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Abstract 
 
New global information-bearing features improved the modeling of individual letters, 
thus diminishing the error rate of an HMM-based on-line cursive handwriting recognition 
system.  This system also demonstrated the ability to recognize on-line cursive 
handwriting in real time.  The BYBLOS continuous speech recognition system, a hidden 
Markov model (HMM) based recognition system, is applied to on-line cursive 
handwriting recognition.  With six original features, delta x, delta y, writing angle, delta 
writing angle, PenUp/PenDown bit, and sgn(x-max(x)), the baseline system obtained a 
word error rate of 13.8% in a 25K-word lexicon, 86-character set, writer-independent 
task.  Four new groups of features, a vertical height feature, a space feature, hat stroke 
features, and substroke features, were implemented to improve the characterization of 
vertical height, inter-word space, and other global information.  With the new features, 
the system obtained a word error rate of 9.1%, a 34% reduction in error.  Additionally, the 
space feature and the substroke features each reduced the word error rate approximately 
15%.  In addition, we demonstrated real-time, large vocabulary, writer-independent, on-
line cursive handwriting recognition without sacrificing much recognition accuracy of the 
baseline system by implementing minor modifications to the baseline handwriting 
recognition system.  The details of the on-line cursive handwriting recognition system, 
the feature experiments, and the real-time demonstration system are presented. 
 
 
Thesis Supervisors: Dr. John Makhoul and Dr. Victor W. Zue 
Titles: Chief Scientist, Speech and Language Department, BBN Corp. and 

 Senior Research Scientist, Dept. of EECS, MIT 
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1. Introduction 
Handwriting recognition can be divided by its input method into two categories: 

off-line handwriting recognition and on-line handwriting recognition.  For off-line 

recognition, the writing is usually captured optically by a scanner.  For on-line 

recognition, a digitizer samples the handwriting to time-sequenced pixels as it is being 

written.  Hence, the on-line handwriting signal contains additional time information 

which is not presented in the off-line signal.  This thesis addresses the problem of on-line 

handwriting recognition. 

On-line handwriting recognition technology has great potential for improving 

human-machine interaction.  For example, without a keyboard, portable computers could 

be smaller; writing down a mathematical equation by hand would be more natural; and 

taking notes with a pen-based portable computer would be free of keyboard clicking.  

These are just a few of the possible benefits.  Products including the Newton™ from 

Apple and personal digital assistants from AT&T and Hewlett Packard have already 

started to incorporate on-line handwriting recognition technology. 

 About ten years ago, advances in tablet digitizer technology brought on a wave of 

interest in the on-line handwriting recognition research arena.  However, after ten years, 

some of the toughest problems of on-line handwriting recognition remain.  A few on-line 

handwriting recognition systems have demonstrated highly accurate recognition results by 

imposing constraints such as printed writing style, writer-dependence, and small 

vocabulary size.  Each of these issues will de discussed in detail in the next section.  

These constraints can make on-line handwriting recognition considerably easier, but for 

on-line handwriting recognition technology to have the full benefits mentioned above, the 

systems must be independent of these constraints. 

 The focus in this thesis will be an on-line handwriting recognition system that is 

mostly free of these constraints.  Namely, a system performs cursive, large vocabulary, 

and writer-independent (WI) on-line handwriting recognition, as well as the ability to 

perform this task in real time. 
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1.1 Issues of On-line Handwriting Recognition 

1.1.1 Styles of Handwriting: Printed vs. Cursive 

The difficulty of handwriting recognition varies greatly with different writing 

styles.  Figure 1-1 illustrates different writing styles in English.  The writing style of the 

first three lines is commonly referred to as printed or discrete handwriting, in which the 

writer is told to write each character within a bounding box or to separate each character.  

The writing style of the fourth line is commonly referred to as pure cursive or connected 

handwriting, in which the writers are told to connect all of the lower case characters 

within a word.  Most people write in a mixed style, a combination of printed and cursive 

styles, similar to the writing on the fifth line. 

Easy

Difficult  
Figure 1-1: Types of English writing styles [1]. 

Both printed and cursive handwriting recognition are difficult tasks because of the 

great amount of variability present in the on-line handwriting signal.  The variability is 

present both in time and signal space.  Variability in time refers to variation in writing 

speed, while variability in signal space refers to the shape changes of the individual 

characters. It is rare to find two identically written characters.  The difficulty of 

recognizing handwriting lies in constructing accurate and robust models to accommodate 

the variability in time and feature space. 

In addition to these two types of variability in time and signal space, cursive 

handwriting has another type of variability in time which makes this task even more 

difficult.  This additional type of variability is due to the fact that no clear inter-character 

boundaries (where one character starts or ends) exist.  In printed handwriting, a pen-lift 

defines these boundaries between characters.  However, in cursive handwriting the pen-
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lift cues simply do not exist.  Cursive-style handwriting recognition is more difficult 

because the recognizer has to perform the error-prone step of character segmentation, 

either explicitly or implicitly.  In this project, only cursive handwriting will be directly 

investigated. 

1.1.2 Writer-Dependent vs. Writer-Independent 

A writer-independent (WI) system is capable of recognizing handwriting from 

users whose writing the system has not seen during training.  In general, WI systems are 

much more difficult to construct than writer-dependent (WD) ones.  Humans are capable 

of WI recognition.  However, we are better at WD recognition than WI recognition tasks, 

i.e., generally we can recognize our own handwriting better than a stranger’s handwriting. 

The WI systems are more difficult to construct because the variability of 

handwriting across writers is much greater than the handwriting of a writer.  For WD 

tasks, the system is only required to learn a few handwriting styles.  On the other hand, 

for WI tasks, the system must learn invariant and generalized characteristics of 

handwriting. 

1.1.3 Closed-Vocabulary vs. Open-Vocabulary 

Vocabulary is also a major factor in determining how difficult a handwriting 

recognition task is.  Closed-vocabulary tasks refer to recognition of words from a 

predetermined dictionary.  The dictionary size is arbitrary.  Open-vocabulary tasks refer 

to recognition of any words without the constraint of being in a dictionary.  

Closed-vocabulary tasks are easier than open-vocabulary ones because only certain 

sequences of letters are possible when limited by a dictionary. 

Closed-vocabulary tasks using a small dictionary are especially easy because: 1) a 

small vocabulary size can mean a smaller number of confusable word pairs; 2) a small 

vocabulary size enables the direct modeling of individual words, whereas a large 

vocabulary size necessitates the modeling of letters, which is due to the computational 

complexity of modeling words directly; 3) with the usage of letters for large vocabulary 

tasks, the search space of all possible sentences is usually much larger due to an increase 

in the number of nodes in the search graph.  When letters are used for modeling instead of 
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words, the number of nodes is m n×  instead of n where n is the number of words, and m 

is the average number of letters per word (generally between three and ten). 

As the vocabulary size increases, the occurrence of out-of-vocabulary words is 

less frequent.  Thus, the performance of the large vocabulary tasks is approximately the 

same as of the performance of the open-vocabulary tasks. 

1.2 Background 

Since the improvement of tablet digitizer technology about ten years ago, many 

researchers around the world have developed an interest in on-line handwriting 

recognition.  Initially, research focused on template matching approaches.  While these 

approaches gave reasonable results on printed or discrete handwriting, they had very 

limited success with cursive handwriting due to difficulty in accurately and reliably 

locating character boundaries.  Tappert gives a complete review of this approach [2]. 

Recently, several research sites have started to focus on statistical approaches, 

especially hidden Markov models (HMMs), for on-line handwriting recognition.  HMMs’ 

success in the speech recognition domain has motivated the use of HMMs in the on-line 

handwriting domain.  HMMs have proven themselves to be effective mathematical 

models for characterizing the variance both in time and signal space presented in speech 

signals [3, 4].  Several research sites have built on-line handwriting recognition system 

using HMMs.  Below is a summary of their work with emphasis on the features used: 

• Nag et al. [5] at Cambridge University (CU) utilized angle and sharp turning-point 

indicators to recognize the words for the numbers one to ten.  It achieved a 98.5% 

correct rate. 

• Bellegarda et al. [6, 7] at IBM used local position, curvature, and global information 

bearing features to recognize characters from on an 81 character data corpus.  It 

achieved an 18.9% character error rate without grammar in WI mode. 

• Starner et al. [8] [9] at BBN used angle, delta angle, delta x (x is the horizontal 

position), delta y (y is the vertical position), pen lifts, and sgn(x-max(x)) features to 
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recognize words from a 25K word corpus.  With a bi-gram grammar, it achieved a 

4.2% word error rate in WD mode.  In the WI mode, the word error rate was 13.8%1. 

• Schenkel et al. [10] at AT&T used x and y coordinates, pen-lifts, speed, direction, and 

curvature features to recognize words from a 25K word corpus, it achieved an 

approximately 20% word error rate with a dictionary in WI mode. 

Table 1-1: Summary of HMM-based on-line handwriting recognition systems 

 Features WI 
vs. 

WD 

Character 
Set 
Size 

Voca- 
bulary 
Size 

Grammar Char-
acter 
Error 
(%) 

Word 
Error 
(%) 

CU ‘86 angle, sharp turning - 15 10 No - 1.52 
IBM 
‘94 

local position,  
curvature,  
global information 

WI 81 300 No 18.9 - 

BBN 
WD ‘94 

angle, delta angle,  
delta x, delta y,  
pen-lifts, sgn(x-max(x)) 

WD 89 25,595 bi-gram 1.4 4.2 

BBN 
WI ‘95 

same as above WI 89 25,595 bi-gram - 13.8 

AT&T 
‘94 

x, y, pen-lifts, speed,  
direction, curvature 

WI 52 ~25,000 No 112 202 

Table 1-1 illustrates the most important features of HMM-based on-line handwriting 

recognition systems.  Bear in mind that the error rates alone do not suffice for comparing 

systems with each other because these error rates were obtained using very different 

parameters, such as variable data corpora, grammar usage, etc.  This comparison of error 

rates is only valid if the data corpora and other conditions are the same. 

1.3 Summary and Research Goals 

With the increasing demand for general purpose on-line handwriting recognition 

technology, research in the area of on-line handwriting recognition has shifted away from 

the traditional template-matching techniques.  More sophisticated techniques have been 

                                                 
1 The writer-independent result was not reported in [8] [9].  The author of this thesis obtained the writer-
independent result for comparison purposes. 
2 The error rate is commonly referred to as the sum of three separate error components: the insertion error, 
the deletion error, and the substitution error.  Here, the original author reported the substitution error only, 
so the error percentage should be even larger. 
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experimentally applied to the harder problems of cursively written, WI, and large 

vocabulary on-line handwriting recognition. 

Much of the recent work in on-line handwriting recognition has been on adapting 

well-known HMM algorithms in speech recognition to these difficult on-line handwriting 

problems.  However, most of the work has been in feasibility studies.  These studies have 

shown HMMs to be effective in solving these difficult on-line handwriting problems.  

Little research has been focused on the optimal representation of on-line handwriting, i.e., 

the kind of features that should be used.  In the speech domain, after years of research and 

experimentation, Mel-frequency cepstral coefficients and delta Mel-frequency cepstral 

coefficients have become the de facto features of choice.  In the handwriting domain, it is 

not yet clear which features are best. 

In this thesis, answers to some of these questions will be explored while focusing 

on useful features to effectively adapt the modeling and decoding techniques of an 

HMM-based pattern recognizer.  We will also attempt to build a real-time handwriting 

recognition system.  It is only through a real-time system that a potential user can 

effectively evaluate how usable this on-line technology really is. 

In Chapter 2, a clear definition of hidden Markov models will help to explain how 

they are used for on-line handwriting recognition.  For the feature experiment, we will 

describe the on-line handwriting data corpus in Chapter 3, the baseline on-line 

handwriting recognition system in Chapter 4, and the details of the feature experiments in 

Chapter 5.  In Chapter 6, the real-time on-line cursive handwriting recognition 

demonstration system is described.  Chapter 7 draws conclusions and suggests directions 

for future work. 
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2. Hidden Markov Models for On-line Handwriting 

Recognition 
Hidden Markov Models (HMMs) were initially developed in the 1960’s by Baum 

and Eagon at the Institute for Defense Analyses (IDA) [11-13]. In the 1970’s, Baker at 

Carnegie-Mellon University (CMU) [14], Jelinek at IBM [15], and other applied HMMs 

to the problem of speech recognition.  In 1980, IDA invited a number of research 

organizations in speech recognition, among them were AT&T and BBN, for a workshop 

on HMMs.  In the mid 1980’s, several HMM-based speech recognition systems from 

AT&T, BBN, and CMU showed superior results [16-18].  The success of these systems 

dramatically increased interest in applying HMMs to continuous speech recognition and 

other difficult pattern recognition problems such as handwriting recognition. 

There are two types of HMMs classified by their observation densities: 

discrete-density HMMs and continuous-density HMMs.  For simplicity, the discussion 

here will be limited to discrete-density HMMs.  A more detailed explanation of HMMs 

can be found in [4, 18, 19]. 

2.1 Model Parameters of Hidden Markov Model1 

Hidden Markov models (HMMs) can be viewed as extensions of discrete-state 

Markov processes.  To fully understand HMMs, a review of the discrete-state Markov 

process is necessary, as well as an explicit definition of the extension. 

2.1.1 Discrete-State Markov Process 

A Markov process is a stochastic process whose future behavior depends only on 

its present state, not on the past, i.e., it satisfies the Markov condition.  A discrete-state 

Markov process can be in one of a set of N distinct discrete states, S1, S2,…, SN at any 

given time.  In Figure 2-1, the number N of distinct discrete states is 3.  Let Qn denote the 

process state at time n.  The probability of the process being in state Si at time n is 

                                                 
1 The material presented in this section is based on [20], [4], and [18]. 
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denoted by P(Qn=Si).  Specifically, the Markov condition (or the state-independence 

assumption) states: 

P(Qn=Si|Qn-1=Sj,Qn-2=Sa,…,Q0=Sb)=P(Qn=Si|Qn-1=Sj),   ∀  i, j, a, b, and n. ( 2.1 ) 

S1

S3S2

a22

a11

a33

a12
a31

a23

a13a21

a32

 
Figure 2-1: Illustration of a Markov chain with 3 states (labeled S1, S2, and S3). 

Since a discrete-state Markov process satisfies the Markov condition, the initial 

state probabilities and the state transition probabilities together characterize the process 

completely.  The initial state probabilities are denoted Π={πi}, where: 

πi=P(Q0=Si),  1 ≤ i ≤ N. ( 2.2 ) 

The state transition probabilities are denoted A={aij}, where: 

aij=P(Qn=Sj|Qn-1=Si),  1 ≤ i, j ≤ N, and ( 2.3 ) 

a iij
j

∑ = ∀1, .         ( 2.4 ) 

In Figure 2-1,  

A={a }=
a a a
a a a
a a a

ij

11 12 13

21 22 23

31 32 33















 ,

 and 

 
( 2.5 ) 

 

[ ]Π={ }=kπ π π π1 2 3 .  ( 2.6 ) 

The duple, {A, Π}, completely parameterizes a discrete-state Markov process.  For a more 

detailed treatment, refer to [21]. 
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2.1.2 Hidden Markov Models: An Extension of Discrete-State Markov 

Processes 

Each state of a discrete-state Markov process can be associated with a 

deterministic observation, i.e., the symbol Oi is always observed when the process is in 

the state i.  However, for most speech or handwriting recognition applications, the 

constraint of a deterministic observation for each state in the model is too restrictive.  

When this constraint is eliminated by allowing the observation within each state to be 

probabilistic, we obtain a hidden Markov model.  In this extended model, the observation 

sequence does not have a corresponding deterministic state sequence.  In general, there 

are many possible state sequences which generate an observation sequence.  Hence, the 

state sequence is hidden. 

b20

b21

0  1

b30

b31

0  1

b10

b11

0  1S1

S3S2

a22

a11

a33

a12
a31

a23

a13a21

a32

 
Figure 2-2: Illustration of a hidden Markov model with 3 states. 

Now, a formal definition for HMMs will be given.  Let M be the number of 

distinct observation symbols in each state.  Let On be the observation at time n.  An event 

for which the observation symbol is k is denoted by vk.  The state observation 

probabilities are { }B bivk
= , where 

( )b P O v Q S i N k Miv n k n ik
= = = ≤ ≤ ≤ ≤| .,    and 1 1  ( 2.7 ) 

Since an HMM satisfies an additional output independence assumption, we have: 
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P(On=vk|On-1=va,On-2=vb,…,O0=vc,Qn=Sk)=P(On=vk|Qn=Sk),  ∀ k, a, b, c, and n. ( 2.8 ) 

The triple, {A, B, Π}, is a complete parameter set of an HMM.  Let λ denote this triple, 

i.e., λ={A, B, Π}.  In Figure 2-2, the number of distinct discrete states, N=3.  The number 

of observation symbols, M=2.  The state transition probabilities are 

A={a }=
a a a
a a a
a a a

ij

11 12 13

21 22 23

31 32 33















 .

