift, is to transport any expression of kind τ in the base
universe to the forcing universe (where it is still of sort τ) and translate it back into the base
universe via the forcing translation on expressions, in the end giving an expression of sort τ∗. The
unlift operation is the converse operation, taking any expression of kind τ∗, that is any expression
in the image of the forcing translation, and mapping it to a possible antecedent of sort τ in the
base universe.

We expect T-expressions to be mapped to themselves because they are transparent to the
forcing translation. Similarly, an embedded proposition (of sort κ→ o) should not depend on the
forcing condition. Finally, lift and unlift should be a section and a retraction, that is lifting then
unlifting should be the identity.

Definition 5.2.13 (The lift and unlift operators)
The operators lift and unlift on expressions, written ↑τ and ↓τ , are defined by structural induction
on the sort τ . They are respectively of kind τ → τ∗ and τ∗ → τ .

↑ι := λxι. x ↓ι := λxι. x

↑o := λxo κ. x ↓o := λxκ→o. x 1
↑σ→τ := λfσ→τxσ

∗
. ↑τ f(↓σ x) ↓σ→τ := λfσ

∗→τ∗xσ. ↓τ f(↑σ x)
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We can immediately check that these definitions indeed define a section and a retraction:

Lemma 5.2.14 (Section/Retraction)
For any sort τ and any expression Mτ, we have ↓τ◦ ↑τ M ≈M .

Proof. By a straightforward induction on τ . Notice that we only use βη-equivalence and not the
full power of the congruence.

The projection operator ⇓ A set of the forcing universe coming from the base universe should
not lose meaning if we unlift it. In particular, it should be invariant if we unlift and then lift it
back. This is exactly how we define the relativizationM to the base universe. More precisely,
we do exactly like for G: we introduce a new syntactic constant ⇓ in the forcing universe and
axiomatize its properties. According to the informal definition, this constant is translated into
unlifting and then lifting. The properties that we can axiomatize on this constant are the ones
we can prove on its translation in the base universe. For example, thanks to Lemma 5.2.14, it is
a projection.

Definition 5.2.15 (Translation of the projection operator)
We translate the projection operator ⇓ in the base universe by ⇓∗ := ↑ ◦ ↓.

The definition of the relativization predicateM is then straightforward:

Definition 5.2.16 (Relativization to the base universe)
The relativization predicateM is defined as λx. ⇓x = x (where = is Leibniz equality).

To ensure thatM indeed defines a relativization, we must check that it is compatible with all
connectives, that is, we want the following equivalences:

⇓(A⇒ B) ⇐⇒ ⇓A⇒ ⇓B
⇓(∀x.A) ⇐⇒ ∀x ∈M. ⇓A

⇓(M .= N 7→ A) ⇐⇒ M
.= N 7→ ⇓A

⇓(DN ⇒v A) ⇐⇒ DN ⇒v ⇓A

Since ⇓ is a constant, we cannot directly prove these properties but we can assume them if
their translations in the base universe hold, that is we want the following equivalences instead:

p F ⇓(A⇒ B) ⇐⇒ p F (⇓A⇒ ⇓B)
p F ⇓(∀x.A) ⇐⇒ p F ∀x ∈M. ⇓A

p F ⇓(M .= N 7→ A) ⇐⇒ p FM
.= N 7→ ⇓A

p F ⇓(DN ⇒v A) ⇐⇒ p FDN ⇒v ⇓A

Furthermore, we would also prefer congruences to logical equivalences, again to avoid proof terms
to perform this type conversion.

In a nutshell, the equivalences for universal quantification and equational implication are
true and are even congruences, but the ones for implication and data implication do not seem
to hold. Maybe a different definition for lift and unlift could correct that. As individuals are
invariant expressions under the forcing translation, their lifting and unlifting seems to have to
be the identity. The place where we have room to modify the definitions is in the lifting of
propositions. Indeed, we simply want that ↑A is insensitive to forcing conditions, that is, for any
forcing conditions p and q, (↑A) p is equivalent to (↑A) q.
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Chapter 6

Case study: Herbrand trees

The previous chapter presented the forcing transformation in PAω+ and the general methodology
to use it computationally (Section 5.2.3). This chapter illustrates this approach on a complete
example: the extraction of Herbrand trees, given by Herbrand theorem [Her30]. This example is
mostly a proof of concept, showing that this approach is practical and very efficient. During this
case study, we emphasize the computational interpretation of forcing, which can be seen here as
a tree library (see Section 6.1.6).

This whole chapter is made only of contributions but we can highlight three main aspects:

• the complete work through of the overall methodology of “forcing for computation” on the
case study of Herbrand trees (Sections 6),

• the reformulation of the forcing translation to use a datatype as the underlying structure
for forcing conditions (Section 6.2),

• the reinterpretation of the case study inside the framework of the previous item, which
completely remove the overhead induced by forcing while preserving the computational
content (Section 6.3).

6.1 Herbrand theorem
Herbrand theorem is a generalization to classical logic of the witness property of intuitionistic
logic, as we see now. Intuitionistic logic enjoys the witness property: if we have a proof of an
existential statement ∃~x.A, then by normalization, we can extract from this proof a witness, that
is to say a tuple of terms ~w such that we have a proof of A[~w/~x]. On the opposite, classical
logic does not enjoy this property. Nevertheless, we have a weaker version of it: from a proof of
an purely existential statement ∃~x.A, i.e. with A quantifier-free, we can get a finite number of
witnesses ~w1, . . . , ~wn such that we have a proof of the finite disjunction A[ ~w1/~x] ∨ . . . ∨A[ ~wn/~x].
This is Herbrand theorem. Notice that the restriction to purely existential statement is not
essential here, as universal quantifications can always be removed by Herbrandization [Bar82],
and in fact, Herbrand theorem holds for all existential formulæ.

6.1.1 Presentation of Herbrand theorem
Intuitively, classical reasoning, via excluded middle for instance, distinguishes various cases
depending on the truth of some formulæ. As a proof is a finite object, only finitely many formulæ
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can be tested in this way, giving finitely many families of models, one for each possible truth
assignment for these formulæ. Since all the other reasoning steps are intuitionistic, we get
a witness for each family of models, in the end giving the finite number of witnesses of the
theorem. Herbrand theorem can be proven and used by proof mining techniques [Koh08] to
extract additional information from proofs, and very efficient and specialized techniques exist
for it [GK05, Koh92, Kre81]. Therefore, it is unlikely that forcing will help us get more efficient
extraction techniques in this very well-studied area.

Instead, we consider a semantic variant of the theorem where the finiteness argument of a
proof cannot apply directly. In fact, it is a mix between the syntactic version of Herbrand theorem
and the completeness theorem for first-order logic.

Theorem 6.1.1 (Semantic Herbrand theorem)
If the purely existential formula ∃x.A is true in all syntactic models, then there exists a finite
disjunction A[w1/x] ∨ . . . ∨A[wn/x] which is true in all models.

Because it uses a disjunction, the result of Herbrand theorem is not very precise: we do not
know to which family of models each witness corresponds. To solve this problem, we introduce
Herbrand trees which map every syntactic model to a witness of the existential formula in that
model. To that end, we assume a countable first-order language begin given, and we write Term
and Atom the countable sets of closed terms and of closed atomic formulæ, respectively. The
truth value of a formula in this language is completely decided by the truth values of atoms, and
therefore we can describe syntactic models as truth assignments, that is functions from atoms to
booleans.

Definition 6.1.2 (Truth assignment and finite truth assignment)
A truth assignment is a function from atomic formulæ (i.e. Atom) to booleans. They exactly
denote models of the logical language on which A is built.
A finite truth assignment is a finite function from atomic formulæ to booleans.

Definition 6.1.3 (Herbrand tree for a quantifier-free formula A)
A Herbrand tree for a formula A is a finite binary tree t such that:

• The inner nodes of t are labeled with atomic formulæ a ∈ Atom, so that every branch of
the tree represents a finite truth assignment (going left means “true”, going right means
“false”).

• Every leaf of t contains a witness for the corresponding branch, that is a tuple ~w ∈
−−−→Term

such that ρ |= A[~w/~x] for every (total) truth assignment ρ that extends the finite truth
assignment represented by that branch.

Example 6.1.4
We consider a language with integers and one unary predicate symbols P . The existential formula
that we are interested in is ∃n.P n ∧ ¬P (S n) ∧ P 3 ∧ ¬P 7. It is clear from this simple definition
that the witness is an integer between 3 and 5, the exact value depending on the truth values
of P 4, P 5, and P 6. Possible Herbrand trees for this formula are drawn below, with the path
corresponding to the finite truth assignment {P 4 7→ true;P 5 7→ false} highlighted. Notice that
the second tree can be improved because P 7 is uselessly tested. Finally, the third tree is not a
Herbrand tree because the branch going to the leaf labeled n contains two contradictory truth values
for P 5 and therefore does not represent a finite truth assignment.
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P 4
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6 5
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P 6
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6 5

P 4

4 P 5

n 3

Remark 6.1.5
To have more flexibility to build Herbrand trees, we may want to allow the third tree as an
improper Herbrand tree. We can always prune such a tree into a proper Herbrand tree by following
branches down the tree and replacing inner nodes labeled with duplicate atoms by their left or
right subtree, depending on the previous value of the atom.

Notice that we can read the Herbrand disjunction for ∃~x.A from the leaves of the Herbrand
tree. For this reason, Herbrand trees can be seen as a more structured way of presenting a
Herbrand disjunction: we can determine a correct witness for each model, by going down the
tree and following at each inner node the direction corresponding to the model, left if the atomic
formula is true, right otherwise. The complete form of Herbrand theorem that we are going to
consider is then the following:

Theorem 6.1.6 (Herbrand)
If the closed formula ∃~x.A is true in all syntactic models, then A has a Herbrand tree.

Our aim is to describe a method to effectively extract a Herbrand tree from a classical realizer
of the proposition expressing that “the formula ∃~x.A holds in all syntactic models”. Since the
latter proposition is directly implied by the formula ∃~x.A itself (using the soundness theorem of
first-order logic), we get a method to effectively extract a Herbrand tree from either a proof or a
realizer of the closed formula ∃~x.A.

A direct program to extract Herbrand trees Looking at the problem statement with a
programmer eye, there is a straightforward solution [Miq09b]: harness the realizer of the premise
and, each time it tests the value of an atom, fork the process by giving true to one child and
false to the other. More precisely, we consider here a KAM augmented with a scheduler that
can fork processes and evaluate them in parallel. The realizer of the premise is a program that
produces a tuple of closed terms ~u and a realizer t of A[~u/~x]. Because A is quantifier-free, we
can effectively flush out the backtracks in t and extract a witness ~w for A using the technique of
Section 2.10.2. The value of this witness depends on the particular model that we consider. To
distinguish different models, the realizer of the premise must be able to query the truth value of
atomic formulæ in the model.

Harnessing the realizer of the premise means tracking calls to the oracle giving the truth
values of atoms in the specific model the premise considers. More specifically, the oracle is built
has follows: each time a call to the oracle on an atom that was not queried before is made, we
fork the current process, answering true to one child process and false to the other, see Figure 6.1.
If the argument to the oracle has already been queried, we simply return its previous truth value.
In this way, we consider in parallel every possible truth assignment that is relevant to the premise.
As the witness extraction procedure on the classical realizer of the premise of Herbrand theorem
ultimately provides a witness ~w, all these processes terminate. By construction, the execution
tree of the starting process gives a Herbrand tree.
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a0?

a5?

oracle ? a7 · t · π

a0?

a5?

a7?

t ? true ·π t ? false ·π

Figure 6.1: Harnessing the premise into a direct program.

An alternative solution: a realizer extracted from a proof The previous direct technique
has a major drawback: it requires a scheduling mechanism on top of the evaluation machine,
exactly like an operating system. Notice that the computational interpretation of forcing in
Section 5.1.4 sees precisely forcing as a kind of monitoring operating system. This strongly
suggests that forcing can help us with this problem, as we will see at the end of this chapter.

In the framework of the Curry-Howard correspondence, the natural method to extract Herbrand
trees is to use a classical realizer t obtained from a formal proof of Theorem 6.1.6. By applying t
to a realizer u of the premise of Theorem 6.1.6, we get a realizer of the purely existential formula
expressing the existence of a Herbrand tree for A, from which we can retrieve the desired Herbrand
tree using the classical witness extraction techniques presented in Section 2.10. The efficiency of
the extracted code highly depends on the proof of Herbrand theorem.

Let us look at the simplest proof of the semantic version of Theorem 6.1.6, and analyze the
associated computational content.

Usual proof of Herbrand theorem Given an enumeration (ai)i∈N of the closed instances of
the atomic formulæ, let us consider the infinite binary tree enumerating the sequence (ai)i∈N: at
depth i, it possesses 2i nodes which are all labeled with the atom ai. Any infinite branch in this
enumerating infinite tree is a total truth assignment ρ because all atoms appear along it, and
thus it interprets A. Furthermore, such a branch may also be seen as a real number1, intuitively
because it maps each integer i (the index of the closed atom ai) to a boolean value saying whether
the atom ai holds in the model represented by the branch or not. From our assumption, we know
that there is a tuple ~w ∈ −−−→Term such thatM |= A[~w/~x]. Since the closed formula A[~w/~x] is finite,
its truth value only relies on a finite subset of ρ, and we can cut the infinite branch of ρ at some
finite depth, putting a leaf labeled with ~w. We can cut any arbitrary branch in this fashion and
thus, by the fan theorem [Bro77], we get a finite tree. By construction, it is clearly a Herbrand
tree for A. This proof is depicted in Figure 6.2.

This proof is very simple, but it is not well-suited for extraction. Indeed, it relies on a fixed
enumeration (ai)i∈N of atoms given a priori, which means that it gives terribly poor performances
on formulæ A involving atoms that appear late in the chosen enumeration. Furthermore, the
hardest part of the work is performed by the fan theorem which effectively builds the Herbrand
tree. Therefore, the realizer for Herbrand theorem extracted from this proof is basically the one
for the fan theorem. What we want is a proof that chooses the atoms labeling the inner nodes

1From of logical perspective, a real number is simply a subset of N, as R is in bijection with P(N).
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Figure 6.2: Three important steps of the proof by enumeration: identifying a truth assignment in
the infinite tree, cutting it thanks to the premise, using the fan theorem to conclude.

according to the realizer of its premise, therefore making every decision in the tree relevant. In
particular, the order needs not be the same in each branch.

To this end, we present a novel proof of Theorem 6.1.6 that is tailored for this purpose,
and which relies on the forcing techniques developed in the previous chapter. In this case, the
ideal object g that forcing adds is essentially a Cohen real which behaves as a generic truth
assignment, i.e. an infinite branch that represents all infinite branches at once. As we will see in
Section 6.1.6, the generic filter G is computationally a scheduler that extends the Herbrand tree
under construction on request, depending on the atoms needed by the realizer of the premise. It
scans the whole tree and schedules the construction of pending branches until the full Herbrand
tree is built.

6.1.2 Formal statement of Herbrand theorem in PAω+

Before proving it, we need to formalize in PAω+ the statement of Herbrand theorem given earlier.
For the sake of clarity, we avoid datatypes for the moment and do not focus on the computational
aspects of the proofs we build. Our aim is currently to present the overall structure and design
choices at the logical level. We will come back to practical computational aspects in Section 6.1.6.
The full formalized statement that we will reach at the end of this section is the following:

(∀ρι→o.∃~v ∈ Term.¬(interp ρ (F ~v)))⇒ subH ∅̇ (H)

where subH ∅̇ denotes the existence of a Herbrand tree for A and interp is the function internalizing
validity: interp ρA is meant to denote ρ |= A. The precise description of the formalization follows.

