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Abstract—Hyperledger Fabric is a popular permissioned
Blockchain framework for a consortium of organizations to
develop Blockchain based applications and transact within the
consortium. Hyperledger Fabric introduces a fine-grained access
control mechanism called the private data collection (PDC),
which allows private data to be shared by only a subset of
participants. In this paper, we analyze PDC and show three
classes of use cases in which misuse of Hyperledger Fabric
features may endanger implemented Hyperledger Fabric systems.
We present two groups of potential attacks including fake PDC
results injection and PDC leakage against the misuse of the policy
based consensus protocol. We use prototype systems to validate
the discovered attacks. We also collected 6392 Hyprledger Fabric
projects on GitHub and built a tool to statically analyse them.
We find that 86.51% of the PDC related projects are potentially
vulnerable to the fake PDC results injection attacks, and 91.67%
have PDC leakage issues. We design new features for the Hyper-
ledger Fabric framework to mitigate the attacks and show that
the new features have minor impact on the system performance.

Index Terms—Blockchain, Hyperledger Fabric, Private Data
Collection

I. INTRODUCTION

Permissionless Blockchain systems such as Bitcoin [1] and
Ethereum [2] are open to the public. A party does not need a
permission to join the system and can see all the data recorded
on a blockchain. This prevents the Blockchain technology
from being applied in scenarios where particular organizations
come together as a consortium to transact with each other
and do not desire to expose their data to the public. The
emerging permissioned Blockchain systems [3] often involve
multiple access control mechanisms to protect data privacy and
confidentiality, and allow only authorized participants to join
the permissioned system and transact with each other privately.

Hyperledger Fabric is a very popular permissioned
Blockchain system, designed for enterprise applications where
a consortium of organizations develop Blockchain based appli-
cations and transact privately within the consortium. For sim-
plicity, we will denote Hyperledger Fabric as Fabric in the rest
of this paper. According to Forbes’ Blockchain 50 [4], half of
the top 50 enterprises that embrace the Blockchain technology
choose to use the Fabric system. Many representative cloud
platforms offer Blockchain as a Service (BaaS) with Fabric,
including IBM, Oracle, Microsoft Azure, Amazon, Google
Cloud, Tencent and Alibaba Cloud.

In order to achieve high scalability, performance and modu-
larity, the Fabric decouples the tasks of a node in a traditional
Blockchain system such as Ethereum into three types of

nodes, i.e. peers, orderers and clients. A three-phase “execute-
order-validate” transaction workflow is adopted. A transaction
is proposed by a client, then endorsed by peers, packaged
into a block by orderers, and finally verified and stored into
the ledger by peers. A valid transaction needs to collect
enough endorsements from peers specified by the endorsement
policy in order to pass the validation at all peers. For access
control and data isolation, the Fabric adopts permission related
mechanisms including identity, policy, channel and private data
collection (PDC). Organizations with the same business goals
can be grouped into one channel. The organizations in one
channel maintain the same ledger while different channels
maintain different ledgers.

The private data collection (PDC) is proposed for those
organizations that need to keep private data from others in
one channel. The PDC hash is stored at all peers in a channel.
The original PDC is only maintained by a subset of peers
of authorized organizations in a channel. For brevity and
clarity, we denote the organizations/peers that own the PDC
as “member organizations/peers”, and others as “non-member
organizations/peers”, and call non-private data as public data
in the rest of this paper.

We perform a comprehensive analysis of the PDC of the
Fabric. Our major contributions are summarized as follows:
We present three classes of use cases in which misuse of the
Fabric’s policy based consensus protocol endangers the PDC
of a Fabric system: (i) PDC Non-member peers endorse PDC
transactions; (ii) PDC transactions are validated through the
same endorsement policy as public data transactions; and (iii)
The “Payload” field is used to return information in transaction
proposal response. In the Fabric, a valid transaction shall
pass two checks: endorsement policy and version conflict. We
denote such a consensus protocol as proof-of-policy (PoP).

We are the first to discover the fake PDC results injection
attack and PDC leakage issue exploiting the misuse of PoP
of the PDC. Under the fake PDC results injection attack,
malicious peers or clients may disrupt the integrity of the
ledger. They may inject a valid transaction with a fake value
into the blockchain or write fake values into the PDC in the
ledger’s world state. With the PDC leakage issues, the PDC
can be revealed to PDC non-member peers.

We use prototype systems to validate the discovered attacks.
We also build a tool to scan all the 6392 Hyperledger Fabric
projects available on Github, and find that 86.51% of the PDC
related projects are potentially vulnerable to the fake PDC



results injection attacks, and 91.67% have PDC leakage issues.
We design new features for the Fabric to mitigate the

discovered attacks, and implement these new features by
modifying the source code of the Fabric. The implemented
new features have minor or negligible impact on the system
performance.

Responsible Disclosure: The authors have communicated
and reported the findings of this paper to the Hyperledger
Fabric team since August 2020.

II. BACKGROUND
In this section, we introduce the core components of

Hyperledger Fabric and how they work together to process
transactions.

A. Hyperledger Fabric Overview

Hyperledger Fabric [3] is a permissioned blockchain system
composed of three types of nodes, namely peers, orderers and
clients. Hyperledger Fabric adopts multiple mechanisms to
implement access control.

1) Peers: Peers maintain ledgers and smart contracts, and
endorse and validate transactions. When peers endorse trans-
actions, they are also called endorsers. When peers update the
ledger, they are called committers.

Ledger. The ledger hosted at peers has two components,
i.e. the world state and Blockchain. The world state is a
database and stores current data. The data is stored in the form
of 〈key, value, version〉. version is used for the transaction
concurrency control, and monotonically increases every time
the corresponding key is updated. The blockchain stores all
the transactions that produce the current world state.

Chaincode. Smart contract is also called chaincode in
Hyperledger Fabric. Chaincode is a program that defines the
business logic operating on the world state. A transaction
is created by a client invoking a function in the chaincode
and contains the results of the function, which may perform
read, write or delete operations on the world state. The
chaincode should be deployed on all involved peers sharing the
same business goals. These peers agree on the configuration
of the chaincode including the endorsement policy. A valid
transaction should be signed by the endorsers specified in the
endorsement policy.

