On Learning Form and Meaning in Neural Machine Translation Models

Yonatan Belinkov May 2017

With: Nadir Durrani, Hassan Sajjad, Fahim Dalvi, Lluis Marques, James Glass

- Neural machine translation (NMT) obtains state-of-the-art results
- Elegant and simple end-to-end architecture

- Neural machine translation (NMT) obtains state-of-the-art results
- Elegant and simple end-to-end architecture
- However, NMT models are difficult to interpret; what do they learn about the source and target languages?

- Neural machine translation (NMT) obtains state-of-the-art results
- Elegant and simple end-to-end architecture
- However, NMT models are difficult to interpret; what do they learn about the source and target languages?
- Recent interest in the community (e.g. Shi+ 16 on syntax)

• This work: analyzing morphology (and semantics) in NMT

Translation as Decoding

• Warren Weaver to Norbert Wiener, March 4, 1947:

Also knowing nothing official about, but having guessed and inferred considerable about, powerful new mechanized methods in cryptography methods which I believe succeed even when one does not know what language has been coded - one naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say "This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode."

Brief History of Machine Translation

- 1947: Initial ideas of MT (Weaver)
- 1950s: First MT systems
- 1960s: High-quality MT fails, cut in government funding
- 1970s-1980s: Rule-based systems, interlingua ideas
- 1990s: Statistical MT, IBM alignment models
- 2000s: Phrase-based MT, open-source toolkits
- 2014-2015: Neural MT: seq2seq + attention

• Translate a source sentence *F* into a target sentence *E*

 $\hat{E} = \operatorname*{arg\,max}_{E} P(E|F)$

• Translate a source sentence *F* into a target sentence *E*

$$\hat{E} = \arg\max_{E} P(E|F) = \arg\max_{E} \frac{P(F|E)P(E)}{P(F)}$$

• Translate a source sentence *F* into a target sentence *E*

$$\hat{E} = \arg\max_{E} P(E|F) = \arg\max_{E} \frac{P(F|E)P(E)}{P(F)} = \arg\max_{E} P(F|E)P(E)$$

• Translate a source sentence *F* into a target sentence *E*

$$\hat{E} = \arg\max_{E} P(E|F) = \arg\max_{E} \frac{P(F|E)P(E)}{P(F)} = \arg\max_{E} P(F|E)P(E)$$

- P(F|E) Translation model
- P(E) Language model

• Translate a source sentence *F* into a target sentence *E*

From: Jurafsky & Martin 2009

• Translate a source sentence *F* into a target sentence *E*

$$\hat{E} = \underset{E}{\operatorname{arg\,max}} P(E|F) = \underset{E}{\operatorname{arg\,max}} \frac{P(F|E)P(E)}{P(F)} = \underset{E}{\operatorname{arg\,max}} P(F|E)P(E)$$

$$\stackrel{\text{bofetada}}{\operatorname{Maria no dió una}} a a a bruja verde$$

$$\bullet P(F|E) - \text{Translation model}$$

$$\bullet P(E) - \text{Language model}$$

$$\overset{\text{Mary}}{\operatorname{mot}} a a a a bruja verde$$

$$\overset{\text{did}}{\operatorname{not}} a a a a a bruja verde$$

$$\overset{\text{did}}{\operatorname{mot}} a a a a a bruja verde$$

$$\overset{\text{did}}{\operatorname{mot}} a a a a a b a bruja verde$$

From: Jurafsky & Martin 2009

$$P(E|F) = \prod_{i} P(e_{i}|e_{1}, \dots e_{i-1}, F)$$

$$P(E|F) = \prod_{i} P(e_i|e_1, \dots e_{i-1}, F)$$

- Encoder: $h_i^F = f_F(h_{i-1}, x_i)$
- Decoder: $h_i^E = f_E(h_{i-1}, x_{i-1}, c)$

$$P(e_i|e_1, \dots e_{i-1}, F) = g(h_i, x_{i-1}, c)$$

• Loss:

$$: \qquad \frac{1}{N} \sum_{n=1}^{N} \sum_{i} \log P(e_{i}^{n} | e_{1}^{n}, \dots e_{i-1}^{n}, F^{n})$$

$$P(E|F) = \prod_{i} P(e_i|e_1, \dots e_{i-1}, F)$$

Encoder-Decoder

The Problem with the Encoder-Decoder

• Raymond Mooney, June 26, 2016:

"You can't cram the meaning of a whole %&!\$# sentence into a single \$&!#* vector!"