Formalization of the premise The validity of a formula in a model appears in the premise of
Herbrand theorem, so that we need to reify this concept into the function interp and incorporate
it into the propositions of PAω+. Since the first-order language on which A is built is a parameter
of the theorem, we choose to represent the sets of closed terms and atoms (i.e. closed atomic
formulæ) by abstract sets (in the sense of PAω+, see Section 4.1.1) Term and Atom. These
sets are based on the sort ι of individuals and thus, according to the convention established in
Section 4.1.1, they are described by their relativization predicates. Therefore, the existence of
these abstract sets amounts to assuming two predicates Termι→o and Atomι→o. As they represent
sets in PAω+, i.e. in the base universe, we also assume that they are invariant under forcing.

We represent quantifier-free formulæ as the elements of the Boolean algebra generated from
the atoms. Intuitively, this Boolean algebra is inductively defined as follows:

Quantifier-free formulæ c, c′ := ⊥⊥ | a | cV c′
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Unlike the usual boolean algebra construction which uses conjunction, disjunction and negation,
we prefer to use implication and falsity as primitive connectives because they are better suited to
classical realizability. Formally, this inductive definition is described by a set QF in PAω+, built
from the abstract set of atoms. We do not explicit the construction because it is not useful for
our purpose and it is identical to the one of finite truth assignments which will be fully detailed.

We describe models as truth assignments, that is as functions from atoms to propositions,
which are represented by expressions of sort ι→ o. We can extend a truth assignment ρ to an
interpretation of quantifier-free formulæ by the function interp(ι→o)→ι→o recursively characterized
by the following equations:

interp ρ⊥⊥ = ⊥
interp ρ a = ρ a

interp ρ (cV c′) = (interp ρ c)⇒ (interp ρ c′)

This recursive definition is clearly definable in PAω+ because mathematical expressions contain
Kurt Gödel’s System T.

Finally, the open formula A is represented by an expression F ι→ι mapping any tuple of closed
terms ~v to the corresponding quantifier-free formula A[~v/~x] in QF. Combining all these ingredient,
the premise of Herbrand theorem is, as said earlier, formally stated in PAω+ as the following
proposition:

∀ρι→o.∃~v ∈
−−−→Term. interp ρ (F ~v)

Formalization of the conclusion There are two aspects that need to be formalized in the
conclusion: the existence of a binary tree and the fact that this tree is a Herbrand tree for A.

Binary trees are labeled respectively by atoms at inner nodes and tuples of closed terms at
leaves, giving the following inductive definition:

Trees t, t′ := Leaf ~w | Node a t t′ a ∈ Atom, ~w ∈ −−−→Term

Formally, they are introduced in PAω+ by second-order encoding, giving the following set,
where Leaf and Node are injective functions of distinct range, their exact implementation being
irrelevant:

Treeι→o := λt. ∀Z. (∀~w ∈ −−−→Term. Z (Leaf ~w))⇒
(∀a ∈ Atom ∀t1 ∈ Tree∀t2 ∈ Tree. Z (Node a t1 t2))⇒
Z t

Checking the correctness of a Herbrand tree is a completely computational process and can
be described in two steps:

1. go down the tree and remember the finite truth assignment of your current branch,

2. evaluate F ~v at the leaves using the finite truth assignment accumulated so far.

This is done by the function subHtree recursively defined by the following two equations, where
the notations p ∪̇ a1 and p ∪̇ a0 denote the finite truth assignment p augmented respectively by
the binding (a, 1) and (a, 0), and where the function eval evaluates a quantifier-free formula in a
finite truth assignment. Their precise definitions will be given in the next paragraph.

subHtree p (Node a t1 t2) = subHtree (p ∪̇ a1) t1 && subHtree (p ∪̇ a0) t2
subHtree p (Leaf ~v) = eval p (F ~v) 1
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As expressions contain system T, this function is clearly definable as an expression of sort
ι→ ι→ ι. When subHtree p t = 1, we say that t is a Herbrand tree below p. The existence of a
Herbrand tree below a finite truth assignment p is expressed by the following predicate:

subH := λp. ∃t ∈ Tree. subHtree p t = 1

In particular, the existence of a Herbrand tree is expressed by subH ∅̇, as claimed in (H).
In this description, we have not explained how we handle finite truth assignments. This is

an important design choice because they are used extensively to check the correctness of the
Herbrand tree. This is what we focus on now.

Description of finite truth assignments From the previous paragraph, we know that we
will need at least two operations on finite truth assignments, namely union and evaluation of
a quantifier-free formula. As union does not preserve finite functions when two contradictory
bindings are present in the operands, we must use finite relations rather than finite functions.
In fact, we describe here an interface for finite relations between integers and booleans together
with some operations (union, membership test) and properties. It is clear that such an interface
can be implemented, for instance by finite lists of pairs without repetition. We make no reference
to a concrete implementation here because it is irrelevant: only the interface is required. In the
semantics, these finite relations are naturally represented by hereditary finite sets, by their usual
set-theoretic definition. Nevertheless, they are not present in the syntax because only integers are
hard-wired, and therefore we must introduce the new operators as new syntactic constructions,
exactly as we added G to build PAω+

G from PAω+.

∅̇ι : the empty relation
˙{ }
ι→ι→ι

: ˙{ } a b, written ab, is the parameter for the singleton relation {(a, b)}
∪̇ι→ι→ι : union of finite relations (infix symbol)
testι→ι→ι→ι : test p a b tests if a (atom) is mapped to b (boolean) in p (finite relation)

In the semantics, these four objects satisfy the expected properties, for example the commu-
tativity, associativity and idempotence of union. On the opposite, we have to axiomatize these
properties in the syntax. We can do even better for the properties that are equations. Indeed, we
can put them in the congruence rather in the proof context. In this way, they are not associated
with proof terms and we can use them freely in expressions, thus avoiding to clutter proof terms
with explicit type conversions. To write these congruences in a more readable way, we define the
following infix notations for boolean connectives:

&&ι→ι→ι := λxy. recι 0 (λ . y)x,
||ι→ι→ι := λxy. recι y (λ . 1)x,

Then, we express the interesting congruences as follows:

• associativity, commutativity and idempotence of ∪̇: (p ∪̇ q) ∪̇ r ≈ p ∪̇ (q ∪̇ r)
p ∪̇ q ≈ q ∪̇ p
p ∪̇ p ≈ p

• ∅̇ is a neutral element for ∪̇: ∅̇ ∪̇ p ≈ p

• the specification equations of test: test ∅̇ a b ≈ 0
test ab a b ≈ 1
test ab a′ b′ ≈ 0 with a 6= a′

test (p ∪̇ q) a b ≈ test p a b || test q a b
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With these notations, adding a binding (a, b) to a finite relation p is written p ∪̇ab. We also define
a derived operation for testing membership of an atom inside the domain of a finite relation:
mem := λap. test p a 1 || test p a 0.

Furthermore, test is lifted on closed quantifier-free formulæ into a function called eval, exactly
like truth assignments have been extended into interp. The only non trivial case is for atoms
where we need to look for a binding (a, b) into p, which can be done by the function test. There
is one subtlety: the evaluation of a closed quantifier-free formula may not be defined when the
finite relation is not big enough. For example, this is clearly the case with ∅̇. As a consequence,
eval takes an additional argument that is the expected return value and returns 1 if it is correct
and 0 otherwise. More precisely, if eval p (F ~v) b is 1, then F ~v evaluates to b in the partial
truth assignment p, which means in particular that p contains all the relevant information to
evaluate F ~v. On the opposite, if eval p (F ~v) b is 0, then either F ~v evaluates to 1− b in p or p
does not contain enough information to evaluate F ~v.

eval p⊥⊥ b = 1− b
eval p a b = test p a p

eval p (cV c′) 1 = eval p c 0 || (eval p c 1 && eval p c′ 1)
eval p (cV c′) 0 = eval p c 1 && eval p c′ 0

Conversely, if a finite relation p contains both bindings (a, 1) and (a, 0), then we can have
both eval p a c 1 = 1 and eval p a c 0 = 1 for some quantifier-free formula c. To avoid this unwanted
behavior, we can distinguish among finite relations those that are functional, i.e. those representing
finite functions from atoms to booleans, or finite truth assignments. We denote their set by FTA.
Formally, this set is inductively defined by the following second-order encoding:

FTA := λp. ∀Zι→o. Z ∅̇ ⇒ (∀rι∀a ∈ Atom.mem a r
.=ι 0 7→ Z r ⇒ Z (r ∪̇ a1))⇒

(∀rι∀a ∈ Atom.mem a r
.=ι 0 7→ Z r ⇒ Z (r ∪̇ a0))⇒ Z p

Functionality is enforced by the equational implications: a does not belong to the domain of r so
that r ∪̇ a0 and r ∪̇ a1 are finite functions when r is. Finiteness is clear because this definition is
the second-order translation of the inductive type: r := ∅̇ | r ∪̇ a1 | r ∪̇ a0 with the additional
constraint that a /∈ dom r. This definition reveals the underlying computational structure of
proofs that a finite relation is a finite truth assignment: such a proof is nothing but a finite list of
atoms with two cons constructors (one for the atoms mapped to true, one for those mapped to
false) without duplicates (thanks to the equational implication).

6.1.3 Description of the forcing structure
The specificity of proofs by forcing is to use an ideal object g added by the forcing transformation,
its role being to help us make the proof. Therefore, to build the forcing structure for Herbrand
theorem, we draw inspiration from the intended meaning of g: a generic truth assignment. As
forcing conditions are intuitively finite approximations of g (at least the ones in G), it is natural
to take well-formed forcing conditions to be finite functions from atoms to booleans, and the
meet of two conditions to be the union of functions. Because the union of two finite functions
gives a finite relation but not necessarily a finite function, forcing conditions are in fact finite
relations from atoms to booleans and the functional constraint must be enforced by the set C of
well-formed forcing conditions. This also shows that C is not closed under meet.

Before defining the forcing structure, we need two lemmas on finite relations. Since we do not
focus currently on the computational content of proofs, we do not give the formal proof terms for
these properties.
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Lemma 6.1.7 (Monotonicity)
The functions test, eval, and subHtree are monotonic in their first argument. Formally, we have:

Montest : ∀p∀q∀a∀b. test p a b = 1⇒ test (p ∪̇ q) a b = 1
Moneval : ∀p∀q∀c ∈ QF∀b ∈ B. eval p c b = 1⇒ eval (p ∪̇ q) c b = 1

MonsubHtree : ∀p∀q∀t ∈ Tree. subHtree p t = 1⇒ subHtree (p ∪̇ q) t = 1

Proof. Because test is not defined but is a parameter, the first propositions cannot be proven
and must be taken as an axiom. Nevertheless, it is easy to realize: it is a chain of equalities
that is true in the standard model, therefore it is realized by the identity. The second and third
propositions are proved by induction on c and t, using each time the previous proposition for the
base case.

Lemma 6.1.8 (FTA is upward-closed)
For all p and q, if p ∪̇ q is a finite truth assignment, then p is also a finite truth assignment.
Formally, we have:

UpFTA : ∀p∀q. p ∪̇ q ∈ FTA⇒ p ∈ FTA

Although this lemma is intuitively clear, there is a subtlety with its proof that is discussed in
Footnote 5, page 174.

Programming in PAω+ In order to help writing proof terms in PAω+ and make them more
readable, we introduce some macros:

Pairs 〈a, b〉 := λf. f a b
let (x, y) = c in M := c (λxy.M)

Booleans true := λxy. x
false := λxy. y

if b then f else g := b f g
b1 and b2 := if b1 then b2 else false
b1 or b2 := if b1 then true else b2

They come with the inference rules of Figure 6.3, admissible in PAω+, where the type of
booleans is given by:

Bι→o := λb.∀Z. (b .= 0 7→ Z)⇒ (b .= 1 7→ Z)⇒ Z

The forcing structure Well-formed forcing conditions are finite truth assignments representing
pieces of information about a model, which are used to decide which closed instance of the
proposition A is false. Notice that most combinators are the identity thanks to the equational
axioms of the interface for finite relations. For convenience, we recall the type of the forcing
combinators:

α0 : C[1]
α1 : ∀pκ∀qκ. C[pq]⇒ C[p] α2 : ∀pκ∀qκ. C[pq]⇒ C[q]
α3 : ∀pκ∀qκ. C[pq]⇒ C[qp] α4 : ∀pκ. C[p]⇒ C[pp]
α5 : ∀pκ∀qκ∀rκ. C[(pq)r]⇒ C[p(qr)] α6 : ∀pκ∀qκ∀rκ. C[p(qr)]⇒ C[(pq)r]
α7 : ∀pκ. C[p]⇒ C[p1] α8 : ∀pκ. C[p]⇒ C[1p]
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E ; Γ ` t : A E ; Γ ` u : B
E ; Γ ` 〈t, u〉 : A ∧B

E ; Γ ` t : A ∧B E ; Γ, x : A, y : B ` u : C
x, y /∈ dom Γ ∪ FV(t)

E ; Γ ` let (x, y) = t in u : C

E ; Γ ` true : 1 ∈ B E ; Γ ` false : 0 ∈ B

E ; Γ ` t : b ∈ B E ; Γ ` u : b .= 1 7→ A E ; Γ ` v : b .= 0 7→ A

E ; Γ ` if t then u else v : A

E ; Γ ` t : b1 ∈ B E ; Γ ` u : b2 ∈ B
E ; Γ ` t andu : b1 && b2 ∈ B

E ; Γ ` t : b1 ∈ B E ; Γ ` u : b2 ∈ B
E ; Γ ` t oru : b1 || b2 ∈ B

Figure 6.3: Typing rules associated with the programming macros.

Definition 6.1.9 (Forcing structure for a Cohen real)
The forcing structure to add a Cohen real is:

κ := ι

C[p] := p ∈ FTA
p · q := p ∪̇ q

1 := ∅̇
α0 := λxyz. x

αi := λx. x for i ∈ {3, 4, 5, 6, 7, 8}
α1 = α2 := UpFTA

This forcing structure is exactly the formalization of Examples 5.1.4 and 5.2.8. Nevertheless, it
is not completely suitable for our purpose. Indeed, according to the computational interpretation
of forcing given in Section 5.1.4, computational conditions represent the content of the memory
cell that forcing introduces. Here, we would expect this memory cell to contain a partial Herbrand
tree or at least information permitting to ultimately build this tree.

In our case, this information take the form of a continuation representing the part of the
Herbrand tree that is already built, embodied by the implication subH p⇒ subH ∅̇. Computa-
tionally, it means that provided we can build a full Herbrand tree below p, we have a Herbrand
tree: it is a Herbrand tree with a hole at the position given by the finite truth assignment p.
Said otherwise, C[p] is a dependent type of a zipper [Hue97] over binary trees, with a hole at
position p, see Figure 6.4. Adapting Definition 6.1.9 to this new insight gives the full forcing
structure for Herbrand theorem:

p

Figure 6.4: Computational conditions for Herbrand theorem: dependent zippers over trees.
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Definition 6.1.10 (Forcing structure for Herbrand theorem)
The forcing structure for Herbrand theorem is:

κ := ι

C[p] := p ∈ FTA ∧ (subHp⇒ subH∅)
p · q := p ∪̇ q

1 := ∅̇
α0 := 〈λxyz. x, λx. x〉
αi := λx. x for i ∈ {3, 4, 5, 6, 7, 8}

α1 = α2 := λc. let (p, t) = c in
〈UpFTA p, λx. let (x1, x2) = x in t 〈x1, MonsubHtree x2〉〉

The implementation of α1 and α2 can be understood as follows. On the first component of
the pair, it applies UpFTA as the forcing structure for a Cohen real does. The second component
is a function taking a realizer of subH p, that is a pair consisting of a tree and a realizer for its
correctness, and returning another similar pair. The pair in argument realizes subH p and we
want to build a pair for subH ∅̇, using the realizer for subH p ∪̇ q ⇒ subH ∅̇ that we already have.
A Herbrand tree below p is in particular a Herbrand tree below p ∪̇ q, ignoring the information
from q. Updating its correctness is exactly the role of Lemma 6.1.7.

