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With the exponential rise of the transistor count in one chip, the thermal problem has become a pressing

issue in computing system design. While there have been extensive methods and techniques published for

design optimization with thermal awareness, there is a need for more rigorous and formal thermal analysis

in designing real-time systems and applications that demand a strong exception guarantee. In this paper,

we analytically prove a series of fundamental properties and principles concerning RC thermal model, peak

temperature identification and peak temperature reduction for periodic real-time systems, which are general

enough to be applied on 2D and 3D multi-core platforms. These findings enhance the worst-case temperature

predictability in runtime scenarios, help to develop more effective thermal management policy, which is key

to thermal-constrained periodic real-time system design.
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1 INTRODUCTION
The advancement of IC technology has changed human life and society profoundly, largely due to

the tremendous progress of computing systems ranging from large-scale data centers to daily used

mobile devices. However, the semiconductor industry development is now reaching a saturation

point of Moore’s Law due to high power consumption and heat dissipation, among other factors.
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The soaring power and accompanied thermal crisis negatively impacts the system computational

performance, reliability, shortens devices lifespan or even damages the processor permanently.

Temperature has become one of the primary concerns in modern microprocessor design and the

thermal environment is becoming even worse in many-core and 3D architectures.

While it is a common practice to limit the power consumption – using so-called thermal design
power (TDP) – to ensure that thermal issues are under control, the challenges of temperature

management on 2D or 3D multi-core platform come from not only the high power dissipation, but

also the uneven heat dissipation temporally and spatially. For example, on an Intel Xeon E5-2699

v3 CPU [5], the intra-die temperature difference can be up to 10
◦
C and 24

◦
C under balanced and

unbalanced workload scenarios, respectively. In addition, thermal nodes with longer heat removal

paths in 3D architecture exacerbate the thermal gradient. Therefore, conventional power budgeting

on multi-core platforms become insufficient in thermal guarantee [39].

To reduce the chip temperature, mechanical cooling solutions, e.g. thermal-aware floor-planning,

heat removal fan and micro-channel liquid cooling, fall short to many computing systems, es-

pecially the mobile ones. Alternatively, dynamic thermal management (DTM) is widely accepted

as an effective solution both in design and runtime to smooth the thermal gradient by dynamic
voltage frequency scaling (DVFS), or to shut down the unused cores by dynamic power manage-
ment (DPM) [48].

Many DTM strategies are proposed, such as thermal-balancing [34], “hot-and-cold” job swap-

ping [41], allocating hot tasks to cores closer to the heat sink [29], etc. These heuristic approaches

developed cannot guarantee the temperature constraint in computing system design. There are

also other approaches that resort to traditional control and optimization methods, such as feedback

control [4, 19], machine learning [12, 15], mathematical programming [23, 54]. While some of these

approaches, e.g. the runtime learning approach in [15], can guarantee the temperature constraints,

it could be extremely challenging when employing the above approach to ensure both the timing

and peak temperature constraints for real-time systems with complicated scheduling policies.

To facilitate more rigorous analytical thermal analyses, which we believe is indispensable for

system level thermal-aware real-time system design, we intend to develop general and provable

principles and fundamentals on characteristics of heat dissipation for ease of formal verification

and analysis. The contribution of this paper includes:

• First, we introduce a series of provable lemmas and theorems, which unveil some interesting

characteristics of the complex RC-thermal model and facilitate more formal analytical thermal-

aware analyses and design on multi-core platforms;

• Second, peak temperature plays a critical role in the thermal-aware periodic real-time system

design, but identifying the peak temperature on multi-core platforms is non-trivial. In this

paper, we propose to employ the so-called “step-up execution trace” to quickly and effectively

bound the peak temperature for periodic real-time systems, i.e. the commonly used real-time

system model, and formally prove its validity. Our proposed method can be broadly adopted

in real-time systems design when developing both online and offline thermal management

policies;

• Third, it is known that on a single-core platform, splitting the taskswith different power/thermal

characteristics into multiple sections and executing them interchangeably, namely frequency
oscillating, can reduce the peak temperature [25]. However, we find that applying such a

mechanism on one core or on a part of the chip cannot always reduce the peak temperature

on multi-core platforms. Instead, we develop the multi-core “m-Oscillating” method and

formally prove that it can reduce the overall peak temperature. Moreover, we also prove
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that the “m-Oscillating” can enhance the system’s real-time service throughput under peak

temperature constraints in the real-time domain.

These conclusions can be applied to both online and offline design stages and address the urgent

demands of runtime performance/thermal guarantees in the real-time system design. They are also

general enough to be applied on 2D, 3D multi-core platforms and other linear-time-invariant (LTI)

systems that may be of interest from a temperature-aware standpoint.

2 RELATEDWORKS
There have been extensive research efforts for thermal related optimizations onmulti-core platforms,

including throughput maximization (e.g. [13, 35, 45, 54]), power/energy reduction (e.g. [37, 42, 56]),

peak temperature reduction (e.g. [8, 14, 57]) and reliability enhancement (e.g. [52]), etc. Essentially,

these works aim at optimizing the resource usage in design of high performance, low power/energy

and highly reliable computing systems with chip temperature either as an optimization goal or a

design constraint. Based on different methodologies, the existing work can be largely classified

into the following three categories.

First, many heuristic methods rely on extensive testing and hand-tuning. For example, several

solutions have been proposed for the peak temperature minimization problem, including interleav-

ing the hot/cool tasks in 3D platforms temporally and spatially [29], assigning slacks to split hot

tasks [57] and associating active cooling with task assignment [5]. However, in these approaches,

to determine the accurate and strongly justifiable metrics to classify hot/cool tasks/cores can be

difficult. In addition, without capturing solid analytical correlations, it can be challenging to make

other design tradeoffs in the meantime, such as task migration overhead vs. scheduling interval
length. Although these heuristic/intuition methods may work in some application scenarios, it

becomes extremely difficult, if not impossible at all, to guarantee the system performance and

design constraints such as timing and peak temperature.

Second, some other approaches resort to traditional control techniques [4, 19] or optimization

methods, such as machine learning [15], mathematical programming or meta-heuristic searching

methods [55], to deal with thermal issues. For example, using feedback control techniques on

multi-core platforms, Bartolini et al. [4] proposed a feedback control framework to enforce thermal

control, energy minimization and thermal model self-calibration. Hanumaiah et al. [19] developed a

closed-loop controller to predict the desired voltage/frequency settings to achieve maximum energy

efficiency without violating the thermal limitations. Xie et al. [55] developed a look-up table based

DTM method on a thermal coupled processor/battery model to achieve the maximal throughput.

These approaches help to uncover the rationales in temperature management. However, it is still

difficult to strongly guarantee the temperature constraints due to the inaccurate sensor-based

temperature reading and control.

Themathematical programmingmethods are also employed to optimize resource allocation under

temperature and other design constraints. For example, the throughput maximization problem on

a temperature-constrained multi-core platform has been studied by the linear programming (LP)

approach in [54], and by a convex optimization method in [35]. However, [35] ignores the lateral

heat transfer among different cores. Other approaches, such as mixed-integer linear programming

(MILP), have been used to minimize the peak temperature in [8], or reduce the peak temperature

and energy contemporarily for video streaming in [49]. A genetic programming approach has

been proposed to minimize the energy consumption for periodic tasks under a peak temperature

constraint in [42]. A meta-heuristic approach has been proposed to boost system performance in a

small interval by supplying additional power to the system without exceeding the temperature

and power supply limit in [13]. These mathematical programming-based approaches can provide
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a solution, but it cannot qualitatively express the impacts between different variables and the

optimization goals. In addition, the computational costs of many mathematical programming-based

solutions, e.g. [8, 49, 54], increase too fast and can be prohibitive as the system scale becomes larger

in future many-core processors.

The third type of approaches (e.g. [2, 14, 39, 45, 55]) intend to ensure a strong guarantee to

thermal constraints based on formal and analytical thermal analysis, to uncover underlying corre-

lations among different design parameters quantitatively and not qualitatively. This is particularly

useful in the design of real-time systems, where predictability is critical and complicated resource

management policies (such as priority, preemption, resource sharing, etc) cannot be easily formu-

lated in mathematical programming. For example, a thermal-aware global scheduling algorithm for

sporadic task sets has been proposed in [14]; the energy optimization under a given temperature

constraint has been solved by a convex method in [22] and by a variable-sized bin packing approach

in [44]; the throughput maximization problem has been studied in [21, 23]; the reliability has

been enhanced in [20]. However, since [14, 20–23] incorrectly assume the peak temperature only

occurred at a scheduling point and [20, 21, 23] ignore the lateral heat transfer among different

cores, the inaccurate peak temperature prediction may trigger the DTM or even shut down the

processors, which may lead to a real-time violation. To achieve higher computational capacity, the

thermal safe power (TSP) has been proposed in [39], which achieves a higher power budget than

the traditional thermal design power (TDP). Sha et al. [45] present a frequency oscillating method

to maximize the throughput with a guaranteed peak temperature on a multi-core platform. Assisted

with rigorous mathematical analysis, these approaches help to uncover fundamental principles

for more efficient and effective thermal-aware design, which would be otherwise unavailable.

Moreover, the formal analytical analyses do not suffer from prohibitive computational cost in many

mathematical programming approaches.

In this paper, based on the traditional RC-thermal model for multi-core platforms, we present a

series of analyses on thermal models, peak temperature identification and reduction, which we

believe can greatly enhance the formal analytical research on thermal-constrained design problem

on multi-core platforms. The rest of this paper is organized as follows. Section III introduces

the multi-core system and thermal models. Section IV studies the general principle of the RC-

thermal model. Peak temperature bound and minimization is discussed in Section V and Section VI,

respectively. Section VII shows the experiment results and is followed by a conclusion in Section VIII.

3 PRELIMINARIES
We present the models for our multi-core systems. The bold characters represent the vectors
and matrices and non-bold characters are used for ordinary variables and coefficients. All the

matrices/vectors/values are in the real number domain. The notations in Table 1 are used in the

paper.

3.1 System Model
We consider a multi-core platform. Each processing core is DVFS-independent. Each core has

different running modes and each running mode is characterized by a pair of parameters (𝑣, 𝑓 ),
where 𝑣 is the supply voltage and 𝑓 is the working frequency (𝑣 ∝ 𝑓 ). For an idle core, we assume

𝑣 = 𝑓 = 0 and for an inactive node ( such as heat sink/spreader), we assume there is no power

consumption. In this paper, for ease of presentation, we use supply voltage 𝑣 to denote the processing

speed (amount of work performed within a unit time) when there is no confusion.

As different cores may execute in different runningmodes at different times, a multi-core platform

can be regarded as running on a sequence of scheduling intervals, in each of which each core runs

only in a unique mode. We call such an interval, e.g. [𝑡𝑞−1, 𝑡𝑞], as a state interval.
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Table 1. Summary of Notations

Symbol Meaning
𝑁 Total number of thermal nodes;

S(𝑡) A periodic multi-core schedule;

I𝑞 The 𝑞𝑡ℎ state interval in S(𝑡) with time interval [𝑡𝑞−1, 𝑡𝑞];
𝑙𝑞 The interval length of I𝑞 , i.e. 𝑙𝑞 = 𝑡𝑞 − 𝑡𝑞−1;
v𝑞 The supply voltage of the 𝑞𝑡ℎ state interval;

T0 The starting temperatures;

T𝑠𝑠 (𝑡) The stable status temperatures at time 𝑡 ;

T𝑝𝑒𝑎𝑘 (S(𝑡)) The peak temperatures of running S(𝑡);
T∞
𝑞 The constant temperature when running processor using supply voltage v𝑞

long enough to enter the stable state;

1𝑁×1 An (𝑁 × 1) matrix with all elements being 1;

0𝑁×1 An (𝑁 × 1) matrix with all elements being 0;

𝑚𝑎𝑥 (X) Find the maximum scalar value from matrix/vector X;

Given two matrices X and Y with the same dimensions (e.g. 𝑁1 × 𝑁2 ), operators > , < , ≥
and ≤ are defined as element-wise scalar comparisons. For example, X ≤ Y means that

𝑋𝑖, 𝑗 ≤ 𝑌𝑖, 𝑗 , ∀𝑖 ∈ [1, 𝑁1] and ∀𝑗 ∈ [1, 𝑁2].

3.2 Thermal Model
The thermal model, similar to that in [18, 44, 45, 53], is built upon the duality between heat transfer

and electrical phenomena as an RC-lumped circuit, which is general enough to be used to model

any multi-core platforms with multiple processing units of different characteristics of power

consumption and heat dissipation. Specifically, the RC-model consists of a network of 𝑁 active and

inactive thermal nodes, with active nodes consuming power and generating heat (e.g. execution

cores, memories, etc.) and inactive nodes having no power/heat dissipation (e.g. heat sink, etc.).