2) Orderers: Orderers are a group of special nodes re-
sponsible for block generation using the consensus algorithm
Raft [5] [6]. They blindly bundle transactions into new blocks
without validating the content of the transactions.

3) Clients: A client runs a Hyperledger Fabric application
to interact with peers and invoke chaincode functions so as to
access and operate on the ledger. The operations take effect
only after the transaction is validated as valid by all peers.

4) Access Control Mechanisms: Hyperledger Fabric as-
signs each node an identity, and uses a set of policies to control
who can access specific resources or make changes to the sys-
tem. Hyperledger Fabric also introduces channel and Private
Data Collection (PDC) mechanisms for communication and
data confidentiality.

Identity. Each participant needs an identity to prove who
it is so as to transact in the permissioned blockchain system.
Particularly, Hyperledger Fabric issues each participant a cer-
tificate to indicate its identity, and each identity is bonded
with one organization within the consortium of organizations
participating in the Hyperledger Fabric system.

Policy. A policy is a logical expression of identities eval-
uating if a specific task is performed by required identities.
Almost everything is controlled by policies including not only
resource access but also how members reach an agreement. For
example, the endorsement policy stipulates whose endorse-
ments a transaction must collect so that it can be validated
as valid. Policies can be categorized into signature policies
and implicitMeta policies. A signature policy is a logical
expression using logical operators including AND, OR and
NOutOf. For example, the signature policy “AND(Org1.peer,
Org2.peer)” means a peer from org1 and a peer from org2 must
sign the data of interest so that the corresponding transaction
is to be considered valid when this signature policy is used as
the endorsement policy. An implicitMeta policy is an expres-
sion using logical operators ALL, MAJORITY or ANY over
participating organizations’ signature policies. For example,
the implicitMeta policy “MAJORITY Endorsement” means that
most of the signature policies called “Endorsement” defined
by participating organizations shall return true.

Channel. Channel is a private communication mechanism
which groups organizations into multiple groups for common
goals. Only the clients, peers and orderers of the organizations
in the same group can join in the same channel and com-
municate with each other. Each channel maintains a separate
ledger. Peers in the same channel share the same ledger. Any
outsider can not participate in activities or access the ledger in
the channel. This provides data and communication isolation
for privacy and confidentiality.

Private Data Collection (PDC). The PDC is introduced
when a subset of organizations needs to keep sensitive data
private from other organizations in the same channel.

We show an example in Fig. 1 illustrating the architecture
of a Hyperledger Fabric system. It has four organizations org1,
org2, org3 and org4. Client A1 and Peer P1 are contributed
by org1. A2 and P2 are contributed by org2. A3 and P3 are
contributed by org3. O4 and P4 are contributed by org4. Peers
P1, P2 and P4 join the same channel C1 and host the same
chaincode S1 and ledger L1. Only clients A1 and A2 can
access L1 via S1. P2 also joins the channel C2, and hosts
S2 and L2, which A2 can access too. P1 and P4 maintain
a PDC. Only P1 and P4 have the original private data, and
other peers in the same channel like P2 only have the hash
of private data.

B. Three-phase Transaction Workflow

The lifecycle of a transaction in Hyperledger Fabric has
three phases, i.e. execution, ordering and validation. Fig. 2
describes the whole process. Note that we introduce the public
data transaction workflow in this section while the PDC
transaction workflow is introduced in Section III-A2.
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Fig. 1. Example of Hyperledger Fabric system

1) Execution Phase: A client sends a transaction proposal
to the peers which act as endorsers required by the endorse-
ment policy, such as peer1 and peer2 in Fig. 2. The transaction
proposal includes the client identity, target chaincode ID, target
function name and its parameters. These endorsers simulate
the target function execution. Each endorser generates the
proposal response and endorsement with a signature of the
proposal response and return the two parts to the client.
The chaincode execution result is stored in the two fields of
“read/write set” and “response” of proposal response. In the
execution phase, the ledger is not updated with the execution
result. After the client collects all proposal responses with
endorsements returned from required endorsers, it checks if
all the returned results from different endorsers are the same.
If yes, the client will assemble a transaction and submit it to
the orderers.

2) Ordering Phase: The orderers may receive transactions
from multiple clients. When orderers collect a pre-defined
number of transactions or after a pre-defined time, they group
these transactions into a new block. Then orderers distribute
the new block to all peers including endorsers and other peers.

3) Validation Phase: After peers receive a new block,
each peer independently validates transactions in the block
through two checks of the proof-of-policy (PoP) consensus
protocol: (i) Endorsement policy check. The peers verify if
the transaction gets enough endorsements according to the
endorsement policy. (ii) Version conflict check. The peers
check if the current world state is still consistent with the
state when the transaction was generated at the execution
phase through a version mechanism. Specifically, there is a
field called version in a transaction’s read/write set, which is
generated in the execution phase. Peers check if the version in
the read/write set is consistent with the version in the current
world state. Only the transaction that passes both checks above
will be marked as valid. Only results in a valid transaction then
are committed to update the world state. After peers validate
all the transactions, the block is appended to the Blockchain
in the ledger. Finally, the client gets a notification about the
status of the transaction initiated by the client.

Fig. 3 shows an example block that contains one transaction
in Hyperledger Fabric. A block is composed of a header, a
list of transactions and the metadata. The metadata includes

the flag vector indicating the validity of each transaction.
A transaction has 4 parts: transaction header, transaction
proposal, proposal response and endorsements.

III. PDC USE CASES

The private data collection (PDC) is the sensitive data shared
by a subset of organizations in a channel. In this section, we
first present its storage and workflow design and then the
discovered three classes of use cases where misused Fabric
features will cause security issues.