In order to use the proof by forcing technique of Section 5.2.3, we need to prove that both
subH and C are invariant by forcing, which is clear thanks to Proposition 5.2.2, the inductive
definitions of Tree, FTA, and C, and the assumptions that both Atom and Term are invariant
under forcing.

Proposition 6.1.11
The sets Tree, subH, FTA and C are invariant under forcing.

Notice that the premise of Herbrand theorem is not absolute because of the quantification
over models, of sort ι→ o which is not forcing invariant. As a consequence, the program that we
will get in the end is not a proof of Herbrand theorem but rather a proof that the associated
logical rule is admissible:

∀ρι→o.∃~v ∈ Term.¬(interp ρ (F ~v))
subH ∅̇

The last ingredient to get a forcing program is to perform the proof in the forcing universe.

6.1.4 The proof in the forcing universe
We want to prove the formal statement (H) of Herbrand theorem in the forcing universe. Working
in the extended universe means that the proof can use g, the ideal object that forcing adds to the
base universe to build the extended one. Indeed, g is the guiding principle for our proof, and in
this case, it represents a new model, that is a function from atoms to booleans. Nevertheless, we
do not have g directly, but only a generic filter G from which g is defined. As a consequence, the
properties of g follows from the properties of G and we have to prove the ones we need on G.

As usual with proof in forcing, we start by building the generic model g =
⋃
G, which is legal

because G is a filter. Then, we need to show that g is indeed a truth assignment, i.e. it is total.
We have seen in Example 5.2.8 that we can prove it thanks to the genericity property of G, which
gives a proof of the following proposition in PAω+

G:

∀a ∈ Atom.∃p ∈ G.∃b ∈ B. test p a b = 1 . (Ag)
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We directly lift this property to quantifier-free formulæ:

Lemma 6.1.12 (Evaluation by G)
In PAω+

G, the property (Ag) implies the following proposition:

∀c ∈ QF.∃p ∈ G.∃b ∈ B. eval p c b = 1 ∧ if b then interp g c else ¬(interp g c)

where “if b thenA elseB” is a notation for the proposition recoB (λ .A) b.

Proof. The second part of the conjunct simply says that g must interpret a quantifier-free formula c
exactly as one particular p in G would do, which is clear by definition of g. It is even true for
any p for which F ~v has a value. We can therefore focus our attention on the first part on the
conjunct, which is proved by induction on c, using Proposition (5.2.9.iv) for implications and the
property (Ag) for atoms.

As g is a truth assignment, we feed it to the premise of (H) to get closed terms ~v such that:

~v ∈
−−−→Term (1)

¬(interp g (F ~v)) (2)

Using Lemma 6.1.12 above with F ~v, we get p ∈ G and b ∈ B such that:

eval p (F ~v) b = 1 (3)
if b then interp g (F ~v) else¬(interp g (F ~v)) (4)

Since b ∈ B, we can perform a case analysis:

1. b = 1: By (4), we have interp g (F ~v) which is in contradiction with (2).

2. b = 0: Equation (3) gives us eval p (F ~v) 0 = 1 which, combined with (1), makes a proof of
subH p with the tree Leaf ~v. Because p belongs to G which is a subset of C, we have C[p]
and thus subH p⇒ subH ∅̇ with which we conclude.

As we were claiming at the end of Section 6.1.1, the forcing universe allows us to consider only
the generic model g in the proof and no other (total) truth assignment. This has two consequences:
first, the proof of Herbrand theorem no longer needs the fan theorem and second, forcing manages
transparently the tree for us. Although the forcing structure was designed especially for this
so that it is not very surprising, here is the very interest of forcing from a logical perspective:
discharge the handling of some structure by putting it into the well-formed forcing conditions.

This proof relies crucially on the property (Ag). As explained in Example 5.2.8, we can
prove it from the genericity property of G. Therefore, we could simply prove it in PAω+

G and
use the extracted realizer, which would contain the realizer for the genericity of G. Nevertheless,
as we will see in Section 6.1.6, this property contains the essential part of the computational
interpretation of the proof by forcing. As a consequence, instead of proving it in PAω+

G, we choose
to consider it as an axiom in PAω+

G and to force it directly in PAω+, without using the genericity
property. In this way, we will get a clearer computational behavior. This direct proof can be
seen as a specialized version of genericity, tailored for our need. Because we no longer prove it in
PAω+

G, from this point on we will refer to this property as “the axiom (Ag)” and no longer “the
property (Ag)”.
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6.1.5 Forcing the axiom (Ag)
To justify the use of the axiom (Ag) in PAω+

G, we must prove that it is forced in PAω+. More
precisely, we want to prove that for any forcing condition r, we have r FAg, that is:

r F ∀a. a ∈ Atom⇒ (∀p∀b. p ∈ G⇒ b ∈ B⇒ test p a b = 1⇒ ⊥)⇒ ⊥

Forgetting for a instant the presence of forcing, the axiom (Ag) means that for any atom a,
we can find a finite approximation p of g such that a ∈ dom p. We would then know the value
of the boolean b by looking into p. The high-level intuition of the proof of r FAg is to use r as
the current approximation of g. If a belongs to the domain of r, then we know what is the value
of b and we can set p to r. Otherwise, we extend r to contain a: r ∪̇ ab but we do not know the
correct value of b. Therefore we consider both cases r ∪̇ a1 and r ∪̇ a0. Choosing r as the default
case comes from the interpretation of G: r F r ∈ G ≈ r ≤ r is realized by the identity. In fact, it
will not exactly be r but rather the current forcing condition which will be more complex, but
the idea is still valid.

To understand the structure of the proof, we do not build it formally in PAω+ but stick to a
more usual mathematical presentation, although we give at each step the ingredients to build the
formal proof term. The proof is structured is three main steps. The first one is preliminary, it
essentially puts the premises under usable form and produces a proof of a ∈ Atom that is used to
test if a belongs to the current forcing condition. The second step is the first case of the proof
where the atom a belongs to the current forcing condition. The last step is the most complex
one, where we have to extend the current forcing condition and combine both extensions into a
single answer.

Preliminary step To test if r contains a, we will need to be able to effectively test if a binding
(a, b) is present in a finite truth assignment p. This amounts to assuming the existence of a proof
term test of the totality of the function test, i.e. a λc-term such that:

test : ∀p ∈ FTA∀a ∈ Atom ∀b ∈ B. test p a b ∈ B

According to the commutation propositions for forcing and implication (Propositions 5.1.9
and 5.1.10), it is equivalent to prove the axiom (Ag) and to show that, for any forcing condi-
tions qa, q, and r, we have (rqa)q F⊥ under the following two hypotheses:

qa F a ∈ Atom
q F ∀p∀b. p ∈ G⇒ b ∈ B⇒ test p a b = 1⇒ ⊥ (∗)

By anti-monotonicity of forcing, we can strengthen both forcing conditions into the same condition
(rqa)q. The commutation of forcing with universal quantification and implication (Proposi-
tions 5.1.8 and 5.1.9, using γ3), let us write these assumptions as follows:

(rqa)q F a ∈ Atom
∀p∀b. ((rqa)q F p ∈ G)⇒ ((rqa)q F b ∈ B)⇒ ((rqa)q F test p a b = 1)⇒ ((rqa)q F⊥)

Finally, ⊥ being forcing invariant, instead of (rqa)q F⊥, we prove C[(rqa)q]⇒ ⊥, which allows
us to assume C[(rqa)q].

Checking whether a belongs to the domain of (rqa)q, amounts to being able to test the value
of a in (rqa)q: if it is neither 1 nor 0, then a does not belong to the domain of (rqa)q. To perform
these two tests, we want a proof of test a ((rqa)q) ∈ B to be able to discriminate on the value
of this boolean. Using test, we only need to show that (rqa)q ∈ FTA and a ∈ Atom, since we
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already have true : 1 ∈ B and false : 0 ∈ B defined in Section 6.1.3. The first part is easy
because we have C[(rqa)q] which contains (rqa)q ∈ FTA. The invariance under forcing of Atom,
together with the assumption (rqa)q F a ∈ Atom gives us a proof of C[(rqa)q]⇒ a ∈ Atom from
which we get the expected proof of a ∈ Atom.

First case: a belongs to the domain of (rqa)q With the previous tests, in addition to
knowing that a belongs to the domain of (rqa)q, we also know the value of the boolean b which
it is associated with. To conclude, we want to use the hypothesis (∗) with p := (rqa)q and b as
given by the previous tests, in order to get a proof of (rqa)q F⊥ (or of ⊥ as it is forcing invariant
and we have C[(rqa)q]). Let us prove the premises of the hypothesis (∗):

• the proof of (rqa)q F (rqa)q ∈ G ≈ (rqa)q ≤ (rqa)q is the identity (Proposition 5.1.3),

• (rqa)q F 1 ∈ B and (rqa)q F 1 ∈ B are proved respectively by true∗ and false∗ according
to the forcing soundness theorem (Theorem 5.1.12),

• the proof of (rqa)q F test ((rqa)q) a b = 1 is (λx. x)∗ thanks to Theorem 5.1.12 because this
equality holds in the model.

For both values of b, we can finish the proof.

Second case: a does not belong to the domain of (rqa)q The intuition here is to prove ⊥
with the following implication, which we also have to show:

(C[((rqa)q)a1]⇒ ⊥)⇒ (C[((rqa)q)a0]⇒ ⊥)⇒ C[(rqa)q]⇒ ⊥ (∗∗)

The intuition of this implication is to use “recursive calls” on the forcing conditions ((rqa)q)a1

and ((rqa)q)a0 and combine them into the answer for the forcing condition (rqa)q.
In a first step, we prove both premises C[((rqa)q)a1] ⇒ ⊥ and C[((rqa)q)a0] ⇒ ⊥. Let us

focus on C[((rqa)q)a1]⇒ ⊥. We first strengthen the forcing condition of the hypothesis (∗) into
((rqa)q)a1. Then we want to use it on p := ((rqa)q)a1 and b := 1 and therefore we show its
premises as follows:

• ((rqa)q)a1 F ((rqa)q)a1 ∈ G is again proven by the identity2,

• ((rqa)q)a1 F 1 ∈ B is proven as before by true∗,

• ((rqa)q)a1 F test (((rqa)q)a1) a 1 = 1 is also proven as before by (λx. x)∗.

The proof for C[((rqa)q)a0]⇒ ⊥ is identical, we simply strengthen the forcing condition of the
hypothesis (∗) into ((rqa)q)a0 rather than ((rqa)q)a1.

We now prove the implication (∗∗) given above. We assume the three premises and we want
to prove ⊥. To show ⊥, we apply the first premise, and we need to prove C[((rqa)q)a1], which
amounts to ((rqa)q)a1 ∈ FTA and subH ((rqa)q)a1 ⇒ subH ∅̇.

The first part is easy because the definition of FTA at the end of Section 6.1.2 gives that
λarxyz. y a r has type ∀a ∈ Atom ∀p ∈ FTA.mem a p

.= 0 7→ pa1 ∈ FTA. By assumption, we
have a /∈ dom(rqa)q which exactly means that mem a p ≈ 0. We already have a proof of a ∈ Atom
(see the preliminary step) and the proof of (rqa)q ∈ FTA comes from C[(rqa)q], which is the third
premise of the implication (∗∗).

For the second part, we assume subH ((rqa)q)a1 and, instead of proving subH ∅̇, we choose to
show ⊥. We then use the proof of C[((rqa)q)a0]⇒ ⊥ in the exact same fashion, and it remains to

2This was the reason to strengthen the forcing condition q of the hypothesis (∗) into ((rqa)q)a1.
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prove only subH ((rqa)q)a0 ⇒ subH ∅̇. Assuming subH ((rqa)q)a0, we use subH (rqa)q ⇒ subH ∅̇,
extracted from C[(rqa)q]. Finally, the last statement to prove is the following:

subH ((rqa)q)a1 ⇒ subH ((rqa)q)a0 ⇒ subH (rqa)q

It is exactly handled by the following lemma.

Lemma 6.1.13 (Merging)
Let p be a finite truth assignment and a an atom outside the domain of p. If subH (p ∪̇ a1) and
subH (p ∪̇ a0) both hold, then we also have subH p. Formally:

merge : ∀p∀a ∈ Atom.mem a p
.= 0 7→ subH (p ∪̇ a1)⇒ subH (p ∪̇ a0)⇒ subH p

Proof. If t1 and t2 are Herbrand trees below p ∪̇ a1 and p ∪̇ a0 respectively, then Node a t1 t2 is a
Herbrand tree below p. In PAω+, the proof term merge is:

merge := λaxy. let (x1, x2) = x in let (y1, y2) = y in 〈Node a x1 y1, y2 ◦ x2〉

Remark 6.1.14
The equational implication mem a p

.= 0 7→ ensures that merge always yields a proper Herbrand
tree (i.e., no atom appears twice on a branch). It is not essential for the merging operation that
could be defined without it, thus giving improper Herbrand trees, see Remark 6.1.5.

The formal proof term proving that Ag is forced The previous proof can be completely
formalized in PAω+. The formal proof is given in Annex B, and it produces the proof term of
Figure 6.5.

γ1 (λa. γ1 (λf. λc. let (p, t) = α1 c in
if test p a′ true then (β4 f) @ (α1 c) @ I @ true∗@ I∗ else
if test p a′ false then (β4 f) @ (α1 c) @ I @ false∗@ I∗ else
((β3 (β4 f)) @ I @ true∗@ I∗)

(α7 〈consT a′ pλt1. ((β3 (β4 f)) @ I @ false∗@ I∗)
(α7 〈consF a′ p), λt2. t (merge a′ t1 t2)〉〉)))

where

a′ := ξAtom a (α2 (α1 (α1 c))) : a ∈ Atom
t@ u := γ3 t u

I := λx. x
consT := λapxyz. y a p : ∀a ∈ Atom ∀p ∈ FTA.mem a p

.= 0 7→ r ∪̇ a1 ∈ FTA
consF := λapxyz. z a p : ∀a ∈ Atom ∀p ∈ FTA.mem a p

.= 0 7→ r ∪̇ a0 ∈ FTA

Figure 6.5: Program proving the axiom (Ag).

If we use the definition of the forcing structure for Herbrand theorem, unfold all combinators,
and replace some proof terms with optimized realizers, we can simplify this proof term further,
leading to the universal realizer of Figure 6.6, which is more amenable to a computational analysis.

6.1.6 Computational interpretation
According to Figure 5.5, we have all the ingredients to get a program for computing Herbrand
trees, namely the forcing structure and the proof in the forcing universe. Therefore, in this section,
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λcaf. let (p, t) = α1 c in
if test p a′ true then f (α1 c) I true∗ I∗ else
if test p a′ false then f (α1 c) I false∗ I∗ else
f 〈UpFTA (consT a ′ p), λt1. f 〈UpFTA (consF a ′ p), λt2. t (merge a′ t1 t2)〉 I false∗ I∗〉

I true∗ I∗
with I := λx. x and a′ := ξAtom a (α2 (α1 (α1 c))) : a ∈ Atom.