 ( 2.9 ) 

The state observation probabilities are 

B={b }=
b
b
b

b
b
b

ivk

10

20

30

11

21

31






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





 .

 ( 2.10 ) 

And the initial state probabilities are 

[ ]Π={ }=kπ π π π1 2 3 .  ( 2.11 ) 

2.2 Three Basic HMM Problems1 

Given the hidden Markov model defined in the previous section, three basic 

problems of interest need to be solved efficiently; an explanation for why the three 

problems will be given in the next section: 

• The Evaluation Problem: Given an observation sequence, O=O1O2…OT, and the 

complete parameter set of an HMM, λ={A, B, Π}, what is P(O|λ), the probability of 

the observation sequence O given the model parameter set λ? 

• The Decoding Problem: Given an observation sequence O and the complete 

parameter set of an HMM λ, what is the optimal state sequence Q=Q1Q2…QT which 

maximizes P(Q, O|λ)? 

• The Training Problem: Given an observation sequence O, what is the optimal model 

λ which maximizes P(O|λ)? 

                                                 
1 The material presented in this section is based on [20], [4], and [18]. 
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2.2.1 A Solution to the Evaluation Problem – The Forward Algorithm 

The evaluation problem is to compute P(O|λ), the probability of the observation 

sequence, O=O1O2…OT, given the model parameter λ. 

Since the state sequence, Q=Q1Q2…QT, corresponding to the observation 

sequence O is hidden, P(O|λ) has to be computed by summing P(O, Q|λ) over all 

possible state sequences. 

P O P O Q
all Q

( | ) ( , | )λ λ= ∑
 

 ( 2.12 ) 

P(O, Q|λ)=P(O|Q, λ) P(Q|λ). ( 2.13 ) 

According to the state independence assumption ( 2.1 ), we can write: 

P Q a a aQ Q Q Q Q Q QT T
( | ) ...λ π=

−1 2 1 3 2 1
. ( 2.14 ) 

Also, the output independence assumption ( 2.8 ) allows us to conclude: 

P O Q b b bQ O Q O Q OT T
( | , ) ...λ =

1 1 2 2
. ( 2.15 ) 

Therefore, 

( ) ( ) ( )P O a a a b b bQ Q Q Q Q Q Q Q O Q O Q O
all Q

T T T T
| ... ... .λ π= ⋅ ⋅

−∑ 1 2 1 3 2 1 1 1 2 2
 

 ( 2.16 ) 

 The direct calculation of P(O|λ) ( 2.16 ) involves calculations on the order of 

2TNT.  This computation becomes unfeasible as the number of possible states, N, or the 

length of the observation sequence T increases.  This necessitates a more efficient way of 

computing P(O|λ). 

 Fortunately, an efficient algorithm exists.  First, let us define the forward 

variable: 

αt(i)=P(O1 O2 … Ot, Qt=Si|λ). ( 2.17 ) 

The variable αt(i) denotes the joint probability of the partial observation sequence, 

O1O2…Ot, and the state Si at time t, given the model λ.  It can be calculated recursively: 

( ) ( )α

π

αt

i iO

t ji
j

N

iO
i

b t i N

j a b t T i N
t

=

= ≤ ≤








 ≤ ≤ ≤ ≤







 −

=
∑

1
1 1

2 11
1

,

, , .

 

  ( 2.18 ) 

From the definition of the forward variable ( 2.17 ), it is clear that the probability of the 

entire sequence can be expressed as: 
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( ) ( )P O iT
i

N

| .λ α=
=
∑

1

 
( 2.19 ) 

 Equations ( 2.17 ) through ( 2.19 ) illustrate how to compute P(O|λ) by first 

recursively evaluating the forward variables, αt(i), from t=1 to t=T ( 2.18 ), and then 

summing all the forward variables at time T, the αT(i)’s ( 2.19 ).  The above steps are 

often referred to as the forward algorithm.  The number of calculations involved is on the 

order of TN2 instead of 2TNT ( 2.16 ).  Hence, the forward algorithm can be used to solve 

the evaluation problem much more efficiently. 

2.2.2 A Solution to the Decoding Problem – The Viterbi Algorithm 

The decoding problem involves finding an optimal state sequence given the 

observation sequence, O=O1O2…OT, and the model parameter λ.  Assume that the 

optimality criterion is to maximize P(Q, O|λ), the joint probability of the state sequence, 

Q=Q1Q2…QT, and the observation sequence O given the model λ.  The optimal state 

sequence is denoted by Q*. 

 The well-known Viterbi algorithm, based on dynamic programming, solves 

exactly this optimization problem.  In it, δt(i) denotes the maximum probability of the 

optimal partial state sequence, Q1Q2…Qt-1, with the state Si at time t and observing the 

partial observation sequence, O1O2…Ot, given the model λ. 

( )δ λt Q Q Q t t i ti P Q Q Q Q S O O O
t

( ) max ... , ... | .
...

= =
−

−
1 2 1

1 2 1 1 2  ( 2.20 ) 

Much like the forward variable αt(i), δt(i) can be calculated recursively: 

( ) ( )δ
π

δt

i iO

i N t ji iO
i

b t i N
j a b t T i N

t

=
= ≤ ≤

≤ ≤ ≤ ≤

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

 ≤ ≤ −

1
1 1

2 1
1 1

,
max , , .

 
  ( 2.21 ) 

From the definition of δt(i) ( 2.20 ), it is clear that  

( ) ( )P Q O i
i N T

* , | max .λ δ=
≤ ≤1

 ( 2.22 ) 

 Using ( 2.21 ) and ( 2.22 ), one can compute the joint probability of the optimal 

state sequence and the observation sequence given the model, P(Q*, O|λ).  Note that the 

memory usage is very efficient, i.e., at any time t, only N forward variables, δt(i) need to 
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be stored.  By keeping track of the argument i in both equations as P(Q, O|λ) is being 

maximized, one can recover the optimal state sequence completely. 

Also note that P(Q*, O|λ) can be viewed as the biggest component of P(O|λ) in  

( 2.12 ).  When P(Q*, O|λ) is a good approximation of P(O|λ), one can use the Viterbi 

algorithm instead of the forward algorithm for the evaluation problem.  This will 

conserve computation.  Since the computational complexity of the Viterbi algorithm is 

even less than that of the forward algorithm.  For speech recognition applications, this 

approximation is sometimes used during recognition or training. 

2.2.3 A Solution to the Training Problem – The Baum-Welch 

Algorithm 

The training problem computes the optimal model parameter, λ, given an 

observation sequence, O=O1O2…OT.  Here, the optimality criterion is to maximize 

P(O|λ), the probability of the observation sequence given the model λ.  The training 

problem is by far the most difficult of the three basic problems.  In fact, no known 

analytical solution exists for this optimization problem.  However, an iterative procedure 

known as the Baum-Welch algorithm or forward-backward algorithm guarantees a 

locally optimal solution to the training problem.  The Baum-Welch algorithm is a special 

case of the EM (Expectation-Maximization) algorithm [22].  In this section, we describe 

the Baum-Welch Algorithm. 

 First, let us define the backward variable: 

βt(i)=P(Ot+1 Ot+2 … OT|Qt=Si, λ). ( 2.23 ) 

The variable βt(i) denotes the probability of the partial observation sequence, Ot+1 Ot+2 … 

OT, given the state Si at time t and the model λ.  The backward variable is similar to the 

forward variable ( 2.17 ).  It can also be calculated recursively: 

( ) ( )β βt
t ij

j

N

jO
i

t T i N

j a b t T i N
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=
= ≤ ≤

≤ ≤ ≤ ≤
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∑ +

1 1

2 11
1

1

,
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  ( 2.24 ) 

From the definition of the backward variable ( 2.23 ) and the definition of the initial state 

probabilities ( 2.2 ), it is clear that 
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( ) ( )P O i i
i

N

| .λ β π=
=
∑ 1

1

 
( 2.25 ) 

 Second, let us define ξt(i, j), the joint probability of the state Si at time t and the 

state Sj at time t+1, given the observation sequence O and the model λ. 

ξt(i, j)=P(Qt = Si, Qt+1 = Sj|O, λ). ( 2.26 ) 

ξt(i, j) can be completely expressed in terms of the forward variable, the backward 

variable, and the model λ. 
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( 2.27 ) 

Note that the denominator of ( 2.27 ) needs to be calculated only once.  This quantity, 

which is equivalent to P(O|λ), is often referred to as the alpha terminal.  It indicates how 

well the model λ matches the observation sequence O. 

 With the current model as λ=(A, B, Π), we can iteratively reestimate the model, 

λ = ( , , )A B Π , where 
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( 2.28 ) 
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( 2.29 ) 

( )π ξi
j

N

i j=
=
∑ 1

1
, .  

( 2.30 ) 

aij can be seen as the ratio of the expected number of transitions from state Si to Sj to the 

expected number of transitions from state Si to any state.  Similarly, bivk  can be seen as 

the ratio of the expected number of times in state i while observing the symbol vk to the 
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expected number of times in state i.  πi  can be seen as the expected number of times in 

state Si at time t=1. 

 The above iterative procedure for updating the model λ is the essence of the 

Baum-Welch algorithm.  Baum and others have proven that P O P O( | ) ( | )λ λ≥  for every 

iteration of the algorithm [22, 23].  Hence, P O P O( | ) ( | )λ λ≈  is used as the stopping 

criterion for the algorithm.  The likelihood function, P O( | )λ  will eventually converge to 

a local maximum. 

2.3 Using HMMs for On-line Handwriting Recognition 

Now, armed with these tools, one can solve all the basic problems associated with 

an HMM.  Why should one use HMMs to model on-line cursive handwriting?  How does 

one use HMMs for on-line cursive handwriting recognition? 

These questions will be answered by showing how one can model letters, words, 

and sentences with HMMs, and how one can perform the recognition of isolated words 

and sentences based on the solutions to the three basic HMM problems. 

2.3.1 Modeling Letters, Words, and Sentences with HMMs 

 In this section, the modeling of letters, words, and sentences is described 

respectively. 

2.3.1.1 Modeling Letters 

 The most natural unit of handwriting is a letter.  A letter is represented by a 7-state 

left-to-right HMM.  The HMM model is illustrated in Figure 2-3. 

S2S1 S5S4S3 S7S6

 
Figure 2-3: A 7-state HMM for a letter. 

The left-to-right type of HMM, a special class of HMMs, have an additional 

property that the state index is non-decreasing as the time increases, i.e. 
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aij = P(Qn=Sj|Qn-1=Si) = 0, i > j. ( 2.31 ) 

Since the left-to-right HMM can effectively model the time-dependent property in a 

signal, the on-line handwriting signal can be modeled by the left-to-right model.  The 

number of states, 7, was chosen experimentally to maximize the recognition accuracy [5]. 

Every state of the HMM has a self transition loop.  Also, the first five states can 

make transitions which skip the immediate next states.  These skipping transitions give 

the HMM flexibility to model the variability in time.  Because of these skipping 

transitions, the minimum length of an observation sequence for a letter is four, i.e., going 

through the state S1, S3, S5, and S7 once each. For this on-line cursive handwriting 

recognition task, 89 letter symbols were used.  Consequently, we used 89 different 7-state 

HMMs to model them.  However, one 7-state HMM per letter symbol is not enough.  

Contextual effects of cursive handwriting introduce some variability.  For example, the 

letter “i” written after an “m” can be very different from that after a “v” (see Figure 2-4).  

HMMs modeling trigraphs instead of HMMs modeling letters can be used to model these 

contextual effects. Each trigraph represents a combination of three letters.  “p[e]n” 

denotes a trigraph of letter “e” with left-context letter “p” and right-context letter “n”.  

Theoretically, up to 704969 (893) trigraphs would be used.  However, in English only a 

small subset of them are frequently presented (about 6,500 in the training data portion of 

the BBN handwriting data corpus). 

 
Figure 2-4: Illustration of contextual effects on a cursively written "i".  The left “i” 

is written after an "m"; the right “i” is written after a "v". 

2.3.1.2 Modeling Words 

A word is made of a sequence of letters.  Knowing how to model a letter with HMMs, 

one can model words simply by concatenating a number of 7-state HMMs, each of which 

models a letter.  For example, an HMM for the letter “p”, an HMM for the letter “e”, 

and an HMM for the letter “n” form the HMM model for the word, “pen” (see Figure 2-

5). 
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p[e]n  [p]e  e[n]
 

Figure 2-5: Illustration of an HMM modeling of the word "pen", consists of three 
7-state HMMs for the trigraph " [p]e", “p[e]n”, and "e[n] ". 

 As a rule in cursive writing, for words with the letters “i”, “j”, “x”, or “t”, the 

writer adds the dots or crosses at the end of writing the word.  Let call these dots or 

crosses the dot and cross strokes.  To model these words, letter-HMMs modeling three 

special characters, the “i” or “j” dot, the “t” cross, and the “x” cross, can be concatenated 

to the end of the HMM modeling these words.  However, since these dots and crosses can 

be written in an arbitrary order, each of these words would have multiple word-HMMs 

representing each of them.  The number of word-HMMs representing the same word can 

grow quite large as the number of “i”, “j”, “x”, or “t” letters increase.  To simplify, 

these special letters are represented by a single letter, the “backspace” character.  

Therefore, for each letter, “i”, “j”, “x”, or “t” in any word, we simply concatenate one 

more 7-state HMM for the “backspace” letter.  For example, the HMM model of the 

word ‘it’ consists of four individual 7-state HMMs, each of which represents the letter 

“i”, “t”, “backspace”, and “backspace”, respectively. 

2.3.1.3 Modeling Sentences 

Although the number of all possible words is limited in this recognition task 

(25,595 words in total), the number of sentences that can be composed with these words 

is very large. To model each sentence explicitly is simply computationally impossible.  

Fortunately, a probabilistic sentence network can be constructed to represent all of the 

possible sentences. 

 Let us assume that the words in a sentence satisfy the Markov condition: 
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P(Wn|Wn-1,Wn-2,…,W0)=P(Wn|Wn-1),   ∀ n. ( 2.32 ) 

The Markov condition of word in a sentence means that the current word is only 

dependent on the previous word, and not any other previous words.  P(Wn|Wn-1) is called 

the bigram probability.  The bigram probabilities and the initial word probabilities, 

P(W0), together specify a bigram grammar for sentences.  The probability of any sentence 

composed of a set of words, W0W1…Wn-1Wn, can be approximated with this bigram 

grammar: 

P(W0W1…Wn-1Wn) ≈ P(W0)P(W1|W0)P(W2|W1),…P(Wn-1|Wn-2)P(Wn|Wn-1). ( 2.33 ) 

For example, Figure 2-6 shows a simple bigram grammar made up of words such as "It", 

"I", "is", "am", "orange", and "young".  This bigram grammar encodes knowledge about 

what sentences made out of words "It", "I", "is", "am", "orange", and "young" are more 

likely and which are not.  For instance, “It is orange”, “It is young”, and “I am young”, 

these three sentences are all quite plausible, while the sentence, “I am orange”, is not. 

I youngam

It orangeis
0.9 0.5

0.9 0.9

0.1

0.1

0.1

0.5

0.5

0.5

 
Figure 2-6: Illustration of a simple bigram grammar for sentences composed of the 

words "It", "I", "is", "am", "orange", and "young". 
 The bigram grammar can be estimated from a sentence data corpus.  Here, the 

data corpus consists of approximately two million sentences taken from the Wall Street 

Journal from 1987 to1989.  The sentences were used to compute the bigram probabilities 

and initial word probabilities. 

To model all possible sentences made of the 25,595 words with HMMs, we 

constructed a bigram grammar with all of these words using the Wall Street Journal 

sentence data corpus.  Then, we replaced each node of the bigram grammar with the 

HMM model for the corresponding word.  This new composite HMM represents all 

possible sentences made of the 25,595 words. 
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2.3.2 Recognition of Handwritten Isolated Letters Using HMMs 

Now, let us assume that an observation sequence, O=O1O2…OT, is to be obtained 

from someone writing an isolated letter. Furthermore, let us assume that the HMM model 

parameters, λi={Ai, Bi, Πi}, for each of the 89 letters are known.  The problem of 

recognizing isolated handwriting letters is equivalent to deciding from which one of 89 

letters the observation sequence O is observed. 

Since we are able to solve the evaluation problem, it is possible to perform 

isolated letter recognition using HMMs.  First, we can compute P(O|λi), which is the 

probability of the observation sequence O given the HMM model parameters for each of 

89 letters using the forward algorithm. Then the letter corresponding to the maximum 

probability, P(O|λi), is chosen as the optimal answer.  According to Bayesian 

classification theory, picking this letter minimizes the probability of error, therefore: 

{ }
l P Oopt

l
l=

∈
arg max ( | ).