Attention Mechanism

Attention Mechanism

Attention Mechanism

Attention as soft alignment

Phrase-based MT

Attention as soft alignment

Neural MT

Phrase-based MT

Research Questions

Research Questions

- Which parts of the NMT architecture capture word structure? Which capture meaning?
- What is the division of labor between different components?
- How do different word representations help learn better morphology?
- How does the target language affect the learning of word structure?

- Three step procedure:
 - 1. Train a neural MT system
 - 2. Extract feature representations using trained the model
 - 3. Train a classifier using extracted features and evaluate it on an extrinsic task

- Three step procedure:
 - 1. Train a neural MT system
 - 2. Extract feature representations using trained the model
 - 3. Train a classifier using extracted features and evaluate it on an extrinsic task
- Assumption: performance of the classifier reflects quality of the NMT representations for the given task

Part A: Morphology

Experimental Setup

- Tasks
 - Part-of-speech tagging
 - Morphological tagging
- Languages
 - Arabic-, German-, French-, and Czech-English
 - Arabic-Hebrew (rich and similar)
 - Arabic-German (rich but different)

Experimental Setup

- MT data: TED talks
- Annotated data
 - Gold tags
 - Predicted tags

	Ar	De	Fr	Cz
	Gold/Pred	Gold/Pred	Pred	Pred
Train Tokens Dev Tokens Test Tokens	0.5M/2.7M 63K/114K 62K/16K	0.9M/4.0M 45K/50K 44K/25K	5.2M 55K 23K	2.0M 35K 20K
POS Tags Morph Tags	42 1969	$\begin{vmatrix} 54\\214 \end{vmatrix}$	33	368

Encoder

Effect of Word Representation

	POS Accuracy		BL	EU
	Word	Char	Word	Char
Ar-En				
Ar-He				
De-En				
Fr-En				
Cz-En				

	POS Accuracy		BLEU	
	Word	Char	Word	Char
Ar-En	89.62	95.35	24.7	28.4
Ar-He	88.33	94.66	9.9	10.7
De-En	93.54	94.63	29.6	30.4
Fr-En	94.61	95.55	37.8	38.8
Cz-En	75.71	79.10	23.2	25.4

	POS Accuracy		BLEU	
	Word	Char	Word	Char
Ar-En	89.62	95.35	24.7	28.4
Ar-He	88.33	94.66	9.9	10.7
De-En	93.54	94.63	29.6	30.4
Fr-En	94.61	95.55	37.8	38.8
Cz-En	75.71	79.10	23.2	25.4

• Character-based models generate better representations for POS tagging

	POS Accuracy		BLEU	
	Word	Char	Word	Char
Ar-En	89.62	95.35	24.7	28.4
Ar-He	88.33	94.66	9.9	10.7
De-En	93.54	94.63	29.6	30.4
Fr-En	94.61	95.55	37.8	38.8
Cz-En	75.71	79.10	23.2	25.4

• Especially with richer morphological systems

	POS Accuracy		BLEU	
	Word	Char	Word	Char
Ar-En	89.62	95.35	24.7	28.4
Ar-He	88.33	94.66	9.9	10.7
De-En	93.54	94.63	29.6	30.4
Fr-En	94.61	95.55	37.8	38.8
Cz-En	75.71	79.10	23.2	25.4

• Character-based models improve translation quality

Impact of Word Frequency

Impact of Word Frequency

Impact of Tag Frequency

Comparing Specific Tags

Word-based

Char-based

Comparing Specific Tags

Word-based

Char-based

- NMT models can be very deep
 - Google Translate: 8 encoder/decoder layers
 - Zhou+ 2016: 16 layers

- NMT models can be very deep
 - Google Translate: 8 encoder/decoder layers
 - Zhou+ 2016: 16 layers
- What kind of information is learned at each?