A. Private Data Collection Design
1) Public and Private Data Storage Comparison: Private

data is stored in a different way from public data in the
world state. Public data is stored in the form of 〈key, value,
version〉 at all peers in the channel. Private data has two storage
formats: the original 〈key, value, version〉 is stored at a subset
of peers that are PDC members while the hashed 〈hash(key),
hash(value), version〉 is stored at all peers. For example
in Fig.1, P1 and P4 store both 〈key, value, version〉 and
〈hash(key), hash(value), version〉. P1 only stores 〈hash(key),
hash(value), version〉.

2) Public and Private Data Transaction Workflow Com-
parison: The PDC transaction workflow differs in the execu-
tion phase from the public data transaction workflow as shown
in Fig. 2. The PDC read/write set in the proposal response
is hashed to avoid exposing the original private data. The
endorsers such as peer2 keep and send the original read/write
set via the peer-to-peer gossip protocol to PDC member
peers who are not endorsers such as peer3 and need the
original read/write set in the validation phase. The transaction
with the read/write set hash is packaged into the block and
distributed to all peers by orderers and all peers will validate
the transaction. Before updating the ledger, the PDC member
peers verify if the original read/write set matches the hash in
the transaction.

B. Use Case 1: PDC Non-member Peers Endorse PDC Trans-
actions

1) Semantics of Read/Write Set: In the transaction work-
flow in Fig. 2, peers don’t update the ledger in the first
execution phase but generate a read/write set. The read set
stores a list of 〈key, version〉 of the read operation results and
is used for version conflict check in the validation phase. The
version is obtained by querying the world state. The write set
stores the results of write operations in a list of 〈key, value,
is delete〉 derived from the chaincode without interacting with
the world state. The is delete flag is set to “false” for the
write operation. The delete operation uses the same semantics
as the write operation. If the operation is to delete a key (an
entry in the world state), is delete is set to “true” and the
corresponding value is set to “null”. We group transactions
into three types: read-only, write-only and read-write. Table I
shows the read/write sets in these three types of transactions.
It can be observed that the read set in a write/delete-only
transaction is null, which is different from the read-only and
read-write transactions.

3



alt  [ if public data ]

 [ else if private data ]

client peer1
(member)

peer2
(member)

peer3
(member)

orderer peer4

10: transaction generation

16: block
distribution

12: block
generation

21: Notification

18: transaction
validation

20: transaction
validation

17: transaction
validation

19: transaction
validation

15: block
distribution

14: block
distribution

13: block
distribution

11: transaction

9: original rw-set8: proposal response and endorsement (rw-set hash)

7: proposal response and endorsement (rw-set hash)

6: proposal response and endorsement (original rw-set)

5: proposal response and endorsement (original rw-set)

4: chaincode
execution

3: chaincode
execution

2: transaction proposal

1: transaction proposal

Powered By�Visual Paradigm Community Edition

Fig. 2. Sequence diagram of three-phase transactions workflow in Unified Modeling Language (UML). The alt frame is the alternative combined fragment,
modeling the if-then-else logic. (I) Public data transaction workflow (Steps 1-6 and 10-21); (II) Private data transaction workflow (Steps 1–4 and 7-21), where
peer1, peer2 and peer3 are PDC members. The rw-set denotes the read/write set.

Number PreviousHash DataHash

Tx Id Version Timestamp Type Creator

Channel Id Extension Epoch

TransientMap Chaincode Id (name, path, version)

Timeout Input (function name, arguments)

Proposal Hash Chaincode Id (name, path, version)

Response (message, payload, status)

Read/Write Set ...

DataModel

Endorser1-Id Endorser1-Signature

Endorser2-Id Endorser2-Signature

EndorserN-Id EndorserN-Signature
 

Bl
oc
k 

He
ad
er

Transact
ion 

Header

Metadata

Nonce

Type ...

Tr
an
sa
ct

io
n 

Pr
op
os
a
l

Collection Hashed Read/Write Set

Proposal
 

Response

En
do
rs
em

en
ts

Fig. 3. A block with one transaction. Only related fields are shown and the
shown fields are not necessarily in the actual order of these fields in the block.

TABLE I
READ/WRITE SET IN DIFFERENT TYPES OF TRANSACTIONS OPERATING ON

〈K1, VAL1〉. ASSUME THE VERSION OF K1 IS 1.

Transaction Type
Read Set Write Set

key version key value is delete

Read-only k1 1 NULL

Write-only NULL k1 val1 false

Read-Write k1 1 k1 val1 false

Delete-only NULL k1 null true

2) PDC Non-member Peers Endorsing Transactions
on Private Data: In the Fabric, PDC non-member peers
may endorse transactions on private data. Recall that PDC
non-member peers do not hold the original private data in
the world state. We now show how a PDC non-member
endorser deals with read and write transaction proposals and
the difference shall be carefully considered in the design of
an actual Fabric system.

A PDC non-member endorser returns errors when asked to
process a read-only or read-write transaction proposal. To en-
dorse a read-only or read-write transaction, the endorser shall
query the world state and return 〈key, version〉 in the read set.
A peer from PDC non-member organizations cannot complete
such endorsement this way since they have only the private
data hash in its world state. If a non-member peer tries to
execute private data read operations, the Fabric reports an error
since the corresponding key cannot be found in the world state.

A PDC non-member endorser does not return errors when
asked to process a write-only transaction. Recall that a write-
only transaction contains no read operation and its read set is
Null. It means that results of the write-only transaction do not
rely on any data in the world state. All endorsers including
PDC non-member endorsers in the channel can successfully
return endorsements for private data write-only transactions to
clients with no errors.

It can be observed that PDC non-members can endorse PDC
write-only transactions, but not read related (read only or read-
write) transactions given that write operations write data into
the world state and read related operations read the data from
the world state.
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C. Use Case 2: PDC Transactions Validated through the Same
Endorsement Policy as Public Data Transactions

1) Endorsement Policy: Each chaincode has its specific
endorsement policy that specifies which endorsers shall sign a
transaction. A policy is a logical expression, which accepts n
Boolean inputs and returns one Boolean output. For example
the endorsement policy “MAJORITY Endorsement” can be
written as follows,

Majority(e1, e2, ..., en) = b
1

2
+

(
∑n

i=1 ei)− 1/2

n
c, (1)

where n is the number of organizations, and ei is the Boolean
output of the signature policy named “Endorsement” of
the ith organization orgi. For example, orgi can define
the “Endorsement” policy as “OR(orgi.peer)” so that an
endorsement from any peer of orgi produces 1 for ei. If
peers from majority of organizations sign the transaction,
Majority(e1, e2, ..., en) returns 1 and the transaction passes
the endorsement policy check.