Figure 6.6: Simplified program realizing the axiom (Ag).

we finally come to the computational interpretation of our case study. Remember that since
the premise of Herbrand theorem is not invariant by forcing, we do not get a proof of Herbrand
theorem, but only a universal realizer. Notice that this program uses the two evaluation modes
of the KFAM: the proof by forcing is done in the forcing universe, which is computationally
associated with the user mode of the KFAM, whereas the proofs that the axioms A1 to A5 and Ag
are forced are done in the base universe, that is in the kernel mode of the KFAM. This suggests
to see forcing as providing system calls through these axioms, which can be used to obtain better
programs.

The computational interpretation of the forcing structure As quickly sketched in Sec-
tion 6.1.3, the computational forcing conditions, i.e. the realizers of C[p], represent a dependent
zipper for Herbrand trees. Its first part, the proposition p ∈ FTA, behaves as a finite list of atoms
with two cons constructors, representing a finite approximation of the generic valuation g. Its
second part, the proposition subHp⇒ subH∅, is the return continuation: provided we can find a
Herbrand tree below p, we have a full Herbrand tree; it represents a tree context where the hole
is at position p. It means that the Herbrand tree under construction is stored in the memory cell
that forcing implements.

One major advantage of this location is that the tree is saved in kernel mode, and not in user
mode. Therefore, whatever the classical realizer for the premise of Herbrand theorem may do,
it cannot affect the tree. In particular, any backtrack triggered by this realizer do not partially
erase the tree, which prevents to forget past computations. It also give for free the ability to
use classical realizers of the premise of (H) without fear of loss of performance in the rest of the
program. By design of the forcing structure, most combinators are trivial: only α1 and α2 are
not the identity and, even in that case, the tree is not modified, only the realizer of its correctness
is. As a consequence, most of the interesting computational content is located in the axioms of
the generic filter G, and more specifically in the axiom (Ag).

The computational interpretation of the axiom (Ag) According to the computational
intuitions about G given at the end of Section 5.2.2, the axiom (Ag), which replaces the genericity
property of G, should have the most interesting computational content. In fact, it is the key
ingredient of the proof, which is responsible for the insertion of new nodes in the Herbrand tree
and the scheduling of the computation of the subtrees. It can be seen as the primitive operation
called by a user program, the premise of Herbrand theorem, to build the tree, like a system
call giving access to g. This universal realizer is written in Figure 6.6 and we explain now its
computational behavior.

Given an atom a and a return continuation f, this program computes the truth value b of a
in g, together with a witness of its answer: a forcing condition p ∈ G containing a (remember that
g =

⋃
G). From a high-level perspective, if a is already present in the current forcing condition r,

we can directly answer the value b to which it is bound in r. Otherwise, we consider both branches,
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starting with the left one because the first call to f is done on the forcing condition ra1. Once
this branch is completed, we make a second call to f , this time on the right branch, for the
forcing condition ra0. Therefore, we can see that the construction is performed in a depth-first
order, from left to right. Of course, if the first call to f is on the forcing condition ra0, then
the Herbrand tree is built in a depth-first order, but this time from right to left. In the proof of
Section 6.1.5, this simply amounts to swapping the order in which the proofs of C[((rqa)q)a1]⇒ ⊥
and C[((rqa)q)a0]⇒ ⊥ are used.

Let us now match more closely the high-level behavior with the realizer of Figure 6.6. It first
checks whether a belongs to the current forcing condition r and if so, returns the associated value
(lines 2 and 3) by feeding it to its continuation f. The additional arguments to f, namely α1 c, I,
and I∗, simply provide the forcing condition and correctness realizers expected by f.

When a does not belong to r, we need to extend r. Since a can be mapped to either true
or false in g, we consider both cases and hence make two calls to f (penultimate line). These
two calls can be understood intuitively as follows: first we lead f to believe that we have a tree
context for p := ra1 (i.e. a fictitious realizer T ′ of subHqa1 ⇒ subH∅) although at the time, we
only have one for r. When the computation inside f uses T ′, it must provide a Herbrand tree t1
below qa1. We then swap branches and call f again with p := ra0, but this time, we do have a
tree context for ra0, namely λt2. t (merge a t1 t2). Summing up, this last line contains both the
extension of the tree (in merge a u v) and the scheduling of the subtree computation (in the order
of the two calls to f).

The axiom (Ag) is the only point where the second component of a forcing condition is really
modified because no combinator (neither the identity nor α1) affect it: it is the only primitive
operation actually building the Herbrand tree and modifying the control flow (by scheduling
branches). It clearly justifies the hassle of a custom proof to have a computational behavior as
efficient as possible.

The computational interpretation of the whole proof Let us now look at the global proof
by forcing of Herbrand theorem from Section 6.1.4, and analyze it as an algorithm for computing
Herbrand trees.

Overall, the interest of forcing for Herbrand theorem is twofold. First, in the forcing universe
(PAω+

G), we reason on a single truth assignment, the generic truth assignment g, instead of
considering every possible one. The forcing translation takes care of “moving” this generic
truth assignment across the tree to ensure that we cover every possible branch. In a nutshell,
forcing transparently manages the tree structure. Second, the computational condition stores the
Herbrand tree under construction and protects it from any backtrack in user mode.

This program is also efficient. Indeed, our realizer is completely intuitionistic (no callcc is
ever used), which means that any backtrack during execution originates from the realizer of the
premise of (H) but cannot affect the partial tree, which is stored in kernel mode. Furthermore,
the proof in the forcing universe never uses the upward closure of G (Property 5.2.9.iii), which
means that we do not need to erase information from the Herbrand tree.

Finally, it is worth to notice that the algorithm extracted from the proof by forcing is exactly
the one that we could write directly if we were asked to build a Herbrand tree from a program
computing a witness for each model. In fact, the premise of Herbrand theorem is computationally
interpreted as a polymorphic program giving witnesses for any truth assignment ρ, by performing
tests on ρ through the function test. The polymorphism appears in the second-order quantification
over truth assignments ρι→o. The natural direct algorithm to compute Herbrand trees would
be to harness this polymorphic program and, each time it asks for a truth value, either it has
already been asked in the past and we return the same value, or we fork this process and answer
true to one child and false to the other. Doing this requires to have parallelism and a scheduling
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mechanism to manage the different threads. This exactly what our forcing program does, with the
additional advantage that its correctness is supported by a logical transformation: forcing. The
only difference is that the forcing program uses a depth-first search, whereas a general scheduling
may choose breath-first search.

On a side note, the generic filter G has an interesting interpretation in the base universe. In
the forcing universe, G is simply a set. From the congruence q F p ∈ G ≈ q ≤ p, we deduce that G
is the set of forcing condition that are weaker than the current forcing condition. In particular,
as the current forcing condition denotes the position in the Herbrand at which we are currently
working, this means that the definition of G changes during evaluation. Therefore, G can be
understood as a kind of “shifting set”, which sweeps the whole tree to consider every necessary
truth assignment.

Toward a better algorithm Except for the proof of the axiom (Ag), the previous proofs have
not been designed with computational efficiency in mind, but rather logical simplicity. Thus,
their computational interpretations can be improved, even though they are already better than
the initial proof by enumeration. For instance, one place where major improvements are possible
is the practical representation of well-formed forcing conditions in the KAM: the tree is stored in
the computational condition as a continuation, not as an explicit zipper. To get the most efficient
and natural program, we would like to store the Herbrand tree exactly as a zipper. Furthermore,
using a datatype as the underlying structure of well-formed forcing conditions has one major
advantage: computational conditions are always stored in a completely evaluated form. In fact,
this is the main motivation for introducing datatypes in PAω+ in the first place. This requires to
replace the set of well-formed forcing conditions by a datatype. As the forcing translation does
not currently handle this, we need to adapt it.

6.2 Forcing on datatypes
Adapting well-formed forcing conditions to form a datatype and not only a set requires to slightly
change the definitions. For example, a datatype is always built on top of individuals, which
amounts to taking κ := ι. Nevertheless, the source of all differences is the fact that a datatype
is not a predicate. In particular, we cannot return directly data, we need to wrap it in a CPS
transformation, which changes the type of all combinators.

Let us give an illustration. Remember that D̂ denotes the predicate λp. ∀Z. (p ∈ D ⇒v Z)⇒ Z,
which entails that composition must be changed on datatypes. Given any functions f and g, if we
have t : ∀e ∈ D. f e ∈ D̂ and u : ∀e ∈ D. g e ∈ D̂, the λc-term λx. g (f x) is not well-typed. Indeed,
if x has type e ∈ D, then t x has type f e ∈ D̂ ≈ ∀Z. (f e ∈ D ⇒v Z) ⇒ Z whereas u expects
a type f e ∈ D. The solution is to instantiate Z by g (f e) ∈ D̂ and to let u be an argument
to t x to get that t x u has type g (f e) ∈ D̂. From a CPS perspective, u is the continuation
of t x, it is perfectly normal to apply t x to u. If we generalize this pattern to n-ary composition,
αi ◦ . . . ◦ αj ◦ αk ◦ αl is now defined as λc. αl c αk αj . . . αi with c a fresh proof variable.

Definition 6.2.1 (Forcing datatype)
A forcing datatype is given by:

• a datatype C for well-formed forcing conditions (p ∈ C and p ∈ Ĉ written C[p] and Ĉ[p]),

• an operation · of sort ι→ ι→ ι to form the meet of two conditions,

• a greatest condition 1,
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• nine closed proof terms, called combinators, representing the axioms that must be satisfied
by the forcing structure:

α0 : Ĉ[1]

α1 : ∀pκ∀qκ. C[pq]⇒v Ĉ[p]

α2 : ∀pκ∀qκ. C[pq]⇒v Ĉ[q]

α3 : ∀pκ∀qκ. C[pq]⇒v Ĉ[qp]

α4 : ∀pκ. C[p]⇒v Ĉ[pp]

α5 : ∀pκ∀qκ∀rκ. C[(pq)r]⇒v Ĉ[p(qr)]

α6 : ∀pκ∀qκ∀rκ. C[p(qr)]⇒v Ĉ[(pq)r]

α7 : ∀pκ. C[p]⇒v Ĉ[p1]

α8 : ∀pκ. C[p]⇒v Ĉ[1p]

None of the forcing translations on kinds, expressions or proof-terms changes and their
properties are the same, taking the definitions of the preorder and the forcing relation to be:

Preorder p ≤ q := ∀r. C[pr]⇒v Ĉ[qr]
Forcing transformation p FA := ∀r. C[pr]⇒v A

∗ r

The definitions and types and combinators and other proof terms are changed slightly, as
summarized in Figure 6.7. The main difference is the definition of composition ◦ because of
the CPS style. With the new definition of composition, the definitions of α9 to α15 given in
Section 5.1.1 are still valid but do not have the same type: they return a formula of the form
Ĉ[ ].

Invariance under forcing of first-order propositions (Proposition 5.2.2) also holds in this setting,
with different proof terms given in Figure 6.8 and a definition of forcing invariance that uses data
implication rather than regular implication:

ξA : p FA⇒ (C[p]⇒v A)
ξ′A : (C[p]⇒v A)⇒ p FA

Finally, getting the congruence p F q ∈ G ≈ p ≤ q requires to take G∗ := λpr. Ĉ[pr]. Because the
proofs that the axioms A1 to A4 are forced depend only on this congruence, the proof terms are
the same, provided we take the new definition of composition. Only the genericity property has a
different proof term, although the structure of the proof is the same. This change comes from
the subterm ξ∃2 ξC ξS which uses explicitly the fact that C is a formula in the proof term ξC .
Therefore, we replace it by a proof term ξaux ξS of the following proposition:

∀q. q F (∃p. C[p] ∧ p ∈ S)⇒ C[q]⇒v ∃p. C[p] ∧ p ∈ S

Finally, the new proof term for the genericity of G is:

γ1 (λx. γ1 (λyc. α1 c α1 α2 (λc′. ξaux ξS (γ3 x c) c′
(λc′′d. α11 c α5 α2 α3 (γ3 (γ3 (β1 (α10 ◦ α9 ◦ α9) y) (λx. x))

(ξ′S (λ . d)))))))
: r F (∀p. C[p]⇒v ∃q. C[pq] ∧ pq ∈ S)⇒ ∃p. p ∈ G ∧ p ∈ S
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β1 := λxyc. x c y : ∀p∀q. q ≤ p⇒ p FA⇒ q FA
β2 := λxc. α1 c x : ∀p. (C[p]⇒v ⊥)⇒ p FA
β3 := λxc. α9 c x : ∀p∀q. (p FA)⇒ (pq FA)
β4 := λxc. α10 c x : ∀p∀q. (q FA)⇒ (pq FA)
γ1 := λxcy. α6 c (x y) : ∀p. (∀q. q FA⇒ pq FB)⇒ p F (A⇒ B)
γ2 := λxyc. α5 c x y : ∀p. p F (A⇒ B)⇒ ∀q. q FA⇒ pq FB
γ3 := λxyc. α11 c x y : ∀p. p F (A⇒ B)⇒ p FA⇒ p FB
γ4 := λxcy. x (α15 c y) : ∀p.¬A∗ p⇒ p F (A⇒ B)
γ5 := λxcy. α6 c α9 (x y) : ∀p. (DN∗ ⇒v p FA)⇒ p F (DN ⇒v A)

Figure 6.7: Definition of combinators for forcing over datatypes.

ξ⊥ := λzc. α7 c z : p F⊥ ⇒ C[p]⇒v ⊥
ξ′⊥ := λzc. α1 c z : (C[p]⇒v ⊥)⇒ p F⊥
ξ⇒ := λxcy. ξB (γ3 x(ξ′A (λ . x))) c : p F (A⇒ B)⇒ C[p]⇒v A⇒ B
ξ′⇒ := λx. γ1 (λy. ξ′B (λc. α1 c z (α2 c ξA x))) : (C[p]⇒v A⇒ B)⇒ p F (A⇒ B)
ξ∀ := λx. ξA x : p F ∀x.A⇒ (C[p]⇒v ∀x.A)
ξ′∀ := λx. ξ′A x : (C[p]⇒v ∀x.A)⇒ p F ∀x.A
ξ= := λxcy. α7 c (γ3 x (λ . y)) : p FM = N ⇒ (C[p]⇒v M = N)
ξ′= := λx. γ1 (λyc. α1 c α1 x (α10 c y)) : (C[p]⇒v M = N)⇒ p FM = N

ξ⇒v
:= λxcv. ξA (γ3 x v) c : p F (DN ⇒v A)⇒ (C[p]⇒v DN ⇒v A)

ξ′⇒v
:= λx. γ5 (λv. ξ′A (λc. x c v)) : (C[p]⇒v DN ⇒v A)⇒ p F (DN ⇒v A)

ξ7→ := λc. ξAc : p F (M .= N 7→ A)⇒ C[p]⇒v M
.= N 7→ A

ξ′7→ := λc. ξ′Ac : (C[p]⇒v M
.= N 7→ A)⇒ p F (M .= N 7→ A)

ξ
D̂

:= λxcy. α7 c (γ3 x (λ . y)) : p FN ∈ D̂ ⇒ C[p]⇒v N ∈ D̂
ξ′
D̂

:= λx. γ1 (λyc. α10 c (α1 c α1 x (γ3 y))) : (C[p]⇒v N ∈ D̂)⇒ p FN ∈ D̂

where ξA, ξ′A, ξB, and ξ′B are given by the invariance under forcing of A and B and M and N
are T-expressions (for datatypes, N must be an individual).
The proof terms for relativization relτ (see Section 4.1.4) are built by induction on τ using ξN
and ξ′

N
(given below) as the base case and ξ∀, ξ′∀, ξ⇒, and ξ′⇒ for the inductive steps.