- NMT models can be very deep
 - Google Translate: 8 encoder/decoder layers
 - Zhou+ 2016: 16 layers
- What kind of information is learned at each?
- We analyzed a 2-layer encoder
 - Extract representations from different layers for training the classifier

- Layer 1 > Layer 2 > Layer 0
- But deeper models translate better

• Is layer 2 learning more about semantics? More on that later...

• How does the target language affect the learned source language representations?

- How does the target language affect the learned source language representations?
- Experiment:
 - Fix source side and train NMT models on different target languages
 - Compare learned representations on POS/morphological tagging

- Source language: Arabic
- Target languages: English, German, Hebrew, Arabic

- Source language: Arabic
- Target languages: English, German, Hebrew, Arabic

• Poorer morphology on target side, better source side representations for morphology

• Higher BLEU ≠ better representations

Decoder

	POS Accuracy	
	Encoder	Decoder
Arabic \leftrightarrow English		
$German \leftrightarrow English$		
$Czech \leftrightarrow English$		

	POS Accuracy	
	Encoder	Decoder
Arabic \leftrightarrow English	89.6	43.9
$German \leftrightarrow English$	93.5	53.6
$Czech \leftrightarrow English$	75.7	36.3

	POS Accuracy	
	Encoder	Decoder
Arabic \leftrightarrow English	89.6	43.9
$German \leftrightarrow English$	93.5	53.6
Czech↔ English	75.7	36.3

• The decoder learns very little about target language morphology

	POS Accuracy	
	Encoder	Decoder
Arabic \leftrightarrow English	89.6	43.9
$German \leftrightarrow English$	93.5	53.6
$Czech \leftrightarrow English$	75.7	36.3

- The decoder learns very little about target language morphology
- Why?

	With attention	Without attention
English $ ightarrow$ German		
English \rightarrow Czech		

	With attention	Without attention
English \rightarrow German	44.55	50.26
English \rightarrow Czech	36.35	42.09

	With attention	Without attention
English \rightarrow German	44.55	50.26
English \rightarrow Czech	36.35	42.09

- Removing attention improves decoder representations
- Attention is removing burden off of the decoder
- The decoder does not need to learn as much about target words

	With attention	Without attention	With most attended word
English $ ightarrow$ German	44.55	50.26	60.34
English $ ightarrow$ Czech	36.35	42.09	48.64

- Concatenating most attended word improves performance
- Encoder representations helpful for target morphology

	With attention	Without attention	With most attended word	Only most attended word
English \rightarrow German	44.55	50.26	60.34	43.43
English \rightarrow Czech	36.35	42.09	48.64	36.36

- Concatenating most attended word improves performance
- Encoder representations helpful for target morphology
- But using only encoder side is not as good
Summary

- NMT encoder learns good representations for morphology
- Character-based representations much better than word-based
- Target language impacts source side representations
- Layer 1 > Layer 2 > Layer 0
- Decoder learns poor target side representations
- Attention model helps decoder exploit source representations

Summary

- NMT encoder learns good representations for morphology
- Character-based representations much better than word-based
- Target language impacts source side representations
- Layer 1 > Layer 2 > Layer 0
- Decoder learns poor target side representations
- Attention model helps decoder exploit source representations

Part B: Semantics

Recap

- We saw
 - NMT representations from layer 1 better than layer 2 (and layer 0) for POS and morphological tagging
 - Deeper networks lead to better translation performance

Recap

- We saw
 - NMT representations from layer 1 better than layer 2 (and layer 0) for POS and morphological tagging
 - Deeper networks lead to better translation performance
- Questions
 - What is captured in higher layers?
 - How is semantic information represented?