2) PDC Transactions Validated Using the Chaincode-level
Policy: Each chaincode has a chaincode-level endorsement
policy. By default, the chaincode-level endorsement policy ap-
plies to both public and PDC transactions. Hyperledger Fabric
allows to customize a collection-level endorsement policy for
a PDC. Based on source code [7] of the Fabric, the read-
only transactions are always validated using the chaincode-
level policy, and the read-write and write-only transactions
are validated using the chaincode-level policy if no collection-
level endorsement policy is defined.

The validation phase checks if the list of endorsements in a
transaction satisfies the endorsement policy and does not dif-
ferentiate between endorsements from PDC members and from
non-members. That is, the validation phase does not check if
a PDC transaction is endorsed by a PDC non-member peer.

D. Use Case 3: “Payload” Field Used to Return Information
in Transaction Proposal Response

As shown in Fig. 3, a transaction has an important field
called proposal-response, which contains two crucial parts: (i)
Response returned to the client has its own three fields:
payload, status and message. The “payload” carries the in-
formation returned by the corresponding chaincode function.
The “status” indicates if the chaincode function successfully
executes. If an error occurs, the “message” will describe the
specific error. (ii) Read/Write set is used for validating
transactions and updating the world state in the validation
phase. Recall that the read set contains 〈key, version〉 that
the chaincode function reads from world state, but not the
corresponding “value” stored in the world state as introduced
in Section III-B1. If the client requires the value, the chaincode
function can return this value through the “payload” field. For
private data, the read/write sets are hashed to avoid revealing
the sensitive private data collections. It shall be noted that
the “payload” in Response is in plaintext for PDC
transactions.

IV. ATTACKS AND DEFENSE

In this section, we show that malicious peer/client nodes
can conduct the fake PDC (read/write) results injection attack
and PDC leakage attack against the misused PDC features
presented in the three use cases in Section III. We will also
introduce our new Fabric features to mitigate these attacks.

A. Fake PDC Results Injection Attack

For a Fabric system, the chaincode manages both public
data and PDC data. There exist use cases in which the
implicitMeta chaincode-level policy, such as MAJORITY or
NOutOf, is needed for public data. In those cases, misuse may
occur and PDC non-member peers may manipulate the PDC
read/write results by colluding with each other or colluding
with malicious PDC member peers to disrupt the integrity of
the ledger, blockchain or world state. (i) The chaincode-level
policy uses implicitMeta policies and there is no collection-
level policy. Fake PDC (read/write) results injection attacks
can work. (ii) The chaincode-level policy uses implicitMeta
policies and collection-level policy is used to explicitly specify
endorsers to avoid undesired endorsers. Attacks on write-
related transactions cannot work, but the attacks on read-
only transactions can work since read-only transactions are
validated only through the chaincode-level policy.

1) Fake Read Result Injection: The fake read result injec-
tion can be deployed when a PDC system allows endorsements
from PDC non-member endorsers (Use Case 1), and read-
only transactions are validated only using the chaincode-level
policy (Use Case 2). When a client sends a PDC read-only
transaction proposal to a PDC member endorser, the endorser
generates a read set of 〈key, version〉 and a null write set. The
value of the key is returned in the transaction’s “payload” field
of “proposal-response”. When the client sends the PDC read-
only transaction proposal to a PDC non-member endorser, the
endorser cannot find the key or value in its world state. It
returns an error to the client and the endorsement fails.

We now present an attack that allows PDC non-member
peers to endorse PDC read-only transactions without errors.
This shows that endorsers shall be carefully chosen for an en-
dorsement policy and implicitMeta policies can be dangerous.

Endorsement Forgery. A PDC non-member endorser can
collude with other endorsers, which can be either PDC mem-
ber or non-member endorsers, and they collaboratively forge
the same 〈key, version〉 and value in the “payload” to endorse
read-only transactions as follows.

• Obtaining version through GetPrivateDataHash(.).
When a PDC member endorser receives a PDC read-
only transaction proposal from a client, it shall use
the API GetPrivateData(collection, key),
and query its world state to get the genuine 〈key,
version〉 and the value. If a malicious PDC non-member
endorser invokes GetPrivateData(collection,
key), an error occurs since the malicious PDC non-
member does not have the private data. However,
the malicious PDC non-member peers can invoke
another API GetPrivateDataHash(collection,
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key) which generates the same version as
GetPrivateData(collection, key). Note
collection and key are sent from the client and version
is taken from the world state. It will not report an error
since any peer can invoke this API to get the private
data hash stored in every peer in the channel.

• Obtaining value in the “payload” through customizable
chaincode. In the Fabric, chaincode does not need to
be identical at all peers in one channel as long as
the execution results are the same across the endorsers.
This feature of customizable chaincode is designed for
organizations to extend their specific business logic, such
as additional validation before endorsing a transaction or
integration of data from their existing system into the
chaincode. However this feature allows malicious peers
to put malicious logic into the chaincode. A group of
malicious peers can extend the chaincode to collude with
each other. For example, malicious endorsers can collab-
oratively customize the chaincode function to return the
same fake value in the “payload”. With 〈key, version〉 ob-
tained with GetPrivateDataHash(collection,
key) and the fake “payload” from colluding with other
endorsers, the malicious PDC non-member endorser can
create a correct proposal-response and the corresponding
endorsement.