Please note that active nodes in the RC model are not limited to CPUs alone. Cache units, TSVs and

other components in a 2D or 3D architecture can be well modeled as active nodes in the RC-model

when they consume a significant amount of power and generate a noticeable amount of heat. The

thermal behavior of a multi-core platform within a state interval can be formulated as

𝑑T(𝑡)
𝑑𝑡

= AT(𝑡) + B(v), (1)

where T(𝑡) vector represents node temperatures at time 𝑡 . Coefficient matrix A = [𝐴𝑖, 𝑗 ]𝑁×𝑁
is an architectural-related constant, thus the system is time invariant. A depends only on the

thermal capacitance matrix C = 𝑑𝑖𝑎𝑔{𝐶1, · · · ,𝐶𝑁 } and thermal resistance matrix G = [𝐺𝑖, 𝑗 ]𝑁×𝑁 as

A = −C−1G, where 𝐶𝑖 is the thermal capacitance of the 𝑖-th thermal node, 𝐶𝑖 > 0 and

𝐺𝑖, 𝑗 =

{∑
\≠𝑖

1

𝑅𝑖,\
, if 𝑖 = 𝑗,

− 1

𝑅𝑖,𝑗
, otherwise,

(2)

in which 𝑅𝑖,𝑖 (or 𝑅𝑖, 𝑗 ) denotes the thermal resistance of the 𝑖-th thermal node to itself (or the 𝑗-th

thermal node). More details on the thermal model can be found in [18].

Existing studies show that matrix G has the following properties:
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Property 1. Matrix G has the following properties:
(1) G is a quasi-positive matrix with all of its entries being non-negative except for those on the

main diagonal [18];
(2) G is strictly diagonally dominant, real symmetric and nonsingular (Lemma 1 in [53]);

Both C and G are 𝑁 × 𝑁 square matrices. Since C only contains non-zero elements on the

diagonal, it is invertible. Moreover, G is also invertible, because it is nonsingular. Then, since
A · A−1 = −C−1G · (−C−1G)−1 = C−1GG−1C = I, A is invertible. A is neither symmetric nor

diagonal dominant.

Coefficient vector B = [𝐵𝑖 ]𝑁×1, a power-related vector, depends on not only the thermal ca-

pacitances of the multi-core platform but also the running mode of each active thermal node. It

is reasonable to assume that ∀v1 ≥ v2 leads to B(v1) ≥ B(v2). The power-related vector B does

not make any assumption on power parameters, so it is general enough to adopt different power

models. In this paper, we take leakage-temperature dependency [18, 44] on the active processing

units into accounts in Section 7.

When running a multi-core processor under a constant supply voltage v long enough (i.e.

𝑡 → ∞), it will eventually reach a constant temperature T∞ (v) = −A−1B(v) as 𝑑T(∞)/𝑑𝑡 = 0. For
schedules that consist of multiple state intervals, the state intervals may not be long enough for

the temperature to be constant. As shown in [18], the transient temperature at time 𝑡 within a state

interval (e.g. the 𝑞-th interval [𝑡𝑞−1, 𝑡𝑞]) can be formulated as

T(𝑡) = 𝑒A(𝑡−𝑡𝑞−1)T(𝑡𝑞−1) + (I − 𝑒A(𝑡−𝑡𝑞−1) )T∞
𝑞 , (3)

where 𝑡𝑞−1 ≤ 𝑡 ≤ 𝑡𝑞 and T(𝑡𝑞−1) is the temperature vectors at the beginning of the 𝑞-th interval.

T∞
𝑞 is the constant temperature when running processor using supply voltage v𝑞 long enough to

enter the stable state and I is an identity matrix.

When repeating a periodic schedule with multiple state intervals long enough, the temperature

eventually enters the thermal stable status, in which the temperature trace exhibits a repeat pattern.

Specifically, for a periodic schedule S(𝑡) with 𝑧 state intervals and period 𝑡𝑝 , let 𝑡𝑞−1 and 𝑡𝑞 be the

starting time and ending time of the 𝑞-th state interval, respectively. The transient temperature in

the stable status can be formulated as [18]

T𝑠𝑠 (𝑡𝑞) = T(𝑡𝑞) + K𝑞 (I − K)−1 (T(𝑡𝑝 ) − T(0)), (4)

in which T(𝑡𝑞) and T𝑠𝑠 (𝑡𝑞) are the temperatures at time 𝑡𝑞 in the first period and that in the thermal
stable status, respectively. T(0) is the starting temperature for the first period and equals to T0.

The \ -th state interval size 𝑙\ = 𝑡\ − 𝑡\−1, K𝑞 = 𝑒A
∑𝑞

\=1
𝑙\
and K = 𝑒A

∑𝑧
\=1

𝑙\ = 𝑒A𝑡𝑝
. A more detailed

explanation of the notations and equations can be found in [18].

4 THE PROPERTIES OF THE THERMAL MODEL
In this section, we focus on some inherent properties related to the multi-core RC thermal model

itself. We believe that a better understanding of the thermal models helps to develop more effective

thermal management policies in computing systems design.

The thermal model in (1) is a linear time-invariant (LTI) system, which captures the thermal

dynamics by 𝑁 first-order differential equations involving 𝑁 state variables. The system matrix A
plays a vital role in determining temperature dynamics according to the transient power dissipation

in runtime. Note that A affects how current temperature influences the future temperature change

in 𝑑T(𝑡)/𝑑𝑡 [18] and A also affects the stable state temperature in T∞
. Moreover, the properties

of A determine the system stability [6], and its transformations, such as −A−1
, 𝑒A𝑙

or (I − 𝑒A𝑙 )−1,
etc, are closely related to other properties of a system. To better understand the properties related
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to matrix A, we present several important lemmas and theorems as follows. In this paper, all the

detailed proofs can be found in the Appendix, if otherwise specified.

Lemma 4.1. Matrix A has all negative real eigenvalues.

Lemma 4.2. Matrix A is diagonalizable.

Lemma 4.3. Matrix A is constant and all the entries of −A−1 = [A𝑖, 𝑗 ]𝑁×𝑁 are positive real numbers
and A𝑖, 𝑗 > 0.

In control theory, a system is asymptotically stable [7], if all the eigenvalues of the system matrix

are strictly negative real values. An asymptotically stable system is bounded-input, bounded-output

(BIBO) stable, which means that the output will be bounded for every input to the system that is

bounded. Therefore, from Lemma 4.1, there always exists a peak temperature for any schedule

executed on a given platform, with its power supply stay below the maximal threshold.

Since A is diagonalizable (Lemma 4.2) and all of its eigenvalues are negative (Lemma 4.1), we

can easily calculate its eigenvalues. Let −_𝑖 be the i-th eigenvalue of A and _𝑖 > 0, we have

A = WDW−1
, where D = 𝑑𝑖𝑎𝑔{−_1, · · · ,−_𝑁 } and W = [ ®𝑤1, · · · , ®𝑤𝑁 ]. ®𝑤𝑖 is the independent

eigenvectors associated with −_𝑖 . The matrix exponential of 𝑒A𝑙
can be diagonalized as

𝑒A𝑙 =

∞∑
ℎ=0

𝑙ℎ (WDW−1)ℎ
ℎ!

= W
( ∞∑
ℎ=0

𝑙ℎDℎ

ℎ!

)
W−1 = W𝑒D𝑙W−1, (5)

where 𝑒D𝑙 = 𝑑𝑖𝑎𝑔{𝑒−_1𝑙 , · · · , 𝑒−_𝑁 𝑙 } and 𝑒−_𝑖𝑙 is the 𝑖-th eigenvalue of 𝑒A𝑙
.

In addition, since none of the eigenvalue ofA equal to zero (Lemma 4.1), matrixA is invertible. The

negative inverted matrix −A−1
plays an important role in determining the stable state temperature

T∞ (v), which, in turn, impacts the thermal dynamics in (3). This attribute of −A−1
in Lemma 4.3

also enables the comparison of the stable state temperatures of different constant running modes.

In particular, since power consumption is proportional to the supply voltages of different running

modes, i.e. ∀v1 ≥ v2 leads to B(v1) ≥ B(v2), we can readily conclude that T∞ (v1) ≥ T∞ (v2) as
formulated in the following lemma.

Lemma 4.4. Given a multi-core platform running two constant modes long enough to enter the stable
state, if the supply voltages of the two running modes satisfy v1 ≥ v2, we have T∞ (v1) ≥ T∞ (v2).

Lemma 4.4 implies that when a multi-core platform executes multiple state intervals from the

same initial temperature, a higher speed results in higher transient temperature. We can also infer

that when a multi-core platform executes two (series of) state intervals of the same (series of) modes,

the one starting with higher initial temperature results in higher transient temperature. While

these observations are intuitive and straightforward, they serve as the foundation for comparing

the temperature in more complex schedules.

In thermal analyses, capturing the thermal dynamics is key to guarantee the maximal temperature

constraint. To this end, matrix K in (4) is used to determine the temperature dynamics in the first

period and the stable status as shown in [18]. Specifically, for matrix K, we have the following
lemma and theorem.

Lemma 4.5. All the elements in the matrix (I − K)−1 are positive and each entry monotonically
decreases with 𝑙 , where K = 𝑒A𝑙 , 𝑙 > 0.

Theorem 4.6. Let 𝑙 > 0 and 0 ≤ T ≤ (T∞ (vmax) − T∞ (vmin)), then (I − K)T ≥ 0, where K = 𝑒A𝑙 ,
vmax = [𝑣𝑚𝑎𝑥,𝑖 ]𝑁×1 and vmin = [𝑣𝑚𝑖𝑛,𝑖 ]𝑁×1. 𝑣𝑚𝑎𝑥,𝑖 and 𝑣𝑚𝑖𝑛,𝑖 denote the maximum and minimum
available supply voltage on the 𝑖-th node, respectively.
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According to Theorem 4.6, as long as the temperatures of all thermal nodes (i.e. T) stay within the

feasible range for the given supply voltages (not by external factors), we always have (I − K)T > 0
for any arbitrary T.
For a multi-core system initially starting from the ambient temperature, its peak temperature

occurs when the temperature reaches a stable status [18]. However, with the help of Lemma 4.5

and Theorem 4.6, we can compare the peak temperatures of periodic schedules based on the

temperatures in their first periods rather than their temperatures in the stable status. To put our

discussions into perspective, consider two periodic schedules S(𝑡) and S′(𝑡) with the same intervals

(totally 𝑧 intervals) and period lengths 𝑡𝑝 but different speeds, and let T(𝑡ℎ) (or T𝑠𝑠 (𝑡ℎ)) and T′(𝑡ℎ)
(or T′

𝑠𝑠 (𝑡ℎ)) represent the temperature at 𝑡ℎ in the first period (or in the stable status) of S(𝑡) and
S′(𝑡), respectively. We can compare their stable state temperature at 𝑡ℎ by (4) as

T𝑠𝑠 (𝑡ℎ) − T′
𝑠𝑠 (𝑡ℎ) = T(𝑡ℎ) − T′(𝑡ℎ) + Kℎ (I − K)−1 (T(𝑡𝑝 ) − T′(𝑡𝑝 )) . (6)

Since (I − K)−1 > 0 from Lemma 4.5 and Kℎ = 𝑒A
∑ℎ

\=1
𝑙\ > 0, we have T𝑠𝑠 (𝑡ℎ) ≥ T′

𝑠𝑠 (𝑡ℎ), if
T(𝑡ℎ) ≥ T′(𝑡ℎ) and T(𝑡𝑝 ) ≥ T′(𝑡𝑝 ). With the knowledge of these properties, we are ready to

introduce the peak temperature identification and bounding method.

Our thermal model is general enough to be widely adopted in solving a variety of 2D and

3D optimization problems. For example, under peak temperature constraints, 3D thermal-aware

task allocation strategies are proposed in [11] and 3D thermal-aware energy optimization with

memory-awarenesses are proposed in [31]. In these works, the thermal impact of the through-

silicon-vias (TSV) is treated as a homogeneous via distribution on the die, whose thermal resistivity

depends on TSV density [58]. Our thermal model has also been widely adopted in other thermal-

aware optimization problems including 3D floor-planning [24], TSV placement [1, 10], reliability

optimization [33], etc.. Note that the thermal model in this paper is valid for solving heat conduction

in solid materials, which cannot be applied on the liquid-cooling architectures [51], or phase-change

materials [16].

5 PEAK TEMPERATURE IDENTIFICATION AND BOUNDING
Peak temperature is one of the primary parameters for on-board thermal monitoring technologies.

For example, Intel Xeon Processor E5 v3 family, ranging from 4 to18-core used for embedded and

server domain, utilizes on-die Digital Thermal Sensors (DTS) to monitor the core’s temperature and

automatically trigger the DTM or even shut down the processors, when the runtime temperature

approaches the threshold. In the absence of an effective runtime peak temperature prediction and

bounding methodology, such a self-triggered thermal protection scheme may cause an unplanned

performance degradation at the risk of deadline violation for real-time tasks. The peak temperature

of a system is also closely related to other critical design metrics such as reliability [20].