Recap

- We saw
 - NMT representations from layer 1 better than layer 2 (and layer 0) for POS and morphological tagging
 - Deeper networks lead to better translation performance
- Questions
 - What is captured in higher layers?
 - How is semantic information represented?
- Let's apply a similar methodology to a semantic task

Semantic tagging

- Lexical semantics
- Abstraction over POS tagging
- Language-neutral, aimed for multi-lingual semantic parsing

Semantic tagging

- Lexical semantics
- Abstraction over POS tagging
- Language-neutral, aimed for multi-lingual semantic parsing
- Some examples
 - Determiners: *every*, *no*, *some*
 - Comma as conjunction, disjunction, apposition
 - Role nouns, entity nouns
 - Comparison adjectives: comparative, superlative, equative

Experimental Setup

- Semantic tagging data
 - 66 fine-grained tags, 13 coarse categories

	Train	Dev	Test
Sentences	42.5K	6.1K	12.2K
Tokens	937.1K	132.3K	265.5K

- MT data UN corpus
 - Multi-parallel
 - 11M sentences
 - Arabic, Chinese, English, French, Spanish, Russian

Baselines

System	Accuracy	
Most frequent tag	82.0	
Unsupervised embeddings	81.1	
Word2Tag encoder-decoder	91.4	
State-of-the-art (Bjerva+ 16)	95.5	

• Layer 0 below baseline

- Layer 0 below baseline
- Layer 1 >> layer 0

- Layer 0 below baseline
- Layer 1 >> layer 0
- Layer 4 > layer 1

- Layer 0 below baseline
- Layer 1 >> layer 0
- Layer 4 > layer 1
- Similar trends for coarse tags

Effect of Target Language

Effect of Target Language

• No impact on semantic tagging

Effect of Target Language

- No impact on semantic tagging
- But large impact on translation:

	BLEU
En-Ar	32.7
En-Es	49.1
En-Fr	38.5
En-Ru	34.2
En-Zh	32.1

- Layer 4 vs layer 1
- Bleu: distinguishing among coarse tags
- Red: distinguishing among fine-grained tags within a coarse category

• Layer 4 > layer 1

- Layer 4 > layer 1
- Especially with:
 - Discourse relations (DIS)
 - Properties of nouns (ENT)
 - Events, tenses (EVE, TNS)
 - Logic relations and quantifiers (LOG)
 - Comparative constructions (COM)

Difference between Layer 4 F1 and Layer 1 F1

Negative examples

- Negative examples
- Modality (MOD)
 - Closed-class ("no", "not", "should", "must", etc.)

- Negative examples
- Modality (MOD)
 - Closed-class ("no", "not", "should", "must", etc.)
- Named entities (NAM)
 - 00Vs?
 - Neural MT limitation?

Difference between Layer 4 F1 and Layer 1 F1

	0	1	2	3	4
POS	87.9	92.0	91.7	91.8	91.9
Sem	81.8	87.8	87.4	87.6	88.2

	0	1	2	3	4
POS	87.9	92.0	91.7	91.8	91.9
Sem	81.8	87.8	87.4	87.6	88.2

- Higher layers improve semantic tagging but not POS tagging
- Layer 1 best for POS; layer 4 best for semantic tagging

		0	1	2	3	4
Uni	POS	87.9	92.0	91.7	91.8	91.9
	Sem	81.8	87.8	87.4	87.6	88.2
Bi	POS	87.9	93.3	92.9	93.2	92.8
	Sem	81.9	91.3	90.8	91.9	91.9

- Higher layers improve semantic tagging but not POS tagging
- Layer 1 best for POS; layer 4 best for semantic tagging
- Similar trends with bidirectional encoder

Summary

- Neural MT representations contain useful information about word form and meaning
- Lower layers focus on POS/morphology
- Higher layers focus on (lexical) semantics
- Target language does not affect semantic tagging quality

Future Work

- Other neural MT architectures
 - Word representations; multi-lingual models
- Other linguistic properties
 - Syntactic and semantic relations, complex structures
- Improving neural MT
 - Multi-task learning
- Analyzing representations in other neural models
 - End-to-end speech recognition