In the Fabric, the version conflict check in the validation
phase only checks if the version in the read set 〈key, version〉
is consistent with the current world state, and does not re-
execute the chaincode to check the correctness of execution
results. The fabricated proposal-response can pass the version
conflict check. Therefore, when the chaincode-level policy
such as the MAJORITY policy accepts endorsements from
PDC non-member endorsers, enough endorsements from PDC
non-member endorsers can pass the endorsement policy check
in the validation phase. The fabricated read-only transactions
endorsed by PDC non-member peers can be appended into the
immutable blockchain as valid while the value in the “pay-
load” is fabricated. The integrity of the blockchain is breached.

2) Fake Write Result Injection: When the chaincode de-
ployed in PDC non-member peers does not provide appropriate
checks of write value, the fake write result injection can occur.
A malicious client may fabricate write results in a transaction
to change the private data in the world state and thus disrupt
the integrity of the world state.

Considering Use Cases 1&2, all peers including PDC non-
member peers can generate an endorsement for PDC write-
only transactions. Therefore, a malicious client can get en-
dorsements from any endorsers. By default, PDC write-only
transactions are validated using the chaincode-level policy,
where endorsements from PDC non-member endorsers can
satisfy the policy.

In the write-only scenario, different private data owners
may define different constraints for write operations since the
customizable chaincode allows endorsers to extend additional
code to describe their own specific logic. Intuitively, the PDC
non-member peers with no interest in such private data will

add no constraints. Therefore, a malicious client can exploit
this practice and send transaction proposals to PDC non-
member peers to get the required number of endorsement
to pass the endorsement policy validation. In this way, the
malicious client may change the PDC in the world state at
will, and violate the business logic of some PDC member
peers. The integrity of the world state is broken too.

3) Fake Read-Write Result Injection: The read-write trans-
actions are often used to update data stored in the world state.
For example, an add function first reads the data in the world
state, next adds a value to it, and then uses the sum to update
the data in the world state. The attacks introduced in Section
IV-A1 and Section IV-A2 can be combined to conduct more
powerful attacks.

In a read-write transaction, the value obtained from the read
operation may be used in the write operation (such as the
add operation) or used in control statements such as “if-else”.
Through the fake read result injection in Section IV-A1, the
malicious endorsers can fabricate a fake read value, so as to
change the value in the write set or change the control flow
of a chaincode function. Further through the fake write result
injection in Section IV-A2, the attackers can update the world
state with the fake value in the write set and this disrupt the
integrity of the world state.

4) PDC Delete Attack: As introduced in Section III-B1, a
delete operation is the special case of a write operation. The
system won’t report an error when PDC non-member peers
endorse the delete-only transactions. So any non-member peers
also can endorse delete-only transactions on private data. The
attacks on write-only transactions are also valid in delete-only
transactions, and can be combined with the other operations
to conduct more sophisticated attacks.

5) 51% Attack Discussion: When the chaincode-level en-
dorsement policy is set to MAJORITY, our attacks require that
51% of the organizations in one channel have malicious peers
and clients. This is similar to 51% attacks against Blockchain
systems such as Bitcoin and Ethereum [8]–[10]. In our attacks,
malicious PDC non-member endorsers need to collude to-
gether to fabricate required number of endorsements to satisfy
the MAJORITY policy. If there is no enough non-member
peers, they need to further collude with PDC member peers.

The chaincode-level endorsement policy can also use the
NOutOf policy. In this case, it is possible that our at-
tacks require peers from far less than 51% malicious PDC
non-member organizations. For example, 2OutOf(org1.peer,
org2.peer, org3.peer, org4.peer, org5.peer) means endorse-
ments from any two peers out of the 5 listed organizations
can satisfy the policy. Assume org1 and org2 share a PDC.
Endorsements from org3.peer and org4.peer also can satisfy
the NOutOf policy even though both of them are PDC non-
member organizations. Org3 and org4 can collude to conduct
all the proposed attacks above to manipulate the private data
without colluding with any PDC member peer.
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B. Private Data Leakage

In Use Case 3, the “payload” filed in the proposal-response
may reveal the private data to non-member peers though both
PDC-read and PDC-write transactions with no need of peers
or clients being malicious.

1) PDC Leakage through PDC Read Transactions:
We first check how a PDC read transaction is processed
in the Fabric. A Fabric system may want to record
who performs the PDC read into the ledger for the pur-
pose of auditing [11]. In such a case, a client sends a
transaction proposal to multiple endorsers using the API
submitTransaction(name,[args]). In this way, the
client will receive multiple proposal responses and endorse-
ments from the endorsers. Then the client assembles a trans-
action, which is then sent to the orderers and put into the block.
The block is then distributed to all peers in the channel. All
peers can obtain the contents of a transaction by just fetching
it from their local blockchain.

In the Fabric, the chaincode function returns the requested
PDC value to the client through the “payload” field in
Response of a transaction’s proposal-response. The 〈key,
version〉 part of the target PDC is stored in the read set.
According to Use Case 3 in Section III-D, only the PDC
read/write set of a transaction is hashed but the “payload”
in Response of proposal-response keeps the original value.
Therefore, all peers including PDC non-members can search
the local blockchain and obtain the private data value while
by design PDC is shared by only a subset of peers in one
channel for data isolation and confidentiality. Therefore, the
PDC leakage due to Use Case 3 violates the design principles
of PDC. Therefore, this use case shall be avoided.

2) PDC Leakage through PDC Write Transactions:
In a PDC write transaction, a client must use
submitTransaction(name,[args]) to invoke
PDC write chaincode functions so that a transaction can be
generated and the update to the world state can be fulfilled in
the validation phase. A sloppily written chaincode function
may return the PDC value or other sensitive information
through the “payload” field as response to the client. The
“payload” field will reveal the sensitive information to
all peers through the block distributed to all peers. Our
experiments in Section V-B2 show that the GitHub Fabric
projects at GitHub may leak PDC this way. A designer
in such a use case shall understand the payload field is in
plaintext even for PDC operations.

C. Defense

Sections IV-A and IV-B show that endorsers shall be care-
fully chosen and implicitMeta policies may be dangerous if
there are untrustworthy organizations and peers. We present
two new features for a Fabric system to defeat the fake PDC
results injection attack as well as the PDC leakage attack.