On single-core platforms, it is easy to capture the peak temperature since it always occurs

at a scheduling point [9]. However, on multi-core platforms, identifying and bounding the peak

temperature becomes more complicated, because different components may follow different execu-

tion schedules and the power densities vary significantly in one chip, which may shift the peak

temperature away from a scheduling point.

There are a few approaches proposed to identify the peak temperature for a given schedule on

multi-core platforms. One approach is to search the peak temperature by splitting the execution

interval into smaller ones, and assuming each interval has the same power consumptions (e.g. [40,

47, 50]). This approach is computationally expensive and its accuracy heavily depends on the

checking granularity.

There are also some other approaches that intend to find the solution analytically. For example,

Pagani et al. [38] developed an analytical method to identify the transient peak temperature in a
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for bounding the runtime peak temperature.

(d) WCET-schedule temperature trace and𝑇𝑝𝑒𝑎𝑘 = 78.61◦C (e) Step-up schedule temperature trace and𝑇𝑝𝑒𝑎𝑘 = 81.42◦C

Fig. 1. A motivation example on a 16-core platform.

single short time by solving the differential equation array directly. This approach works for small

systems and schedules, e.g. with only a few thermal nodes in the system and a small number of

state intervals in the schedule. However, when increasing the system and schedule’s complexity,

the computational cost of [38] grows quickly. As shown in the experimental results in Section 7.3,

the computational cost of this approach (i.e. MatEx) increases rapidly with system complexity and

can quickly exceed the numerical methods. To safely bound the peak temperature, [43] proposes to

check all possible scenarios of task arrivals for the critical set of cumulative workload trace, but

its computational cost can be prohibitively high as evidenced in our experimental results for the

“WorstTpeak” method shown in Section 7.3.

To reduce the computational cost, some approximations are applied, e.g. without considering

the lateral heat transfer [35] or simply assuming thermal nodes can immediately reach the stable

state temperature [36, 57]. However, these approximations can lead to large error margins, which

either causes a thermal violation or wastes precious thermal resources.

For the rest of this section, we first use an example to motivate our approach of employing the

hypothetical “step-up execution trace” to bound the peak temperature. Then, we present several

lemmas and theorems to validate this approach.

5.1 The Motivation Example
In this section, we utilize a motivation example to show that a hypothetical step-up execution
trace can tightly bound the runtime temperature for any feasible execution trace based on a given

periodic schedule.
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Table 2. Motivation Example Speed Schedule

Consecutive execution modes and lengths on each tile

Tile 1 (0.65𝑉 , 0.315𝑠) (0.95𝑉 , 0.12𝑠) (1.25𝑉 , 0.09𝑠) (0.9𝑉 , 0.78𝑠) (0.75𝑉 , 0.195𝑠)
Tile 2 (1.05𝑉 , 0.12𝑠) (1.15𝑉 , 0.435𝑠) (0.85𝑉 , 0.33𝑠) (1.1𝑉 , 0.495𝑠) (0.75𝑉 , 0.12𝑠)
Tile 3 (1.1𝑉 , 0.255𝑠) (1.25𝑉 , 0.39𝑠) (0.95𝑉 , 0.405𝑠) (1.2𝑉 , 0.375𝑠) (0.8𝑉 , 0.075𝑠)
Tile 4 (1.05𝑉 , 0.225𝑠) (1.25𝑉 , 0.225𝑠) (0.95𝑉 , 0.15𝑠) (1.05𝑉 , 0.78𝑠) (1.1𝑉 , 0.12𝑠)
Note: Each interval is represented by a (supply voltage in 𝑉 , execution length in 𝑠𝑒𝑐) pair.

Consider a 4×4 multi-core platform with 4 tiles as shown in Figure 1(a), with all cores on one tile

sharing a common voltage supply and following a common periodic schedule. The hyper-period of

the schedule is 1.5𝑠 and there are 5 different running modes on each tile, which leads to 17 state

intervals globally in one period as shown in Figure 1(b). The detailed state interval lengths and

the execution mode for each state-interval in Figure 1(b) can be found in Table 2. We start the

simulation from the ambient temperature 35
◦
C, and run long enough to enter their thermal stable

status. More detailed runtime power and thermal parameters can be seen in Section 7.

To identify the peak temperature, a common way is to build a temperature trace numerically for

the WCET-schedule by checking the temperature of each small interval. The problem is that its

computational time scales linearly with the period length and numerical checking granularity.

Figure 1(d) shows the temperature trace on a 16-core platform with a period of 1.5𝑠 and a 1𝑚𝑠

checking granularity with a computational cost of 0.42𝑠 . Instead, we can adopt the approach in [38]

to identify the peak temperature by solving the first-order differential equation via 10𝐾 Newton-

Raphson method iterations, and this method takes 52.70𝑠 for this test case. Moreover, the worst-case

temperature guarantee method in [43] needs to greedily search all the possibilities in terms of task

arrival, etc. The computational time is longer than 1 hour for this test case.

For a quick response time, some works (e.g. [36, 57]) use the highest stable-state temperature

in each state interval to approximate the interval-wise peak temperature, and the overall peak

temperature of running a periodic schedule is selected from the highest interval-wise stable-state

temperatures, as𝑇𝑝𝑒𝑎𝑘 (S(𝑡)) =𝑚𝑎𝑥 (T∞
𝑞 ), where 𝑞 = 1, · · · , 𝑧. This method simply assumes thermal

nodes can immediately reach the stable state temperature. However, this method either cannot

sufficiently bound the runtime peak temperature [38] or too pessimistic for a periodic schedule.

For example, for the schedule shown in Figure 1(b), the overall highest stable-state temperature

is 88.82◦C, which is 10.21◦C higher than the peak point of the numerical temperature trance in

Figure 1(d). The reason is that in practical scenarios the temperature dynamic for in each state-

interval of any schedule could not reach its state-state temperature immediately due to thermal

capacitance. So, the estimation using the stable-state temperature can be very pessimistic. On the

other hand, such simplification may not be able to bound the peak temperature on a multi-core

platform [38]. The reason could be due to the multi-core heat transfer and the thermal delay effect,

so the highest temperature may not always in sync with the highest power dissipation.

To find a quick and effective temperature bound, we reorder the WCET intervals in Figure 1(b)

following a non-decreasing order (step-up) of its voltage levels to build a hypothetical execution

trace in Figure 1(c). Its peak temperature is 81.42◦C in Figure 1(e). This approach can safely bound

the highest temperature of Figure 1(d) by a 2.81◦C error margin with a computational cost of no

more than 30𝑚𝑠 . Note that due to the real-time constraint, the task execution still follows the

schedule in Figure 1(b). The hypothetical “step-up execution trace” in Figure 1(c) is for bounding

the runtime peak temperature.
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This motivation example shows that a hypothetical “step-up execution trace” can quickly and

effectively bound the highest runtime temperature for a given periodic schedule. This is because

the peak temperature depends more on power density rather than the overall energy consumption

(i.e. the integration of overall power consumption).

5.2 Bounding the Peak Temperature
Identifying and bounding a multi-core peak temperature is challenging in nature because different

cores usually execute different speed schedules/power densities at different time instants. With

the advancement of real-time scheduling techniques and the system scaling, the intricate power

density on multi-core platforms usually shifts the peak temperature away from a scheduling

point [18, 38, 47]. So it is difficult to predict where and when could the peak temperature occur.

To this end, in this section, we propose and formally prove that a hypothetical “step-up execution

trace” can effectively bound the highest runtime temperature for a given periodic schedule.

First, to bound the peak temperature for running a periodic schedule, we prove that the starting

temperature of a multi-core schedule does not influence its stable status temperature.

Theorem 5.1. Let S(𝑡) = {I𝑞 : 𝑞 = 1 · · · 𝑧} be a periodic multi-core schedule. Then, the stable-state
temperature T𝑠𝑠 (𝑡) achieved by running S(𝑡) is independent of the initial temperature T0.

Theorem 5.1 shows that when identifying the peak temperature in the stable status, we can

assume T0 = 0 to ease the presentation in this paper, if otherwise specified. In addition, since

the peak temperature occurs in thermal steady status, when all the cores start from the ambient

temperature [18], we can infer that the peak temperature of a periodic schedule must occur within

one period in the thermal stable status, if the peak temperature does not occur at the starting time

as𝑚𝑎𝑥 (T0). Then, we formally define the “step-up execution trace” for peak temperature bounding

purposes as follows.

Definition 5.2. Let S𝑢 (𝑡) be a periodic schedule and contain 𝑧 state intervals in a period, with v𝑞
being the voltage vector for the 𝑞𝑡ℎ state interval. Then, S𝑢 (𝑡) is called a step-up execution trace
if v𝑞 ≤ v𝑞+1, ∀𝑞 ∈ {1, · · · , 𝑧 − 1}.

According to Definition 5.2, the voltage for each core is monotonically non-decreasing from the

first to the last state interval. The rationale of the “step-up execution trace” is that it aggregates a

higher power dissipation toward the end of the period to achieve the highest instantaneous heat

dissipation, which can simplify the peak temperature identification as follows.

Theorem 5.3. The peak temperature when repeating a step-up execution trace S𝑢 (𝑡) periodically
from the ambient temperature occurs at the end of the period in the stable status.

Theorem 5.3 greatly simplifies the peak temperature prediction comparing to existing methods

(e.g. [18, 38, 43]). Based on (3) and (4), we can quickly identify the peak temperature of S𝑢 (𝑡) with
linear complexity.

Theorem 5.4. Given a periodic schedule S(𝑡), the corresponding step-up execution trace S𝑢 (𝑡)
bounds the peak temperature of S(𝑡).

This theorem can be interpreted based on the facts that the multi-core thermal model presented

in (1) is a linear time-invariant system [2, 43], which follows the superposition principle: (i) The

thermal impact at one time instant is the sum of the thermal impact by each core; (ii) The thermal

impact of each core is the sum of the impact by each state interval in the schedule. So, without

changing other factors, as a high-speed interval moves toward the end of a periodic schedule, the

temperature at the end of the schedule tends to increase.
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Based on Theorem 5.3 and 5.4, given a periodic schedule S(𝑡) and its corresponding step-up

execution trace S𝑢 (𝑡), as long as all tasks’ deadlines can be guaranteed by S(𝑡) and the peak

temperature constraints can be guaranteed by S𝑢 (𝑡), then both the timing and peak temperature

constraints are guaranteed if S(𝑡) is executed periodically.

6 PEAK TEMPERATURE MINIMIZATION
Peak temperature minimization is one of the primary design objectives in the IC industry. Nowadays,

the escalating software complexity can easily make heat generation exceed the capability of thermal

dissipation systems, which are often designed with narrow or even negative margins for cost reason.

In section 5, it has been proved that the runtime peak temperature can be effectively bounded

by using a hypothetical step-up execution trace. In this section, we discuss how to employ the m-
Oscillating methods [45] to reduce the peak temperature bound and improve the real-time service

output on a multi-core platform.

The m-Oscillating scheduling method, as introduced in [25] for a single-processor platform,

frequently changes processor running modes between high and low voltage settings, while keeping

the same workload within the same period to reduce the peak temperature. In what follows, we

show that simply applying the m-Oscillating scheduling method for an individual core or part of

cores on a multicore platform cannot always reduce the peak temperature.

We set up a 3-core platform with similar settings as shown in Section 7 and capture the thermal

dynamics in the stable status. In Fig. 2(a), the period is 2.4𝑠 . Each core runs at equal times in two

processing modes, with high-voltage 𝑣𝐻 = 1.3𝑉 and low-voltage 𝑣𝐿 = 0.6𝑉 . Fig. 2(c) shows the

stable status temperature trace within one period, with a peak temperature of 70.83◦C. Next, we let
core 2 double its oscillating frequency and core 1 and core 3 keep the same schedule, as shown

in Fig. 2(b). In the stable status, as shown in Fig. 2(d), the peak temperature becomes 79.86◦C,
which is higher than in Fig. 2(c). This example clearly shows that the frequency oscillation scheme

performed only on one core does not necessarily reduce the peak temperature in a multi-core

platform. In regard to this, we formally define the m-Oscillating schedule for a multi-core platform
as follows.

Definition 6.1. Let S(𝑡) be a periodic schedule on a multi-core processor. The correspondingm-
oscillating schedule, denoted as S(𝑚, 𝑡), is the one that scales down the length of each state

interval in S(𝑡) by𝑚 times without changing its voltage levels.

Figure 3 shows that S(𝑚, 𝑡) is derived from S(𝑡) by scaling down each interval length by 𝑚

times without changing the running modes. Essentially, m-Oscillating is a reverse utilization of

Theorem 5.3 and 5.4 by temporally even out the workload for mitigating the power/heat aggregation

and minimizing the peak temperature.