88 letters
λ  ( 2.34) 

2.3.3 Recognition of Cursively Handwritten Sentences Using HMMs 

The problem of recognizing cursively handwritten sentences is equivalent to 

deciding from which sentence an observation sequence, O=O1O2…OT, is observed.  Here, 

we not only assume that the HMM model parameters of each letter, λi={Ai, Bi, Πi}, are 

known, but that the parameters of the bigram grammar are also known. 

Since the decoding problem is now solvable, it is possible to perform sentence 

recognition using HMMs.  First, we can compute the optimal state sequence, 

Q*=Q1
*Q2

*…QT
* which corresponds to the observation sequence using the Viterbi 

algorithm.  Since the optimal state sequence is associated with a deterministic sequence 

of letters and words, this sequence of words is the desired result for the sentence.  One 

might suggest using the forward algorithm for isolated letter recognition to solve the 

problem of sentence recognition.  In fact, one could.  Imagine having a unique HMM for 

each sentence i.  It would then be necessary to compute the probability P(O|λi) for each 

sentence.  Since the number of possible sentences grows exponentially with the number 

of words, this method of utilizing the forward algorithm is computationally impractical.  
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Therefore, it is necessary to use the Viterbi algorithm in order to solve the problem of 

sentence recognition. 

2.4 Summary 

By extending the discrete-state Markov process to define HMMs, the HMMs are 

able to model both the variance in time and signal space presented in cursively written 

letters, words, and sentences.  Solutions to three basic problems of HMMs enabled us to 

perform various cursive handwriting recognition tasks: the solution to the training 

problem for training the HMM model parameters, the solution to the evaluation problem 

for handwriting recognition of isolated letters, and the solution to the decoding problem 

for handwriting recognition of sentences.  The solutions to these problems are 

fundamental in explaining the feature experiments for HMM-based on-line handwriting 

recognition systems.  Before one can fully appreciate the details of the feature 

experiments, an in-depth description of the data corpus as well as the baseline system is 

necessary. 
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3. BBN On-line Cursive Handwriting Data Corpus 

3.1 Overview 

The feature experiments were run on the BBN on-line cursive handwriting data 

corpus.  The corpus contains cursive handwritten sentences from the ARPA Wall Street 

Journal task [24].  It contains 25,595 words made up of 89 unique symbols: 52 lower and 

upper case letters, 10 digits, 24 punctuation marks, a special symbol, space, and 

backspace.  Refer to Appendix Appendix A: for a detailed listing of the symbols.  

Individual digits and punctuation marks are considered as words.  Refer to Appendix 

Appendix B: for a sample list of words from the data corpus.  The backspace symbol 

models ''t'' and ''x'' crosses, and ''i'' and ''j'' dots. On average, a sentence has about 25 

words.  Figure 3-1 illustrates a typical sentence from this corpus. 

 
Figure 3-1: Sample handwriting from experimental corpus.  (Transcription: Pierre 
Vinken, 61 years old, owes AT&T $30,981 by Nov. 21, 1989.) 

3.2 Building BBN On-line Cursive Handwriting Data Corpus 

3.2.1 Data Collection 

The handwriting was sampled by a GRiD  Pen Top computer (Model 2260).  

The GRiD  computer runs on an Intel 80386SL CPU with Microsoft Windows for Pen 

Computing 1.0 as its operating system.  It has a side-lit, 9.5 inch, liquid crystal display 

(LCD).  Unlike most LCDs, a person can write on the LCD with a wireless pen; the LCD 

not only displays what one has just written, but also records the pen location at 400 dots 

per inch (dpi) resolution at the same time.  The display also has a mechanism to detect 

whether the pen is touching the display by sensing a micro-switch tip inside the wireless 

pen.  If the pen is touching the display, the display would sense the on state of the micro-

switch, thus detecting a PenDown.  Otherwise a PenUp would be detected.  Once the 

display detects a PenDown, it starts to sample the handwriting at 100Hz until a PenUp is 
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detected.  Through a rolling median filter, the computer calculates and records the current 

pen x and y position. 

 
Figure 3-2: Screen caption of the GRiD  LCD during a data collection session 

The data were collected from students and young professionals from the 

Cambridge, Massachusetts area.  The writers were financially compensated for their time.  

Sitting down at a table or desk for about 90 minutes per data collection session, the 

writers were told to copy the text displayed on the GRiD  LCD by writing in cursive on 

the lines below the text of the same screen.   

Figure 3-2 shows a screen caption of the GRiD  LCD during a data collection 

session.  The writers were also told that it is preferred that they write capitals in cursive 

but that it was not necessary.  Additionally, all lower case letters had to be connected, i.e., 

the pen could not be lifted to dot i’s or j’s or cross x’s or t’s as a word was being written, 

only after the last letter was finished.  Furthermore, no touch-ups by the writers were 

allowed, i.e., letters could not be made to look more distinct after they were written.  
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However, subjects were allowed to "erase" or "undo" the last pen strokes made to correct 

mistakes. 

3.2.2 Data Preparation 

After the handwriting data were collected, they had to be visually verified.  Using 

an in-house software package, only three types of touch-ups were made: a) adding missed 

i-dots (mostly not picked up by the computer); b) deleting stray marks (including extra i-

dots and periods); c) correcting stroke order (period and commas should come after i-dots 

and t-crosses). 

The handwriting on the GRiD  LCD was written on multiple lines.  To model 

handwriting on multiple lines would be unnecessarily difficult.  Fortunately, the 

unwrapping filter could join handwriting on multiple lines into text on a single line.  The 

writer still saw the writing on multiple lines, but the “image” of the handwriting for the 

computer was converted to be on a single line by the unwrapping filter.  Since the line 

heights of the multiple lines were constant, the unwrapping filter could decide on which 

line the sampled data was originally written by its y position.  From this line number 

information, the filter could simply shift both its x and y positions by some constant 

amount to transform a sample point. After applying the unwrapping filter to the entire 

sample, point by point, the resulting data points appeared as if they were written on a 

signal line. 

The resulting data from the unwrapping filter was processed by a sampling 

distance filter.  The original handwriting data was sampled at 400dpi, but the writer could 

only view the same data at about 80dpi (GRiD  LCD displaying resolution: 

640x480-pixel on a 9.5 inch screen).  Hence, the mismatched sample and display 

resolution can potentially cause problems.  For example, the sampled data could resemble 

a miniature zero, “0”, while the intended writing was a period, “.”.  The sampling 

distance filter eliminates this type of problem.  While preserving the endpoints of each 

stroke, the filter eliminated any data points within 10 sampling units of the preceding data 

point.  This can also be viewed as a filter which removes some spatial noise. 
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3.3 BBN On-line Cursive Handwriting Data Corpus and 

UNIPEN 

In the literature of on-line handwriting recognition, performance results have been 

reported on different data corpora.  This makes the comparison of recognition 

performance very difficult.  In contrast, speech recognition research has benefited from 

using common data corpora for many years.  UNIPEN, a project sponsored by the US 

National Institute of Standards and Technology (NIST) and the Linguistic Data 

Consortium (LDC), is addressing this issue by constructing a common corpus for on-line 

handwriting recognition [25]. 

Today, UNIPEN has gathered on-line handwriting data from over thirty 

organizations.  NIST has distributed the data for research.  It is also planning to have the 

first evaluation using this data in 1997.  Unfortunately, the UNIPEN data were 

unavailable for the feature experiments because the official evaluation data were not 

released at the time.  However, the BBN data corpus is a significant part of the UNIPEN 

data.  Therefore, future evaluation results on the BBN portion of the UNIPEN data can be 

meaningfully compared with the results obtained in this thesis. 

3.4 Training Data Set and Testing Data Set 

For the feature experiment, only a subset of the BBN data corpus was used.  This 

subset includes handwriting data from six different writers.  Their initials are aim, dsf, 

rgb, shs, slb, and wcd.  Table 3-1 summarizes the amount of data from each writer.  

Overall, this subset contains 3,637 sentences or 98,420 words of cursively handwritten 

data. 

Table 3-1: Summary of handwriting data of the six writers. 

subject No. of sentences No. of words 
aim 634 17867 
dsf 609 16674 
rgb 653 17767 
shs 634 16976 
slb 618 15323 
wcd 489 13813 
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total 3637 98420 

The data from each writer is divided into two parts.  One part of 70 sentences is 

for testing, and the rest is for training.  To obtain WI recognition performance on the 

testing data of a writer, the training data from other five writers is used for training the 

model.  Table 3-2 summarizes the size of training data and testing data for each writer.  In 

summary, the testing data size is 420 sentences.  Note that the actual training data only 

contains 3,217 non-duplicated sentences (3217 = 3637 - 420). 

Table 3-2: Summary of training data set and testing data set. 

Subject No. of training 
sentences 

No. of training 
words 

No. of testing 
sentences 

No. of testing 
words 

aim 2653 71844 70 1623 
dsf 2678 73159 70 1745 
rgb 2634 72131 70 1810 
shs 2653 72794 70 1682 
slb 2669 74419 70 1654 
wcd 2798 76093 70 1818 
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4. The Baseline BYBLOS On-line Cursive Handwriting 

Recognition System 

4.1 Overview 

The BYBLOS on-line cursive handwriting recognition system is based on the 

BBN BYBLOS Continuous Speech Recognition (BYBLOS CSR) system [26].  The 

BYBLOS CSR system is an HMM-based recognition system.  Since the on-line 

handwriting recognition task is very similar to the task of continuous speech recognition, 

the two systems are also similar.  Each system consists of three major components: the 

front-end, the trainer, and the decoder.  The two systems only differ in their front-ends. 

In 1994, Starner et al. first adapted the BYBLOS CSR system to the task of on-

line handwriting recognition [8] [9].  In [8] and [9], the performance of the writer-

dependent (WD) system was published.  However, the performance of the writer-

independent (WI) system has never been published.  For the purposes of these 

experiments, the WI system will be used as the baseline system.  In the following section, 

we will first discuss the functionality of the three modules for the BYBLOS on-line 

handwriting recognition system.  The performance of the WI system will then be stated in 

the results section. 

4.2 Modules 

4.2.1 Front-end 

The goal of the front-end module is to generate an observation sequence for the 

HMM from the input handwriting data.  In this case, the data is assumed to be from the 

BBN on-line cursive handwriting data corpus.  This is accomplished in three steps: 

preprocessing the original data, computing the feature vectors, and calculating the 

observation symbols. 
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4.2.1.1 Preprocessing 

Two sub-modules are involved with the preprocessing of handwriting data.  One 

is the invisible stroke construction sub-module, and the other is the padding filter. 

In Section 3.2.1, it was said that the GRiD  LCD samples the handwriting 

between each PenDown and PenUp.  However, no data samples were generated between 

PenUp and PenDown.  To simulate a continuous-time signal for the HMM, the invisible 

stroke construction sub-module connected a straight line between the PenUp sample and 

the PenDown sample and then it sampled the line ten times.  Since the straight line were 

never explicitly written by the writer, we refer to them as invisible strokes.  Figure 4-1 

gives some examples of invisible strokes, where the dash parts are the invisible strokes.  

Note that these invisible strokes are not only results of spaces between words, but can 

also be the result of dotting i’s and j’s and crossing t’s and x’s. 

 
Figure 4-1: Illustration of invisible strokes.  The highlighted dash lines are the 
invisible strokes. 

A stroke consists of the writing from PenDown to PenUp or from PenUp to 

PenDown.  Writing from PenDown to PenUp will be referred to as visible strokes.  Since 

each stroke can potentially represent a letter which is modeled by a 7-state HMM, each 

stroke must have an observation sequence made up of at least four observation symbols, 

i.e., four data points.  The padding filter fulfills this minimum stroke length criterion. 

While preserving the endpoints of each stroke, the filter re-samples the stroke path at 10 

equal-time locations.  This re-sampling process is only done on strokes consisting of less 

than 10 data points. 

4.2.1.2 Computing Feature Vectors 

An analysis program computes a six-element feature vector for each data point.  

The six features used in the baseline system are the writing angle, the delta writing angle, 

the delta x position, the delta y position, the PenUp/PenDown bit, and the sgn(x-max(x)) 
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bit.  The first four elements have real number values, while the last two elements have 

binary values. 

Assigning the PenUp/PenDown bit for each data point is quite simple.  The 

PenUp/PenDown bit denotes whether a data point is actually written by a writer or is 

artificially generated (e.g., invisible strokes).  Therefore, we assign PenUp to a data point 

which is inside an invisible stroke, and we assign PenDown to all other data points. 

The delta x position and the delta y position are computed locally.  For any data 

point, the delta x position is equal to the difference between the x position of the data 

points two samples after and the x position of the data points two samples before.  

However, there are a couple of exceptions.  Since “two samples before” is not well 

defined for the first and the second data points, their own x positions are used as the “two 

samples before” instead.  Also since “two samples after” is not well defined for the last 

and the second to last data point, their x positions are used as the “two samples after” 

instead. 
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( 4.1 ) 

The delta y positions are calculated similarly to the calculation of delta x positions. 

 The writing angle is computed from the delta x position and the delta y position.  

It is approximated by the arctangent of the ratio between the delta x position and the delta 

y position.  The delta writing angle of the first data point is set to 0.0.  For all other data 

points, the delta writing angle is equal to the difference between writing angles of the data 

point and the previous data point.  Figure 4-2 illustrates the writing angle and the delta 

writing angle features. 

 
Figure 4-2: The writing angle and the delta writing angle features. 
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 The sgn(x-max(x)) bit indicates whether the x position of the current data point is 

greater or less than the x positions of all of the preceding data points.  A value of 0 

denotes when it is less, and a value of 1 denotes when it is greater.  For example, as 

illustrated in Figure 4-3, the lighter portions are encoded with 0, and the darker portions 

are encoded with 1.  To compute the sgn(x-max(x)) bit, the maximum x position of all the 

preceding x positions is update, and called max(x).  Then the x position of the current data 

point is compared with max(x).  If it is greater, it is assigned 1.  Otherwise, it is assigned 

0.  

 
Figure 4-3: Calculation of the sgn(x-max(x)) bit for the word “the” only.  The 
highlighted portions are encoded with 1 and the gray portions are encoded with 0, 
for the sgn(x-max(x)) bit. 

The six features for each data point can be sorted into three groups.  The first 

group, which includes the information presented in the delta x position, the delta y 

position, and the PenUp/PenDown bit, can be used to reconstruct the original handwriting 

image.  This reconstruction can also be done with the second group, which consists of the 

writing angle, the delta writing angle, and the PenUp/PenDown bit.  Hence, these two 

groups of three features can separately characterize the handwriting image completely.  

Naturally, one would ask the question, “Are the two separate descriptions redundant?”  

Yes, they are.  However, the two descriptions used together outperformed either of the 

two used alone.  We can think of the two descriptions as two different views of the same 

handwriting image, and as such they provide the HMM with different statistical 

information.  The third group consists of the sgn(x-max(x)) bit, which simply provides 

additional information for the HMM. 

4.2.1.3 Calculating Observation Symbols 

Since a discrete-density HMM is used, observation symbols for each data point 

must be supplied to the HMM instead of the feature vectors.  Essentially, the 6-

dimensional feature vector needs to be converted into a set of M discrete observation 
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symbols.  For the baseline system, the number of observation symbols, M, is equal to 256.  

So, how does one convert a multi-dimensional feature vector into M observation 

symbols? 

This is essentially a data compression step.  It is done through vector quantization 

(VQ) [27], a technique to convert a multi-dimensional vector into a discrete symbol.  A 

VQ codebook is first computed by k-means clustering [28] on a quarter of the training 

data (about 805 sentences).  A VQ codebook consists of M prototype vectors.  The M 

prototype vectors divide the 6-dimensional feature space into M clusters, where each 

prototype vector characterizes the centroid of the cluster.  To obtain the discrete 

observation symbol, a feature vector is compared with each of the prototype vectors 

according to some distance measure, and the feature vector is assigned the observation 

symbol i, which corresponds to the index i of the prototype vector of the shortest distance.  

The distance measure used here is the Euclidean distance.  Note that the VQ codebook is 

only calculated once, and it is used for the computation of all of the discrete observation 

symbols. 

4.2.2 Trainer 

The goal of the trainer module is to train the HMM parameter, λ={A, B, Π}, for 

each letter and trigraph.  The trainer utilizes the Baum-Welch algorithm extensively.  

Refer to section 2.2.3 for details on the Baum-Welch algorithm. 

The HMM models for letters are trained first, so they can be used to initialize the 

models for trigraphs.  To train the HMM models for letters, their own model parameters 

need to be initialized.  The transition probabilities, aij, are assigned such that the expected 

time of going through all 7 states of the HMM is 30 frames.  (In the BBN data corpus, the 

“length” of each letter is 30 frames on average.)  The observation probabilities, bivk
, are 

set to reflect a uniform distribution.  Note that the initial model for each of the 89 letters 

are exactly the same; they do not need to be initialized with actual data. 

