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5G	Requirements
A	Bird’s-Eye	View

Relative	to	the	contemporary	cellular	deployments:
• Uniform	QoE data	rate:	 10x, 100Mbps
• Peak data	rates	(low	mobility/hot-spots):	 20x,	10-20Gbps
• End-to-end	latency:	 <	5ms
• Over-the-air	latency:	 <	1ms
• Spectral	efficiency:	 3x
• Data	traffic	with	same	energy:	 100x
• Mobility:	 500km/h
• Number	of	simultaneous	connections:	 10x,	106/km2

• Cellular	IoT:	power/cost	efficiency,	larger	indoor	coverage	and	reduced	complexity

Area	and	Energy	Efficiency	Targets
• Area	efficiency	(estimates)	to	achieve		20Gbps data	rate:

• 2Gbps/mm2 at	the	UE
• 10mm2 is	typical	assumption	in	3GPP	LTE	Turbo	code	implementation	efforts

• Energy	efficiency	to	“fit	on	a	smartphone”:
• 50pJ/information	bit	(assumes	1W available	for	decoding)

Samsung		5G	Vision,	2015:	http://www.samsung.com/global/business-images/insights/2015/Samsung-5G-Vision-0.pdf



Impact	of	the	5G	Use	Cases	on	Coding
• enhanced	Mobile	Broadband	(eMBB)

• UHD	video	streaming,	information	showers/hotspots
• high	throughput
• medium-long	packet	lengths
• low	latency	(<5ms:	end-to-end,	<1ms:	over-the-air)
• wide	range	of	operating	points,	wide	range	of	modulation	&	coding	support	

• ultra	Reliable	Low-Latency	(uRLL)
• remote	access/robotics,	virtual	reality,		cloud	computing,	vehicular	communication
• small-medium	throughput
• lower	code	rate	operation
• extremely	low	error	floors
• almost-wireline	latency,	low	encoding/decoding	latency	(small-medium	packet	lengths)

• massive	Machine	Type	Communication	(mMTC)
• smart	-home,	-office,	-store,	wearable	technology
• small	throughput
• long-term	stand-alone	operation	after	deployment,	low	energy	budget	i.e.	high	energy	efficiency
• low	device	cost	for	large	scale	deployment	i.e.	high	area	efficiency	via	simple	implementations
• good	error	performance	at	low	throughputs	(machines	deployed	in	extremely	poor	channel	conditions)
• short	packet	lengths



State	of	Standardization	– 3GPP	RAN1
Current agreement:

Flexible LDPC as the single channel coding scheme for:
• UL eMBB data channels: large block sizes (k > 1024b)
• UL eMBB data channels: small block sizes (128b ≤ k ≤ 1024b) *
• DL eMBB data channels: all block sizes

Polar Coding
• UL control information for eMBB**
• DL control information for eMBB**

Future Discussion:

• uRLL and mMTC: LDPC/Polar/Convolutional/Turbo

* To be confirmed unless significant issues are identified by the RAN1 Jan adhoc in relation to performance, latency, power consumption and
implementation complexity.
** Except FFS for very small block lengths (k < 128b) where repetition/block coding may be preferred

Ref:	Final	Report	of	3GPP	TSG	RAN	WG1	#86	v1.0.0,		Gothenburg,	Sweden,	22nd	– 26th	August	2016



On	Considerations	for	FEC	Selection
Part-1

• Implementation complexity vs theoretical complexity

• Efficiency: Area (Gbps/mm2) and Energy (pJ/b) must be based on actual implementations, not theoretical
analysis.

• Computational complexity is inadequate. structured vs random LDPC have similar computational
complexity significantly different implementation complexity.

• Flexible Implementations

• tradeoff: complexity and flexibility
• complexity of the entire coding chain: e.g. code block segmentation, rate matching, HARQ, soft buffer etc.

is affected
• RC designs imply a single coding chain:

• hardware reuse for various block lengths/rates
• crucial for efficient HARQ implementations

• switching-based designs imply multiple coding chains:
• multi-mode decoders cannot reuse hardware, hence area-inefficient
• a benefit: optimized design for a subset of block lengths/rates



On	Considerations	for	FEC	Selection
Part-2

• Latency oriented implementation complexity and performance (concern for uRLL & control channels)

• latency of both types to be accounted for: processing (implementation) & structural (code design)

• e.g. latency analysis based on implementation can be used to optimize decoding parameters such as
number of iterations for iterative decoding.

• Standard/IP Experience and Future-proofing

• Commercially proven designs and architectures. For example:
• Turbo: 3GPP LTE, WCDMA, DVB
• LDPC: IEEE 802.11n, IEEE 802.16, DVB

• Codes with tried and tested implementations hold the promise of future modification for the large
umbrella of 5G requirements.



On	Considerations	for	FEC	Selection
Part-3

• Channel
• Fading	&	path	blockages
• Code	design	must	exploit	
diversity	in	time	and	space

HARQ	
Challenges

• Frame	Structure	&	TTI
• Flexible	UL/DL	switch	
periodicity

• Fast	reporting	of	ACK/NAK

• Rate	Compatibility	and	Support
• Implementation	complexity	vs	
flexibility	tradeoff

• Device	Capability
• LLR	buffer	capacity
• Decoding	error	performance	
at	given	complexity

• uRLL
• Any	saving	in	latency	is	
significant

• mMTC
• Small	packet	HARQ	process
• Decoding:	low	complexity	to	
begin	with	

• High	reliability	for	inopportune	
placement	(e.g.	machine	situated	
underground)



HARQ	Latency	Reduction
Coding	for	Diversity
Need for HARQ
• fragile channels

• cell edge delivery
• dependence on directional links
• path blockages (small cells, dense urban): beam repair
is time expensive esp. for uRLL

• unknown channels
• estimation based on small-scale parameters can be
prohibitively expensive at these bandwidths esp. for
mMTC

Proposed Direction
• Exploit diversity owing to

• coherence time reduction
• migration to higher frequencies
• environment object density

• trading bandwidth for latency/reliability
• transmission over different bands (licensed and
unlicensed)

• antenna count
• spatially diverse beams to combat path blockages

Fig. Downlink communication between a BS-UE pair in a
dense urban environment. Dashed lines are non-specular
paths, one of the paths is blocked by a vehicle.



HARQ	Latency	Reduction
Coding	for	Diversity

• Techniques to minimize/eliminate feedback to improve latency

• multiple RVs available at the receiver at the same time
• perform pre-decoding tests on RVs
• for reliability-critical use cases such as uRLLC, (Chase/IR) combine best RVs to maximize gain
• for energy-critical use cases such as mMTC, select best RV to effectively operate at high code
rate to maximize energy saving

• Improving efficiency of HARQ based on rateless codes by utilizing coding and diversity gains