We conduct an empirical study of the m-Oscillating approach on a 3-core platform of a 3×1 topol-
ogy, with applications chosen from MiBench benchmark [17]. The power and thermal dynamics are

abstracted from Mcpat [28] and HotSpot simulator [50], respectively. The workloads of cjpeg, djpeg
and h263 are partitioned in the order of core 1 to core 3. Let the processor run a two-speed step-up

execution trace with period 𝑡𝑝 = 0.6𝑠 , starting from ambient temperature 𝑇𝑎𝑚𝑏 = 35
◦
C. On each

core, the high and low-frequency modes are set to 3 and 1.8 GHz and execute 0.3𝑠 for each mode

within one period, respectively. In Fig. 4, by applying m-Oscillating approach, the peak temperature

reduces from 72.73 ◦
C when𝑚 = 1 to 63.74 ◦

C when𝑚 = 3, when completing the same amount of

workload. We formally formulate the conclusion in the following theorem.

Theorem 6.2. Let S𝑢 (𝑡) = {I𝑞 : 𝑞 = 1 · · · 𝑧} be a periodic step-up execution trace of any periodic
schedule on a multi-core processor. Then, 𝑇𝑝𝑒𝑎𝑘 (S𝑢 (𝑚1, 𝑡)) ≥ 𝑇𝑝𝑒𝑎𝑘 (S𝑢 (𝑚2, 𝑡)), if 1 ≤ 𝑚1 ≤ 𝑚2.
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Fig. 2. (a) Core 1 and core 3 run at 1.3𝑉 within [0, 1.2]𝑠 and 0.6𝑉 within [1.2, 2.4]𝑠 ; Core 2 runs at 0.6𝑉 within
[0, 1.2]𝑠 and 1.3𝑉 within [1.2, 2.4]𝑠 . (b) Core 2 doubles its oscillating frequency from the schedule in Fig.2(a).
(c) The stable status temperature trace for the schedule in Fig. 2(a). (d) The stable status temperature trace
for the schedule in Fig. 2(b).
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Fig. 4. Peak temperature reduction by m-Oscillating approach.
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service bound of S(𝑚2, 𝑡) than S(𝑚1, 𝑡), if𝑚2 ≥ 𝑚1 ≥ 1.

Theorem 6.2 indicates that when DVFS transition overhead is small enough to be negligible, the

peak temperature monotonically decreases with the increase of𝑚. In practical scenarios, when

considering the DVFS overhead, an appropriate value of 𝑚 needs to be judiciously selected as

a function of the transition overhead as Algorithm 2 in [45]. Moreover, m-Oscillating also helps

to improve the system’s real-time service throughput under a peak temperature constraint, i.e.

requests that can be completed without violating their timing and thermal constraints.

Consider a temperature-constrained real-time system with irregularly arrived events, to enhance

the guaranteed real-time service and feasibility, we apply the m-Oscillating method to build a

periodic server, which can fully utilize the thermal resources. Meanwhile, its low-bound of the

system service throughput can be guaranteed by the bounded-delay function [26]. The rationale

is that for completing the same amount of workload, m-Oscillating method results in a peak

temperature no higher than the original schedule. Meanwhile, the bounded-delay [26] becomes

smaller when increasing the oscillating frequency as formulated in the following theorem.

Theorem 6.3. Let S𝑢 (𝑡) be a periodic step-up execution trace on a multi-core platform under a
peak temperature constraint 𝑇𝑚𝑎𝑥 . Using the m-Oscillating approach, S𝑢 (𝑚2, 𝑡) is able to output a
service bound that is no lower than S𝑢 (𝑚1, 𝑡), if𝑚2 ≥ 𝑚1 ≥ 1.

As shown in Figure 5, without losing generality, S𝑢 (𝑡) is assumed to contain two speeds. Since

𝑚2 ≥ 𝑚1 ≥ 1, we have 𝑇𝑝𝑒𝑎𝑘 (S𝑢 (𝑚2, 𝑡)) ≤ 𝑇𝑝𝑒𝑎𝑘 (S𝑢 (𝑚1, 𝑡)) ≤ 𝑇𝑝𝑒𝑎𝑘 (S𝑢 (𝑡)) ≤ 𝑇𝑚𝑎𝑥 (Theorem 6.2).

Let 𝑡𝑖,𝐻 and 𝑡𝑖,𝐿 denotes the high-speed and low-speed length on the 𝑖-th node within one

period 𝑡𝑝 (as 𝑡𝑖,𝐻 + 𝑡𝑖,𝐿 = 𝑡𝑝 ) of S𝑢 (𝑡), respectively. Then, the bounded-delay function of the 𝑖-

th node of S𝑢 (𝑚1, 𝑡) is 𝑏𝑑 𝑓 (Δ, 𝜌 (𝐴, 𝐵), 𝑙 (0, 𝐴)) [26], which is defined by the slope 𝜌 (𝐴, 𝐵) and
the bounded-delay 𝑙 (0, 𝐴) (the distance between 0 and point A) for interval length Δ. Similarly,

𝑏𝑑 𝑓 (Δ, 𝜌 (𝐴′, 𝐵′), 𝑙 (0, 𝐴′)) is the bounded-delay function of the 𝑖-th node for S𝑢 (𝑚2, 𝑡). When tran-

sition overhead is negligible, the bounded-delay function is featured by

𝜌 (𝐴, 𝐵) = 𝜌𝐿𝑡𝑖,𝐿/𝑚 + 𝜌𝐻 𝑡𝑖,𝐻/𝑚
(𝑡𝑖,𝐿 + 𝑡𝑖,𝐻 )/𝑚

(7)

𝑙 (0, 𝐴) = (𝜌𝐻 − 𝜌𝐿) · 𝑡𝑖,𝐻/𝑚 · 𝑡𝑖,𝐿/𝑚
(𝜌𝐻 𝑡𝑖,𝐻 + 𝜌𝐿𝑡𝑖,𝐿)/𝑚

(8)

Since 𝑙 (0, 𝐴′) ≤ 𝑙 (0, 𝐴) and 𝜌 (𝐴′, 𝐵′) ≮ 𝜌 (𝐴, 𝐵), the service bound of S𝑢 (𝑚2, 𝑡) is no lower than

S𝑢 (𝑚1, 𝑡).
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Theorem 6.3 implies that, when using the m-Oscillating approach, the larger the value of𝑚 is,

the higher the server capacity becomes. However, this conclusion is built upon the assumption that

the execution mode transition overhead is small and can be ignored.

When transition overhead is significant, service rates for 𝑆𝑢 (𝑚1, 𝑡) and 𝑆𝑢 (𝑚2, 𝑡) are different
when they adopt the same running mode. Therefore, increasing𝑚 does not necessarily always lead

to improved real-time service bound.

Let 𝜏 be the transition overhead on the given platform and let 𝑏𝑑 𝑓 (Δ, 𝜌 (�̃�, �̃�, 𝜏), 𝑙 (0, �̃�, 𝜏)) be the
bounded-delay function of the 𝑖-th node of S𝑢 (𝑚, 𝑡) when considering the transition overhead 𝜏 . To

construct the m-Oscillating schedule, we need to compensate for the performance loss caused by

each DVFS transition stalls, i.e. (𝜌𝐻 + 𝜌𝐿)𝜏 . So, a small interval of 𝛿 =
(𝜌𝐻 +𝜌𝐿)𝜏
𝜌𝐻−𝜌𝐿 needs to be shifted

from low-speed to high-speed (as shown in [46] Figure 6a). To maximize the system performances,

we first find the “optimal m", which leads to the lowest peak temperature for a given schedule.

Then, we judiciously increase the high-speed interval lengths until approaching the maximally

allowed temperature [46]. When considering transition overhead, the bounded-delay function is

featured by

𝜌 (�̃�, �̃�, 𝜏) = 𝜌𝐿 (𝑡𝑖,𝐿/𝑚 − 𝛿) + 𝜌𝐻 (𝑡𝑖,𝐻/𝑚 + 𝛿)
(𝑡𝑖,𝐿 + 𝑡𝑖,𝐻 )/𝑚 + 2𝜏

, (9)

and

𝑙 (0, �̃�, 𝜏) = 𝜌𝐻 (𝑡𝑖,𝐻/𝑚 + 𝛿) (𝑡𝑖,𝐿/𝑚 + 𝜏 − 𝛿) − 𝜌𝐿 (𝑡𝑖,𝐿/𝑚 − 𝛿) (𝑡𝑖,𝐻/𝑚 + 𝜏 + 𝛿)
𝜌𝐿 (𝑡𝑖,𝐿/𝑚 − 𝛿) + 𝜌𝐻 (𝑡𝑖,𝐻/𝑚 + 𝛿) . (10)

In what follows, we conduct an empirical study under the same power and thermal configurations

as shown in Section 7. To validate Theorem 6.3, we set a two-speed schedule whose low-/high-

speeds are supported by 0.6𝑉 and 1.3𝑉 , respectively. The maximally allowed temperature is set to

70
◦
C. The period is 1.5𝑠𝑒𝑐 and high-/low- speed takes 80% and 20% of the period length without

considering overhead, respectively. Then, we incorporate DVFS transition overhead and conduct

m-Oscillating approach (Algorithm 2 in [45]). The system throughput is defined as the average

speed within one period, which is defined in Equation 5 of [45].
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Fig. 6. Results for bounded-delay approximation when considering DVFS overhead

From Figure 6(a), we can see that the throughput performance is monotonically increasing

with𝑚 first and the maximal throughput is achieved when𝑚 = 161. Meanwhile, factor 𝜌 (�̃�, �̃�, 𝜏)
in (9) reaches its maximum value. Then, both throughput and factor 𝜌 (�̃�, �̃�, 𝜏) decrease with𝑚.
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From Figure 6(b), we can see that 𝑙 (0, �̃�, 𝜏) in (10) monotonically decreases with𝑚. Overall, when

incorporating transition overhead, the m-Oscillating approach is able to output the maximum

service bound.

7 EXPERIMENTAL RESULTS
In this section, we focus on simulating a series of peak temperature bounding methodologies on 4

multi-core configurations, i.e. 2×3, 3×3, 3×4 and 4×4 corresponding to 6, 9, 12, 16-core, respectively.
Each core size is 4 × 4𝑚𝑚2

and follows the Alpha 21264 floorplan and there are fifteen available

speed levels supported by discrete supply voltages from 0.6𝑉 to 1.3𝑉 with a 0.05𝑉 step-length.

The thermal and power parameters are abstracted from HotSpot 5.02 [27] and the McPAT

simulator [28]. The total power consumption (𝑃) is composed of dynamic power and leakage

power. Dynamic power is proportional to the cubic of supply voltage and leakage power depends

linearly on temperature 𝑇 as 𝑃𝑙𝑒𝑎𝑘 = 𝛼 (𝑣) + 𝛽𝑇 (𝑡). The total power of the ^-th core is 𝑃^ (𝑡) =

𝛼 (𝑣^) + 𝛽𝑇^ (𝑡) + 𝛾 (𝑣^)𝑣3^ , where 𝛼 and 𝛾 are positive constants within the interval that 𝑐𝑜𝑟𝑒^ runs

at supply voltage 𝑣^ . 𝛽 is a constant. In particular, we adopt the curve-fitting constants [18] in the

power model as: 1) 𝛼 = 0.84; 2) 𝛽 = 0.0163; and 3) 𝛾 = 7.2564. The ambient temperature was set

to be 𝑇𝑎𝑚𝑏 = 35
◦
C, unless otherwise specified. In this paper, we assume the WCET-schedules are

given, so there should be free of any deadline miss case.

There are five approaches in this experiment: (1) Numerical method (NM) splits each exe-

cution interval into small pieces and finds the peak temperature by checking each small step

length (e.g. [40, 47, 50]). (2) Stable State Temperature Check method (TssCheck) checks the

peak temperature interval-by-interval using a combination of the analytical and numerical ap-

proaches [18]. (3) Maximum Transient Temperature approach (MatEx) uses Newton-Raphson
method to solve the first-order derivative on each core in (1) as shown in [38]. (4) Worst-Case

Temperature Guarantees method (WorstTpeak) uses an analytical method to calculate the upper

bound via building the thermal critical instance under all possible scenarios of task executions

in [43]. (5) The last one is our proposed method, i.e. constructing a step-up execution trace (StepUp)
to bound the peak temperature of different runtime execution traces, as defined in Definition 5.2.

In the following experiments, the checking step length used inNM, TssCheck andWorstTpeak
are set as 1𝑚𝑠 , and the number of iterations used when applying the Newton-Raphson method

by MatEx is set as 10𝐾 , unless otherwise specified.