With the initial model for each letter, five iterations of the Baum-Welch algorithm 

are run on the 3,217 training sentences.  For each sentence, one can create a sentence 

model using the letter models according to its transcription (refer to Section 2.3.1 for 
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detail on how to construct the sentence model).  Finally, all of the letter models inside this 

sentence model are trained against the actual observation sequence of the sentence using 

the Baum-Welch algorithm. 

After five iterations of training the letter models, the trigraph models are 

initialized with the corresponding letter models.  Now, the trigraph models are ready to be 

trained.  Instead of creating a sentence model using the letter models, a sentence model is 

constructed with the trigraph models.  Then the trigraph models inside each sentence 

model are trained against the actual observation sequence of the sentence using the 

Baum-Welch algorithm.  Six iterations of the Baum-Welch algorithm are run for training 

of the trigraph models. 

Since the training data is limited, some trigraphs would appear in the training data 

only a few times.  Thus, the observation probabilities, bivk
, for these trigraphs would not 

be reliable.  To ensure that all of the trigraph models are dependable, we can smooth all 

of the observation probabilities of each trigraph model using the following smoothing 

function: 

( )b b biv
trigraph smoothed trigraph

iv
trigraph trigraph

iv
letter

k k k

 = ∗ + − ∗λ λ1 , ( 4.2 ) 

where λ trigraph  is positively correlated with the number of trigraph occurrences in the 

training data, Ntrigraph.  If Ntrigraph is very large, then the smoothed trigraph observation 

probability, biv
trigraph smoothed

k

 , would be very close to the trigraph observation probability, 

biv
trigraph

k
.  On the other hand, if Ntrigraph is very small, then the smoothed trigraph 

observation probability, biv
trigraph smoothed

k

 , would be very close to the letter observation 

probability, biv
letter

k
.  However, it is tricky to choose the optimal λ trigraph .  It is usually done 

heuristically. 

4.2.3 Decoder 

 The baseline decoder uses the forward-backward search (FBS) algorithm [29] 

[30] [31].  The FBS algorithm is mathematically related to the Baum-Welch algorithm.  It 

involves two search passes, the first pass is a forward fast-match search, and the second 

pass is a detailed backward Viterbi’s beam search (VBS). 
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 The VBS algorithm is an approximate Viterbi algorithm.  Refer to Section 2.2.2 

for details on the Viterbi algorithm.  Recall that the Viterbi algorithm stores N of the 

variables δt(i) at any given time t.  The number N is the number of possible states at time 

t.  Each variable δt(i) represents the maximum probability of the optimum partial state 

sequence, Q1Q2…Qt-1, with the state Si at time t given the model λ.  We can treat the N 

variables δt(i) as the scores of each N candidate state sequences.  However, for this large-

vocabulary, cursive handwriting recognition task, keeping N to be the number of all 

possible states at time t is simply too computationally expensive.  Therefore, a direct 

application of the Viterbi algorithm is computationally unfeasible.  Fortunately, the 

Viterbi algorithm can be approximated with the VBS algorithm by limiting the number N 

with a pruning beamwidth or threshold on the scores.  For example, the pruning 

beamwidth can be set to 100, so only the top 100 δt(i) are kept at any given time.  

Similarly, the threshold to the scores can be set such that only forward variables within 

50% of the best score are kept, and the rest are disregarded.  With appropriate pruning 

beamwidth or threshold, the VBS algorithm can approximate the Viterbi algorithm.  As 

the pruning beamwidth increases and the threshold lessens, the VBS algorithm  

approaches the Viterbi algorithm. 

 However, picking the “appropriate” pruning beamwidth or threshold for the VBS 

algorithm is usually very difficult.  The pruning beamwidth or threshold of a VBS 

algorithm is usually based on the variable δt(i), but unfortunately, a high value of δt(i) 

does not guarantee a high overall probability for the entire observation sequence because 

the future observation is not taken into account.  Additionally, the algorithm can waste 

resources by keeping this high δt(i) as a candidate.  Similarly, a low forward score does 

not mean a low overall score, and the algorithm can impair performance by dismissing 

the low value of δt(i) as a candidate. 

The FBS algorithm avoids the above problem.  It modifies the VBS algorithm by 

first performing a forward fast match, thus enabling the backward VBS algorithm to use 

( )~ |P O λ , an approximation of the probability of the entire observation sequence given the 
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model, ( )P O|λ , as a pruning threshold.  The key insight of the FBS algorithm comes 

from the following equation: 

( ) ( ) ( )P O i it t
i

N

| , .λ α β= ≤ ≤
=
∑

1

   1 t T  
( 4.3 ) 

The equation can be easily derived from the definitions of forward and backward 

variables ( 2.17 ) and ( 2.23 ).  From the equation, one can realize that the probability of 

the entire observation sequence given the model ( )P O|λ  can be calculated by their 

forward and backward variables at any given time t.  During the forward fast match pass, 

a list of ( )~α t i , an approximation of the forward variables, αt(i), are stored.  To conserve 

memory, only those ( )~α t i  which occur at the ends of words are stored.  During the 

backward VBS pass, ( )~ |P O λ  are computed along with the backward variables βt(i) by: 
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To use ( )~ |P O λ  for the pruning threshold, let us first define ( )~ |maxP O λ  to be the 

maximum of all ( )~ |P O λ  at a given time t.  For the backward VBS pass, only the 

backward variables which have ( )~ |P O λ  within some percentage of ( )~ |maxP O λ  are kept.  

The percentage can define the pruning threshold for the FBS algorithm.  Varying the 

threshold also varies the complexity of the search. 

 Experimentally, the FBS algorithm has shown an increase in search speed by a 

factor of 40 over the VBS algorithm while maintaining the same recognition performance 

[29].  Because of the FBS algorithm’s speed saving and its more intuitive pruning 

threshold, we decided to use the FBS algorithm instead of the VBS algorithm for the 

decoder of the baseline system. 
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4.3 Results 

 The results of the baseline system were obtained after using the training data and 

testing data.  During training, the training data set with transcriptions is first passed to the 

front-end module to generate observation symbols.  These observation symbols are 

passed to the trainer module to generate the HMM model parameters.  Figure 4-4 shows 

the block diagram of the training process. 

Front-end
module

Trainer
module

Training data
with transcriptions

Observation
symbols

HMM model
parameters  

Figure 4-4: Block diagram of the training process. 
For testing, the data of the testing data set is also first passed to the front-end 

module to generate observation symbols.  With the HMM model parameters from the 

training process along with the observation symbols, the decoder module decodes the 

most likely sentence.  Figure 4-5 shows the block diagram of the testing process. 

Front-end
module

Decoder
module

Testing
data

Observation
symbols

Most Likely
Sentences

HMM model
parameters

 
Figure 4-5: Block diagram of testing process. 

Table 4-1: Baseline BBN on-line cursive handwriting recognition system. 

Subject Correct 
(%) 

Substitution 
(%) 

Deletion 
(%) 

Insertion 
(%) 

Total 
(%) 

aim 85.8 10.2 3.9 1.2 15.3 
dsf 80.1 16.7 3.3 5.7 25.6 
rgb 90.9 6.6 2.5 1.5 10.6 
shs 94.7 3.7 1.6 1.0 6.2 
slb 84.2 12.3 3.6 1.5 17.3 
wcd 92.6 4.5 3.0 0.6 8.0 
Ave. 88.1 8.9 3.0 1.9 13.8 

The results of the baseline BBN on-line cursive handwriting recognition system is 

shown in Table 4-1.  The testing data consists of 420 sentences in total, 70 sentences per 

writer for six writers.  The total writer-independent word error rate is 13.8%. 
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The performance of the baseline system is quite good, especially for the few 

constraints under which the system is evaluated.  However, the baseline system is still far 

from the being usable in any realistic large vocabulary handwriting recognition 

application.  In the next chapter, experiments which attempted to improve the 

performance by adding new features to the feature vector will be discussed. 
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5. Features Experiments 

5.1 Introduction 

In the baseline system, a six-dimensional feature vector is calculated for each 

sample point of the handwriting signal.  The features are delta x position, delta y position, 

writing angle, delta writing angle, PenUp/PenDown, and sgn(x-max(x)).  Refer to Section 

4.2.1.2 for a detailed description of the features.  With these features, the baseline system 

obtained a word error rate of 13.8% under writer-independent mode on the BBN data 

corpus. 

Since handwriting recognition systems have reported their error rates under 

different conditions in the research literature, it is hard to compare their performance 

directly.  However, the baseline system would more than likely obtain one of the lowest 

error rates if the same large vocabulary, writer-independent, cursive on-line handwriting 

recognition task were performed by all the system. 

Nevertheless, the error rate of the baseline system is still unacceptable for some 

handwriting recognition applications.  We believe that significant portion of the error rate 

can be attributed to the inadequate information represented by the feature vector.  The 

performance of the baseline system can be improved significantly by augmenting the six 

baseline features with new features, which would provide the HMM with information that 

was not represented by the original features. 

There are several sources of inadequately represented information.  Since the 

baseline feature vector does not contain explicit information about the y position, the 

baseline system had difficulties distinguishing an apostrophe, “ ’ ”, from a comma, “ , ” 

because the two punctuation marks are very similar in shape and the only way to 

distinguish the two is by their y position information.  In Section 5.2.1, a new vertical 

height feature tries to incorporate the y position information into the feature vector. 

Spaces between letters or words could help the system to determine the 

boundaries for letters and words.  In the baseline system, due to the binary nature of the 
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sgn(x-max(x)) feature, the spacing is inadequately characterized. In Section 5.2.2, a new 

space feature attempts to represent the space information better. 

HMM has an inherent output independence assumption ( 2.8 ), i.e., the current 

output is only dependent on the current state.  But the on-line handwriting signal does not 

satisfy this assumption of output independence.  For example, the l-shaped stroke of ''t'' 

and the ''t'' cross stroke are very dependent on each other, but they can be separated by 

many HMM states.  In Section 5.2.3, the hat stroke features were designed to overcome 

this type of problem. 

In Section 5.2.4, the substroke features are used to incorporate more global 

information bearing features into the feature vector since the original features only 

represented information locally. 

These four proposed features were investigated to see how they each would affect 

the recognition performance.  The features were studied incrementally using the BBN 

data corpus, and the potential benefits of each feature were studied as well. 

5.2 The Four Feature Experiments 

5.2.1 The Vertical Height 

The x position denotes the horizontal position.  The y position denotes the vertical 

position.  Figure 5-1 shows the definition of the x and y directions.  The six features of the 

baseline system did not include the x position nor the y position.  Can we possibly use 

them for our new system? 

x

y

 
Figure 5-1: Definition of the x and y directions. 

The x position of a particular sample measures the horizontal distance between the 

first sample of the sentence and the sample itself.  Suppose that the handwriting has been 

normalized in the x direction and that the x position is measured from the first sample of 
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the character instead, then the x position information can indeed be useful.  However, 

computing the distance by this method would require an error-prone step of pre-

segmentation at the character level.  In addition, normalizing the samples by the writing 

size is also very difficult.  Therefore, it is impractical to adopt the x position as a new 

feature for the system. 

The y position of a particular sample measures the vertical distance between the 

sample and a baseline.  If the writing is not slanted and written on a straight baseline, and 

with some normalization in the y direction, the y position can provide useful information 

for classifying the different characters.  For example, most handwriting of English can be 

divided into three zones: the upper zone, the middle zone, and the lower zone.  Figure 5-2 

illustrates the concept of the three zones.  Guerfali and Plamondon had suggested the 

usefulness of the zones in [32].  For example, letters “a”, “c”, and “e” are completely 

inside the middle zone.  On the other hand, letters “b”, “d”, and “h” are inside the middle 

and upper zones, and “g”, “p”, and “q” are inside the middle and lower zones. 

upper zone

middle zone
lower zone

 
Figure 5-2: Illustration of three zones, lower, middle, and upper zones, of English 

handwriting. 
If the zones can be reliably estimated for each sample, the zone information can 

be directly used for on-line handwriting recognition.  To reliably estimate the zones, 

preprocessing steps such as correcting the baseline and normalizing the character slant are 

necessary.  However, these steps are difficult and would be worthwhile as thesis projects 

of their own.  Here, though, a very simple algorithm was used to convert the y position to 

the height feature. 

 First, the mean and standard variance of the y position were calculated for each 

sentence. The height feature of a sample was represented by the distance between the y 

position of the sample and the mean in standard deviations.  Note that the height feature 

could be either positive or negative.  Since most samples of a sentence fell into the 

middle zone, the samples with height feature value more than 1 was more likely to be in 

the upper zone, the samples with value less than -1 was more likely to be in the lower 
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zone, and the remaining samples were more likely to be in the middle zone.  The 

probability of a particular sampling being in one of the three zones was related to the 

height feature. 

 The newly calculated height feature was added to the six baseline features to form 

a seven dimensional feature vector.  By training and decoding with this new feature 

vector, the new system achieved a word error rate of 13.6% comparing to the baseline 

performance of 13.8%.  The reduction in error rate1 is 1.4%.  Table 5-1 illustrates the 

detailed results. 

Table 5-1: Results of the feature experiment with vertical height. 

Subject Correct 
(%) 

Substitution 
(%) 

Deletion 
(%) 

Insertion 
(%) 

Total 
(%) 

aim 86.7 7.6 5.7 0.8 14.1 
dsf 83.4 13.8 2.9 3.8 20.5 
rgb 87.5 8.9 3.6 1.5 14.0 
shs 93.5 4.5 2.0 1.0 7.4 
slb 85.5 11.1 3.4 2.1 16.6 
wcd 91.6 5.0 3.4 0.6 9.0 
Ave. 88.1 8.5 3.5 1.6 13.6 

From the performance of the new system, it is clear that this simple height feature 

did not give any significant improvement over the baseline system.  However, it is not 

enough to conclude from this experiment that other y position-transformed features are 

not useful for on-line handwriting recognition.  Quite possibly, with better baseline 

normalization and slant correction algorithms, the usage of y position-transformed 

features would improve the performance of on-line handwriting recognition systems. 

5.2.2 Space Feature 

 How were the spaces between words modeled in the baseline system?  Since the 

acceptable spaces between words for handwriting could vary greatly, an OptionalSpace 

model and a Space model were used for modeling inter-word spaces.  The Space HMM 

would model the mandatory and minimum-size space between two words.  The 

OptionalSpace HMM would model the portion of space longer than the minimum-size 

                                                 
1 Reduction in error rate = (new error rate - original error rate) / original error rate. 
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space.  Every model for words was extended by an extra Space model.  When 

constructing a model for a sentence, the OptionalSpace model is inserted between two 

HMMs modeling words.  A skipping transition, connecting the two words directly 

without connecting to the OptionalSpace model, is also inserted.  Figure 5-3 illustrates 

the sentence model with OptionalSpace for the sentence, “Lassie was rewarded”.  This 

setup accommodates variable length inter-word spaces very well.  However, it is not 

without problems. 

wasLassie rewarded

OptionalSpace OptionalSpace
 

Figure 5-3: HMMs with OptionalSpace modeling the sentence, “Lassie was 
rewarded”.  The dark ellipses represent HMMs modeling a word and the white 
circles represent HMMs modeling an OptionalSpace.  Skipping transitions connect 
the two neighboring words directly. 
 The root of the problem lies in the requirement for mandatory and minimum-size 

spaces between any two words because a space may not always exist between certain 

two-word pairs.  For example, there does not usually exist any space between the word 

“over” and the word period “.”.  Actually, there usually exist no space between any word 

composed of ciphers and any word composed of punctuation marks.  Therefore, when the 

HMM is forced to train Space models with some data which does not correspond to any 

actual space, the Space models are poorly constructed. 

 Two major changes were made to overcome this problem of poorly constructed 

Space models.  First, the Space models were removed from the end of each word model.  

Thus, all the spaces were modeled by the OptionalSpace model.  Second, a new space 

feature was used to characterize the spaces. 

 Only invisible strokes should represent gaps between words.  Therefore, the space 

feature is only calculated for invisible strokes.  The space feature of a visible stroke is 

simply assigned with 0 to represent a gap size of 0.  For invisible strokes, the feature was 

calculated in two steps.  First, a variable gap was calculated.  Second, the variable gap 
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was scaled for the space feature.  The variable gap represents the horizontal spaces 

between two words. Figure 5-4 illustrates the calculation of the variable gap. 

max_x_prev min_x_aftergap  
Figure 5-4: Calculation of the variable gap for the highlighted dash invisible stroke. 
The variable gap is computed by the following algorithm for invisible strokes only: 

1. max_x_prev ← max_x of the visible stroke before the current invisible stroke. 
2. min_x_after ← minimum x position of all the visible strokes after the current 

invisible stroke. 
3. gap = min_x_after - max_x_prev. 

 The space feature is a scaled version of the variable gap.  The sampling resolution 

of GRiD  LCD is 400dpi.  A gap value of 100 represents a quarter inch wide space. 

Scaling any gap values of more than 100 on a logarithmic scale is equivalent to narrowing 

any inter-word spaces of more than a quarter inch to around a quarter inch.  For gap less 

than 100, it is not scaled. 
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Figure 5-5: Scaling function of the variable gap for the space feature. 