ξN := λxcyz. α7 c (γ3 (γ3 x (λ.y)) (γ1 (λuc′.z (α10 c
′ u)))) : p FM ∈ N⇒ C[p]⇒v M ∈ N

ξ′
N

:= λzc. γ1 (λx. γ1 (λy. α1 c z (β3 (β4 x)) (γ3 (β4 y)))) c : (C[p]⇒v M ∈ N)⇒ p FM ∈ N

Figure 6.8: Invariance of first-order formulæ by forcing over datatypes.
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6.3 Effective Herbrand trees
Let us come back to the case study of Herbrand trees but with a different concern: the efficiency
of proofs. The formalization of Herbrand theorem in PAω+ remains the same, as stated in the
equation (H) at the end of Section 6.1.2, and we mostly look at the structure of the proof by
forcing. We focus on two complementary aspects: the representation of data structures that
we use in the proof by forcing and the optimization of realizers, based on the computational
intuitions uncovered in Section 6.1.6.

For the first one, we prefer to use datatypes (in the formal sense of PAω+) rather than sets,
because their implementation can be optimized. Moreover, a set Sι→o can always be seen as a
datatype, by taking D(s) := |ṡ ∈ S|, so that in fact we do not lose any generality. It simply allows
us to choose the representation we want, instead of sticking to the logical presentation of the set.
Computationally, it exactly corresponds to separating the interface from the implementation.

The optimization of realizers extracted from the proof is done is two different ways: either
by improving proofs to have a better computational content, or by considering the statement
as an axiom and directly giving an efficient realizer for it. In the second case, we can use the
computational interpretations to design efficient realizers, without any reference to the proof they
come from. Both techniques are used: for example, the design of the forcing datatype follows the
first approach, whereas some critical operations on datatypes or key properties in the proof by
forcing have direct realizers.

6.3.1 Replacing computational conditions by zippers
In Section 6.1.6, computational conditions have been interpreted as zippers over Herbrand trees
having a hole at position p. Let us take this interpretation at face value and completely replace
the set C of well-formed forcing conditions by a datatype of zippers over binary trees with a hole.
Following Gérard Huet [Hue97], the natural definition of a zipper over binary trees with a hole
at the current position is the following:

Trees t, t′ := Leaf ~w | Node a t t′ ~w ∈
−−−→Term

Zippers z := Top | Left a t z | Right a t z a ∈ Atom

The problem with this definition is that the zipper that we uncovered inside C[p] sometimes
contains several holes. Indeed, as we can see from Figure 6.6, the realizer of the axiom (Ag)
performs two calls to the continuation, hiding the existence of a second hole into the second call.
This is a standard pattern with CPS translation, where multiple recursive calls give nested continu-
ations. Moreover, another piece of information is missing in a zipper: the schedule of computation.
In Section 6.1.5, this schedule was present as the order of the calls to the continuation.

The most straightforward solution is to remove the tree argument t on one of the constructors
Left or Right. We remove it from the Left constructor, in order to get the same schedule as the
proof by forcing: when going down in the tree, we cannot go right since we do not have yet a tree
to give as argument to the Right constructor, therefore we have to go left3.

With this definition of a zipper, the natural types for its constructors are the following:

Top : ∅̇ ∈ Ẑip

Left : ∀p∀a ∈ Atom. p ∈ Zip⇒ pa1 ∈ Ẑip

Right : ∀p∀a ∈ Atom. subH pa1 ⇒ p ∈ Zip⇒ pa0 ∈ Ẑip
3Of course, we could make the opposite choice and remove the tree argument from the Right constructor.

Doing so, we would build the tree in a depth-first right-to-left order, exactly what we get by swapping the order of
the calls to the continuation in the proof of Section 6.1.5.
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Nevertheless, we lose one very important and intuitive property: from p ∈ Zip (a tree context
around p) and subH p (a Herbrand tree below p), we cannot build a full tree, as a zipper contain
one additional hole for each Left constructor. In particular, the proof of the axiom (Ag) can be
done with the Left constructor only, which intuitively justifies that we cannot get a full Herbrand
tree in the end. This reconstruction property is crucial in the proof by forcing, where the last
step builds a Herbrand tree from proofs of C[p] and subH p.

In the realizer of the axiom (Ag), this missing piece of information is hidden in the return
continuation, which explains what to do when we have filled the left branch, that is, switch to the
right branch. This suggests to do the same for the zipper and put a continuation as an argument
to the Left constructor. Thus, we get an intermediate solution between the fully CPS version of
Section 6.1.6 and the fully explicit version we want to achieve. In fact, this is a very acceptable
compromise because, in the tree traversal, explicit information4 at the Left constructor contains
only the parent path and the atom for the current node, not the right subtree.

In a nutshell, the datatype Zip of zippers that we use is inductively defined as follows:

Zippers z := Top | Left a p z | Right a t z t a tree, p a process

Its constructors have the following type, using CPS for returning data, as usual in PAω+.

Top : ∅̇ ∈ Ẑip

Left : ∀p∀a ∈ Atom. (subH pa1 ⇒ subH ∅̇)⇒ p ∈ Zip⇒v pa
1 ∈ Ẑip

Right : ∀p∀a ∈ Atom. subH pa1 ⇒ p ∈ Zip⇒v pa
0 ∈ Ẑip

Finally, as explained in Remark 4.3.5, pattern matching on this datatype of zippers has the
following type:

matchZip : ∀Zι→o∀p. p ∈ Zip⇒v

Z ∅̇ ⇒
(∀q∀a ∈ Atom. (subH qa1 ⇒v subH ∅̇)⇒ q ∈ Zip⇒v Z qa

1)⇒
(∀q∀a ∈ Atom. subHqa1 ⇒v q ∈ Zip⇒v Z qa

0)⇒
Z p

6.3.2 Forcing datatype
The previous section introduced a datatype of zippers that seems a good candidate to define
well-formed forcing conditions for a Herbrand forcing datatype. In this section, we tackle the
other changes to build the full forcing datatype. The first such adjustment is a representational
one which, like in the previous section, aims at making the logical statement more adequate to
the expected computational behavior. Then, we prove that all these modifications give a forcing
datatype that allows us to perform a proof by forcing along the line of the one of Section 6.1.4.
All the modifications are summarized in Figure 6.11 at the end of this section.

Datatypes The first data structures that we encounter are present in the very statement of
Herbrand theorem: the abstract sets of atoms and closed terms. We replace them by abstract
datatypes. Since they were abstract sets in Section 6.1, this change is completely transparent:
proofs do not need to be adapted as they could not inspect the elements of these sets. Furthermore,
atoms and closed terms are never modified, which means that we do not even need primitive

4We could even choose not to store these two realizers but to restore them in the continuation. Nevertheless,
we choose to keep them to stay as close as possible to the intuitive notion of a zipper.
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operations to act on them. In fact, the only places where they are used are the labels of Herbrand
trees (atoms for inner nodes, closed terms for leaves) and the premise of Herbrand theorem, under
the form of truth assignments and witnesses given by the premise. As a consequence, the proof
by forcing is completely indifferent to their exact nature.

In a similar way, we can substitute the second-order definitions of FTA, Tree and QF by
datatypes with primitive constructors and destructors (patter matching) to manipulate them.
For instance, for the datatype Tree, we get the following primitive operations:

Leaf : ∀~w ∈ −−−→Term.Leaf ~w ∈ T̂ree

Node : ∀a ∈ Atom ∀t1 ∈ Tree∀t2 ∈ Tree.Node a y1 t2 ∈ T̂ree

matchTree : ∀t ∈ Tree.∀Z. (∀~w ∈ −−−→Term. Z)⇒ (∀a ∈ Atom ∀t1 ∈ Tree∀t2 ∈ Tree. Z)⇒ Z

Yet, we can do even better for FTA and Tree! For example, we can completely remove FTA.
Indeed, explicit proof terms of p ∈ FTA only appear in C[p], they are finite path from the root
of the tree to the current node and they represent finite truth assignments. As the set C is
completely replaced by a datatype of zippers, there is in fact no need to introduce finite truth
assignments in the KAM. More precisely, they can be read off from a zipper, as the path from
the root to the current node, i.e. as the sequence of atoms that are present as arguments of the
constructors Left and Right of the zipper.

The improvement for the datatype Tree is more subtle. Let us forget the proof point of view
for a moment and consider the problem only from a programming perspective.

Trees and Herbrand trees The type Tree is used only to build Herbrand trees via the
predicate subH. Therefore, instead of defining a general datatype for binary trees and then
checking their correctness, we can directly define a datatype for Herbrand trees. Furthermore,
ultimately we want to recover a concrete Herbrand tree, as a λc-term in the KAM, but we do not
need Herbrand trees in PAω+, except to express the correctness of the tree we extract. Therefore,
we can completely bypass trees in PAω+ and replace the predicate subH by a datatype that
directly interprets forcing conditions p by Herbrand tree below p. Formally:

subH(s) :=
{
n
∣∣ s is a finite truth assignment,∃t ∈ Vω. n ∈ Tree(t) ∧ subHtree ṡ ṫ = 1

}
This is possible only because, when implementing datatypes in PAω+ in Chapter 4, we have
chosen to completely separate the description in PAω+ (the interface) from the implementation
in the KAM.

One legitimate concern with this modification is extraction: as long as subH p was defined as
∃t ∈ Tree. subHtree t p = 1, we were sure that we could extract from subH ∅̇ a effective Herbrand
tree thanks to the witness extraction technique of Section 2.10.2. If we only have a datatype
for subH, we have no direct guaranty about its correctness, as the tree does not even appear
in PAω+! The simplest solution to recover extraction is to use Theorem 4.3.6 about witness
extraction of datatypes.

Nevertheless, there is another solution which amounts to restate the original existential
statement from the datatype: we want is a universal realizer of the implication ∅̇ ∈ subH⇒v ∃t ∈
Tree. subHtree t ∅̇ = 1. In fact, we can even have this implication for any finite truth assignment p,
not only the empty one: ∀p ∈ subH.∃t ∈ Tree. subHtree p t = 1. To this end, we define both
datatypes Tree and subH, but such that subH is a “sub-datatype” of Tree. Informally, this means
that for any s, subH(s) contains only binary trees. Formally, we write it as follows: for any
hereditary finite set s and any λc-term u, if u ∈ subH(s), then there exists an individual t such that
u ∈ Tree(JtK). The witness t in PAω+ of the value of the tree is given by the structure of the tree u
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in the KAM. If subH(JpK) contains only Herbrand trees below p, then the equality subHtree p t = 1
holds for some t and therefore it is realized by the identity. In fact, the “sub-datatype” constraint
between subH and Tree simply means that we define the constructors of subH by restricting
the type of the constructors Leaf and Node of Tree via equational implications. Indeed, we can
enforce in this way the two properties defining Herbrand trees (see Definition 6.1.3):

• each branch is a finite truth assignment, i.e. no atom appears twice on any branch,

• the tuple of closed terms labeling a leaf is a witness for this branch.

The type of the Leaf and Node constructors are then the following:

Leaf : ∀p∀~w ∈ −−−→Term. eval p (F ~w) 1 .= 1 7→ p ∈ ŝubH

Node : ∀p∀a ∈ Atom.mem a p
.= 0 7→ pa1 ∈ subH⇒v pa

0 ∈ subH⇒v p ∈ ŝubH

We observe that the type of Node is exactly the one of merge, except for the additional CPS
to return a datatype. This suggests that either this construct was in fact hidden in the proof
in Section 6.1.5, or this presentation is a simplification of the previous one. Summing up, the
universal realizer of ∀p ∈ subH.∃t ∈ Tree. subHtree p t = 1 is: λxf. f x (λy. y).

The forcing datatype All data structures being optimized, it is time to explicitly build the
forcing datatype. Forcing conditions still denote finite truth assignments, so that the product on
forcing conditions is again defined as the set-theoretic union and the condition 1 is the empty
set ∅̇. Like in Section 6.1.3, this entails that most combinators are trivial. Nevertheless, because
of the CPS, λx. x is not a proof term for C[p]⇒v Ĉ[p], and we take instead λxf. f x.

Following the intuition of the previous section, we let the set C of well-formed forcing conditions
be the datatype Zip of zippers. Formally, C[p] is defined as p ∈ Zip. The proof term α0 then
represents the empty zipper, i.e. we have α0 := Top.

Let us focus now on α1 and α2, which are the same thanks to the commutativity of the meet,
and they have the type ∀p∀q. C[pq] ⇒v Ĉ[p]. Computationally, they take a zipper for pq and
return one for p, that is they erase a part of this zipper. Notice that p is not a computational
argument because there is no relativization on the quantification. Therefore, we cannot not know
which parts of the zipper we should remove. Furthermore, removing inner nodes may result in a
zipper that is no longer a Herbrand context.

The solution is not to modify the zipper but to modify the meaning of p ∈ Zip: instead
of denoting a zipper with a hole at position p, it denotes a zipper with a hole at a position
extending p. The interest of this new definition is to trivialize the combinators α1 and α2, since
a position extending pq also extends p alone. It does not change the structure of the proof by
forcing because the key property of a zipper with a hole at position p is its ability to combine
with a Herbrand tree below p to make a full Herbrand tree, see Figure 6.9.

This property is preserved if the hole is at a position extending p, we simply have redundant
parts in the resulting tree5. Said otherwise, we no longer produce Herbrand trees but rather
improper Herbrand trees, defined in Remark 6.1.5, as shown in Figure 6.10. In fact, we can even
correct this problem in the reconstruction function fuse that we will shortly define.

5 In fact, such a modification is necessary also for the forcing structure of Section 6.1.3, since Lemma 6.1.8 is
in fact not provable in PAω+ because we have no way to distinguish p from pq as they are not computational
arguments. The solution is exactly the same in this case. We have chosen to hide this technical subtlety in
Section 6.1 because it simply hinders understanding.
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p p

Figure 6.9: Combining a zipper at p and a Herbrand tree below p into a full Herbrand tree.

pq
p

Figure 6.10: Zippers at pq and Herbrand trees below p merge into improper Herbrand trees.

Definition 6.3.1 (Forcing datatype for Herbrand theorem)
The forcing datatype for Herbrand theorem is:

C[p] := p ∈ Zip α0 := Top

p · q := p ∪̇ q αi := λxf. f x for i ∈ {1, . . . , 8}
1 := ∅̇

The fact that all primitive combinators are trivial intuitively means that all the structure
lies in the definition of the datatype Zip. It also has strong consequences on all the derived
combinators, which either are trivial or amounts to swapping arguments (for implication and
data implication). More precisely, we have the following result:

Proposition 6.3.2
The forcing combinators for Herbrand forcing datatype are:

α0 := Top

αi = β2 = β3 = β4 := λxf. f x i 6= 0
β1 = γ1 = γ2 = γ3 = γ5 := λfxy. f y x

γ4 := λxcy. x (y c)

6.3.3 Proofs with the forcing datatype
Before looking at the modifications on proofs required by introduction of a datatype of zippers,
let us intuitively justify that the above forcing datatype is enough for our needs, i.e. let us write
the reconstruction function fuse, of type ∀p ∈ Zip. p ∈ subH ⇒v ∅̇ ∈ ŝubH, which combines a
zipper with a hole at position p and a Herbrand tree below p into a full Herbrand tree, as depicted
in Figure 6.9.
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Forcing structure (Section 6.1) Forcing datatype (Section 6.3)
Same definitions

κ := ι necessarily ι
1 := ∅̇ 1 := ∅̇
· := ∪̇ · := ∪̇

Modified definitions
set FTA absorbed by Zip
set Tree absorbed by subH

subH := λp. ∃t ∈ Tree. subHtree p t = 1 subH datatype
C[p] := p ∈ FTA ∧ subH p⇒ subH ∅̇ (set) C[p] := p ∈ Zip (datatype)

α0 := λx. x α0 := Top
αi := λx. x i ∈ {3, . . . , 8} αi := λxf. f x i ∈ {3, . . . , 8}

Figure 6.11: Forcing structure vs. forcing datatype for Herbrand theorem.