7.1 The step-up execution trace can bound the peak temperature
First, we utilize random schedules to validate that a hypothetical step-up execution trace can

effectively bound predefinedWCET-schedule. To put the runtime thermal dynamics into perspective,

we select a 3-core worst-case execution time schedule with a period of 3 seconds given in Figure 7(a).

Core 1 runs at the mode with the supply voltage of 1.5𝑉 for 1.26𝑠 , then turns to 0.9𝑉 for 0.36𝑠 and

executes at 1.5𝑉 again for 1.38𝑠 . Core 2 runs at 1.05𝑉 for 0.9𝑠 , then turns to 1.0𝑉 for 1.17𝑠 and

executes at 1.1𝑉 for 0.93𝑠 . Core 3 runs at 0.65𝑉 for 0.54𝑠 , then turns to 1.3𝑉 for 1.44𝑠 and executes

at 0.7𝑉 for 1.02𝑠 .

Figure 7(b) shows that the peak temperature for executing the schedule in Figure 7(a) is 68.2907◦C.
If we reorder the WCET intervals in Figure 7(a) following the step-up execution trace (in Defini-

tion 5.2) as shown in Figure 7(c), the peak temperature is calculated as 68.8824◦C in Figure 7(d),

which is higher than the peak temperature in Figure 7(b) (conform to Theorem 5.4). In addition,

the peak temperature of a step-up execution trace occurs at the end of the period in Figure 7(d)

(conform to Theorem 5.3). We also profiled the temperature trace in the thermal stable status on 6,

9 and 16-core architectures as shown in Figure 8. We can observe that all the peak temperatures in

the step-up execution trace must occur at the end of the period, which conforms to Theorem 5.3.
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(a) A predefined periodic WCET-schedule. (b) 𝑇𝑝𝑒𝑎𝑘 = 68.2907◦C
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(c) A hypothetical “step-up execution trace”

for bounding the runtime peak temperature.

(d) 𝑇𝑝𝑒𝑎𝑘 = 68.8824◦C

Fig. 7. An illustration of Theorem 5.3 on a 3-core platform.

Meanwhile, we can also observe that the peak temperature of the step-up execution trace must be

higher than WCET-schedule, which conforms to Theorem 5.4. More intensive experiments are

shown in what follows regarding how effectively can a step-up execution trace bound the peak

temperature.

7.2 The tightness of the temperature bound by StepUp method
In this section, we arbitrarily generate randomWCET-schedules for each configuration by a different

number of cores and different period lengths. Each schedule may contain up to 20 state intervals.

Then, we use the peak temperature differences between the step-up execution traces and WCET-

schedules to represent the bounding tightness of the StepUp methodology. In Figure 9, each bar

represents the average peak temperature overestimation for 2𝐾 random WCET-schedules under a

given configuration.

In general, the peak temperature overestimation is proportional to the period length. For example

in Figure 9, on a 6-core platform, the overestimation is 0.17◦C, 0.60◦C and 0.85◦C for the periods

equal to 10𝑚𝑠 , 50𝑚𝑠 and 100𝑚𝑠 , respectively. As the period becomes 0.5𝑠 , 1𝑠 and 5𝑠 , the overestima-

tion shows 3.26◦C, 5.22◦C and 5.82◦C, respectively, which has significantly larger margins than

those cases with smaller period lengths. The reason is that the larger the period, the more likely

those high-speed intervals may stack longer to the end of the period, and, thus, causes a higher

peak temperature in the hypothetical step-up schedule.

However, for 3-core, 9-core and 16-core cases, the overestimation may not strictly increase with

the period length. For example, on the 16-core platform, the overestimation is 1.73◦C when the

period equals 5𝑠 , which is smaller than 3.12◦C when the period equals 1𝑠 . The reason can be that

although the randomly generated WCET-schedules exhibit intricate power dissipation and heat

transfer, its corresponding hypothetical step-up schedule may not always significantly worsen the

power aggregation as periods become larger.
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(a) 6-core WCET-schedule (b) 9-core WCET-schedule (c) 16-core WCET-schedule

(d) 6-core step-up execution trace (e) 9-core step-up execution trace (f) 16-core step-up execution trace

Fig. 8. The peak temperature of a step-up execution trace always occur at the end of its period (Theorem 5.3).
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Fig. 9. The overestimation of the temperature bound by StepUp method.

It is also interesting to see that for any fixed period length, the average overestimation does not

increase with the number of cores. For example, when the period is fixed at 0.5𝑠 , the error margins

are 2.04◦C and 1.26◦C on 9-core and 16-core platforms, respectively, which are smaller than the

average 3.26◦C on a 6-core platform.

Overall, the average peak temperature overestimation by the 48𝐾 cases shown in Figure 9 is

as tight as 1.88◦C. The largest average overestimation 5.82◦C occurs on a 6-core platform, when

period equals 5𝑠 . The smallest average overestimation 0.017◦C occurs on a 16-core platform, when

period equals 100𝑚𝑠 .

7.3 Computational cost comparison of different approaches
In this section, we first compare the computational cost of NM, TssCheck andMatEx approaches

in Fig. 10. The computational time of the NM approach is proportional to the period length and

inverse proportional to the numerical checking step length. For example, in Fig. 10(b), on a 6-core
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Fig. 10. Computational cost comparison of the NM, TssCheck and MatEx approaches

platformwith 5 tasks on each core, theNM computational cost increases from 0.272 to 2.848 seconds,

when 𝑡𝑝 increases from 1 to 10 seconds. The complexity of the NM approach is 𝑂 ( 𝑡𝑝

step length
).

The second approach TssCheck can be seen as a refinedNM approach by eliminating the numer-

ical checking workloads on those intervals whose peak temperature must occur at the scheduling

points (Line 3 - 8 of Algorithm 1 in [18]). For example, in Fig. 10(a), on a 3-core platform with 𝑡𝑝 = 10

and 5 tasks on each core, the TssCheck reduces computational cost from 2.604 in theNM approach

to 2.46 seconds. The TssCheck averagely saves the computational cost of theNM approach by 9.55,

9.24, 8.92 and 6.47 percent on 3, 6, 9 and 16-core platforms, respectively. TheTssCheck’s complexity

lower bound and upper bound are 𝑂 (number of intervals) and 𝑂 ( 𝑡𝑝

step length
), respectively.

The third approach MatEx is different from NM and TssCheck, because its computational cost

is not related to the period length or the checking step-length. Instead, the computational overhead

of MatEx closely relates to the number of intervals on each core, the number of cores, and the

number of iterations used when applying the Newton-Raphson method [38]. For example, on 3 and

6-core platforms, MatEx is significantly computational efficient comparing to NM and TssCheck
methods as shown in Fig. 10(a) and Fig. 10(b). In Fig. 10(b), on a 6-core platform with 𝑡𝑝 = 10 and

3 different modes on each core, the MatEx method only uses 0.464 seconds in comparison with

2.772 and 2.558 seconds of NM and TssCheck methods, respectively. However, in Fig. 10(d), on

a 16-core platform with 𝑡𝑝 = 10 and 3 different modes on each core, the MatEx method spends

as much as 31.866 seconds, while NM and TssCheck methods take 4.270 and 4.056 seconds,

respectively. The complexity of MatEx is 𝑂 (𝑁 3) +∑𝑁
𝑖=1 [𝑂 (𝑁 2) × Newton-Raphson iterations ×

number of intervals on core i].

Next, we compare the computational costs of two peak temperature bounding methodologies,

i.e., WorstTpeak and our proposed StepUp approaches. In this experiment, we let each core has

a fixed number of 3 different modes. The computational cost is shown in Table 3. We can see

that StepUp saves orders of magnitudes computational costs than WorstTpeak. The complexity

of WorstTpeak and our proposed StepUp are𝑂 (∏𝑁
𝑖=1 [factorial of the number of intervals on core-i]×

𝑡𝑝

step length
) and 𝑂 (1), respectively.
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Table 3. Computational Cost of theWorstTpeak and StepUp Approach

3-Core 6-Core
𝑡𝑝𝑡𝑝𝑡𝑝 (𝑠) 1 3 5 10 1 3 5 10

StepUp1 6 4 2 8 1 1 8 1

WorstTpeak2
0.27 0.82 1.36 2.87 1.21 3.27 5.39 10.9

9-Core 16-Core
𝑡𝑝𝑡𝑝𝑡𝑝 (𝑠) 1 3 5 10 1 3 5 10

StepUp1 16 14 16 16 30 30 36 38

WorstTpeak2
2.4 7.37 11.6 23.4 7.29 22.2 36.6 73.5

1
. The unit is 10

−3
second.

2
. The unit is 10

5
second. Due to the long computational time, the

results of WorstTpeak are mostly projected upon the computational

complexity except for the underlined values.

Overall, we are able to conclude that our proposed StepUp approach not only can bound the

peak temperature for any given WCET-schedule, but also it is computationally efficient, which can

be easily applied to both proactive and reactive temperature-aware design.

8 CONCLUSIONS
As IC technology continues to progress, power density keeps increasing and results in soaring chip

temperatures. While there have been extensive thermal-aware research approaches developed, we

believe that the great challenges of thermal problems and Quality of Service guarantee requirement

in design of real-time systems demand a more rigorous analytical study of the thermal problem.

In this paper, we present a series of fundamental and provable principles related to thermal

models, peak temperature bounding and peak temperature reduction on multi-core platforms.

These principles are general enough to benefit future thermal-aware analyses on 2D and 3D

multi-core platforms.
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APPENDIX:OnFundamental Principles for Thermal-Aware
Design on Periodic Real-Time Multi-Core Systems

Lemma 4.1 Matrix A has all negative real eigenvalues.

Proof. Since C = 𝑑𝑖𝑎𝑔{𝐶1, · · · ,𝐶𝑁 } and 𝐶𝑖 > 0, we have C1/2 = 𝑑𝑖𝑎𝑔{
√
𝐶1, · · · ,

√
𝐶𝑁 } and

C−1/2 = 𝑑𝑖𝑎𝑔{1/
√
𝐶1, · · · , 1/

√
𝐶𝑁 } and they are nonsingular. The transpose of C1/2

and C−1/2
equal

to themselves, respectively.

G is positive definite, because a symmetric diagonally dominant matrix with real non-negative

diagonal entries is positive definite [30]. Thus, there exists a Y ≠ 0 such that Y𝑇 GY > 0. Let Y =

C−1/2X, X ≠ 0 and X𝑇
denotes the transpose of X. Then, we have Y𝑇 GY = (C−1/2X)𝑇 GC−1/2X =

X𝑇 C−1/2GC−1/2X = X𝑇 (C−1/2GC−1/2)X = X𝑇 ΩX > 0, where Ω = C−1/2GC−1/2
and it is symmetric.

Thus, Ω is positive definite, and its eigenvalue must be positive real numbers (Theorem 7.2.2 and

Theorem 7.3.2 in [3]).

Since there exists a nonsingular matrix C1/2
such that the similarity transformation (page 506

in [32]) of −A = C−1G = C−1/2C−1/2G = C−1/2 (C−1/2GC−1/2)C1/2 = (C1/2)−1ΩC1/2
, −A is similar

to Ω and sharing all the eigenvalues (page 508 in [32]). Thus, all the eigenvalues of A are negative

real numbers. □

Lemma 4.2 Matrix A is diagonalizable.

Proof. Let Ã = C1/2AC−1/2
and Ã𝑇

be the transpose of Ã. Then, we have Ã𝑇 = (C1/2AC−1/2)𝑇 =

−(C−1/2GC−1/2)𝑇 = −(C−1/2)𝑇 G𝑇 (C−1/2)𝑇 = −C−1/2GC−1/2 = Ã, which means Ã is symmetric.

Since Ã is real and symmetric, it is diagonalizable (Theorem 7.2.1 in [3]). Thus, there exists

an invertible matrix Q such that QÃQ−1 = Γ, in which Γ is a diagonal matrix. We can see A =

C−1/2ÃC1/2 = C−1/2Q−1ΓQC1/2 = (QC1/2)−1ΓQC1/2
. There exists an invertible matrix QC1/2

such

that (QC1/2)A(QC1/2)−1 = Γ is a diagonal matrix, so A is diagonalizable (Page 303 Definition 2

in [3]). □

Lemma 4.3 Matrix A is constant and all the entries of −A−1 = [A𝑖, 𝑗 ]𝑁×𝑁 are positive real numbers
and A𝑖, 𝑗 > 0.