1) New Feature 1: Collection-level Policy Check for PDC
Read Transactions during Validation: This feature can be used
to defeat the fake PDC read results injection. With Use Case
2 in Section III-C, PDC read-only transactions are validated

client endorser orderer

4: sign PR_Hash

3: calculate PR_Hash

9: transaction

7: verify <PR_Hash, Sign(PR_Hash)>

8: transaction generation

6: calculate PR_Hash

10: block
generation

13: Notification
12: transaction

validation

11: block distribution

5: proposal response and endorsement

2: chaincode execution

1: transaction proposal

Powered By�Visual Paradigm Community EditionFig. 4. Cryptographic solution to fix Design Issue 3

solely using the chaincode-level policy. We propose to add
the collection-level policy check for PDC-read operations. If
a collection-level policy is defined, the validation phase will
apply such policy to PDC read-only transactions. Otherwise,
the chaincode-level policy is adopted. To defeat the fake PDC
write results injection, collection-level policy may be used to
explicitly specify endorsers to avoid undesired endorsers when
the chaincode-level policy uses implicitMeta policies.

2) New Feature 2: Cryptographic Solution in the Execution
Phase: In Use Case 3, the “payload” in the Response field
of proposal-response can reveal the private data to all peers
including PDC non-member peers. An intuitive approach to
prevent such private data leakage is to hash the “payload” in
proposal-response, which is returned from an endorser to the
client. However, the client needs to obtain the “payload” in
plaintext since that is what the client asks for.

We propose to modify the work mechanism of both en-
dorsers and clients as shown in Fig. 4 with newly added Steps
3-4 and 6-7. For the endorsers, they still return the proposal-
response with the original “payload” (i.e. PR Ori) to the client
to provide the PDC read service. The modification is that the
endorser signs the proposal-response with hashed “payload”
(i.e. PR Hash), not the original one. Then the endorser returns
〈PR Ori, Sign(PR Hash)〉 to the client. The client receives
the proposal-response and the signature. It first calculates the
hash of “payload” again to get PR Hash using the same
algorithm as endorsers (SHA256 in Hyperledger Fabric), then
verifies the signature, and assembles the transaction using
〈PR Hash, Sign(PR Hash)〉. The remaining ordering and val-
idation phases proceed without any modifications. In this way,
the client receives the private data and the transaction does not
contain the private data.

V. EVALUATION
We build prototype systems following the test-network

guideline in Fabric official documents [12] [13] to demonstrate
the effectiveness of our attacks and defense measures. We
also analyze the Fabric projects at GitHub to evaluate the
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generality of our attacks. All the experiments were performed
on a MacBook Pro. Dockers were used to run as nodes and
form a Fabric system.

A. Fake PDC Results Injection Attack
Without loss of generality, we test the attacks against a

Fabric system of three organizations joining a channel. Each
organization provides one peer node and one client node,
denoted as peer0.org1, peer0.org2, peer0.org3, client0.org1,
client0.org2 and client0.org3. Org1 and org2 are the member
organizations of the PDC1 and maintain private data 〈k1, P1〉.
PDC1 uses the default chaincode-level MAJORITY Endorse-
ment policy, which is the most popular chaincode-level policy
as shown in Section V-C2. Org1 and Org3 are malicious, and
Org2 is the victim.

1) Fake Read Result Injection Attack: Fig. 5 shows the
fake read result injection attack. Peer0.org1 and peer0.org3
have malicious chaincode to conduct Endorsement Forgery as
introduced in Section IV-A1. The malicious client0.org1 sends
a read proposal to peer0.org1 and peer0.org3, which return the
proposal-response and endorsements with the same fake value
in the “payload” and the valid 〈key, version〉 to client0.org1.
client0.org1 automatically assembles a transaction and sends
it for ordering. This transaction passes the validation at all
peers. The malicious transaction is marked as valid and put
into the blockchain at all peers. The integrity of the blockchain
is broken with the fake value.

2) Fake Write Result Injection Attack: Fig. 6 shows the
fake write result injection attack. A malicious client0.org1
starts a write transaction of setting k1.value = 5 by sending
a proposal to peer0.org1 and peer0.org3. Peer0.org1’s PDC
write chaincode function requires k1.value < 15 so as to
move forward with its business logic. Since k1.value = 5 is
less than 15, peer0.org1 allows the write operation to move
forward. Peer0.org3 is a PDC non-member with no constraint
on PDC. Therefore, both peer0.org1 and peer0.org3 move
forward to generate the proposal-response and endorsements
and send them back to client0.org1, which then assembles a
valid transaction. This transaction will eventually be used to
update the world state at all PDC member peers including
peer0.org2 in the validation phase. However, if peer0.org2
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Fig. 6. Injecting fake results into write-only transactions

requires k1.value > 10 in its business logic, it can be observed
that the fake write result injection attack violates peer0.org2’s
business logic and puts k1.value = 5 into the world state of
peer0.org2 which requires k1.value > 10.

3) Fake Read-Write Result Injection Attack: In this exper-
iment, the read-write chaincode function first reads the value
of k1, then adds a value to k1 and use the sum to update
k1. Peer0.org1 requires k1.value < 15, peer0.org2 requires
k1.value > 10 and peer0.org3 has no constrains on k1.value.
Following the fake read result injection attack, peer0.org1
and peer0.org3 collude together to forge a fake read value
of k1 to make the sum less than 10, such as 5. Following the
fake write result injection attack, the malicious client0.org1
successfully changes k1.value to 5 which violates org2 by
getting endorsements from peer0.org1 and peer0.org3.

4) PDC Delete Attack: The delete operation is a special
case of the write operation as introduced in Section III-B1.
In this experiment, peer0.org1 require k1.value < 15 to
delete k1. Peer0.org2 require k1.value > 10 to delete k1.
Peer0.org3 has no constraint. When k1 = 5, our experiments
show the malicious client0.org1 can successfully delete k1 at
both peer0.org1 and victim pee0.org2 with endorsements from
peer0.org1 and peer0.org3.