The reconstruction function fuse Because the product of forcing conditions is commutative,
we cannot use p to determine the shape of a zipper p ∈ Zip, that is, a zipper for pa1 may well
start with a Right constructor if the node labeled by a is not the first one. Therefore, we use
instead the pattern matching on zippers. To make the λc-term more readable, we write fuse
both in a ML style on the left, and in PAω+ on the right.

fun z t => matchZip z with
| Top => t
| Left a p z => p t
| Right a t′ z => fuse z (Node a t′ t)

Y (λRzt. matchZip z t (λapz. p t)
(λat′z. Node a t′ t (Rz)))

Notice that in PAω+, Node returns its argument in CPS style, and therefore must be applied
first. We can easily check on the ML side that this program has the correct type. In PAω+

however, it is not a proof term but only a universal realizer because of the fixpoint operator Y.
Furthermore, to ensure its termination (and hence its correctness), we must provide a well-founded
order in the model along which each recursive call is strictly decreasing (see Theorem 3.2.7). This
order is the strict inclusion over hereditary finite sets, applied to the set interpreting the forcing
condition p.

To compensate the relaxation in the definition of Zip which allows an atom to appear several
times on a branch, hence producing an improper Herbrand context, we modify the Right case of
fuse to check if the atom a is already present in z. Thus, we build a Herbrand tree rather than
an improper one by removing the duplicate parts between the zipper of type p ∈ Zip and the
Herbrand tree below p. More precisely, we replace fuse z (Node a t′ t) by the following code:

if test z a true then t′ else
if test z a false then t else
Node a t′ t

Proofs in PAω+: proof by forcing and the axiom (Ag) A priori, using the new forcing
datatype instead of the definition of C[p] from Section 6.1.3 requires to completely change the
proofs that use well-formed forcing conditions. If we precisely look at the places where the
very definition of well-formed forcing conditions is used, we see that in fact, most proofs can be
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preserved. There are only three places where proofs break: one in the proof by forcing and two in
the proof of the axiom (Ag).

In the proof in the forcing universe, the only place where the definition of C is used is to show
the implication subH p⇒ C[p]⇒ subH ∅̇, the last step of the proof. This implication performs
the reconstruction of a full Herbrand tree from a context and a Herbrand tree below p, which is
exactly what fuse does.

In the proof of the axiom (Ag), the definition of C is used twice: on the one hand, to get a
proof that (rqa)q ∈ FTA (which is an argument to test), on the other hand to show the following
crucial implication:

(C[((rqa)q)a1]⇒ ⊥)⇒ (C[((rqa)q)a0]⇒ ⊥)⇒ C[(rqa)q]⇒ ⊥

From a computational perspective, the intuition of the realizer of the axiom (Ag) should be the
same here and in Section 6.1.5: check if the atom is present in the current forcing condition, and
if not extend it. Therefore, we use it as a guiding principle to make the required modifications.

For the proof of (rqa)q ∈ FTA, it is the type of the axiom test that we must modify because
the set FTA no longer exists. As the computational content of p ∈ FTA is transferred into the
zipper p ∈ Zip, we use instead:

test : ∀p ∈ Zip∀a ∈ Atom ∀b ∈ B. test p a b ∈ B

Computationally, realizing this axiom means looking into the zipper for the path going from the
current position to the root and using it as the computational finite relation used to test if the
atom a is mapped to b.

Let us focus on the second change, the implication. In Section 6.1.5, the computational
intuition behind this implication was to make recursive calls on child nodes and combine them
into the answer for the current node. Here, we do the same: a recursive call on the left child then
on the right child, using the type of the constructors Left and Right of the datatype Zip to guide
us. For readability, we abbreviate (rqa)q into p and we want to prove the following implication:

(pa1 ∈ Zip⇒v ⊥)⇒ (pa0 ∈ Zip⇒v ⊥)⇒ p ∈ Zip⇒v ⊥

Assuming a proof t of pa1 ∈ subH, we can use the third premise z : p ∈ Zip and a proof a
of a ∈ Atom (which is present in the proof of the axiom (Ag)), to build Right a t z of type
pa0 ∈ Ẑip. With the second premise, we get a proof of ⊥. Discharging the assumption t,
we get the proof λt. Right a t z y of the proposition pa1 ∈ subH ⇒ ⊥ which is a subtype of
pa1 ∈ subH ⇒ ∅̇ ∈ subH. Used as an argument to Left, we get a proof of pa1 ∈ Ẑip which we
can combine with the first premise to get the final proof of ⊥. Summing up, the proof of the
implication is the following:

λxyz. Left a (λt. Right a t z y) z x : (pa1 ∈ Zip⇒v ⊥)⇒ (pa0 ∈ Zip⇒v ⊥)⇒ p ∈ Zip⇒v ⊥

As we can see, the proofs of Sections 6.1.4 and 6.1.5 and the one of the current section are
essentially the same and the modification are only due to the introduction of datatypes that
optimize the sets (in the sense of PAω+) used in Section 6.1.

6.3.4 Conclusion
The computational interpretation of the proof by forcing of Herbrand theorem obtained in this
section is the same as the one of Section 6.1.6. This is not surprising: it is this very interpretation
which motivated us into changing the representation of computational conditions, triggering all
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other modifications. Nevertheless, it is worth noticing that by a careful design of the forcing
datatype, we were able to reduce the overhead of forcing (all combinators are extremely simple)
and to precisely isolate the computationally critical parts.

Furthermore, the resulting realizer is closer than ever to the natural program to directly
build Herbrand tree presented in Section 6.1.1. The only difference is that we do not execute all
processes in parallel but follow a depth-first, left-to-right traversal of the tree. Yet, the data stored
in the computational forcing condition and the evolution of the program exactly match the ones
of the direct program. This means that forcing was able to perform the scheduling mechanism
that we were wishing for at the time, but most importantly, it does so without overhead. This
suggests that forcing is a very efficient tool that can compete with specialized programs, provided
we take great care to build the most efficient computational conditions, which seems a difficult
task in general. In addition, as this program for building Herbrand trees is extracted from a
proof, it can also be seen as a certified version of the correctness of the natural program.

In the end, this case study of Herbrand trees is a striking example of theoretical investigations
catching up with programming intuition, exactly like the invention of callcc preceded by decades
the discovery of Timothy Griffin that it can be typed by Peirce’s law.



Conclusion

In this thesis we are interested in the computational interpretation of Paul Cohen’s classical
forcing, under the light of the Curry-Howard correspondence, and specifically of Jean-Louis
Krivine’s classical realizability. Our contributions provide a better intuition of forcing, and
match it with the introduction of a memory cell. The computational interpretation of forcing
and generic filters in particular allows us to implement forcing as a programming feature but also
suggests a strong logical justification to imperative traits of programming languages.

Classical realizability We present (Chapter 2) the construction and the results of classical
realizability in the most simple setting, second-order Peano arithmetic (PA2), seen from a
computational perspective. As the theory is much more subtle than intuitionistic realizability, we
chose the KAM as a framework to stay as simple as possible.

To interpret arithmetical reasoning, one must realize the axioms of Peano arithmetic. Most of
their realizers are trivial because second-order logic is strong enough to prove already most of the
axioms. In fact, only the recurrence axiom requires a specific treatment which, as usual, consists
of relativizing quantifications to integers. The adequacy theorem then allows us to consider any
proof term in PA2 as a realizer that can be used to extract a witness.

We present the power and flexibility of classical realizability in Chapter 3 where we go
deeper into the subject, introducing several extensions. The first ones are toy examples aimed at
illustrating how easily classical realizability can encompass new instructions and new connectives.
Then we give important instructions such as a non-deterministic choice operator. This instruction
dramatically simplifies the structure of realizability models but also destroys their computational
interest. Another important instruction is quote, which is used to realize the axioms of countable
and dependent choices, thus extending the computational interpretation of mathematics to most
of analysis. Finally, we introduce the seed of the theory of primitive datatypes, under the form of
native integers with more efficient operations than the naive unary ones of Giuseppe Peano’s
natural numbers. Our primitive datatypes can be used to build real numbers into the KAM, giving
a unified framework for both computable and non-computable real numbers while still preserving
extraction. As the realizers in this construction are quite big, we also build a full-fledged Coq
library formalizing classical realizability to check their correctness. This library is freely available
at http://perso.ens-lyon.fr/lionel.rieg/thesis/ and is built around the idea of being as
extensible as the pen and paper construction.

Forcing in classical realizability The classical transformation of propositions induced by
forcing may increase arbitrarily the order of a proposition, thus requiring classical realizability for
higher-order logic (Chapter 4). The natural extension of PA2 to higher-order logic is higher-order
Peano arithmetic (PAω). To avoid cluttering proof terms with type conversion, we introduce a
congruence on propositions that identifies semantically equivalent ones, finally giving the logical
system PAω+ where proof terms have a clearer computational content. The classical realizability
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theory in this setting is identical to the second-order case and we can import most results from
the previous chapters, including the witness extraction technique. We also take advantage of
this logical framework change to formally introduce datatypes, building on the ideas of primitive
integers presented in the second-order case, again with the goal to have better and more efficient
proof terms.

In PAω+, Paul Cohen’s forcing can be understood as a translation from propositions in
an extended universe that intuitively corresponds to the forcing model to a base universe that
corresponds to the ground model (Chapter 5). The computational analysis of this translation
reveals that it introduces a memory cell, located in the first slot of the stack inside the KAM.
This memory cell can be seen as a monitoring device that supervises the execution of the
translated term, in the spirit of an operating system. Drawing inspiration from this computational
interpretation, one can design an alternative machine that hard-wires the forcing translation.
This machine, called the Krivine Forcing Abstract Machine (KFAM), features two execution
modes: a kernel mode where processes have access to the memory cell and a user mode where the
execution is controlled by the memory cell and where processes cannot see it.

We extend the forcing translation to generic filters, which embody the difference between
the extended and base universes, and unveil their computational interpretation as a kind of
syscall instruction. Indeed, the realizers of the properties of generic filters allows processes in
user mode to interact with the memory cell in kernel mode, for instance to modify or get its value.
Nonetheless, this interpretation only works for a restricted case of forcing structures where the
computational meaning of forcing conditions is the same in the base universe and in the extended
one, a very natural hypothesis if we want forcing conditions to carry information. It completes
the forcing translation, which can be used now computationally to execute proofs by forcing. The
interest of such proofs is to let forcing approximate an ideal object that we can use in the proof
by forcing, and that is simulated by the memory cell in the KAM.

Finally, we illustrate this whole methodology on the case study of the extraction of Herbrand
trees (Chapter 6.1). To the best of our knowledge, it is the first example where forcing is used
toward a computational goal, and it turns out to produce more efficient programs. Here, the
memory cell contains the tree under construction, and the evolution of the forcing condition along
the proof is reflected in the memory cell as the growth of the tree. In addition to being more
explicit and more efficient, our proof by forcing of a semantic variant of Herbrand theorem does
not need the fan theorem. Yet, its main interest lies in its computational interpretation, where
the forcing translation transparently manages the tree structure. In particular, the proof by
forcing never explicitly uses trees, they only appear through the forcing translation, that is in the
memory cell. In this sense, this example of forcing structure can be seen as a library to manage
execution trees, i.e. as a scheduler. Furthermore, if we focus on the computational interpretation
of this proof, we can redesign its forcing components so that the execution exactly matches the
computational intuition. In the end, we get a proof by forcing that has the same computational
behavior as the direct algorithm one could write to solve the problem, without any concern for
logical justifications of correctness, which we get for free with the forcing technique. In this
sense, forcing can be understood as a logical technique to prove the correctness of programs using
memory cells.

Perspectives Completing the computational interpretation of forcing with the translation of
generic filters, this thesis opens new perspectives in the usage of forcing. Indeed, in the literature,
forcing is used only as a mathematical theory, in most cases to prove relative consistency results,
whereas we use it with a computational objective.

On a short-term perspective, a direct extension of our methodology would be to apply it to
other theorems, the first one in line being bar recursion [Spe62]. Indeed, bar recursion can be
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interpreted as a computational scheme which computes the values associated with the root of a
binary tree by a bottom up approach where we merge the values of child nodes into a value for
the father node. The difficulty of this problem is that the tree is unknown beforehand, we only
know that each branch stops at finite (but unknown) depth, exactly the same constraint as in
Herbrand theorem. The traversal order of the tree is also the same, depth-first computation, so
that we can expect the forcing structure to have the same intuition but to store different data,
probably just the value at the current node.

Similarly, as our semantic statement of Herbrand theorem essentially combines completeness
with the syntactic version of Herbrand theorem, we can expect this technique to give a computa-
tional interpretation of the completeness theorem of classical logic through forcing. It would then
be interesting to compare it with the computational interpretation given by the intuitionistic
proof of this theorem [Kri96]. Are they the same? Is the proof by forcing an optimization of the
intuitionistic proof?

On a more programming-related note, the most straightforward future work is to extend or
rewrite the λc-evaluator Jivaro [Miq09c] to transform it into a KFAM implementing the forcing
evaluation mode. Thanks to it, effective computational experiments involving forcing will become
possible.

From a higher-level and middle-term perspective, the case study of Herbrand trees shows
that forcing can simulate a tree library or a scheduler. What about other datatypes? The global
computational interpretation of forcing and generic filters tends to suggest that we can put any
datatype in the memory cell, provided we can express its primitive operations in terms of the
properties of generic filters, which seems likely as the genericity property is very powerful. Forcing
may be the tool of choice to study formally data structure hat are difficult to handle logically
such as hash tables and more generally mutable data.

The evolution of the content of the memory cell is possible only through the properties
of generic filters. In particular, they give constraints that prevent modifying it arbitrarily.
Furthermore, by anti-monotonicity of forcing, it is always possible to strengthen its content. This
seems close to Hugo Herbelin’s monotonically updatable variables [Her12] and investigating the
connections seems a promising research direction.

Finally, the interpretation of generic filters requires forcing conditions to have computationally
the same meaning in the base and the forcing universes. What if we remove this restriction?
Finding a suitable translation is an open problem but, even more than that, the very notion of a
data structure with different meanings from the point of views of the two universes is not clear!
In fact, the computational interpretation of forcing seems to open far-reaching research directions.
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Appendix A

Proof of the adequacy lemma in
PAω+

The adequacy lemma (Lemma 4.2.6) written below is used to prove the adequacy theorem
(Theorem 4.2.2) as an immediate corollary. The proof given here does not consider datatypes,
but the changes required to handle them have already been given in Section 4.2.2. Before writing
down the statement of the adequacy lemme, we need to give some definitions.

Definition A.1 (Valuation modeling an equational theory)
A valuation ρ, mapping expression variables xτ to denotations in JτK, models an equational
theory E, written ρ |= E, when for any equation M = N in E, we have the equality JMKρ = JNKρ.

With such a valuation, every equation in E is interpreted as valid equality in the model.