Proof. Let 𝐵𝑖 be the 𝑖-th element of vector B. Since T∞ = −A−1B(v), the stable-state temperature

of the 𝑖-th thermal node is 𝑇∞
𝑖 =

∑𝑁
𝑗=1 A𝑖, 𝑗𝐵 𝑗 . If the `-th node non-decreasingly changes its power

and remain all other nodes’ power unchanged, we have 𝐵` ≥ 𝐵` . Let 𝑇
∞
𝑖 be the stable state

temperature of the 𝑖-th node after changing the power; then, we have

𝑇∞
𝑖 −𝑇∞

𝑖 =

𝑁∑
𝑗=1

A𝑖, 𝑗 (𝐵 𝑗 − 𝐵 𝑗 ) =
𝑁∑
𝑗=1
𝑗≠`

A𝑖, 𝑗 (𝐵 𝑗 − 𝐵 𝑗 ) + A𝑖,` (𝐵` − 𝐵`).
(11)

Since 𝐵 𝑗 = 𝐵 𝑗 when 𝑗 ≠ `, we have
∑𝑁

𝑗=1
𝑗≠`

A𝑖,𝑗 (𝐵 𝑗 − 𝐵 𝑗 ) = 0.

By contradiction, assume A𝑖, 𝑗 ≤ 0, because 𝐵` − 𝐵` ≥ 0, we can infer that 𝑇∞
𝑖 < 𝑇∞

𝑖 , which

means by non-decreasingly changing the `-th node’s power consumption, while other nodes remain

unchanged, results in a non-increasing stable state temperature on the 𝑖-th node, which is not

realistic. Thus, we can conclude A𝑖, 𝑗 > 0. □

Lemma 4.4 Given a multi-core platform running two constant modes long enough to enter the stable
state, if the supply voltages of the two running modes satisfy v1 ≥ v2, we have T∞ (v1) ≥ T∞ (v2).
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Proof. From (1), we have T∞ (v1) − T∞ (v2) = −A−1 [B(v1) − B(v2)]. Since B(v1) − B(v2) ≥ 0
when v1 ≥ v2, and −A−1

contains all positive entries (Lemma 4.3), we have T∞ (v1) ≥ T∞ (v2). □

Lemma 4.5 All the elements in matrix (I − K)−1 are positive and each entry monotonically decreases
with 𝑙 , where K = 𝑒A𝑙 , 𝑙 > 0.

Proof. [Part 1]: Prove (I − K)−1 > 0.
Let 𝜌 (𝑒A𝑙 ) denote the spectral radius of 𝑒A𝑙

, we have 𝜌 (𝑒A𝑙 ) = 𝑚𝑎𝑥 |𝑒_𝑖𝑙 | (page 497 in [32]).

Because for all _𝑖 > 0, we have for all 0 < 𝑒−_𝑖𝑙 < 1 and |𝑒_𝑖𝑙 | < 1, so 𝜌 (𝑒A𝑙 ) < 1. Since 𝜌 (𝑒A𝑙 ) < 1,

we have lim𝐻→∞ (𝑒A𝑙 )𝐻 = 0.
We adopt the Neumann Series (page 618 in [32]) by geometric series formula for matrices

version, which can be proved similarly as the geometric series formula for numbers, i.e.

∑𝐻
ℎ=0

Kℎ =

(I − K𝐻+1) (I − K)−1. Thus, we have (I − K)−1 = ∑∞
ℎ=0

Kℎ
.

Since all the elements of 𝑒A𝑙
are positive (Lemma 1 in [18]), we can conclude (I − 𝑒A𝑙 )−1 only

contains positive elements.

[Part 2]: Prove each element in (I − K)−1 monotonically decreases with 𝑙 .

Let K𝑘,𝑗 , `𝑘,𝑗 and 𝜙𝑘,𝑗 be the element on the 𝑘-th row and 𝑗-th column of (I − K)−1, W and W−1
,

respectively, 𝑘, 𝑗 ∈ {1, · · · , 𝑁 }. Diagonalize (I − K)−1 by (5), we have

(I − 𝑒A𝑙 )−1 = (I − W · 𝑒D𝑙 · W−1)−1

=(W · W−1 − W · 𝑒D𝑙 · W−1)−1

=(W · (I − 𝑒D𝑙 ) · W−1)−1 = W · 𝑒 (I−D𝑙)−1 · W−1

=W · 𝑑𝑖𝑎𝑔{(1 − 𝑒−_1𝑙 )−1, · · · , (1 − 𝑒−_𝑁 𝑙 )−1} · W−1.

(12)

Thus, we have K𝑘,𝑗 =
∑𝑁

𝑖=1 `𝑘,𝑖 · 𝜙𝑖, 𝑗 · (1 − 𝑒−_𝑖𝑙 )−1. To prove K𝑘,𝑗 monotonically decreases with 𝑙

while `𝑘,𝑗 and 𝜙𝑘,𝑗 are constants, since K𝑘,𝑗 > 0, we need to prove each eigenvalue (1 − 𝑒−_𝑖𝑙 )−1
monotonically decreases with 𝑙 .

Since −_𝑖 < 0 and 𝑙 > 0, 𝑒−_𝑖𝑙 monotonically decreases with 𝑙 and 0 < 𝑒−_𝑖𝑙 < 1. Then, (1− 𝑒−_𝑖𝑙 )
monotonically increases with 𝑙 and 0 < 1 − 𝑒−_𝑖𝑙 < 1. Thus, (1 − 𝑒−_𝑖𝑙 )−1 > 0 and it monotonically

decreases with 𝑙 . □

Theorem 4.6 Let 𝑙 > 0 and 0 ≤ T ≤ (T∞ (vmax) − T∞ (vmin)), then (I − K)T ≥ 0, where K = 𝑒A𝑙 ,
vmax = [𝑣𝑚𝑎𝑥,𝑖 ]𝑁×1 and vmin = [𝑣𝑚𝑖𝑛,𝑖 ]𝑁×1. 𝑣𝑚𝑎𝑥,𝑖 and 𝑣𝑚𝑖𝑛,𝑖 denote the maximum and minimum
available supply voltage on the 𝑖-th node, respectively.

Proof. Consider a state interval I𝑞 = [𝑡𝑞−1, 𝑡𝑞] starts at T0 = T∞ (vmax) and runs at the mode

with supply voltage v. Since v ≤ vmax, we have T∞ (vmax) − T∞ (v) ≥ 0 (Lemma 4.4). Because

given a multi-core platform and a state interval, the temperature on each core must monotonically

decrease if all the cores’ starting temperature is higher than the running mode’s stable state

temperature (Theorem 5 in [18]), we have ∀𝑡 ∈ [𝑡𝑞−1, 𝑡𝑞], T(𝑡) ≤ T∞ (vmax). Thus, from (3), T(𝑡)
can be expressed as

𝑒A(𝑡−𝑡𝑞−1)T∞ (vmax) + (I − 𝑒A(𝑡−𝑡𝑞−1) )T∞ (v) ≤ T∞ (vmax)
⇒ (I − 𝑒A(𝑡−𝑡𝑞−1) ) (T∞ (vmax) − T∞ (v)) ≥ 0

(13)

In contrary, if T0 = T∞ (vmin), and the system executes at v with v ≥ vmin, the temperature must

monotonically increase (Theorem 5 in [18]). Thus, we have

𝑒A(𝑡−𝑡𝑞−1)T∞ (vmin) + (I − 𝑒A(𝑡−𝑡𝑞−1) )T∞ (v) ≥ T∞ (vmin)
⇒ (I − 𝑒A(𝑡−𝑡𝑞−1) ) (T∞ (v) − T∞ (vmin)) ≥ 0

(14)
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Since vmin ≤ v ≤ vmax, we have T∞ (vmin) ≤ T∞ (v) ≤ T∞ (vmax), which both satisfy (13) and (14)

contemporarily. Thus, (I − K)T ≥ 0 holds throughout our problem and 0 ≤ T ≤ (T∞ (vmax) −
T∞ (vmin)). □

Theorem 5.1 Let S(𝑡) = {I𝑞 : 𝑞 = 1 · · · 𝑧} be a periodic multi-core schedule. Then, the stable-state
temperature T𝑠𝑠 (𝑡) achieved by running S(𝑡) is independent of the initial temperature T0.

Proof. Let 𝑡0, 𝑡1, · · · , 𝑡 (𝑧−1) be the starting time for interval I1, I2, · · · , I𝑧 , respectively. In addition,

let 𝑙𝑞 = 𝑡𝑞 − 𝑡𝑞−1 and assume that processor runs voltage profile v𝑞 within interval I𝑞 , where
𝑞 ∈ {1, 2, · · · , 𝑧}. Based on (4), we have

T𝑠𝑠 (𝑡0) = T0 + (I − K)−1 (T(𝑡𝑝 ) − T0)
= T0 + (I − K)−1 [K · T0 + F − T0]
= (I − K)−1 · F

(15)

in which T(𝑡𝑝 ) is the ending temperature of the first execution period; F = 𝑒A
∑𝑧

\=2
𝑙\ (I − 𝑒A𝑙1 )T∞

1
+

· · · + (I − 𝑒A𝑙𝑧 )T∞
𝑧 ; K = 𝑒A(∑𝑧

\=1
𝑙\ ) = 𝑒A𝑡𝑝

. Since neither K nor F depends on T0, T𝑠𝑠 (𝑡0) does not
depend on the starting temperature T0. □

Theorem 5.1 shows that when identifying the peak temperature in the stable status, we can

assume T0 = 0 to ease the presentation in this paper, if otherwise specified. For example, when

T0 = 0, for schedule S(𝑡) = {I1, · · · , I𝑧} contains 𝑧 state intervals and I𝑞 = [𝑡𝑞−1, 𝑡𝑞], (3) can be

simplified as

T(𝑡1) = 𝑒A𝑙1T0 + (I − 𝑒A𝑙1 )T∞
1
= (I − 𝑒A𝑙1 )T∞

1
;

T(𝑡2) =
2∑

𝑞=1

𝑒
A
∑

2

\=𝑞+1 𝑙\ (I − 𝑒A𝑙𝑞 )T∞
𝑞 ;

· · ·

T(𝑡ℎ) =
ℎ∑

𝑞=1

𝑒
A
∑ℎ

\=𝑞+1 𝑙\ (I − 𝑒A𝑙𝑞 )T∞
𝑞 ;

· · ·

T(𝑡𝑝 ) =
𝑧∑

𝑞=1

𝑒
A
∑𝑧

\=𝑞+1 𝑙\ (I − 𝑒A𝑙𝑞 )T∞
𝑞 .

(16)

In following proofs, to ease the presentation, we assume temperature starts from T0 = 0 otherwise

specified.

Theorem 5.3 The peak temperature when repeating a step-up execution trace S𝑢 (𝑡) periodically
from the ambient temperature occurs at the end of the period in the stable status.

Proof. Assume step-up worst-case execution trace S𝑢 (𝑡) is of period 𝑡𝑝 and contains 𝑧 state

intervals with scheduling points 𝑡0, 𝑡1, · · · , 𝑡𝑝 . Let 𝑙𝑞 = 𝑡𝑞 − 𝑡𝑞−1. Also, let 𝑡𝑥 be an arbitrary time

instant within the ℎ𝑡ℎ interval, i.e. 𝑡𝑥 ∈ [𝑡ℎ−1, 𝑡ℎ] and Δ𝑡𝑥 = 𝑡𝑥 − 𝑡ℎ−1. The following proof is to show
that for S𝑢 (𝑡) the temperature at 𝑡𝑝 is no lower than the temperature of 𝑡𝑥 . Based on (4), we have

T𝑠𝑠 (𝑡𝑝 ) = T(𝑡𝑝 ) + K(I − K)−1T(𝑡𝑝 ) = (I − K)−1T(𝑡𝑝 )
T𝑠𝑠 (𝑡𝑥 ) = T(𝑡𝑥 ) + K𝑥 (I − K)−1T(𝑡𝑝 )

= (I − K)−1 [(I − K)T(𝑡𝑥 ) + K𝑥T(𝑡𝑝 )],
(17)
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Fig. 11. Proof illustration for Theorem 5.3

in whichK = 𝑒A𝑡𝑝
andK𝑥 = 𝑒A(Δ𝑡𝑥+

∑𝑞−1
\=1

𝑙\ )
. Since (I−K)−1 contains all positive elements (Lemma 4.5),

to prove T𝑠𝑠 (𝑡𝑝 ) ≥ T𝑠𝑠 (𝑡𝑥 ), we want to prove T(𝑡𝑝 ) − [(I − K)T(𝑡𝑥 ) + K𝑥T(𝑡𝑝 )] ≥ 0, which is

equivalent to prove

T(𝑡𝑝 ) − [(I − K)T(𝑡𝑥 ) + K𝑥T(𝑡𝑝 )] = (I − K𝑥 ) (I − K) [(I − K)−1T(𝑡𝑝 ) − (I − K𝑥 )−1T(𝑡𝑥 )] ≥ 0. (18)

Since (I − K𝑥 ) (I − K)T ≥ 0, if T ≥ 0 (Theorem 4.6), we need to prove that (I − K)−1T(𝑡𝑝 ) − (I −
K𝑥 )−1T(𝑡𝑥 ) ≥ 0. From (4), (I − K)−1T(𝑡𝑝 ) is the stable status temperature at time 𝑡𝑝 of schedule

S𝑢 (𝑡), and (I − K𝑥 )−1T(𝑡𝑥 ) is the stable status temperature at time 𝑡𝑥 for the S′𝑢 (𝑡) that consists of
all state intervals of S𝑢 (𝑡) within interval [0, 𝑡𝑥 ].
To prove S𝑢 (𝑡) has a higher peak temperature than S′𝑢 (𝑡), we define an intermediate schedule

S̃𝑢 (𝑡) with period 𝑡𝑝 , which consists of all the state intervals of S′𝑢 (𝑡) within interval [0, 𝑡ℎ−1],
and keeps constant voltage vℎ within [𝑡ℎ−1, 𝑡𝑝 ], as shown in Figure 11. Then we need to prove

T𝑠𝑠 (S𝑢 (𝑡𝑝 )) ≥ T𝑠𝑠 (S̃𝑢 (𝑡𝑝 )) ≥ T𝑠𝑠 (S′𝑢 (𝑡𝑥 )).
First, we prove T𝑠𝑠 (S𝑢 (𝑡𝑝 )) ≥ T𝑠𝑠 (S̃𝑢 (𝑡𝑝 )), in which T𝑠𝑠 (S𝑢 (𝑡𝑝 )) = (I − K)−1T(S𝑢 (𝑡𝑝 )) and

T𝑠𝑠 (S̃𝑢 (𝑡𝑝 )) = (I−K)−1T(S̃𝑢 (𝑡𝑝 )) from (4). K is identical for both schedule S𝑢 (𝑡) and S̃𝑢 (𝑡) because
their periods are the same. Then, we need to prove T(S𝑢 (𝑡𝑝 )) ≥ T(S̃𝑢 (𝑡𝑝 )), which are the ending

temperatures of the first period.