5) Attacks under the NOutOf Endorsement Policy: In
this experiment, we add two more organizations (i.e. org4
and org5) to the prototype system. Peer0.org4 and peer0.org5
are PDC1 non-member peers and the chaincode-level endorse-
ment policy is set to 2OutOf(org1.peer, org2.peer, org3.peer,
org4.peer, org5.peer). We assume peer0.org3 and peer0.org4
are malicious. PDC member peer0.org1 and peer0.org2 are
the victims. Our experiments show that all attacks above can
get endorsements from peer0.org3 and peer0.org4 and achieve
the desired attack results. Therefore, our attacks work against
PDC transactions with no need of malicious peers from over
50% organizations.

6) Attacks under the Collection-level Policy: In this ex-
periment, we define a collection-level endorsement policy of
AND(org1.peer, org2.peer) for PDC1 and conduct the above
attacks again. Due to Use Case 2, the system still uses the
chaincode-level policy to validate the read-only transactions.
The fake read-only result injection attack still works and the
read-only transaction with endorsements from peer0.org1 and
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peer0.org3 is still marked as valid. The fake write-only, read-
write and delete result injection attacks fail due to the use
of the collection-level policy validating transactions. However,
according to generality analysis in Section V-C, most projects
do not define the collection-level policy. Our defense measure
can defeat all the attacks even if there is no collection-level
policy and the chaincode-level policy is used.

B. Private Data Leakage

We use two vulnerable projects [14] [15] at Github to
demonstrate the PDC leakage. We build two prototype systems
according to the guideline of these two Github projects.

1) PDC Leakage through PDC Read Transactions:
In one GitHub project [14], the system contains pee0.org1
and peer0.org2. Org1 is the PDC member. In its chain-
code snippet shown as Listing.1, a function called
readPrivatePerfTest provides PDC-read service and
uses the API getPrivateData to get the value of the PDC
key perfTestId. The required PDC value is stored in a
variable asset and is returned in Line.10. Its client appli-
cation code uses submitTransaction(name,[args])
to invoke the function readPrivatePerfTest. Once the
client of org1 reads the PDC value, the corresponding trans-
action is distributed to all peers through blocks. PDC non-
member peer0.org2 can then fetch and parse the transaction
in the local ledger to obtain the original PDC value.

Listing 1. Chaincode Function in the PDC-Read Case
1 // The language is Node.js.
2 async readPrivatePerfTest(ctx,perfTestId)
3 {
4 const exists = await this.privatePerfTestExists(

ctx, perfTestId);
5 if (!exists) {
6 throw new Error( ' The p e r f t e s t ${ p e r f T e s t I d }

does n o t e x i s t ');
7 }
8 const buffer = await ctx.stub.getPrivateData(

collection,perfTestId);
9 const asset = JSON.parse(buffer.toString());

10 return asset;
11 }

2) PDC Leakage through PDC Write Transactions:
In another GitHub project [15], the system contains three
organizations org1, org2 and org3. Org1 and Org2 are
the PDC members. The PDC’s name is “demo”. In the
chaincode snippet as shown in Listing 2, a function called
setPrivate provides PDC-write service. Args[0] is the
target key and the args[1] is the value used to update
the key. This function uses the API PutPrivateData to
update the PDC, and returns Args[1] in Line.10, which
can leak the PDC value. Each time the clients of org1 or
org2 invoke the function setPrivate to update the PDC,
the peers of non-member org3 receive the corresponding
transaction, may parse this transaction in the local ledger, and
obtain the original PDC value.

Listing 2. Chaincode Function in the PDC-Write Case
1 // The language is Golang.

2 func setPrivate(stub shim.ChaincodeStubInterface,
args []string) (string, error)

3 {
4 if len(args) != 2 {
5 return ' ', fmt.Errorf( ' I n c o r r e c t a rgumen t s .

E x p e c t i n g a key and a v a l u e ')
6 }
7 err := stub.PutPrivateData( ' demo ',args[0],[]byte

(args[1]))
8 if err != nil {
9 return ' ',fmt.Errorf( ' F a i l e d t o s e t a s s e t :

%s ',args[0])
10 }
11 return args[1], nil
12 }

C. Generality of Our Attacks
To evaluate the generality of our attacks, we analyze Fabric

projects available on GitHub ranging from January 1, 2016 to
December 31, 2020 while the Fabric was first released in 2016.

1) Static Analyse Tool: We build a tool with Python to
conduct a large-scale analysis of Fabric projects on GitHub.
Our tool statically scans the use of PDC according to its
features. There are two options to define a PDC. One is explicit
definition which fits the scenarios of our attacks. The other is
implicit definition which is out of scope of this paper since it
is used for special cases where only one organization owns the
private data. The projects involving the explicit PDC definition
must define a “.json” configuration file to describe the PDC
properties. The “.json” file has some fixed keywords including
“Name”, “Policy”, “RequiredPeerCount”, “MaxPeerCount”,
“BlockToLive”, “MemberOnlyRead” and so forth. If these
keywords are detected in a “.json” file of one project, the
tool will classify it as an explicit PDC project. The implicit
definition includes a field “ implicit org ” that must appear
in the parameters list of PDC operations APIs. If our tool
finds “ implicit org ” in the chaincode of a project, the tool
will classify it as an implicit PDC project. Note that a Fabric
project can use explicit and implicit PDC simultaneously.

For the explicit PDC projects, our tool detects how many of
them use the chaincode-level endorsement policy by default,
since the default policy may put the projects under our attacks.
There is one optional property called “EndorsementPolicy” in
the explicit definition configuration file. It is used to customize
the collection-level policy for PDC. If “EndorsementPolicy” is
not set, the corresponding project uses the default chaincode-
level policy. Our tool looks for this feature and derives the
number of explicit PDC projects that use the chaincode-level
endorsement policy. Furthermore, our tool also finds what the
default chaincode-level policy is. It can be found in a fixed
field of a configuration file called “configtx.yaml”.

2) Results: We find 6392 projects in total. There are 252
explicit PDC projects that our paper focus on and 35 implicit
PDC projects. Among these PDC projects, 31 projects involve
both explicit PDC definition and implicit PDC definition.