Definition A.2 (Substitution realizing a context)
Given a closed context Γ and a substitution σ of proof variables by proof terms, we say that σ
realizes Γ and write σ  Γ when for all (x : A) ∈ Γ, we have σ(x)  A.

Remember that an open formula A can be closed by a valuation ρ by replacing every free
variable x by the parameter v̇ where v is the denotation of x in ρ, i.e. v ≡ ρ(x). This closure is
written A[ρ] and is extended pointwise to context into Γ[ρ].

Let us state the adequacy lemma:

Lemma A.3 (Adequacy lemma)
If Γ is an possibly open context and if the sequent E ; Γ ` t : A is derivable in PAω+, then for all ρ
and σ such that ρ |= E and σ  Γ[ρ], we have t[σ]  A[ρ].

The proof of this lemma is made in a modular way as presented in Section 2.8.2: that is, we
prove separately that each rule of PAω+preserves adequacy. This requires a few more definition:

Definition A.4 (Adequate sequent)
A sequent E ; Γ ` t : A is adequate with respect to a pole ⊥⊥ when for all ρ and σ such that ρ |= E
and σ  Γ[ρ], we have t[σ]  A[ρ].

Remark A.5
This definition depends on a pole because of the valuation ρ which associates to any variable a
denotation in the model generated by ⊥⊥.
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Definition A.6 (Adequate inference rule)
An inference rule is adequate with respect to a pole ⊥⊥ if whenever the premise sequents are
adequate with respect to ⊥⊥, the conclusion sequent is adequate with respect to ⊥⊥.

It is trivial to prove that any proof built using adequate rules with respect to a pole is adequate
with respect to this pole. Therefore, to prove the adequacy lemma, we only have to prove that
each rule is adequacy with respect to any pole.

Proof of the adequacy lemma.
Axiom Any proof ending by the axiom rule is of the shape E ; Γ ` x : A with (x : A) ∈ Γ.

Let ρ and σ be such that ρ |= E and σ  Γ[ρ]. Since σ  Γ, we have in particular
x[σ] ≡ σ(x)  A[ρ].

Peirce’s law We first prove that for all A, B, E , ρ and π such that ρ |= E , if π ∈ ‖A[ρ]‖, then
kπ  A[ρ]⇒ B[ρ]. Let t ∈ |A[ρ]| and π′ ∈ ‖B[ρ]‖ so that t · π′ ∈ ‖A[ρ]⇒ B[ρ]‖. We have
kπ ? t · π′ � t ? π ∈ ⊥⊥. By anti-evaluation, kπ ? t · π′ ∈ ⊥⊥ and kπ  A[ρ]⇒ B[ρ].
We now turn to the proof for callcc. Let t ∈ |(A[ρ]⇒ B[ρ])⇒ A[ρ]| and π ∈ ‖A[ρ]‖ so that
t·π ∈ ‖((A[ρ]⇒ B[ρ])⇒ A[ρ])⇒ A[ρ]‖. We have callcc ? t·π � t ? kπ ·π and t ? kπ ·π ∈ ⊥⊥
because kπ ∈ |A[ρ]⇒ B[ρ]| and π ∈ ‖A[ρ]‖ so that kπ · π ∈ ‖(A[ρ]⇒ B[ρ])⇒ A[ρ]‖. We
conclude by anti-evaluation.

Congruence Assume that the sequent E ; Γ ` t : A is adequate and let ρ and σ be such that
ρ |= E and σ  Γ[ρ]. By adequacy, we have t[σ]  A[ρ]. By induction on the derivation
of A ≈ B, we can prove that ‖A[ρ]‖ = ‖B[ρ]‖ so that |A[ρ]| = |B[ρ]| and t[σ]  A[ρ]
(≡ t[σ] ∈ |A[ρ]| = |B[ρ]|) holds trivially.

Introduction of ⇒ Assume that the sequent E ; Γ, x : A ` t : B is adequate. Let ρ and σ
be such that ρ |= E and σ  Γ[ρ]. We want to prove that λx. t  (A ⇒ B)[ρ], i.e.
λx. t  A[ρ]⇒ B[ρ]. Let u  A[ρ] and π ∈ JBKρ so that u · π ∈ JA⇒ BKρ. Since σ  Γ[ρ]
and x does not belong to the domain of Γ (otherwise the context Γ, x : A would not be
defined), we get σ, x ← u  Γ[ρ], x : A[ρ]. By adequacy of E ; Γ, x : A ` t : B, we have
t[σ, x← u]  B[ρ] and thus t[σ, x← u] ? π ∈ ⊥⊥. Finally, as the substitution σ is closed, we
have (λx. t)[σ] ? u ·π ≡ λx. t[σ, x← x] ? u ·π � (t[σ, x← x])[u/x] ? π ≡ t[σ, x← u] ? π ∈ ⊥⊥
and by anti-evaluation, (λx. t)[σ]  (A⇒ B)[ρ].

Elimination of ⇒ Assume that the sequents E ; Γ ` t : A⇒ B and E ; Γ ` u : A are adequate.
Let ρ and σ be such that ρ |= E and σ  Γ[ρ]. We want to prove that (t u)[σ]  B[ρ], i.e.
t[σ]u[σ]  B[ρ]. Let π ∈ JBKρ. By adequacy, we have t[σ]  (A ⇒ B)[ρ] and u[σ]  A[ρ]
so that u[σ] · π ∈ JA⇒ BKρ. Therefore we have t[σ]u[σ] ? π � t[σ] ? u[σ] · π ∈ ⊥⊥ and we
conclude by anti-evaluation.

Introduction of 7→ Assume that the sequent E ,M1 = M2; Γ ` t : A is adequate. Let ρ and σ
be such that ρ |= E and σ  Γ[ρ]. We consider two cases:

• JM1Kρ = JM2Kρ: We then have ρ |= E ,M1 = M2 and ‖M1
.= M2 7→ A‖ρ = ‖A‖ρ. By

adequacy, we have t[σ]  A[ρ], i.e. t[σ]  (M1
.= M2 7→ A)[ρ].

• JM1Kρ 6= JM2Kρ: We then have ‖M1
.= M2 7→ A‖ρ = ∅ and any term belongs to

|M1
.= M2 7→ A|ρ, in particular t[σ].

Elimination of 7→ This is a particular case of conversion.
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Introduction of ∀ Assume that the sequent E ; Γ ` t : A is adequate. Let xτ be a variable
not appearing in FV(Γ) and let ρ and σ be such that ρ |= E and σ  Γ[ρ]. We want
to prove that t[σ]  (∀xτ . A)[ρ], i.e. that for any v ∈ JτK, t[σ]  A[ρ, xτ ← v]. Let
π ∈ JAKρ,xτ←v. Since ρ, xτ ← v |= E and x /∈ FV(Γ), we have σ  Γ[ρ, xτ ← v] and by
adequacy t[σ]  A[ρ, xτ ← v].

Elimination of ∀ Assume that the sequent E ; Γ ` t : ∀xτ . A is adequate. Let ρ and σ be such
that ρ |= E and σ  Γ[ρ]. We want to show that for any v ∈ JτK, t[σ]  A[ρ, xτ ← v]. Let
π ∈ JAKρ,xτ←v. We have π ∈

⋃
v∈JτK JAKρ,xτ←v = J∀xτ . AKρ and we conclude by adequacy

of the premise.
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Appendix B

Formal proofs in PAω+

The formal proofs that we build in this annex cannot be conveniently written with derivation
trees, because they are too long and their formulæ are too big. Therefore, we switch the tree-like
presentation of proofs for a linear one: Fitch-style natural deduction. In this presentation, the
brackets on the left side of proofs denote the scope of assumptions and variables that can be of
three kinds:

• Abstractions, denoted by [λ], that introduce proof variables.
When discharged, they modify both the λc-term by introducing an abstraction and its type
by introducing an implication or a data implication.

• Universal quantifications, denoted by [∀], that introduce expression variables.
When discharged, they modify only the type.

• Equations, denoted by [Eq.], that introduce equations in the congruence ≈.
When discharged, they introduce a equational implication .= 7→ .

B.1 Forcing combinators

The proofs for most combinators are already given by Alexandre Miquel[Miq13]. Therefore, here
we focus on the new ones, namely the ones that deals with data implication and datatypes. We
only consider a forcing structure (Definition 5.1.1) and not a not forcing datatype (Definition 6.2.1).
The difference would only be the CPS for the combinators αi, which would requires to apply
them to their continuation rather than use a direct style.

B.1.1 Combinators for data implication

We want to prove Proposition 5.1.10, that is, for any p and A:

γ1 := λxcy. x y (α6 c) : (∀q.DN∗ ⇒v pq FA)⇒ p F (DN ⇒v A)
γ3 := λxyc. x (α11 c) y : p F (DN ⇒v A)⇒ DN∗ ⇒v p FA
γ5 := λxcy. x y (α9 (α6 c)) : (DN∗ ⇒v p FA)⇒ p F (DN ⇒v A)
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[λ] x : p F (DN ⇒v A) ≡ ∀rκ. C[pr]⇒ (DN ⇒v A)∗ r
[λ] y : DN∗

[∀] rκ
[λ] c : C[pr]
α11 c : C[p(pr)]
x (α11 c) : (DN ⇒v A)∗ pr ≈ ∀qr′. pr .= qr′ 7→ DN∗ ⇒v A

∗ r′

x (α11 c) : pr
.= pr 7→ DN∗ ⇒v A

∗ r ≈ DN∗ ⇒v A
∗ r

x (α11 c) y : A∗ r
λc. x (α11 c) y : ∀rκ. C[pr]⇒ A∗ r ≡ p FA

γ3 := λxyc. x (α11 c) y : (p F (DN ⇒v A))⇒ DN∗ ⇒v p FA



[λ] x : DN∗ ⇒v p FA

[∀] rκ
[λ] c : C[pr]

[∀] q
[∀] r′
[Eq.] r = qr′

c : C[pr] ≈ C[p(qr′)]
α6 c : C[(pq)r′]
α9 (α6 c) : C[pr′]

[λ] y : DN∗

x y : p FA ≡ ∀rκ. C[pr]⇒ A∗ r
x y : C[pr′]⇒ A∗ r′

x y (α9 (α6 c)) : A∗ r′

λy. x y (α9 (α6 c)) : DN∗ ⇒v A
∗ r′

λy. x y (α9 (α6 c)) : ∀q∀r′. r .= qr′ 7→ DN∗ ⇒v A
∗ r′ ≈ (DN ⇒v A)∗ r

λcy. x y (α9 (α6 c)) : ∀r. C[pr]⇒ (DN ⇒v A)∗ r ≡ p F (DN ⇒v A)
γ5 := λxcy. x y (α9 (α6 c)) : (DN∗ ⇒v p FA)⇒ p F (DN ⇒v A)



[λ] x : ∀q.DN∗ ⇒v pq FA

[∀] rκ
[λ] c : C[pr]

[∀] q
[∀] r′
[Eq.] r = qr′

c : C[pr] ≈ C[p(qr′)]
α6 c : C[(pq)r′]

[λ] y : DN∗

x : DN∗ ⇒v pq FA
xy : pq FA ≡ ∀rκ. C[(pq)r]⇒ A∗ r
x y : C[(pq)r′]⇒ A∗ r′

x y (α6 c) : A∗ r′

λy. x y (α6 c) : DN∗ ⇒v A
∗ r′

λy. x y (α6 c) : ∀q∀r′. r .= qr′ 7→ DN∗ ⇒v A
∗ r′ ≈ (DN ⇒v A)∗ r

λcy. x y (α6 c) : ∀r. C[pr]⇒ (DN ⇒v A)∗ r ≡ p F (DN ⇒v A)
γ1 := λxcy. x y (α6 c) : (∀q.DN∗ ⇒v pq FA)⇒ p F (DN ⇒v A)
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B.1.2 Invariance by forcing of datatypes

In this section, we prove that data implication and datatypes are invariant by forcing. The proofs
for the other constructions are done by Alexandre Miquel [Miq13]. More precisely, we prove the
following statements:

λxcf. γ3 x (λ . f) (α7 c) : (p F v ∈ D̂)⇒ C[p]⇒ v ∈ D̂

λx. γ1 (λyc. x (α1 (α1 c)) y (α10 c)) : (C[p]⇒ v ∈ D̂)⇒ p F v ∈ D̂
λxcy. ξA (λc′. x (α9 (α4 c

′)) y) c : (p F v ∈ D ⇒v A)⇒ C[p]⇒ v ∈ D ⇒v A

λxcy. ξ′A (λ . x (α1 c) y) (α10 (α6 c)) : (C[p]⇒ v ∈ D ⇒v A)⇒ p F v ∈ D ⇒v A



[λ] x : p F v ∈ D̂ ≡ p F ∀Y. (v ∈ D ⇒v Y )⇒ Y ≈ ∀Y ∗. p F (v ∈ D ⇒v Y )⇒ Y
[λ] c : C[p]

[∀] Z
[λ] f : v ∈ D ⇒v Z
x : (p F (v ∈ D ⇒v Y )⇒ Y )[λ . Z/Y ∗]
γ3 x : (p F (v ∈ D ⇒v Y ))[λ . Z/Y ∗]⇒ (p F Y )[λ . Z/Y ∗]

[∀] q
[∀] r′
[Eq.] r = qr′

f : v ∈ D ⇒v Z ≡ (v ∈ D ⇒v Y
∗ r′)[λ . Z/Y ∗]

f : (∀q∀r′. r .= qr′ 7→ v ∈ D ⇒v Y
∗ r′)[λ . Z/Y ∗] ≡ ((v ∈ D ⇒v Y )∗ r)[λ . Z/Y ∗]

λ . f : ∀r. C[pr]⇒ (v ∈ D ⇒v Y )∗ r)[λ . Z/Y ∗] ≡ p F v ∈ D ⇒v Y [λ . Z/Y ∗]
γ3 x (λ . f) : (p F Y )[λ . Z/Y ∗] ≡ ∀r. C[pr]⇒ Z
γ3 x (λ . f) : C[p1]⇒ Z
α7 c : C[p1]
γ3 x (λ . f) (α7 c) : Z

λf. γ3 x (λ . f) (α7 c) : ∀Z. (v ∈ D ⇒v Z)⇒ Z ≡ v ∈ D̂
λxcf. γ3 x (λ . f) (α7 c) : (p F v ∈ D̂)⇒ C[p]⇒ v ∈ D̂



[λ] x : p F v ∈ D ⇒v A≡ ∀r. C[pr]⇒ ∀q∀r′. r .= qr′ 7→ v ∈ D ⇒v A
∗r′

≈ ∀q∀r′. C[p(qr′)]⇒ v ∈ D ⇒v A
∗ r′

[λ] c : C[p]
[λ] y : v ∈ D

[∀] r
[λ] c′ : C[pr]
α4 c

′ : C[(pr)(pr)]
α9 (α4 c

′) : C[p(pr)]
x : C[p(pr)]⇒ v ∈ D ⇒v A

∗ r
x (α9 (α4 c

′)) : v ∈ D ⇒v A
∗r

x (α9 (α4 c
′)) y : A∗r

λc′. x (α9 (α4 c
′)) y : ∀r. C[pr]⇒ A∗r ≡ p FA

ξA (λc′. x (α9 (α4 c
′)) y) : C[p]⇒ A

ξA (λc′. x (α9 (α4 c
′)) y) c : A

λxcy. ξA (λc′. x (α9 (α4 c
′)) y) c : (p F v ∈ D ⇒v A)⇒ C[p]⇒ v ∈ D ⇒v A
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[λ] x : C[p]⇒ v ∈ D̂