 The newly calculated space feature was added to the other seven features, six 

baseline features and the height feature.  Now, an eight dimensional feature vector 

represented the original handwriting image.  By training and decoding with this new 

feature vector, the new system achieved a word error rate of 11.3% comparing to the 
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previous system performance of 13.6%.  The reduction in error rate is 16.9%.  Table 5-2 

illustrates the detailed results. 

Table 5-2: Results of the feature experiment with space. 

Subject Correct 
(%) 

Substitution 
(%) 

Deletion 
(%) 

Insertion 
(%) 

Total 
(%) 

aim 89.4 7.2 3.4 1.0 11.6 
dsf 85.8 11.8 2.4 2.7 16.9 
rgb 89.1 8.7 2.3 1.2 12.2 
shs 95.1 3.9 1.1 0.5 5.4 
slb 87.1 10.6 2.4 1.2 14.1 
wcd 92.8 5.6 1.6 0.3 7.5 
Ave. 89.9 8.0 2.2 1.2 11.3 

The new system shows a big improvement over the previous system.  It is clear 

that the new method of representing inter-word spaces is superior over the original 

method because the new OptionalSpace model takes into account the inter-word space 

more accurately.  It is not surprising to see such a large reduction in the error rate since 

the OptionalSpace model is one of the most frequently used word models.   

5.2.3 Hat Stroke Features 

 Since the dots and crosses for the letter “i”, “j”, “t” and “x” are always written at 

the end of a cursively written word containing these letters, these letters were actually 

modeled with two separate letter-HMM models within the baseline system.  For example, 

the letter “t” is modeled with an HMM modeling a partial letter “t” and an additional 

HMM modeling the backspace character.  Within an HMM model for a word, these two 

letter-HMM models can be separated by several other letter-HMM models.  With the 

features in the baseline system, the feature vectors corresponding to the partial letter “t” is 

not distinguishable from the feature vectors which correspond to the letter “l”.  Therefore, 

within the baseline system, the word “late” and the word “tale” can not be distinguished 

by the underlying HMM models. 

 The hat stroke feature attempts to solve this problem by attaching the feature 

vector of the dot and cross stroke with the feature vector of the associated letter.  The hat 

stroke features consists of six separate features: hat_stroke, dist_to_hat_x, dist_to_hat_y, 

closest_hat_length, closest_hat_angle, and closest_hat_error.  They are computed in 
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three steps.  First, a decision is made about whether a visible stroke should correspond to 

a dot and cross stroke.  Second, three features, hat_angle, hat_length, and hat_error, are 

computed for each dot and cross stroke.  Third, the samples close to the dot and cross 

strokes are attached with features about the dot and cross stroke.  They are computed by 

the following algorithm: 

1. for (each visible stroke) 
    if ((the space feature of the preceding invisible stroke is negative) and  
         ((the entire stroke is less than 20 samples long) or  

          (a quarter of the samples in the stroke has x less than current max_x))) 
         hat_stroke = 1.0; 
     else hat_stroke = 0.0; 
2. for (each stroke such that hat_stroke is 1.0) 

    hat_length ← total length of the stroke; 
    Estimate the best line fit of the hat stroke samples; 
    hat_angle ← orientation of the line; 
    hat_error ← residue of the linear fit; 

3. for (each sample) 
    closest_hat_stroke ← the closest hat_stroke from the sample; 
    if (x_distance(sample, closest_hat_stroke) < MAX_TO_HAT_DIST) 
        closest_hat_length ← hat_length of closest_hat_stroke; 
        closest_hat_angle ← hat_angle of closest_hat_stroke; 
        closest_hat_error ← hat_error of closest_hat_stroke; 
        dist_to_hat_x ← x_distance(sample, closest_hat_stroke); 
        dist_to_hat_y ← y_distance(sample, closest_hat_stroke); 
    else 
        closest_hat_length = -1.0;                            closest_hat_angle = π; 
        dist_to_hat_x = MAX_TO_HAT_DIST;        dist_to_hat_y = 0.0; 
        closest_hat_error = -1.0; 

The purpose of the first step is to determine whether a visible stroke is a hat 

stroke.  For this, there are two necessary conditions to satisfy: 

1) the space feature of the preceding invisible stroke must be negative; 

2) the entire stroke must be less than 20 samples long or a quarter of the samples 

must be less than the current max_x. 

In the second step, for each hat stroke, the total length of the stroke is calculated 

for its hat_length.  A straight line is fitted to the hat stroke.  Then, the orientation of the 

line is calculated for its hat_angle, and the estimation error is calculated for its hat_error. 
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 In the third step, for each sample point, if a hat stroke is within the 

MAX_TO_HAT_DIST distance, then the hat_length, the hat_angle, and the hat_error 

features are assigned to the sample point.  The minimum distance in x and y between the 

sample and the hat stroke are assigned to the dist_to_hat_x and dist_to_hat_y features 

respectively.  If no hat stroke is within MAX_TO_HAT_DIST distance, the features are 

assigned with some constant values. 

In summary, the six new features were calculated for the hat stroke feature.  The 

previous calculated eight dimensional feature vector were augmented to include the new 

features.  By training and decoding with this new fourteen dimensional feature vector, the 

new system achieved a word error rate of 10.7% comparing to the previous system 

performance of 11.3%.  The reduction in error rate was 5.3%.  Table 5-3 lists the detailed 

results. 

Table 5-3: Results of the feature experiment with hat stroke. 

Subject Correct 
(%) 

Substitution 
(%) 

Deletion 
(%) 

Insertion 
(%) 

Total 
(%) 

aim 89.7 7.0 3.3 0.6 10.8 
dsf 86.1 10.9 3.0 1.8 15.8 
rgb 88.7 8.7 2.5 1.3 12.6 
shs 95.4 3.5 1.1 0.3 4.9 
slb 87.2 10.0 2.8 0.8 13.7 
wcd 93.9 4.4 1.7 0.2 6.3 
Ave. 90.2 7.4 2.4 0.8 10.7 

From the performance results of the new system, one can see that the new features 

improved the performance somewhat, which means the new features were useful.  The 

suspected reason for only slight reduction in error was that not very many confusible 

word pairs, e.g. “late” and “tale”, exist in the 25K vocabulary.  If this experiment had 

been done on a baseline system which did not have a closed vocabulary, these new 

features would have improved the baseline system more substantially than in this 

experiment. 

5.2.4 Substroke Features 

 All six baseline features for a data sample were calculated from local data only.  

During the calculation of delta x and delta y position, the two samples before and two 
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samples after were used.  Thus, the original feature vector of a particular sample contains 

at most information of five sample points, i.e., within two samples away from the original 

sample.  Substroke features attempt to incorporate information about samples within a 

bigger neighborhood of the sample. 

 To compute the substroke features, each stroke is first divided into substrokes. A 

straight line is fitted to each substroke.  Each substroke is constrained such that the 

maximum error of the estimation stays below a constant, ERROR_THRESHOLD.  Here, 

the variable ERROR_THRESHOLD is set to 10.0.  The number of the samples within 

each substroke is assigned to the feature substroke_pixels.  The length of the substroke is 

assigned to the feature substroke_length.  The error of estimation between the line and the 

substroke data is assigned to the feature substroke_error.  The orientation of the line fit to 

the substroke is assigned to the feature substroke_angle. 

In summary, four new features, substroke_pixels, substroke_length, 

substroke_error, and substroke_angle, were calculated for the substroke features.  These 

four new features were added to the previously calculated fourteen dimensional feature 

vector.  By training and decoding with this new eighteen dimensional feature vector, the 

new system achieved a word error rate of 9.1%, an improvement over the previous system 

performance of 10.7%.  The total reduction in error rate at this point was 15.0%.  Table 5-

4 lists the detailed results. 

Table 5-4: Results of the feature experiment with substrokes. 

Subject Correct 
(%) 

Substitution 
(%) 

Deletion 
(%) 

Insertion 
(%) 

Total 
(%) 

aim 89.6 7.1 3.3 0.5 10.9 
dsf 89.2 8.9 1.9 1.5 12.3 
rgb 91.5 6.7 1.8 1.0 9.6 
shs 95.7 3.4 0.9 0.5 4.8 
slb 89.5 7.8 2.7 0.4 10.9 
wcd 93.6 4.6 1.9 0.1 6.5 
Ave. 91.5 6.4 2.0 0.7 9.1 

From the performance of the new system, one can see that the new features 

improved the performance markedly.  Since it was not our goal to find the “optimal” way 
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to represent the substroke feature and global information, it is quite possible that other 

representations of  substroke features can improve the recognition performance further. 

5.3 Summary of Results 

 In this chapter, four separate feature experiments were performed.  With all four 

sets of new global-information bearing features, the system obtained a word error rate of 

9.1%, a 34% reduction in error from the performance of the baseline system of 13.8%.  

Among them, the space feature and the substroke features were most effective.  Each of 

them reduced the error rate approximately 15%.  Table 5-5 summaries the error rates 

from all four feature experiments. 

Table 5-5: Summary of total word error rate of all four feature experiments. 

Experiments baseline 
Total (%) 

height 
Total (%) 

space  
Total (%) 

hat stroke  
Total (%) 

substroke  
Total (%) 

aim 15.3 14.1 11.6 10.8 10.9 
dsf 25.6 20.5 16.9 15.8 12.3 
rgb 10.6 14.0 12.2 12.6 9.6 
shs 6.2 7.4 5.4 4.9 4.8 
slb 17.3 16.6 14.1 13.7 10.9 
wcd 8.0 9.0 7.5 6.3 6.5 
Ave. 13.8 13.6 11.3 10.7 9.1 

Reduction in error - 1.4 16.9 5.3 15.0 
Tot. red. in error - 1.4 18.1 22.5 34.1 

Figure 5-6 illustrates the results of the feature experiments. 
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Figure 5-6: Total word error rates of four feature experiments. 
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6. Real-time On-line Cursive Handwriting Recognition 

Demonstration 

6.1 Introduction 

For most on-line handwriting recognition systems, the ability to perform in real 

time, i.e., displaying recognition results immediately, is essential.  For example, a 

schedule book with handwriting recognition technology requiring users to wait for several 

seconds after completing an entry would not be very effective.  With this in mind, a 

system was constructed to show how the baseline system could be modified to run in real 

time. 

Two factors affect an on-line cursive handwriting recognition system’s ability to 

run in real time.  One is the amount of computation power of the underlying hardware, 

and the other is the efficiency of the underlying algorithm in the software.  In essence, the 

algorithm has to be capable of running in real time on the underlying hardware.  In this 

BYBLOS on-line system, all algorithms have to run in real time on an SGI Indy 

workstation and GRiD  PC. 

Since the input tablet digitizer runs on a PC and both the front-end feature 

extraction and HMM recognizer run on a UNIX workstation due to computation and 

memory constraints, a real-time data link between the PC and the UNIX workstation was 

required.  The design and implementation of this data link and its associated control 

structure posed interesting and difficult technical challenges. 

6.2 Design & Implementation 

 The least error rate and modularity were a few of the design principles that guided 

the overall design of the real-time cursive handwriting recognition system.  Smaller error 

rates generally improve the usability of a system.  Modularity simplifies the processing of 

modifying a system.  Since the communication cost between modules was not expensive 

computationally, four stand-alone modules were designed.  These are the real-time data 

sampling module, the real-time front-end, the real-time decoder, and the results module.  
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The detailed functionality of the four modules is discussed in the following sections.  

Figure 6-1 illustrates how the four components were connected to construct the real-time 

recognition system. 

Real-time
Data Sampling

Module

Real-time
Decoder

User’s
Handwriting

Handwriting
data

Current best match
+Most likely sentences

HMM model
parameters

Real-time
Front-end

Observation
symbols

Results
Module

GRiDä PC SGI Indy
workstation

 
Figure 6-1: Block diagram of the real-time cursive handwriting recognition system. 

To obtain the lowest error rate, the observation symbols have to arrive at the 

real-time decoder as early as possible.  To achieve this, the real-time front-end must be as 

fast as possible.  Since the SGI Indy workstation is much faster than the GRiD  PC, the 

real-time front-end and the real-time decoder were implemented on the workstation.  

However, the real-time data sampling modules have to run on the PC because the 

handwriting can only be sampled in through the GRiD  LCD, and the results module 

also have to be on the PC because the results must be displayed on the same LCD where 

the user inputs the handwriting. 

Another major consideration for the real-time system is causality, i.e., for any 

processing at time t, it can only use the inputs from before time t, not any from after time 

t.  In Section 6.2.2, the causality of algorithms will be discussed in detail. 

The communication between the modules uses TCP/IP as its network protocol.  

On the PC, network-related functionality was implemented using the standard Window 

Winsock interface library.  On the SGI Indy workstation, the standard UNIX socket 

library was used. 

6.2.1 Real-time Data Sampling Module 

 The real-time data sampling module on the GRiD  PC samples the user’s 

handwriting and sends the x and y positions and PenUp/PenDown information to the 

front-end module as the user writes.  The sampling part of the module is very similar in 
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functionality to the data collection program described in Section 3.2.1.  The data 

collection program was modified to convert to the real-time data sampling module. 

 
Figure 6-2: Screen capture of the real-time data sampling module. 

 Several changes had to be implemented.  To increase the overall speed of the 

system, the sampled x and y positions and PenUp/PenDown information was sent to the 

real-time front-end immediately as the user writes on the GRiD  LCD.  The text on the 

top portion of the screen, for the writers to copy during data collection, was no longer 

needed, so it was removed.  Two new buttons were added to the interface to enable the 

writer to write multiple sentences.  One button, labeled “end,” signals the system that the 

current sentence is done.  The real-time data sampling module sends an “end_sentence” 

signal to the real-time front-end to indicate the current sentence is ending and a new 

sentence is beginning.  The other button is labeled “clear,” clears the user’s handwriting 

from the program window, and an “end_sentence” signal is sent out because clearing the 

handwriting also means the current sentence is ending and a new sentence is starting.  

Figure 6-2 shows the screen capture of this module. 
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6.2.2 Real-time Front-end 

 The real-time front-end runs on an SGI Indy workstation.  It receives the sampled 

x and y positions and PenUp/PenDown information from the real-time data sampling 

module, and performs all the processing needed to convert the sampled data to discrete 

observation symbols for the real-time decoder. 

Three sub-modules are involved with the processing of the sampled data: the 

real-time preprocessing sub-module, the feature-vectors computation sub-module, and the 

observation-symbols calculation sub-module.  Figure 6-3 shows the block diagram of the 

real-time front-end. 
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+ PenUp/PenDown

Observation
symbols

Observation-symbols
calculation

 
Figure 6-3: Block diagram of the real-time front-end. 

The real-time preprocessing sub-module combined the data preparation step 

during the data collection described in Section 3.2.2 and the preprocessing step in the 

front-end described in Section 4.2.1.1.  In brief, the sampled data was first passed through 

the unwrapping filter to convert handwriting on multiple lines to handwriting on a single 

line.  Next, the sampling distance filter was applied to eliminate the problem of 

mismatched sampleing and displaying resolution.  Then, the padding filter was used to 

fulfill the minimum stroke length criterion.  Both the unwrapping filter and the sampling 

distance filter were causal, but the padding filter was not.  However, the padding filter 

had a maximum delay of 10 sample points which occurs at the beginning of a stroke.  The 

original padding filter could be adopted to process in real time by delaying the 

computation on the current sample points by up to 10 samples.  After applying the 

real-time versions of the three filters, the handwriting was ready for the feature-vectors 

calculation sub-module.  Figure 6-4 showed the block diagram of the real-time 

preprocessing sub-module. 
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Figure 6-4: Block diagram of the real-time preprocessing sub-module. 
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From the preprocessed handwriting data, the feature-vectors computation 

sub-module computed six features: the writing angle, the delta writing angle, the delta x 

position, the delta y position, the PenUp/PenDown bit, and the sgn(x-max(x)) bit.  Since 

the new features from the four feature experiments all require non-causal processing, they 

were not adopted for the real-time system.  The computation of these features was very 

similar to the partial description of the front-end in Section 4.2.1.2.  The calculation was 

modified to compute from causal information only.  The calculation of the 

PenUp/PenDown bit was causal originally.  By delaying the feature vector computation 

of the current data point by two samples to accommodate the computation of differences 

for the other five features, it could also be calculated in real time. 

From the feature vectors, the observation-symbols calculation sub-module 

computed the discrete observation symbols.  This was done similarly to the partial 

description of the front-end in Section 4.2.1.3.  With the VQ codebook already computed 

by k-mean clustering during the training process, the feature vector was compared with 

each prototype vector of the VQ codebook by a distance measure.  The discrete 

observation symbol corresponds to the prototype vector index of the shortest distance.  

Since the process was inherently causal, no modification was necessary. 