Growth trend across years. It can be observed from Fig.
7, since Fabric was introduced in 2016, the projects on Github
have increased sharply, particularly in the year 2019 and 2020.
It can also be observed that the use of PDC has been growing
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TABLE II
ATTACK & DEFENSE EVALUATION SUMMARY.

√
MEANS THE ATTACK WORKS. × MEANS THE ATTACK FAILS.

Use Cases Attack Default Policy:
MAJORITY

Default Policy:
2OutOf5

Define Collection-level
Policy : AND(org1, org2)

New Feature 1: Collection-level Policy
Check for PDC Read Transactions

Original
Fabic Framework

New Feature 2:
Cryptographic Solution

1: Non-member Peers
Endorse PDC Transactions 1: Fake PDC

Results
Injection

Read-Only
√ √ √

× N/A N/A

Write-Only
√ √

× × N/A N/A

2: PDC Transactions Validated through
the Same Endorsement Policy as

Public Data Transactions

Read-Write
√ √

× × N/A N/A

Delete-Related
√ √

× × N/A N/A

3: Exposed “Payload” Field Used to
Return Information in Transaction

2: PDC
Leakage

PDC-Read N/A N/A N/A N/A
√

×

PDC-Write N/A N/A N/A N/A
√

×
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gradually. The private data mechanism was proposed in 2018,
so there was no PDC projects in 2016 and 2017.

PDC type distribution. As shown in Fig. 8, the type of
explicit PDC, which this paper focus on, is the most popular
one and 98.44% of all PDC projects are of this type. Among
them, 12.11% has the type of implicit. Only 1.56% of the PDC
is implicit only.

Generality of fake PDC results injection attacks. In the
252 explicit PDC projects, 218 projects use the chaincode-
level policy by default and only 34 projects customize the
collection-level endorsement policy for PDC. Fig. 9 shows the
distribution of endorsement policy types among explicit PDC
projects. We can see that 86.51% of them use the chaincode-
level endorsement policy, which is vulnerable as discussed in
Section III-C.

Popularity of MAJORITY Endorsement policy. Our tool
finds 120 configtx.yaml files in the 218 explicit PDC projects
that use the chaincode-level policy. 116 out of these 120
configuration files use the MAJORITY Endorsement policy
as the chaincode-level endorsement policy. This demonstrates
that MAJORITY Endorsement is very popular. Recall in our
experiments, we assume that the chaincode applies the MA-
JORITY Endorsement policy for all transactions and all these
prototype projects that adopt the MAJORITY Endorsement
policy are subject to our attacks.

Generality of PDC leakage issues. We manually analyse
all 252 explicit PDC projects and find that 91.67% projects
have such issues as shown in Fig. 10. 231 of these vulnerable
projects involve functions that provide the PDC read service
which return PDC and will leak the PDC. 20 of these 231
vulnerable projects also involve sloppily written PDC write
functions that return PDC and can leak the PDC.

D. Defense Effectiveness and Efficiency
We have implemented the new features proposed in Section

IV-C by modifying the source code of the Fabric framework.
We also add a supplemental feature filtering PDC non-member
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Fig. 11. Impact of defense measures on system performance

endorsers during validation. This can be useful for preventing
sloppy developers from crafting dangerous PDC related poli-
cies when PDC non-members are not wanted. For Use Cases
1 and 2, we modify the source code for endorsement policy
check during validation. For Use Case 3, we modify the source
code for endorsing the proposal-response and assembling
transactions in the execution phase. With the new features in
the modified Fabric framework, we perform the same attacks
experiments in Section V-A and Section V-B and have verified
all those attacks cannot succeed any more.

To evaluate the efficiency of our defense measures, we mea-
sure the execution latency and validation latency of processing
one transaction respectively under the original and modified
Fabric framework. Each measurement runs 100 times. Fig.
11 shows our new features have minor impact on the system
running read/write/delete transactions.

VI. RELATED WORK

In this section, we briefly review the most related work on
security of Hyperledger Fabric and some attacks on vulnerable
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smart contracts. It can be observed we are the first to identify
the security problems caused by misuse of PDC of Fabric.

Yamashita et al. [16] summarize the potential risks in
chaincode from multiple aspects. First, chaincode is devel-
oped using general-purpose programming languages. Some
non-deterministic features of general-purpose programming
languages may cause inconsistent endorsing results across
different peers. Second, they point out that the concurrency of
transactions is not properly designed, and phantom read may
occur. There exist attacks against smart contracts in Ethereum
[17]–[19], exploiting smart contract implementation issues.

Andola et al. [20] discuss the DoS attack and Wormhole
attack against Hyperledger Fabric. In the DoS attack, a ma-
licious insider may intentionally create errors in responses
from endorsers so as to hinder transaction processing. In the
wormhole attack, a compromised peer may leakage informa-
tion within a channel to an outer adversary, which violates the
confidentiality of the data.

Davenport et al. [21] review the attack surface in Hy-
perledger Fabric such as private key leakage and insecure
CA. Hasanova et al. [22] believe that the sandboxing Docker
[23] used in Hyperledger Fabric is not secure enough and
may be subject to attacks such as Docker escape or resource
abuse. Hyperledger Fabric is also susceptible to security flaws
existing in general-purpose programming languages.

VII. CONCLUSION

In this paper, we explore the security problems caused by
misuse of the private data collection (PDC) of the Hyperledger
Fabric framework. We present three classes of use cases
with respect to endorsing, endorsement policy, and transaction
semantics where misused features cause security issues. We
propose two group of novel attacks against such misuse:
fake PDC results injection and PDC leakage. To demonstrate
the severity and generality of these attacks, we perform a
large-scale analysis of 6392 Hyperledger Fabric projects on
Github, and find that 86.51% of the PDC related projects are
potentially vulnerable to the fake PDC results injection attacks,
and 91.67% have PDC leakage issues. We present new features
for the Fabric system to defeat these attacks. The new features
have minor or negligible impacts on the system performance.
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