Let v𝑞 and ṽ𝑞 be the supply voltage of the 𝑞-th interval of schedule S𝑢 (𝑡) and S̃𝑢 (𝑡), respectively.
Let T∞

𝑞 = T∞ (v𝑞) and T̃∞
𝑞 = T̃∞ (ṽ𝑞). We know v𝑞 = ṽ𝑞 and T∞

𝑞 = T̃∞
𝑞 when 𝑞 ∈ {1, · · · , ℎ}; v𝑞 ≥ ṽ𝑞

and T∞
𝑞 ≥ T̃∞

𝑞 when 𝑞 ∈ {ℎ + 1, · · · , 𝑧}, since S𝑢 (𝑡) is in a step-up pattern (Definition 5.2). Then,

from (16), we have

T(S𝑢 (𝑡𝑝 )) − T(S̃𝑢 (𝑡𝑝 ))

=

ℎ∑
𝑞=1

(
𝑒

A
∑𝑧

\=𝑞+1 𝑙\ (I − 𝑒A𝑙𝑞 ) (T∞
𝑞 − T̃∞

𝑞 )
)
+

𝑧∑
𝑞=ℎ+1

(
𝑒

A
∑𝑧

\=𝑞+1 𝑙\ (I − 𝑒A𝑙𝑞 ) (T∞
𝑞 − T̃∞

𝑞 )
)

=0 +
𝑧∑

𝑞=ℎ+1

(
𝑒

A
∑𝑧

\=𝑞+1 𝑙\ (I − 𝑒A𝑙𝑞 ) (T∞
𝑞 − T̃∞

𝑞 )
)
.

(19)

Since 𝑒
A
∑𝑧

\=𝑞+1 𝑙\
contains all positive elements (Lemma 1 in [18]), we need to prove (I−𝑒A𝑙𝑞 ) (T∞

𝑞 −
T̃∞
𝑞 ) ≥ 0 when 𝑞 ∈ {ℎ + 1, · · · , 𝑧}. Since T∞

𝑞 ≥ T̃∞
𝑞 when 𝑞 ∈ {ℎ + 1, · · · , 𝑧}, the conclusion is

proved (Theorem 4.6).

Next, we prove T𝑠𝑠 (S̃𝑢 (𝑡𝑝 )) ≥ T𝑠𝑠 (S′𝑢 (𝑡𝑥 )). Starting from the same temperature, if we can prove

that for each consecutive period the ending temperature of S̃𝑢 (𝑡) is greater than that of S′𝑢 (𝑡),
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we are able to claim that in the stable status T𝑠𝑠 (S̃𝑢 (𝑡𝑝 )) ≥ T𝑠𝑠 (S′𝑢 (𝑡𝑥 )). To prove T(S̃𝑢 (𝑡𝑝 )) ≥
T(S′𝑢 (𝑡𝑥 )) for the first execution period, we know in [0, 𝑡𝑥 ], S̃𝑢 (𝑡) and S′𝑢 (𝑡) are the same, so

T(S̃𝑢 (𝑡𝑥 )) = T(S′𝑢 (𝑡𝑥 )). Then, within [𝑡𝑥 , 𝑡𝑝 ] the temperature of schedule S̃𝑢 (𝑡) is monotonically

non-decrease because it is a step-up pattern, so we have T(S̃𝑢 (𝑡𝑝 )) ≥ T(S̃𝑢 (𝑡𝑥 )). Then, for the
second period, the starting temperature of S̃𝑢 (𝑡) is no lower than S′𝑢 (𝑡), so we have T(S̃𝑢 (𝑡𝑥 )) ≥
T(S′𝑢 (𝑡𝑥 )). Therefore, for the second period, T(S̃𝑢 (𝑡)) ≥ T(S𝑢 (𝑡)). So on and so forth, we prove

T𝑠𝑠 (S̃𝑢 (𝑡𝑝 )) ≥ T𝑠𝑠 (S′𝑢 (𝑡𝑥 )). □

Lemma 8.1. Let S(𝑡) and S̃(𝑡) be two periodic schedules, with the same period 𝑡𝑝 , and all cores run
with the same constant supply voltages/frequencies, except for 𝑐𝑜𝑟𝑒𝑖 during ℎ-th and (ℎ + 1)-th state
interval. For S(𝑡), 𝑐𝑜𝑟𝑒𝑖 uses the mode with voltage 𝑣𝐿 (𝑣𝐻 , resp.) for the ℎ-th ((ℎ + 1)-th, resp.) state
interval and 𝑣𝐻 ≥ 𝑣𝐿 . In S̃(𝑡), 𝑐𝑜𝑟𝑒𝑖 exchanges the ℎ-th and (ℎ + 1)-th state intervals of S(𝑡). Let
T𝑠𝑠 (S(𝑡)) (T𝑠𝑠 (S̃(𝑡)), resp.) denote the temperature at 𝑡 when running schedule S(𝑡) (̃S(𝑡)), resp.) in
the stable status. Then, we have T𝑠𝑠 (S(𝑡𝑝 )) ≥ T𝑠𝑠 (S̃(𝑡𝑝 )).

core_i
Speed

core_j

t0 Timetpth-1 th th+1

lH
lL

(a) S(𝑡 )

core_i
Speed

core_j

t0 Timetp~th-1th th+1

lH
lL

(b) S̃(𝑡 )

Fig. 12. Proof illustration for Lemma 8.1

Proof. To proveT𝑠𝑠 (S(𝑡𝑝 )) = (I−K)−1T(S(𝑡𝑝 )) is no smaller thanT𝑠𝑠 (S̃(𝑡𝑝 )) = (I−K)−1T(S̃(𝑡𝑝 )),
where K = 𝑒A𝑡𝑝

are the same, we need to prove for the first period T(S(𝑡𝑝 )) ≥ T(S̃(𝑡𝑝 )). Since
the supply voltage in 𝑡 ∈ [𝑡ℎ+1, 𝑡𝑝 ] are the same for S(𝑡) and S̃(𝑡), we then need to prove

T(S(𝑡ℎ+1)) ≥ T(S̃(𝑡ℎ+1)).
In the first period of S(𝑡), based on (3), we have

T(S(𝑡ℎ)) = 𝑒A·𝑙𝐿T(S(𝑡ℎ−1)) + (I − 𝑒A·𝑙𝐿 )T∞
𝐿 (20a)

T(S(𝑡ℎ+1)) = 𝑒A·𝑙𝐻 T(S(𝑡ℎ)) + (I − 𝑒A·𝑙𝐻 )T∞
𝐻 , (20b)

where T∞
𝐿
and T∞

𝐻
are the constant temperatures when 𝑐𝑜𝑟𝑒𝑖 runs low-speed mode 𝑣𝐿 and 𝑣𝐻 long

enough, respectively, while other cores keep constant mode. Then, take (20a) into (20b), for S(𝑡)
we have

T(S(𝑡ℎ+1)) =𝑒A·𝑙𝐻 𝑒A·𝑙𝐿T(S(𝑡ℎ−1)) + 𝑒A·𝑙𝐻 (I − 𝑒A𝑙𝐿 )T∞
𝐿 + (I − 𝑒A·𝑙𝐻 )T∞

𝐻 . (21)

Similarly, for S̃(𝑡) we have

T(S̃(𝑡ℎ+1)) =𝑒A·𝑙𝐻 𝑒A·𝑙𝐿T(S̃(𝑡ℎ−1)) + 𝑒A·𝑙𝐿 (I − 𝑒A𝑙𝐻 )T∞
𝐻 + (I − 𝑒A·𝑙𝐿 )T∞

𝐿 . (22)

Since S(𝑡) and S̃(𝑡) start from the same temperature and run the same schedule in [0, 𝑡ℎ−1], we can
infer T(S(𝑡ℎ−1)) = T(S̃(𝑡ℎ−1)). Thus, to prove T(S(𝑡ℎ+1)) ≥ T(S̃(𝑡ℎ+1)), we need to prove

T(S(𝑡ℎ+1)) − T(S̃(𝑡ℎ+1)) = (I − 𝑒A𝑙𝐻 ) (I − 𝑒A𝑙𝐿 ) (T∞
𝐻 − T∞

𝐿 ) ≥ 0 (23)
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Since 𝑣𝐻 ≥ 𝑣𝐿 , we have T∞
𝐻

− T∞
𝐿

≥ 0, and, thus T(S(𝑡ℎ+1)) ≥ T(S̃(𝑡ℎ+1)) (Theorem 4.6).

Then, since S(𝑡) and S̃(𝑡) run at same speeds within 𝑡 ∈ [𝑡ℎ+1, 𝑡𝑝 ], we can conclude T(S(𝑡𝑝 )) ≥
T(S̃(𝑡𝑝 )). □

Theorem 5.4 Given a periodic schedule S(𝑡), the corresponding step-up execution trace S𝑢 (𝑡) bounds
the peak temperature of S(𝑡).

Proof. This theorem can be proved based on the facts that both S(𝑡) and S𝑢 (𝑡) are periodic and
the multi-core thermal model presented in (1) is a linear time-invariant system [2, 43], following

the superposition principle: (1) The thermal impact at one time instant is the sum of the thermal

impact by each core; (2) The thermal impact of each core is the sum of the impact by each state

interval in the schedule. With the assistance of Lemma 8.1, Theorem 5.4 can therefore be proved.

□

Theorem 6.2 Let S𝑢 (𝑡) = {I𝑞 : 𝑞 = 1 · · · 𝑧} be a periodic step-up worst-case execution trace
of any periodic schedule on a multi-core processor. Then, 𝑇𝑝𝑒𝑎𝑘 (S𝑢 (𝑚1, 𝑡)) ≥ 𝑇𝑝𝑒𝑎𝑘 (S𝑢 (𝑚2, 𝑡)), if
1 ≤ 𝑚1 ≤ 𝑚2.

Proof. Since S𝑢 (𝑡) is a step-up worst-case execution trace, both S𝑢 (𝑚1, 𝑡) and S𝑢 (𝑚2, 𝑡) are
in the step-up pattern with period 𝑡𝑝/𝑚1 and 𝑡𝑝/𝑚2, respectively. From Theorem 5.3, their peak

temperatures must occur at relative time corresponding to 𝑡 = 𝑡𝑝/𝑚1 and 𝑡𝑝/𝑚2, respectively, when

temperature reaches the stable status.

tptp/m1core_ j 2tp/m1

Time

…

…core_ j
core_i

tp

core_i
core_ j
core_i
Speed

tp/m2 2tp/m2 3tp/m2 tp

Fig. 13. Proof illustration for Theorem 6.2

Now, let’s construct two new schedules Ŝ𝑚1 (𝑡) and Ŝ𝑚2 (𝑡) such that Ŝ𝑚1 (𝑡) consists of all
state intervals of S𝑢 (𝑚1, 𝑡) within [0, 𝑡𝑝 ], and Ŝ𝑚2 (𝑡) consists of all state intervals of S𝑢 (𝑚2, 𝑡)
within [0, 𝑡𝑝 ], as shown in Figure 13. Note that, the stable status temperature of S𝑢 (𝑚, 𝑡) at time

corresponding to 𝑡 = 𝑡𝑝/𝑚 is equal to the temperature at time 𝑡 = 𝑡𝑝 in the stable status.