Over all three processing steps, the real-time front-end processing step could have 

a maximum delay of 12 sample points.  In other words, the preprocessing step guarantees 

that at any given time t, all the samples corresponding to before the time t-12 would have 

already been converted into discrete observation symbols.  Since an average letter was 

made of 30 sample points, a 12-sample delay did not hamper the performance of the 

overall system. 

6.2.3 Real-time Decoder 

 Since the forward-backward search (FBS) algorithm described in Section 4.2.3 is 

very efficient in time, by changing its pruning threshold, the FBS algorithm can perform 

cursive handwriting decoding in real time. 

As the real-time decoder receives discrete observation symbols from the real-time 

front-end, the real-time decoder performs the forward fast match and saves the 
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approximate forward scores.  After the user signals the end of sentences by pressing the 

“end” button on the GRiD  PC, or after the real-time decoder receives the 

“end_sentence” signal from the real-time front-end, the real-time decoder then performs 

the backward Viterbi’s beam search (VBS).  The pruning threshold for the forward fast 

match is tuned such that the real-time decoder “keeps up” with one’s writing speed.  

Similarly, the pruning threshold for the backward VBS is tuned such that the most likely 

sentence of the VBS can be found within a couple of seconds after the writer finishes the 

sentence. 

6.2.4 Results Module 

 The results module “listens” to the real-time decoder and displays whatever the 

real-time decoder sends to it on the GRiD  PC.  The best match is displayed as the user 

inputs handwriting on the GRiD  LCD and as the real-time decoder performs the 

forward fast match search.  The best match changes quickly as more handwriting is input 

on the LCD.  In addition, the most likely sentence is displayed as the backward VBS 

finishes the backward decoding after the user signals the end of sentence. 

6.3 Summary & Results 

 At the start of the real-time cursive handwriting recognition system, all four of the 

modules first have to confirm that the socket communication connections function 

properly and then each of the modules need to reset itself to be ready for a new sentence.  

This can be done by the data sampling module which sends out an “end_sentence” signal. 

 As the user inputs handwriting on the GRiD  LCD, the data sampling module 

sends the sampled data to the real-time front-end.  Next, the real-time front-end computes 

the observation symbols for each sampled data points and sends the observation symbols 

to the real-time decoder.  Then, the real-time decoder performs the forward fast match on 

the observation sequence as the real-time decoder receives them and sends the current 

best match to the results module on the PC.  Finally, the results module displays what it 

receives from the decoder.  This whole process continues until the “end” or the “clear” 

button is pressed by the user to indicate the end of the current sentence.  Figure 6-5 shows 
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a screen capture of the real-time data sampling module and the results module during a 

real-time handwriting recognition demonstration. 

 
Figure 6-5: Screen capture of the real-time data sampling module and the results 
module during a real-time handwriting recognition demonstration.  The writer 
wrote “Intel cut prices less than expected on its most powerful computer chip in a sign 
that it can flex its.” On the real-time data sampling module.  The current best match 
is “Price cut prices less than expected on its most powerful computer chips in a sign 
that ice . 5 0 in flex its” on the results module. 
 Once the “end” or the “clear” button is pressed, the “end_sentence” signal is sent 

to the real-time front-end from the data sampling module.  The real-time front-end 

computes observation symbols for all the leftover samples, and sends them to the 

decoder.  At the same time, the real-time front-end resets itself to prepare for a new 

sentence.  The real-time decoder finishes the forward fast match as it receives the last 

portion of the observation sequence, and immediately starts the backward Viterbi’s beam 

search (VBS).  The real-time decoder then sends the result of the backward VBS, the 

most likely sentence, to the results module.  After the completion of the backward VBS, 
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the real-time decoder also resets itself to prepare for a new sentence.  At last, the results 

module displays the most likely sentence. 
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7. Summary & Future Directions 

7.1 Summary 

In this thesis I have presented a series of feature experiments aimed at showing 

that the performance of the baseline system can be improved dramatically by augmenting 

the six baseline features with new features, which would provide the HMM with 

information about the handwriting which was not represented by the original features.  A 

new vertical height feature was used to characterize vertical height.  A new space feature 

was used to represent inter-word space.  The hat stroke features were used to overcome 

HMM’s output independence assumption.  The substroke features were implemented to 

improve the characterization of global information.  By training and testing on the BBN 

on-line cursive handwriting data corpus, with the new features the system obtained a 

word error rate of 9.1%, a 34% reduction in error from the baseline error rate of 13.8%.  

The space feature and the substroke features each reduced the word error rate 

approximately 15%.  The new features improved the HMM’s modeling of handwriting, 

thus, also improved the recognition performance of the overall system significantly. 

The details of the HMM-based on-line cursive handwriting recognition system 

were presented: from modeling of letters, words, and sentences with HMMs to the 

training and decoding algorithms for HMMs; from the detailed description of the 

front-end to the algorithms of the trainer and the decoder.  Also, by modifying the front-

end to perform causal processing and constructing communication channels between a 

GRiD  PC and an SGI Indy workstation, a real-time, large vocabulary, 

write-independent, on-line cursive handwriting recognition system was demonstrated. 

7.2 Suggestions for Future Work 

 The results of the feature experiments showed that additional features, 

representing more information such as inter-word space and substroke features, can 

potentially improve the performance of the cursive on-line handwriting recognition 

system.  The implemented space feature and substroke features were by no means 
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optimal.  Further investigations can possibly lead to better ways of representing the 

intended information. 

 In connection with substroke features, improvements can potentially be made.  

First, instead of dividing strokes into substrokes by fitting straight lines to handwriting 

data, arcs with constant curvature can be used.  Also, after constructing the substrokes, 

substroke pairs crossing each other are then represented by two set of values: one 

representing itself, the other representing its crossing “partner.” 

 From the results of the vertical height feature experiment, we were not able to 

draw enough conclusive evidence to support that the y position related features would be 

useful.  However, since implementation of complicated normalization algorithms, e.g. 

slant removal and baseline normalization, was avoided, we were not able to conclude the 

ineffectiveness of y position related features.  To further evaluate the ineffectiveness of 

the y position related features, normalization algorithms would have to be implemented 

first. 

 Although the handwriting recognition system can recognize words from a large 

vocabulary, it is still impossible for it to recognize out-of-vocabulary words such as new 

names and new abbreviations.  However, it would not be that difficult to convert the 

current system to be one with an open-vocabulary by adding an word-HMM model for 

out-of-vocabulary words.  Much like the method of representing all the sentences with a 

finite set of words (see Section 2.3.1.3), all the words can be represented by a finite set of 

characters by a character network where the transition probabilities are character-level 

bigram probabilities. 

 Since the space feature and the substroke features both have improved the 

recognition performance significantly, it is a natural extension to incorporate the two new 

sets of features into the real-time demonstration system to improve its recognition 

performance.  Only the real-time front-end need to be modified.  With some small, 

additional delay within the real-time front-end, both the space feature and the substroke 

features can be calculated with causal information only. 

Feature, improve in hardware , common corpora 
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 A large vocabulary, writer-independent, cursive on-line handwriting recognition 

system with a word error rate under 10% was conceptualized and implemented together 

with hidden Markov models and global information-bearing features.  A similar system 

was created to perform recognition in real time.  Further research will undoubtedly yield 

even greater gains in recognition performance than what has been achieved in this thesis.  

Improvements in computer hardware and usage of common data corpora, such as 

UNIPEN, in handwriting recognition will accelerate technological advances in this area.  

The realization of high performance, real-time, open-vocabulary, writer-independent, 

mixed style handwriting recognition systems will consequently be close to hand.  These 

further improvements will pave the way to a revolution in human-machine interaction. 
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Appendix A:  List of 89 Letters of BBN On-line Cursive 

Handwriting Data Corpus and the BYBLOS Symbols 
 

Letter BYBLOS 
Symbol 

Letter BYBLOS 
Symbol 

Letter BYBLOS 
Symbol 

& *a* A A a a 
' *ap* B B b b 

@ *at* C C c c 
` *bq* D D d d 
, *c* E E e e 
: *co* F F f f 
$ *d* G G g g 
- *da* H H h h 
. *do* I I i i 
= *e* J J j j 
[ *lb* K K k k 
{ *lc* L L l l 
( *lp* M M m m 
# *p* N N n n 
% *pe* O O o o 
+ *pl* P P p p 
" *q* Q Q q q 
? *qu* R R r r 
] *rb* S S s s 
} *rc* T T t t 
) *rp* U U u u 
; *se* V V v v 
/ *sl* W W w w 
* *st* X X x x 

Space _ Y Y y y 
Backspace < Z Z z z 

0 *zz* 5 *zi* OptionalSpace - 
1 *zo* 6 *zs* -- -- 
2 *zt* 7 *ze* -- -- 
3 *zh* 8 *zg* -- -- 
4 *zf* 9 *zn* -- -- 
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Appendix B: A Sampling of the Vocabulary of the BBN 

On-line Cursive Handwriting Data Corpus 
Since the entire list consists of 25,595 words, only words starting with the capital letter A 
is list below. 
 
A A-_ 
A’s A-*ap*-s-_ 
AB A-B-_ 
ABA A-B-A-_ 
ABA’s A-B-A-*ap*-s-_ 
ABB A-B-B-_ 
ABBIE A-B-B-I-E-_ 
ABC A-B-C-_ 
ABC’s A-B-C-*ap*-s-_ 
ABD A-B-D-_ 
ABORTION A-B-O-R-T-I-O-N-_ 
ABUSE A-B-U-S-E-_ 
AC A-C-_ 
ACCEPTANCES A-C-C-E-P-T-A-N-C-E-S-_ 
ACCOUNT A-C-C-O-U-N-T-_ 
ACCOUNTING A-C-C-O-U-N-T-I-N-G-_ 
ACQUISITION A-C-Q-U-I-S-I-T-I-O-N-_ 
ACTUAL A-C-T-U-A-L-_ 
ADB A-D-B-_ 
ADRs A-D-R-s-_ 
AEP A-E-P-_ 
AFL A-F-L-_ 
AFRICAN A-F-R-I-C-A-N-_ 
AG A-G-_ 
AG’s A-G-*ap*-s-_ 
AGIP A-G-I-P-_ 
AGREES A-G-R-E-E-S-_ 
AH A-H-_ 
AIDS A-I-D-S-_ 
AIRLINE A-I-R-L-I-N-E-_ 
AIRLINES A-I-R-L-I-N-E-S-_ 
AK A-K-_ 
ALCOHOL A-L-C-O-H-O-L-_ 
ALII A-L-I-I-_ 
ALLIANCES A-L-L-I-A-N-C-E-S-_ 
ALLWASTE A-L-L-W-A-S-T-E-_ 
ALLY A-L-L-Y-_ 
ALPA A-L-P-A-_ 
AMERICAN A-M-E-R-I-C-A-N-_ 
AMEX A-M-E-X-_ 
AMR A-M-R-_ 
AMT A-M-T-_ 
AN A-N-_ 
ANC A-N-C-_ 
ANC’s A-N-C-*ap*-s-_ 
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AND A-N-D-_ 
ANGRY A-N-G-R-Y-_ 
ANNOUNCED A-N-N-O-U-N-C-E-D-_ 
ANNUITIES A-N-N-U-I-T-I-E-S-_ 
APARTHEID A-P-A-R-T-H-E-I-D-_ 
APPEARS A-P-P-E-A-R-S-_ 
ARBITRAGE A-R-B-I-T-R-A-G-E-_ 
ART A-R-T-_ 
AS A-S-_ 
ASA A-S-A-_ 
ASCAP A-S-C-A-P-_ 
ASEAN A-S-E-A-N-_ 
ASLACTON A-S-L-A-C-T-O-N-_ 
ASSET A-S-S-E-T-_ 
ASSETS A-S-S-E-T-S-_ 
ASSOCIATES A-S-S-O-C-I-A-T-E-S-_ 
ASSOCIATION A-S-S-O-C-I-A-T-I-O-N-_ 
AST A-S-T-_ 
AT A-T-_ 
ATS A-T-S-_ 
ATT A-T-T-_ 
ATT’s A-T-T-*ap*-s-_ 
AUCTION A-U-C-T-I-O-N-_ 
AUDITS A-U-D-I-T-S-_ 
AUSTRALIAN A-U-S-T-R-A-L-I-A-N-_ 
AUTO A-U-T-O-_ 
AZT A-Z-T-_ 
Aaa A-a-a-_ 
Aalseth A-a-l-s-e-t-h-<-_ 
Aaron A-a-r-o-n-_ 
Abalkin A-b-a-l-k-i-n-<-_ 
Abbey A-b-b-e-y-_ 
Abbie A-b-b-i-e-<-_ 
Abbie’s A-b-b-i-e-*ap*-s-<-_ 
Abbot A-b-b-o-t-<-_ 
Abby A-b-b-y-_ 
Aberdeen A-b-e-r-d-e-e-n-_ 
Abitibi A-b-i-t-i-b-i-<-<-<-<-_ 
Abortion A-b-o-r-t-i-o-n-<-<-_ 
About A-b-o-u-t-<-_ 
Above A-b-o-v-e-_ 
Abraham A-b-r-a-h-a-m-_ 
Abrams A-b-r-a-m-s-_ 
Abramson A-b-r-a-m-s-o-n-_ 
Abrupt A-b-r-u-p-t-<-_ 
Absolutely A-b-s-o-l-u-t-e-l-y-<-_ 
Absorbed A-b-s-o-r-b-e-d-_ 
Abyss A-b-y-s-s-_ 
Academic A-c-a-d-e-m-i-c-<-_ 
Academically A-c-a-d-e-m-i-c-a-l-l-y-<-_ 
Academy A-c-a-d-e-m-y-_ 
Acadia A-c-a-d-i-a-<-_ 
Acapulco A-c-a-p-u-l-c-o-_ 
Acceptance A-c-c-e-p-t-a-n-c-e-<-_ 
Accepted A-c-c-e-p-t-e-d-<-_ 
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Accessories A-c-c-e-s-s-o-r-i-e-s-<-_ 
Acclaim A-c-c-l-a-i-m-<-_ 
Accomplishing A-c-c-o-m-p-l-i-s-h-i-n-g-<-<-_ 
Accor A-c-c-o-r-_ 
Accor’s A-c-c-o-r-*ap*-s-_ 
Accord A-c-c-o-r-d-_ 
According A-c-c-o-r-d-i-n-g-<-_ 
Accordingly A-c-c-o-r-d-i-n-g-l-y-<-_ 
Account A-c-c-o-u-n-t-<-_ 
Accounting A-c-c-o-u-n-t-i-n-g-<-<-_ 
Accounts A-c-c-o-u-n-t-s-<-_ 
Accrued A-c-c-r-u-e-d-_ 
Accumulation A-c-c-u-m-u-l-a-t-i-o-n-<-<-_ 
Achenbaum A-c-h-e-n-b-a-u-m-_ 
Achenbaum’s A-c-h-e-n-b-a-u-m-*ap*-s-_ 
Achievement A-c-h-i-e-v-e-m-e-n-t-<-<-_ 
Ackerman A-c-k-e-r-m-a-n-_ 
Acquired A-c-q-u-i-r-e-d-<-_ 
Acquisition A-c-q-u-i-s-i-t-i-o-n-<-<-<-<-_ 
Act A-c-t-<-_ 
Acting A-c-t-i-n-g-<-<-_ 
Action A-c-t-i-o-n-<-<-_ 
Active A-c-t-i-v-e-<-<-_ 
Activity A-c-t-i-v-i-t-y-<-<-<-<-_ 
Actually A-c-t-u-a-l-l-y-<-_ 
Ad A-d-_ 
Adam A-d-a-m-_ 
Adams A-d-a-m-s-_ 
Adams’s A-d-a-m-s-*ap*-s-_ 
Add A-d-d-_ 
Added A-d-d-e-d-_ 
Addison A-d-d-i-s-o-n-<-_ 
Additionally A-d-d-i-t-i-o-n-a-l-l-y-<-<-<-_ 
Addressing A-d-d-r-e-s-s-i-n-g-<-_ 
Adds A-d-d-s-_ 
Adia A-d-i-a-<-_ 
Adjusted A-d-j-u-s-t-e-d-<-<-_ 
Adjusters A-d-j-u-s-t-e-r-s-<-<-_ 
Adler A-d-l-e-r-_ 
Adley A-d-l-e-y-_ 
Administration A-d-m-i-n-i-s-t-r-a-t-i-o-n-<-<-<-<-<-_ 
Administration’s A-d-m-i-n-i-s-t-r-a-t-i-o-n-*ap*-s-<-<-<-<-<-_ 
Administrator A-d-m-i-n-i-s-t-r-a-t-o-r-<-<-<-<-_ 
Administrators A-d-m-i-n-i-s-t-r-a-t-o-r-s-<-<-<-<-_ 
Admittedly A-d-m-i-t-t-e-d-l-y-<-<-<-_ 
Adolph A-d-o-l-p-h-_ 
Adopting A-d-o-p-t-i-n-g-<-<-_ 
Adults A-d-u-l-t-s-<-_ 
Advance A-d-v-a-n-c-e-_ 
Advanced A-d-v-a-n-c-e-d-_ 
Advancing A-d-v-a-n-c-i-n-g-<-_ 
Advertisers A-d-v-e-r-t-i-s-e-r-s-<-<-_ 
Advertising A-d-v-e-r-t-i-s-i-n-g-<-<-<-_ 
Advest A-d-v-e-s-t-<-_ 
Advice A-d-v-i-c-e-<-_ 
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Adviser A-d-v-i-s-e-r-<-_ 
Advisers A-d-v-i-s-e-r-s-<-_ 
Advisor A-d-v-i-s-o-r-<-_ 
Advisors A-d-v-i-s-o-r-s-<-_ 
Advisory A-d-v-i-s-o-r-y-<-_ 
Advocates A-d-v-o-c-a-t-e-s-<-_ 
Aerojet A-e-r-o-j-e-t-<-<-_ 
Aeronautical A-e-r-o-n-a-u-t-i-c-a-l-<-<-_ 
Aeronautics A-e-r-o-n-a-u-t-i-c-s-<-<-_ 
Aerospace A-e-r-o-s-p-a-c-e-_ 
Aetna A-e-t-n-a-<-_ 
Aetna’s A-e-t-n-a-*ap*-s-<-_ 
Af A-f-_ 
Affair A-f-f-a-i-r-<-_ 
Affairs A-f-f-a-i-r-s-<-_ 
Afghan A-f-g-h-a-n-_ 
Afghanistan A-f-g-h-a-n-i-s-t-a-n-<-<-_ 
Afghanistan’s A-f-g-h-a-n-i-s-t-a-n-*ap*-s-<-<-_ 
Afif A-f-i-f-<-_ 
Aflatoxin A-f-l-a-t-o-x-i-n-<-<-<-_ 
Afnasjev A-f-n-a-s-j-e-v-<-_ 
Africa A-f-r-i-c-a-<-_ 
Africa’s A-f-r-i-c-a-*ap*-s-<-_ 
African A-f-r-i-c-a-n-<-_ 
After A-f-t-e-r-<-_ 
Afterward A-f-t-e-r-w-a-r-d-<-_ 
Aga A-g-a-_ 
Again A-g-a-i-n-<-_ 
Against A-g-a-i-n-s-t-<-<-_ 
Age A-g-e-_ 
Agencies A-g-e-n-c-i-e-s-<-_ 
Agency A-g-e-n-c-y-_ 
Agent A-g-e-n-t-<-_ 
Agents A-g-e-n-t-s-<-_ 
Agnelli A-g-n-e-l-l-i-<-_ 
Agnellis A-g-n-e-l-l-i-s-<-_ 
Agnellis’ A-g-n-e-l-l-i-s-*ap*-<-_ 
Agnew A-g-n-e-w-_ 
Ago A-g-o-_ 
Agreement A-g-r-e-e-m-e-n-t-<-_ 
Agricultural A-g-r-i-c-u-l-t-u-r-a-l-<-<-_ 
Agriculture A-g-r-i-c-u-l-t-u-r-e-<-<-_ 
Agro A-g-r-o-_ 
Ahead A-h-e-a-d-_ 
Ahmanson A-h-m-a-n-s-o-n-_ 
Ahoy A-h-o-y-_ 
Aichi A-i-c-h-i-<-<-_ 
Aichi’s A-i-c-h-i-*ap*-s-<-<-_ 
Aiken A-i-k-e-n-<-_ 
Ailes A-i-l-e-s-<-_ 
Aimed A-i-m-e-d-<-_ 
Air A-i-r-<-_ 
Air’s A-i-r-*ap*-s-<-_ 
Aircraft A-i-r-c-r-a-f-t-<-<-_ 
Airline A-i-r-l-i-n-e-<-<-_ 
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Airlines A-i-r-l-i-n-e-s-<-<-_ 
Airlines’ A-i-r-l-i-n-e-s-*ap*-<-<-_ 
Airplanes A-i-r-p-l-a-n-e-s-<-_ 
Airport A-i-r-p-o-r-t-<-<-_ 
Airways A-i-r-w-a-y-s-<-_ 
Ait A-i-t-<-<-_ 
Aitken A-i-t-k-e-n-<-<-_ 
Aiwa A-i-w-a-<-_ 
Ajinomoto A-j-i-n-o-m-o-t-o-<-<-<-_ 
Akerfeldt A-k-e-r-f-e-l-d-t-<-_ 
Akio A-k-i-o-<-_ 
Akron A-k-r-o-n-_ 
Aktiebolaget A-k-t-i-e-b-o-l-a-g-e-t-<-<-<-_ 
Akzo A-k-z-o-_ 
Akzo’s A-k-z-o-*ap*-s-_ 
Al A-l-_ 
Al’s A-l-*ap*-s-_ 
Ala A-l-a-_ 
Alabama A-l-a-b-a-m-a-_ 
Alagoas A-l-a-g-o-a-s-_ 
Alamos A-l-a-m-o-s-_ 
Alan A-l-a-n-_ 
Alan’s A-l-a-n-*ap*-s-_ 
Alar A-l-a-r-_ 
Alaska A-l-a-s-k-a-_ 
Alaska’s A-l-a-s-k-a-*ap*-s-_ 
Alaskan A-l-a-s-k-a-n-_ 
Albanese A-l-b-a-n-e-s-e-_ 
Albanians A-l-b-a-n-i-a-n-s-<-_ 
Albany A-l-b-a-n-y-_ 
Alberg A-l-b-e-r-g-_ 
Albert A-l-b-e-r-t-<-_ 
Albert’s A-l-b-e-r-t-*ap*-s-<-_ 
Alberta A-l-b-e-r-t-a-<-_ 
Albion A-l-b-i-o-n-<-_ 
Albuquerque A-l-b-u-q-u-e-r-q-u-e-_ 
Alden A-l-d-e-n-_ 
Alderson A-l-d-e-r-s-o-n-_ 
Alert A-l-e-r-t-<-_ 
Alex A-l-e-x-<-_ 
Alexander A-l-e-x-a-n-d-e-r-<-_ 
Alfred A-l-f-r-e-d-_ 
Algeria A-l-g-e-r-i-a-<-_ 
Algerian A-l-g-e-r-i-a-n-<-_ 
Algiers A-l-g-i-e-r-s-<-_ 
Algom A-l-g-o-m-_ 
Ali A-l-i-<-_ 
Alice A-l-i-c-e-<-_ 
Alisarda A-l-i-s-a-r-d-a-<-_ 
Alisky A-l-i-s-k-y-<-_ 
Alito A-l-i-t-o-<-<-_ 
All A-l-l-_ 
Allan A-l-l-a-n-_ 
Allegany A-l-l-e-g-a-n-y-_ 
Alleghany A-l-l-e-g-h-a-n-y-_ 