[∀] Z

[∀] q
[λ] y : q F v ∈ D ⇒v Z ≈ ∀q′r′. C[q(q′r′)]⇒ v ∈ D ⇒v Z

∗ r′

[∀] r
[λ] c : C[(pq)r]
α14 c : C[q(rr)]
y : C[q(rr)]⇒ v ∈ D ⇒v Z

∗ r
y (α14 c) : v ∈ D ⇒v Z

∗ r
α1 c : C[pq]
α1 (α1 c) : C[p]
x (α1 (α1 c)) : v ∈ D̂ ≡ ∀Y. (v ∈ D ⇒v Y )⇒ Y
x (α1 (α1 c)) : (v ∈ D ⇒v Z

∗ r)⇒ Z∗ r
x (α1 (α1 c)) (y (α14 c)) : Z∗ r

λc. x (α1 (α1 c)) (y (α14 c)) : ∀r. C[(pq)r]⇒ Z∗ r ≈ pq F Z
λyc. x (α1 (α1 c)) (y (α14 c)) : ∀q. q F (v ∈ D ⇒v Z)⇒ pq F Z
γ1 (λyc. x (α1 (α1 c)) (y (α14 c))) : p F (v ∈ D ⇒v Z)⇒ Z

γ1 (λyc. x (α1 (α1 c)) (y (α14 c))) : ∀Z. p F (v ∈ D ⇒v Z)⇒ Z ≈ p F v ∈ D̂
λx. γ1 (λyc. x (α1 (α1 c)) (y (α14 c))) : (C[p]⇒ v ∈ D̂)⇒ p F v ∈ D̂



[λ] x : C[p]⇒ v ∈ D ⇒v A

[∀] r
[λ] c : C[pr]
α1 c : C[p]
x (α1 c) : v ∈ D ⇒v A

[∀] q
[∀] r′
[Eq.] r = qr′

[λ] y : v ∈ D
x (α1 c) y : A
λ . x (α1 c) y : C[p]⇒ A
ξ′A (λ . x (α1 c) y) : p FA ≡ ∀s. C[ps]⇒ A∗ s
ξ′A (λ . x (α1 c) y) : C[pr′]⇒ A∗ r′

c : C[pr] ≈ C[p(qr′)]
α6 c : C[(pq)r′]
α10 (α6 c) : C[pr′]
ξ′A (λ . x (α1 c) y) (α10 (α6 c)) : A∗ r′

λy. ξ′A (λ . x (α1 c) y) (α10 (α6 c)) : ∀q∀r′. r .= qr′ 7→ v ∈ D ⇒v A
∗r′ ≡ (v ∈ D ⇒v A)∗ r

λcy. ξ′A (λ . x (α1 c) y) (α10 (α6 c)) : ∀r. C[pr]⇒ (v ∈ D ⇒v A)∗ r ≡ p F v ∈ D ⇒v A
λxcy. ξ′A (λ . x (α1 c) y) (α10 (α6 c)) : (C[p]⇒ v ∈ D ⇒v A)⇒ p F v ∈ D ⇒v A
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B.2 Properties of the generic set
We recall that (p ∈ G)∗q is defined by C[pq], which gives q F p ∈ G ≈ ∀rκ. C[qr]⇒ C[pr] ≡ q ≤ p.

B.2.1 G is a filter
Saying that G is a filter amounts to proving four properties:

• G is non empty: 1 ∈ G

• G is a subset of C: ∀p. p ∈ G⇒ C[p]

• G is upward-closed: ∀p∀q. pq ∈ G⇒ p ∈ G

• G is closed under product: ∀p∀q. p ∈ G⇒ q ∈ G⇒ pq ∈ G

G is non-empty We want to prove that for all rκ, r F 1 ∈ G ≡ r ≤ 1 ≡ ∀sκ. C[rs]⇒ C[1s].
[∀] sκ
[λ] c : C[rs]
c : C[rs]
α2 c : C[s]
α8 (α2 c) : C[1s]

α8 ◦ α2 ≡ λc. α8 (α2 c) : ∀sκ. C[rs]⇒ C[1s] ≡ r ≤ 1

G is a subset of C We want to prove that for all pκ and rκ, r F p ∈ G⇒ C[p].

[∀] qκ
[λ] x : q F p ∈ G ≡ q ≤ p ≡ ∀sκ. C[qs]⇒ C[ps]

[∀] sκ
[λ] c : C[rq]
α3 c : C[qr]
x (α3 c) : C[pr]
α1(x (α3 c)) : C[p]

α1 ◦ x ◦ α3 ≡ λc. α1(x (α3 c)) : C[rq]⇒ C[p]
ξ′C (α1 ◦ x ◦ α3) : rq F C[p]

λx. ξ′C (α1 ◦ x ◦ α3) : ∀qκ. (q F p ∈ G)⇒ (rq F C[p])
γ1 (λx. ξ′C (α1 ◦ x ◦ α3)) : r F p ∈ G⇒ C[p]

G is upward closed We want to prove that for all pκ, qκ, and rκ, r F pq ∈ G⇒ p ∈ G.

[∀] sκ
[λ] x : s F pq ∈ G ≡ s ≤ pq ≡ ∀tκ. C[st]⇒ C[(pq)t]

[∀] tκ
[λ] c : C[(rs)t]
α10 c : C[st]
x (α10 c) : C[(pq)t]
α9 (x (α10 c)) : C[pt]

α9 ◦ x ◦ α10 ≡ λc. α9 (x (α10 c)) : ∀tκ. C[(rs)t]⇒ C[pt] ≡ rs ≤ p ≡ rs F p ∈ G
λx. α9 ◦ x ◦ α10 : ∀sκ. s F pq ∈ G⇒ rs F p ∈ G
γ1 (λx. α9 ◦ x ◦ α10) : r F pq ∈ G⇒ p ∈ G
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G is stable by product We want to prove that for all pκ, qκ, and rκ, r F p ∈ G ⇒ q ∈ G ⇒
pq ∈ G.

[∀] rκp
[λ] x : rp F p ∈ G ≡ rp ≤ p ≡ ∀sκ. C[rps]⇒ C[ps]

[∀] rκq
[λ] y : rq F q ∈ G ≡ rq ≤ q ≡ ∀sκ. C[rqs]⇒ C[qs]

[∀] sκ
[λ] c : C[((rrp)rq)s]
α5 c : C[(rrp)(rqs)]
α5 (α5 c) : C[r(rp(rqs))]
α2 (α5 (α5 c)) : C[rp(rqs)]
x (α2 (α5 (α5 c))) : C[p(rqs)]
α12 (x (α2 (α5 (α5 c)))) : C[rq(sp)]
y (α12 (x (α2 (α5 (α5 c))))) : C[q(sp)]
α13 (y (α12 (x (α2 (α5 (α5 c)))))) : C[(pq)s]

α13 ◦ y ◦ α12 ◦ x ◦ α2 ◦ α5 ◦ α5 ≡ λc. α13 (y (α12 (x (α2 (α5
2 c)))))

: ∀sκ. C[((rrp)rq)s]⇒ C[(pq)s] ≡ (rrp)rq F pq ∈ G
λy. α13 ◦ y ◦ α12 ◦ x ◦ α2 ◦ α5 ◦ α5 : ∀rκq . rq F q ∈ G⇒ (rrp)rq F pq ∈ G
γ1 (λy. α13 ◦ y ◦ α12 ◦ x ◦ α2 ◦ α5

2) : rrp F q ∈ G⇒ pq ∈ G
λx. γ1 (λy. α13 ◦ y ◦ α12 ◦ x ◦ α2 ◦ α5

2) : ∀rκp . rp F p ∈ G⇒ rrp F q ∈ G⇒ pq ∈ G
γ1 (λx. γ1 (λy. α13 ◦ y ◦ α12 ◦ x ◦ α2 ◦ α5

2)) : r F p ∈ G⇒ q ∈ G⇒ pq ∈ G

B.2.2 G is generic
We define

λ∗x. t := γ1 (λx. t)
t@u := γ3 t u

to have

E ; Γ, x : q FA ` t : pq FB
q /∈ FV(Γ, E)

E ; Γ ` λ∗x. t : p FA⇒ B

E ; Γ ` t : p FA⇒ B E ; Γ ` u : p FA
E ; Γ ` t@u : p FB

we want to prove the following proposition for any set S invariant under forcing:

r F (∀p. C[p]⇒ ∃q. C[pq] ∧ pq ∈ S)⇒ ∃p. p ∈ G ∧ p ∈ S

The proof term we obtain at the end of the proof is:

γ1 (λx. γ1 (λyc. ξ∃2 ξC ξS (γ3 x (ξ′c (λ_. c))) (α2 (α1 (α1 c)))
(λc′d. γ3 (γ3 (β1 (α10 ◦ α9 ◦ α9) y) (λx. x))

(ξ′S (λ_. d)) (α3 (α2 (α5 (α11 c
′)))))))

Given qκ and

f : ∀pb. q F p ∈ G⇒ b ∈ B⇒M = N ⇒ ⊥
xb : q F b ∈ B
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we have 
[Eq.] M = N
I : q F q ∈ G ≡ q ≤ q
f @ I @xb : q FM = N ⇒ ⊥
I : M = M ≈M = N
I∗ : q FM = N
f @ I @xb @ I∗ : ⊥

f @ I @xb @ I∗ : M
.= N 7→ q F⊥

We will use the lemma four times in the coming proof, always with xb = true∗ or xb = false∗

and M = test q a b. The proof is given on the next page, except for the inner part extending the
forcing condition that does not fit on the same page and is therefore given below.

Sub-proof of the second case For this sub-proof, we have the following assumptions:

mem a (rqa)q =E 0
c : C[((rqa)q)s]
c1 : (rqa)q ∈ FTA
c2 : subH (rqa)q ⇒ subH ∅̇
xa : qa F a ∈ Atom

x̂a := ξAtom xa (α2 (α1 (α1 c))) : a ∈ Atom
f : ∀pb. q F p ∈ G⇒ b ∈ B⇒ test p a b = 1⇒ ⊥

x̂a : a ∈ Atom
β3 (β4 f) : ((rqa)q)a1 F ((rqa)q)a1 ∈ G⇒ 1 ∈ B⇒ test (((rqa)q)a1) a 1 = 1⇒ ⊥
β3 (β4 f) @ I @ true∗ @ I∗ : ((rqa)q)a1 F⊥
β3 (β4 f) : ((rqa)q)a0 F ((rqa)q)a0 ∈ G⇒ 0 ∈ B⇒ test (((rqa)q)a0) a 1 = 1⇒ ⊥
β3 (β4 f) @ I @ false∗ @ I∗ : ((rqa)q)a0 F⊥
consT x̂a c1 : ((rqa)q)a1 ∈ FTA

[λ] u : subH ((rqa)q)a1

consF x̂a c1 : ((rqa)q)a0 ∈ FTA[λ] v : subH ((rqa)q)a0

merge x̂a u v : subH (rqa)q
c2 (merge x̂a u v) : subH ∅

λv. c2 (merge x̂a u v) : subH ((rqa)q)a0 ⇒ subH ∅
〈consF x̂a c1, λv. c2 (merge x̂a u v)〉 : C[((rqa)q)a0]
α7 〈consF x̂a c1, λv. c2 (merge x̂a u v)〉 : C[((rqa)q)a01]
B :=

(
β3 (β4 f) @ I @ false∗ @ I∗

)
(α7 〈consF x̂a c1, λv. c2 (merge x̂a u v)〉) : ⊥

B : subH ∅
λu.B : subH ((rqa)q)a1 ⇒ subH ∅
〈consT x̂a c1, λu.B〉 : C[((rqa)q)a1]
α7 〈consT x̂a c1, λu.B〉 : C[((rqa)q)a11](
β3 (β4 f) @ I @ true∗ @ I∗

)
(α7 〈consT x̂a c1, λu.B〉) : ⊥

SS :=
(
β3 (β4 f) @ I @ true∗ @ I∗

)
(α7 〈consT x̂a c1, λu.B〉) : ⊥



204 APPENDIX B. FORMAL PROOFS IN PAω+

Main proof

[∀] qκa
[∀] qκ
[∀] sκ
[λ] c : C[((rqa)q)s]
[∀] aι
[λ] xa : qa F a ∈ Atom
[λ] f : q F ∀pb. p ∈ G⇒ b ∈ B⇒ test p a b = 1⇒ ⊥

≈ ∀pb. q F p ∈ G⇒ b ∈ B⇒ test p a b = 1⇒ ⊥
α2 (α1 (α1 c)) : C[qa]
α1 c : C[(rqa)q]

[Let] c1 : (rqa)q ∈ FTA
[Let] c2 : subH (rqa)q ⇒ subH ∅̇
x̂a := ξAtom xa (α2 (α1 (α1 c))) : a ∈ Atom
test c1 x̂a true : test ((rqa)q) a 1 ∈ B
First sub-case: test ((rqa)q) a 1 = 1

[Eq.] test (rqa)q a 1 = 1
β4 f : (rqa)q F (rqa)q ∈ G⇒ 1 ∈ B⇒ test ((rqa)q) a 1 = 1⇒ ⊥
true∗ : (rqa)q F 1 ∈ B
(β4 f) @ I @ true∗ @ I∗ : (rqa)q F⊥(
(β4 f) @ I @ true∗ @ I∗

)
c : ⊥∗ s(

(β4 f) @ I @ true∗ @ I∗
)
c : test (rqa)q a 1 .= 1 7→ ⊥∗ s

test c1 x̂a false : test ((rqa)q) a 0 ∈ B
Second sub-case: test ((rqa)q) a 1 = 0

[Eq.] test (qaq) a 0 = 1
β4 f : (rqa)q F (rqa)q ∈ G⇒ 0 ∈ B⇒ test ((rqa)q) a 0 = 1⇒ ⊥
false∗ : (rqa)q F 0 ∈ B
(β4 f) @ I @ false∗ @ I∗ : (rqa)q F⊥(
(β4 f) @ I @ false∗ @ I∗

)
c : ⊥∗ s(

(β4 f) @ I @ false∗ @ I∗
)
c : test ((rqa)q) a 0 .= 1 7→ ⊥∗ s

Second case: mem a ((rqa)q) = 0[Eq.] test (qaq) a 1 = 0 && test (qaq) a 0 = 0 ≈ mem a p = 0
See above to get SS : ⊥
SS : ⊥∗ s

SS : test (qaq) a 0 .= 0 7→ test (qaq) a 1 .= 0 7→ ⊥∗ s
if test c1 x̂a false then

(
(β4 f) @ I @ false∗ @ I∗

)
c else

SS : test (qaq) a 1 .= 0 7→ ⊥∗ s
if test c1 x̂a true then

(
(β4 f) @ I @ true∗ @ I∗

)
c else

if test c1 x̂a false then
(
(β4 f) @ I @ false∗ @ I∗

)
c else

SS : ⊥∗ s
let (c1, c2) = α1 c in
if test c1 x̂a true then

(
(β4 f) @ I @ true∗ @ I∗

)
c else

if test c1 x̂a false then
(
(β4 f) @ I @ false∗ @ I∗

)
c else

SS : ⊥∗ s
λ∗xa. λ

∗f. λc. let (c1, c2) = α1 c in
if test c1 x̂a true then

(
(β4 f) @ I @ true∗ @ I∗

)
c else

if test c1 x̂a false then
(
(β4 f) @ I @ false∗ @ I∗

)
c else

SS : r F ∀a ∈ Atom. (∀pb. p ∈ G⇒ b ∈ B⇒ test p a b = 1⇒ ⊥)⇒ ⊥
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