Let Tm1 (𝑡𝑝 ) represent the temperature at the end of the first period of Ŝ𝑚1 (𝑡). Then, the stable
status temperature of Ŝ𝑚1 (𝑡) at time corresponding to 𝑡 = 𝑡𝑝 can be written as (I − K)−1Tm1 (𝑡𝑝 )
with K = 𝑒A𝑡𝑝

from equation (4). Therefore, 𝑇𝑝𝑒𝑎𝑘 (S𝑢 (𝑚1, 𝑡)) =𝑚𝑎𝑥 ((I − K)−1Tm1 (𝑡𝑝 )). Similarly,

let Tm2 (𝑡𝑝 ) be the temperature of Ŝ𝑚2 (𝑡) at the end of the first period, so we have𝑇𝑝𝑒𝑎𝑘 (S𝑢 (𝑚2, 𝑡)) =
𝑚𝑎𝑥 ((I − K)−1Tm2 (𝑡𝑝 )). Since (I − K)−1 > 0 (Lemma 4.5), to prove that 𝑇𝑝𝑒𝑎𝑘 (S𝑢 (𝑚1, 𝑡)) ≥
𝑇𝑝𝑒𝑎𝑘 (S𝑢 (𝑚2, 𝑡)), it is to prove that Tm1 (𝑡𝑝 ) ≥ Tm2 (𝑡𝑝 ).

[Step 1] From (16), we have

Tm (𝑡𝑝 ) =
𝑚−1∑
𝜚=0

(𝜚+1)𝑧∑
𝑞=𝜚𝑧+1

(
𝑒

A
∑𝑚𝑧

\=𝑞+1
𝑙\
𝑚 (I − 𝑒A

𝑙𝑞

𝑚 )T∞
𝑞

)
(24)
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in which𝑚 =𝑚1 for Ŝ𝑚1 (𝑡) or𝑚 =𝑚2 for Ŝ𝑚2 (𝑡) schedule.
Let Tm1 (𝑡𝑝 ) and Tm2 (𝑡𝑝 ) denote the 𝑞-th element when𝑚 =𝑚1 and𝑚 =𝑚2 in (24), respectively.

To prove Tm1 (𝑡𝑝 ) − Tm2 (𝑡𝑝 ) ≥ 0, we need to prove fro each 𝑞, there exsists Tm1 (𝑡𝑝 ) ≥ Tm2 (𝑡𝑝 ),
where

Tm (𝑡𝑝 ) =
𝑚−1∑
𝜚=0

𝑒
A
∑𝑚𝑧

\=𝜚𝑧+𝑞+1
𝑙\
𝑚 (I − 𝑒A

𝑙𝜚𝑧+𝑞
𝑚 )T∞

𝜚𝑧+𝑞 (25)

Since S𝑢 (𝑚1, 𝑡) and S𝑢 (𝑚2, 𝑡) are both periodical, for all positive integer 𝜚 , we have 𝑙𝜚𝑧+𝑞 = 𝑙𝑞 and

T∞
𝜚𝑧+𝑞 = T∞

𝑞 . Then, (25) indeed is the sum of a geometric matrices series [32], which are constituted

by the first term as 𝑒
A
∑𝑚𝑧

\=(𝑚−1)𝑧+𝑞+1
𝑙\
𝑚 (I−𝑒A

𝑙𝑞

𝑚 )T∞
𝑞 , equal ratio as 𝑒A𝑡𝑝/𝑚

, and totally contains𝑚 terms.

Using the sum of geometric matrices series [32], we have

Tm (𝑡𝑝 ) = 𝑒A
∑𝑚𝑧

\=(𝑚−1)𝑧+𝑞+1
𝑙\
𝑚 (I − 𝑒A

𝑚𝑡𝑝

𝑚 ) (I − 𝑒A
𝑡𝑝

𝑚 )−1 (I − 𝑒A
𝑙𝑞

𝑚 )T∞
𝑞

=𝑒
A
∑𝑧

\=𝑞+1
𝑙\
𝑚 (I − 𝑒A𝑡𝑝 ) (I − 𝑒A

𝑡𝑝

𝑚 )−1 (I − 𝑒A· 𝑙𝑞
𝑚 )T∞

𝑞

=Θ̃(𝑚) (I − 𝑒A𝑡𝑝 )T∞
𝑞

(26)

where

Θ̃(𝑚) = 𝑒A 𝜛
𝑚 (I − 𝑒A

𝑡𝑝

𝑚 )−1 (I − 𝑒A
𝑙𝑞

𝑚 ). (27)

and 𝜛 =
∑𝑧

\=𝑞+1 𝑙\ .

[Step 2] To compare Tm1 (𝑡𝑝 ) and Tm2 (𝑡𝑝 ) from (26) by different𝑚, essentially, it can be suffi-

ciently proved by showing that each eigenvalue of (27) monotonically decreases with𝑚. From (5),

we can diagonalize Θ̃(𝑚) as

Θ̃(𝑚) = W𝑑𝑖𝑎𝑔{Υ1 (𝑚), · · · , Υ𝑁 (𝑚)}W−1. (28)

where

Υ𝑖 (𝑚) = 𝑒−_𝑖
𝜛
𝑚 (1 − 𝑒−_𝑖

𝑙𝑞

𝑚 )
1 − 𝑒−_𝑖

𝑡𝑝

𝑚

. (29)

We then prove Υ𝑖 (𝑚) monotonically decreases with 𝑚 as follows. Note that _𝑖 , 𝜛 𝑙𝑞 and 𝑡𝑝 are

constants. Since 𝑒−_𝑖𝜛/𝑚
monotonically decreases with𝑚, we then need to prove

1−𝑒−_𝑖𝑙𝑞/𝑚

1−𝑒−_𝑖𝑡𝑝 /𝑚 mono-

tonically decreases with𝑚 too.

Let 𝐹 (𝜑) = 1−𝑒−_𝑖𝑙𝑞/𝑚

1−𝑒−_𝑖𝑡𝑝 /𝑚 = 1−𝑒−𝜎1𝜑
1−𝑒−𝜎2𝜑 , where 𝜎1 = _𝑖𝑙𝑞 , 𝜎2 = _𝑖𝑡𝑝 and 𝜑 = 1/𝑚. To prove 𝐹 (𝑚)

monotonically decrease with𝑚, we need to prove 𝐹 (𝜑) = 1−𝑒−𝜑𝜎
1

1−𝑒−𝜑𝜎
2
monotonically increase with 𝜑 ,

where 𝜑 > 0 and 𝜎2 > 𝜎1 > 0, which is equivalent to prove

𝐹 ′(𝜑) = (𝜎2 − 𝜎1)𝑒−(𝜎1+𝜎2)𝜑 + 𝜎1𝑒−𝜎1𝜑 − 𝜎2𝑒−𝜎2𝜑
(1 − 𝑒−𝜎2𝜑 )2 > 0. (30)

Let

𝐹 ′(𝜑)
𝐹 (𝜑) =

𝜎1𝑒
−𝜎1𝜑

1 − 𝑒−𝜎1𝜑 − 𝜎2𝑒
−𝜎2𝜑

1 − 𝑒−𝜎2𝜑 = b (𝜎1) − b (𝜎2) (31)

in which b (𝜎) = 𝜎𝑒−𝜎𝜑

1−𝑒−𝜎𝜑 . Since 𝐹 (𝜑) > 0, we need to prove b (𝜎) monotonically decreases with 𝜎 ,

i.e. b ′(𝜎) =
𝑒−𝜎𝜑 (1−𝜎𝜑−𝑒−𝜎𝜑 )

(1−𝑒−𝜎𝜑 )2 < 0. Let 𝐻 (𝜑) = 1 − 𝜎𝜑 − 𝑒−𝜎𝜑 , we can see 𝐻 (0) = 0 and 𝐻 ′(𝜑) =

𝜎 (−1 + 𝑒−𝜎𝜑 ) < 0 when 𝜑 > 0. Thus, we can infer b ′(𝜎) < 0.

□
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Theorem 6.3 Let S𝑢 (𝑡) be a periodic step-up execution trace on a multi-core platform under a peak
temperature constraint 𝑇𝑚𝑎𝑥 . Using the m-Oscillating approach, S𝑢 (𝑚2, 𝑡) is able to output a service
bound that is no lower than S𝑢 (𝑚1, 𝑡), if𝑚2 ≥ 𝑚1 ≥ 1.

Proof. As shown in Figure 5, without losing generality, S𝑢 (𝑡) is assumed to be a two-speed

schedule. Since𝑚2 ≥ 𝑚1 ≥ 1, we have 𝑇𝑝𝑒𝑎𝑘 (S𝑢 (𝑚2, 𝑡)) ≤ 𝑇𝑝𝑒𝑎𝑘 (S𝑢 (𝑚1, 𝑡)) ≤ 𝑇𝑝𝑒𝑎𝑘 (S𝑢 (𝑡)) ≤ 𝑇𝑚𝑎𝑥

(Theorem 6.2).

Let 𝑡𝑖,𝐻 and 𝑡𝑖,𝐿 denotes the high-speed and low-speed length on the 𝑖-th node within one

period 𝑡𝑝 (as 𝑡𝑖,𝐻 + 𝑡𝑖,𝐿 = 𝑡𝑝 ) of S𝑢 (𝑡), respectively. Then, the bounded-delay function of the 𝑖-th

node of S𝑢 (𝑚1, 𝑡) is 𝑏𝑑 𝑓 (Δ, 𝜌 (𝐴, 𝐵), 𝑙 (0, 𝐴)) [26], which is defined by the slope 𝜌 (𝐴, 𝐵) and the

bounded-delay 𝑙 (0, 𝐴) (the distance between 0 and point A) for any interval length Δ. Similarly,

𝑏𝑑 𝑓 (Δ, 𝜌 (𝐴′, 𝐵′), 𝑙 (0, 𝐴′)) is the bounded-delay function of the 𝑖-th node for S𝑢 (𝑚2, 𝑡).
To prove that S𝑢 (𝑚2, 𝑡) is able to output a service bound that is no lower than S𝑢 (𝑚1, 𝑡), we

need to prove 𝑙 (0, 𝐴′) ≤ 𝑙 (0, 𝐴) and 𝜌 (𝐴′, 𝐵′) ≮ 𝜌 (𝐴, 𝐵). Let the slopes for the high and low-speed

interval of the service output trace 𝔅𝐺 (Δ) be 𝜌𝐻 and 𝜌𝐿 , respectively. Then, for S𝑢 (𝑚1, 𝑡), we can
express the slope factor 𝜌 (𝐴, 𝐵) and bounded delay 𝑙 (0, 𝐴) as

𝜌 (𝐴, 𝐵) = 𝜌𝐿𝑡𝑖,𝐿/𝑚1 + 𝜌𝐻 𝑡𝑖,𝐻/𝑚1

(𝑡𝑖,𝐿 + 𝑡𝑖,𝐻 )/𝑚1

=
𝜌𝐻 𝑡𝑖,𝐻 + 𝜌𝐿𝑡𝑖,𝐿
𝑡𝑖,𝐻 + 𝑡𝑖,𝐿

(32)

𝑙 (0, 𝐴) = (𝜌𝐻 − 𝜌𝐿) · 𝑡𝑖,𝐻/𝑚1 · 𝑡𝑖,𝐿/𝑚1

(𝜌𝐻 𝑡𝑖,𝐻 + 𝜌𝐿𝑡𝑖,𝐿)/𝑚1

=
(𝜌𝐻 − 𝜌𝐿) · 𝑡𝑖,𝐻 · 𝑡𝑖,𝐿
(𝜌𝐻 𝑡𝑖,𝐻 + 𝜌𝐿𝑡𝑖,𝐿) ·𝑚1

(33)

For S𝑢 (𝑚2, 𝑡), we have

𝜌 (𝐴′, 𝐵′) = 𝜌𝐻 𝑡𝑖,𝐻 + 𝜌𝐿𝑡𝑖,𝐿
𝑡𝑖,𝐻 + 𝑡𝑖,𝐿

(34)

𝑙 (0, 𝐴′) = (𝜌𝐻 − 𝜌𝐿) · 𝑡𝑖,𝐻 · 𝑡𝑖,𝐿
(𝜌𝐻 𝑡𝑖,𝐻 + 𝜌𝐿𝑡𝑖,𝐿) ·𝑚2

(35)

It is not hard to see that 𝜌 (𝐴, 𝐵) = 𝜌 (𝐴′, 𝐵′) and since𝑚2 ≥ 𝑚1 ≥ 1, we have 𝑙 (0, 𝐴′) ≤ 𝑙 (0, 𝐴). □
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