 75 

Allegheny A-l-l-e-g-h-e-n-y-_ 
Allegran A-l-l-e-g-r-a-n-_ 
Allen A-l-l-e-n-_ 
Allen’s A-l-l-e-n-*ap*-s-_ 
Allendale A-l-l-e-n-d-a-l-e-_ 
Allergan A-l-l-e-r-g-a-n-_ 
Alley A-l-l-e-y-_ 
Alliance A-l-l-i-a-n-c-e-<-_ 
Allianz A-l-l-i-a-n-z-<-_ 
Allianz’s A-l-l-i-a-n-z-*ap*-s-<-_ 
Allied A-l-l-i-e-d-<-_ 
Allies A-l-l-i-e-s-<-_ 
Alligood A-l-l-i-g-o-o-d-<-_ 
Alltel A-l-l-t-e-l-<-_ 
Almost A-l-m-o-s-t-<-_ 
Aloha A-l-o-h-a-_ 
Along A-l-o-n-g-_ 
Alongside A-l-o-n-g-s-i-d-e-<-_ 
Alphonsus A-l-p-h-o-n-s-u-s-_ 
Alpine A-l-p-i-n-e-<-_ 
Alps A-l-p-s-_ 
Already A-l-r-e-a-d-y-_ 
Also A-l-s-o-_ 
Alson A-l-s-o-n-_ 
Alstyne A-l-s-t-y-n-e-<-_ 
Altair A-l-t-a-i-r-<-<-_ 
Alternative A-l-t-e-r-n-a-t-i-v-e-<-<-<-_ 
Alternatively A-l-t-e-r-n-a-t-i-v-e-l-y-<-<-<-_ 
Althea A-l-t-h-e-a-<-_ 
Although A-l-t-h-o-u-g-h-<-_ 
Altman A-l-t-m-a-n-<-_ 
Alto A-l-t-o-<-_ 
Altogether A-l-t-o-g-e-t-h-e-r-<-<-_ 
Alton A-l-t-o-n-<-_ 
Aluminum A-l-u-m-i-n-u-m-<-_ 
Aluminum’s A-l-u-m-i-n-u-m-*ap*-s-<-_ 
Alurralde A-l-u-r-r-a-l-d-e-_ 
Alvin A-l-v-i-n-<-_ 
Always A-l-w-a-y-s-_ 
Alyce A-l-y-c-e-_ 
Alysia A-l-y-s-i-a-<-_ 
Alzheimer’s A-l-z-h-e-i-m-e-r-*ap*-s-<-_ 
Am A-m-_ 
Amadou A-m-a-d-o-u-_ 
Amalgamated A-m-a-l-g-a-m-a-t-e-d-<-_ 
Amarillo A-m-a-r-i-l-l-o-<-_ 
Amateur A-m-a-t-e-u-r-<-_ 
Amaury A-m-a-u-r-y-_ 
Amazing A-m-a-z-i-n-g-<-_ 
Amazon A-m-a-z-o-n-_ 
Amazonia A-m-a-z-o-n-i-a-<-_ 
Amazonian A-m-a-z-o-n-i-a-n-<-_ 
Amdahl A-m-d-a-h-l-_ 
Amendment A-m-e-n-d-m-e-n-t-<-_ 
Amer A-m-e-r-_ 
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America A-m-e-r-i-c-a-<-_ 
America’s A-m-e-r-i-c-a-*ap*-s-<-_ 
American A-m-e-r-i-c-a-n-<-_ 
American’s A-m-e-r-i-c-a-n-*ap*-s-<-_ 
Americana A-m-e-r-i-c-a-n-a-<-_ 
Americans A-m-e-r-i-c-a-n-s-<-_ 
Amerinvest A-m-e-r-i-n-v-e-s-t-<-<-_ 
Ames A-m-e-s-_ 
Amex A-m-e-x-<-_ 
Amfac A-m-f-a-c-_ 
Amicable A-m-i-c-a-b-l-e-<-_ 
Amid A-m-i-d-<-_ 
Amin A-m-i-n-<-_ 
Amityvilles A-m-i-t-y-v-i-l-l-e-s-<-<-<-_ 
Ammonium A-m-m-o-n-i-u-m-<-_ 
Amoco A-m-o-c-o-_ 
Amoco’s A-m-o-c-o-*ap*-s-_ 
Among A-m-o-n-g-_ 
Amor A-m-o-r-_ 
Amparano A-m-p-a-r-a-n-o-_ 
Amschel A-m-s-c-h-e-l-_ 
Amsterdam A-m-s-t-e-r-d-a-m-<-_ 
Amtran A-m-t-r-a-n-<-_ 
Amvest A-m-v-e-s-t-<-_ 
Amy A-m-y-_ 
An A-n-_ 
Ana A-n-a-_ 
Anac A-n-a-c-_ 
Anadarko A-n-a-d-a-r-k-o-_ 
Analog A-n-a-l-o-g-_ 
Analyses A-n-a-l-y-s-e-s-_ 
Analysis A-n-a-l-y-s-i-s-<-_ 
Analyst A-n-a-l-y-s-t-<-_ 
Analyst’s A-n-a-l-y-s-t-*ap*-s-<-_ 
Analysts A-n-a-l-y-s-t-s-<-_ 
Analytical A-n-a-l-y-t-i-c-a-l-<-<-_ 
Anchor A-n-c-h-o-r-_ 
Ancient A-n-c-i-e-n-t-<-<-_ 
And A-n-d-_ 
Andean A-n-d-e-a-n-_ 
Andersen A-n-d-e-r-s-e-n-_ 
Anderson A-n-d-e-r-s-o-n-_ 
Anderson’s A-n-d-e-r-s-o-n-*ap*-s-_ 
Andersson A-n-d-e-r-s-s-o-n-_ 
Andes A-n-d-e-s-_ 
Andover A-n-d-o-v-e-r-_ 
Andrea A-n-d-r-e-a-_ 
Andrew A-n-d-r-e-w-_ 
Andrews A-n-d-r-e-w-s-_ 
Andy A-n-d-y-_ 
Angeles A-n-g-e-l-e-s-_ 
Angeles’s A-n-g-e-l-e-s-*ap*-s-_ 
Angell A-n-g-e-l-l-_ 
Angelo A-n-g-e-l-o-_ 
Angels A-n-g-e-l-s-_ 
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Angier A-n-g-i-e-r-<-_ 
Anglia A-n-g-l-i-a-<-_ 
Anglian A-n-g-l-i-a-n-<-_ 
Anglo A-n-g-l-o-_ 
Angola A-n-g-o-l-a-_ 
Anheuser A-n-h-e-u-s-e-r-_ 
Animals A-n-i-m-a-l-s-<-_ 
Anita A-n-i-t-a-<-<-_ 
Ankara A-n-k-a-r-a-_ 
Anku A-n-k-u-_ 
Ann A-n-n-_ 
Annalee A-n-n-a-l-e-e-_ 
Annapolis A-n-n-a-p-o-l-i-s-<-_ 
Anne A-n-n-e-_ 
Annenberg A-n-n-e-n-b-e-r-g-_ 
Anniston A-n-n-i-s-t-o-n-<-<-_ 
Annual A-n-n-u-a-l-_ 
Annualized A-n-n-u-a-l-i-z-e-d-<-_ 
Annuities A-n-n-u-i-t-i-e-s-<-<-<-_ 
Annuity A-n-n-u-i-t-y-<-<-_ 
Another A-n-o-t-h-e-r-<-_ 
Ansco A-n-s-c-o-_ 
Answers A-n-s-w-e-r-s-_ 
Antar A-n-t-a-r-<-_ 
Antar’s A-n-t-a-r-*ap*-s-<-_ 
Antarctica A-n-t-a-r-c-t-i-c-a-<-<-<-_ 
Anthong A-n-t-h-o-n-g-<-_ 
Anthony A-n-t-h-o-n-y-<-_ 
Anthropology A-n-t-h-r-o-p-o-l-o-g-y-<-_ 
Anti A-n-t-i-<-<-_ 
Anticipated A-n-t-i-c-i-p-a-t-e-d-<-<-<-<-_ 
Antilles A-n-t-i-l-l-e-s-<-<-_ 
Antinori’s A-n-t-i-n-o-r-i-*ap*-s-<-<-<-_ 
Antitrust A-n-t-i-t-r-u-s-t-<-<-<-<-_ 
Antoine A-n-t-o-i-n-e-<-<-_ 
Antolini A-n-t-o-l-i-n-i-<-<-<-_ 
Anton A-n-t-o-n-<-_ 
Antonio A-n-t-o-n-i-o-<-<-_ 
Anxiety A-n-x-i-e-t-y-<-<-<-_ 
Anxious A-n-x-i-o-u-s-<-<-_ 
Any A-n-y-_ 
Anyone A-n-y-o-n-e-_ 
Anything A-n-y-t-h-i-n-g-<-<-_ 
Anything’s A-n-y-t-h-i-n-g-*ap*-s-<-<-_ 
Anyway A-n-y-w-a-y-_ 
Aoun A-o-u-n-_ 
Aoyama A-o-y-a-m-a-_ 
Apache A-p-a-c-h-e-_ 
Apart A-p-a-r-t-<-_ 
Apicella A-p-i-c-e-l-l-a-<-_ 
Appalachian A-p-p-a-l-a-c-h-i-a-n-<-_ 
Appalled A-p-p-a-l-l-e-d-_ 
Apparently A-p-p-a-r-e-n-t-l-y-<-_ 
Appeals A-p-p-e-a-l-s-_ 
Appelbaum A-p-p-e-l-b-a-u-m-_ 
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Appell A-p-p-e-l-l-_ 
Appellate A-p-p-e-l-l-a-t-e-<-_ 
Applause A-p-p-l-a-u-s-e-_ 
Apple A-p-p-l-e-_ 
Applegate A-p-p-l-e-g-a-t-e-<-_ 
Appleyard A-p-p-l-e-y-a-r-d-_ 
Applications A-p-p-l-i-c-a-t-i-o-n-s-<-<-<-_ 
Applied A-p-p-l-i-e-d-<-_ 
Appropriations A-p-p-r-o-p-r-i-a-t-i-o-n-s-<-<-<-_ 
April A-p-r-i-l-<-_ 
Apt A-p-t-<-_ 
Aptitude A-p-t-i-t-u-d-e-<-<-<-_ 
Aquino A-q-u-i-n-o-<-_ 
Aquitaine A-q-u-i-t-a-i-n-e-<-<-<-_ 
Arab A-r-a-b-_ 
Arabia A-r-a-b-i-a-<-_ 
Arabian A-r-a-b-i-a-n-<-_ 
Arabic A-r-a-b-i-c-<-_ 
Arabs A-r-a-b-s-_ 
Arafat A-r-a-f-a-t-<-_ 
Araskog A-r-a-s-k-o-g-_ 
Arbitrage A-r-b-i-t-r-a-g-e-<-<-_ 
Arbitraging A-r-b-i-t-r-a-g-i-n-g-<-<-<-_ 
Arbor A-r-b-o-r-_ 
Arcata A-r-c-a-t-a-<-_ 
Arch A-r-c-h-_ 
Archibald A-r-c-h-i-b-a-l-d-<-_ 
Archipelago A-r-c-h-i-p-e-l-a-g-o-<-_ 
Archuleta A-r-c-h-u-l-e-t-a-<-_ 
Arco A-r-c-o-_ 
Arctic A-r-c-t-i-c-<-<-_ 
Arden A-r-d-e-n-_ 
Ardent A-r-d-e-n-t-<-_ 
Ardent’s A-r-d-e-n-t-*ap*-s-<-_ 
Are A-r-e-_ 
Area A-r-e-a-_ 
Area’s A-r-e-a-*ap*-s-_ 
Areas A-r-e-a-s-_ 
Aren’t A-r-e-n-*ap*-t-<-_ 
Argentina A-r-g-e-n-t-i-n-a-<-<-_ 
Argentine A-r-g-e-n-t-i-n-e-<-<-_ 
Argentinian A-r-g-e-n-t-i-n-i-a-n-<-<-<-_ 
ArgoSystems A-r-g-o-S-y-s-t-e-m-s-<-_ 
Argonne A-r-g-o-n-n-e-_ 
Argus A-r-g-u-s-_ 
Ariail A-r-i-a-i-l-<-<-_ 
Arias A-r-i-a-s-<-_ 
Arias’s A-r-i-a-s-*ap*-s-<-_ 
Arighi A-r-i-g-h-i-<-<-_ 
Ariz A-r-i-z-<-_ 
Arizona A-r-i-z-o-n-a-<-_ 
Ark A-r-k-_ 
Arkansas A-r-k-a-n-s-a-s-_ 
Arkla A-r-k-l-a-_ 
Arkla’s A-r-k-l-a-*ap*-s-_ 
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Arkoma A-r-k-o-m-a-_ 
Arlington A-r-l-i-n-g-t-o-n-<-<-_ 
Arm A-r-m-_ 
Armed A-r-m-e-d-_ 
Armenia A-r-m-e-n-i-a-<-_ 
Armenian A-r-m-e-n-i-a-n-<-_ 
Armstrong A-r-m-s-t-r-o-n-g-<-_ 
Armstrong’s A-r-m-s-t-r-o-n-g-*ap*-s-<-_ 
Army A-r-m-y-_ 
Army’s A-r-m-y-*ap*-s-_ 
Arnold A-r-n-o-l-d-_ 
Aronson A-r-o-n-s-o-n-_ 
Around A-r-o-u-n-d-_ 
Arraignments A-r-r-a-i-g-n-m-e-n-t-s-<-<-_ 
Arrest A-r-r-e-s-t-<-_ 
Arrested A-r-r-e-s-t-e-d-<-_ 
Arrow A-r-r-o-w-_ 
Arroyo A-r-r-o-y-o-_ 
Arseneault A-r-s-e-n-e-a-u-l-t-<-_ 
Art A-r-t-<-_ 
Arthur A-r-t-h-u-r-<-_ 
Article A-r-t-i-c-l-e-<-<-_ 
Articles A-r-t-i-c-l-e-s-<-<-_ 
Artist A-r-t-i-s-t-<-<-<-_ 
Artist’s A-r-t-i-s-t-*ap*-s-<-<-<-_ 
Artra A-r-t-r-a-<-_ 
Arts A-r-t-s-<-_ 
Arvind A-r-v-i-n-d-<-_ 
As A-s-_ 
Asada A-s-a-d-a-_ 
Asahi A-s-a-h-i-<-_ 
Ascii A-s-c-i-i-<-<-_ 
Asea A-s-e-a-_ 
Ash A-s-h-_ 
Asher A-s-h-e-r-_ 
Ashurst A-s-h-u-r-s-t-<-_ 
Asia A-s-i-a-<-_ 
Asia’s A-s-i-a-*ap*-s-<-_ 
Asian A-s-i-a-n-<-_ 
Asians A-s-i-a-n-s-<-_ 
Aside A-s-i-d-e-<-_ 
Asil A-s-i-l-<-_ 
Aska A-s-k-a-_ 
Asked A-s-k-e-d-_ 
Aslacton A-s-l-a-c-t-o-n-<-_ 
Assembly A-s-s-e-m-b-l-y-_ 
Assemblyman A-s-s-e-m-b-l-y-m-a-n-_ 
Assessment A-s-s-e-s-s-m-e-n-t-<-_ 
Asset A-s-s-e-t-<-_ 
Assets A-s-s-e-t-s-<-_ 
Assistant A-s-s-i-s-t-a-n-t-<-<-<-_ 
Assoc A-s-s-o-c-_ 
Associated A-s-s-o-c-i-a-t-e-d-<-<-_ 
Associates A-s-s-o-c-i-a-t-e-s-<-<-_ 
Association A-s-s-o-c-i-a-t-i-o-n-<-<-<-_ 



 80 

Association’s A-s-s-o-c-i-a-t-i-o-n-*ap*-s-<-<-<-_ 
Assume A-s-s-u-m-e-_ 
Assuming A-s-s-u-m-i-n-g-<-_ 
Assurance A-s-s-u-r-a-n-c-e-_ 
Astec A-s-t-e-c-<-_ 
Astoria A-s-t-o-r-i-a-<-<-_ 
At A-t-<-_ 
Ateliers A-t-e-l-i-e-r-s-<-<-_ 
Athletics A-t-h-l-e-t-i-c-s-<-<-<-_ 
Athletics’ A-t-h-l-e-t-i-c-s-*ap*-<-<-<-_ 
Atkins A-t-k-i-n-s-<-<-_ 
Atlanta A-t-l-a-n-t-a-<-<-_ 
Atlanta’s A-t-l-a-n-t-a-*ap*-s-<-<-_ 
Atlantic A-t-l-a-n-t-i-c-<-<-<-_ 
Atsushi A-t-s-u-s-h-i-<-<-_ 
Attendants A-t-t-e-n-d-a-n-t-s-<-<-<-_ 
Attention A-t-t-e-n-t-i-o-n-<-<-<-<-_ 
Attic A-t-t-i-c-<-<-<-_ 
Attitudes A-t-t-i-t-u-d-e-s-<-<-<-<-_ 
Attorney A-t-t-o-r-n-e-y-<-<-_ 
Attorney’s A-t-t-o-r-n-e-y-*ap*-s-<-<-_ 
Attorneys A-t-t-o-r-n-e-y-s-<-<-_ 
Attwood A-t-t-w-o-o-d-<-<-_ 
Atwood’s A-t-w-o-o-d-*ap*-s-<-_ 
Auctions A-u-c-t-i-o-n-s-<-<-_ 
Audit A-u-d-i-t-<-<-_ 
Auditors A-u-d-i-t-o-r-s-<-<-_ 
Audrey A-u-d-r-e-y-_ 
Audubon A-u-d-u-b-o-n-_ 
Aug A-u-g-_ 
August A-u-g-u-s-t-<-_ 
August’s A-u-g-u-s-t-*ap*-s-<-_ 
Augusta A-u-g-u-s-t-a-<-_ 
Augustines A-u-g-u-s-t-i-n-e-s-<-<-_ 
Aurora A-u-r-o-r-a-_ 
Austin A-u-s-t-i-n-<-<-_ 
Australia A-u-s-t-r-a-l-i-a-<-<-_ 
Australia’s A-u-s-t-r-a-l-i-a-*ap*-s-<-<-_ 
Australian A-u-s-t-r-a-l-i-a-n-<-<-_ 
Australians A-u-s-t-r-a-l-i-a-n-s-<-<-_ 
Austria A-u-s-t-r-i-a-<-<-_ 
Austrian A-u-s-t-r-i-a-n-<-<-_ 
Author A-u-t-h-o-r-<-_ 
Authorities A-u-t-h-o-r-i-t-i-e-s-<-<-<-<-_ 
Authority A-u-t-h-o-r-i-t-y-<-<-<-_ 
Auto A-u-t-o-<-_ 
Automated A-u-t-o-m-a-t-e-d-<-<-_ 
Automatic A-u-t-o-m-a-t-i-c-<-<-<-_ 
Automobile A-u-t-o-m-o-b-i-l-e-<-<-_ 
Automotive A-u-t-o-m-o-t-i-v-e-<-<-<-_ 
Autry A-u-t-r-y-<-_ 
Ave A-v-e-_ 
Avedisian A-v-e-d-i-s-i-a-n-<-<-_ 
Avena A-v-e-n-a-_ 
Avenue A-v-e-n-u-e-_ 
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Avenue’s A-v-e-n-u-e-*ap*-s-_ 
Average A-v-e-r-a-g-e-_ 
Average’s A-v-e-r-a-g-e-*ap*-s-_ 
Avery A-v-e-r-y-_ 
Avery’s A-v-e-r-y-*ap*-s-_ 
Avi A-v-i-<-_ 
Aviation A-v-i-a-t-i-o-n-<-<-<-_ 
Aviv A-v-i-v-<-_ 
Aviva A-v-i-v-a-<-_ 
Aviva’s A-v-i-v-a-*ap*-s-<-_ 
Avon A-v-o-n-_ 
Avondale A-v-o-n-d-a-l-e-_ 
Avrett A-v-r-e-t-t-<-<-_ 
Aw A-w-_ 
Ayer A-y-e-r-_ 
Ayers A-y-e-r-s-_ 
Azara’s A-z-a-r-a-*ap*-s-_ 
Azem A-z-e-m-_ 
Azerbaijan A-z-e-r-b-a-i-j-a-n-<-<-_ 
Aziza A-z-i-z-a-<-_ 
Azoff A-z-o-f-f-_ 
Aztec A-z-t-e-c-<-_ 
Azucena A-z-u-c-e-n-a-_ 
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Appendix C:  A Sampling of the Decoding Results for 

the Substroke Feature Experiment 
 

“REF” denotes the reference transcription, and “HYP” denotes the corresponding 
hypothesized decoding result.  The underline emphasizes the decoding errors. 
 
aimr114 
        REF: Small wonder, since he's asking San Francisco taxpayers to sink up to $100 
million into the new stadium. 
        HYP: Small wonder, since he's asking San Francisco's taxpayers to sink up to $10_ 
million into the new structure. 
  
aimr118 
        REF: Something like one-third of the nation's 60 largest cities are thinking about  
new stadiums, ranging from Cleveland to San Antonio and St. Petersburg. 
        HYP: Something like one-third of the nation's 60 largest cities are thinking about 
new stadiums, ranging from Cleveland to San Antonio and Set. Petersburg. 
  
aimr123 
        REF: Voters generally agree when they are given a chance to decide if they want to 
sink their own tax dollars into a new mega-stadium. 
        HYP: Voters generally agree when they are given a chance to decide if they want to 
sink their own tax dollars into a new mega-strain. 
  
aimr127 
        REF: But voters decided that if the stadium was such a good idea someone would 
build it himself, and rejected it 59% to 41%. 
        HYP: But voters decided that if the stadium was such a good idea someone would 
issued it himself, and rejected it 39% to 42%. 
  
dsfr107 
        REF: First Federal named Mr. Ottoni president and chief executive to succeed  
Mr. Clarkson and elected him as a director. 
        HYP: First Federal named Mr. Ottoni president and chief executive to succeed  
Mr. Clark seem and elected him as a directors. 
  
dsfr120 
        REF: "An ultimate target of 40,000 units annually has been set for a still-to-be-
named model," Toyota said. 
        HYP: "In ultimate target of 40,00_ units annually has been set for a still-to_be- 
naked model," Toyota said. 
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dsfr124 
        REF: Toyota also announced a number of major overseas purchases. 
        HYP: Toyota also announced a number of major overseas purchases. 
  
dsfr130 
        REF: The trust has an option to convert its shares to a 71.5% equity stake in the 
center by the year 2000. 
        HYP: The trust has an option to convert its shares to a 47.5% equity stake in the 
center by the year 200_. 
  
rgbr104 
        REF: "When scientific progress moves into uncharted ground, there has to be a role 
for society to make judgments about its applications," says Myron Genel, associate dean 
of the Yale Medical School. 
        HYP: "When scientific progress over into uncharted ground, there has to be a role 
for society to make judgments about its application," says Myron fuel, associate dean  
of the Yale medical school. 
  
rgbr109 
        REF: Despite the flap over transplants, federal funding of research involving fetal 
tissues will continue on a number of fronts. 
        HYP: Despite the flap over transports, federal funding of research involving fetal 
tissues will continue on a number of fronts. 
  
rgbr115 
        REF: Yesterday's share turnover was well below the year’s daily average of 133.8 
million. 
        HYP: Yesterday's share turnover was well below the year " a daily average of 13_.8 
million. 
  
rgbr120 
        REF: The bank stocks got a boost when Connecticut Bank & Trust and Bank of New 
England said they no longer oppose pending legislation that would permit banks  
from other regions to merge with Connecticut and Massachusetts banks. 
        HYP: The bank stocks got a court when Connecticut Bank & Trust and Bank of New 
England said ray no longer oppose pending legislature that would permit banks  
from other yen to merge with Connecticut and Massachusetts banks. 
  
shsr108 
        REF: The borrowing to raise these funds would be paid off as assets of sick thrifts 
are sold. 
        HYP: The borrowing to raise these funds would be paid off as assets of sick thrifts 
are sold. 



 84 

shsr112 
        REF: The RTC will have to sell or merge hundreds of insolvent thrifts over the next 
three years. 
        HYP: The RTC will have to sell or merge hundreds of insolvent thrifts over the next 
three years. 
  
shsr118 
        REF: But the worst possibility would be raising no working capital, he said. 
        HYP: But the worst possibility would be raising no working capital, he said. 
  
shsr124 
        REF: Not a gripping question, unless you’re the pastry chef of this city's Chez 
Panisse restaurant and you’ve just lost your priceless personal dessert notebook. 
        HYP: But a gripping question, unless you in the pastry chef of this city's Chez 
Panisse restaurant and going just last year priceless personal dessert notebook. 
  
slbr104 
        REF: This year's results included a gain of $70.2 million on the disposal of seafood 
operations. 
        HYP: This year's results included a gain of $70.2 million on one disposal of one 
good operations. 
  
slbr110 
        REF: Its cereal division realized higher operating profit on volume increases, but  
also spent more on promotion. 
        HYP: Its cereal division realized higher operating profit on volume increases, but 
also spent menu on promotion. 
  
slbr115 
        REF: The companies are followed by at least three analysts, and had a minimum 
five-cent change in actual earnings per share. 
        HYP: The companies are followed by at least three analysts, and had a minimum 
five-cent change in actual earnings per gram. 
  
slbr137 
        REF: First Chicago Corp. said it completed its $55.1 million cash-and-stock 
acquisition of closely held Ravenswood Financial Corp., another Chicago bank holding 
company. 
        HYP: First Chicago Corp. said it completed its $5_.6 million cash-and-stock 
acquisition of closely held Ravenswood Financial Corp., another Chicago bank holding 
company. 
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wcdr104 
        REF: Conversely, strong consumer spending in the U.S. two years ago helped propel 
the local economy at more than twice its current rate. 
        HYP: Conversely, strong consumer spending in the U.S. two years ago helped 
propel the local economy at more than twice its current rate. 
  
wcdr117 
        REF: While Wall Street is retreating from computer-driven program trading, big 
institutional investors are likely to continue these strategies at full blast, further roiling the 
stock market, trading executives say. 
        HYP: While Wall Street is retreating from computer-driven program trading, big 
institutional investors are likely to continue these strategies at full blast, further roiling the 
stock market, trading executives say? 
  
wcdr121 
        REF: Trading executives privately say that huge stock-index funds, which dwarf  
Wall Street firms in terms of the size of their program trades, will continue to launch big 
programs through the stock market. 
        HYP: Trading executives privately say that huge stock-index funds, which dwarf 
Wall Street firms in terms of the size of their program trades, will continue to launch big 
programs through the stock market. 
  
wcdr125 
        REF: Consequently, abrupt swings in the stock market are not likely to disappear 
anytime soon. 
        HYP: Consequently, abrupt swings in the stock market are not likely to disappear 
anytime soon. 
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