
On Salable Matrix Multiply via OpenMP WorkqueuingA Tehnial Paper Submitted to ICPADS'06Robert A. van de GeijnField G. Van ZeeThe University of Texas at AustinAustin, TX 78712January 2006AbstratMultiore proessors with a few ores are already beoming available and proessors with numerousores are reportedly not far behind. Initially, we an expet to program suh proessors muh likeSMP arhitetures via multi-threading and OpenMP. Eventually we antiipate numerous threads tobe exeuting on numerous ores whih raises the important question of how to program suh systems.Surprisingly, even for the otherwise well-studied matrix-matrix multipliation operation little on thisan be found in the literature. In this paper we present initial results from an empirial study on howto program and attain high performane for this operation on SMP systems with a large number ofproessors. We believe this gives some insight into how multiore proessors with a moderate number ofores (16-64) may need to be programmed. Performane on a 16 CPU Itanium2 server is reported.1 IntrodutionThe sienti� omputing ommunity is unequivoally obsessed with high-performane matrix-matrix multi-pliation. This obsession is well justi�ed, however; it has been shown that fast matrix-matrix multipliationis also an essential building blok of many other linear algebra operations like those supported by the Level-3Basi Linear Algebra Subprograms (BLAS) [9, 19℄ and the Linear Algebra Pakage (LAPACK) [2℄. As newarhitetures beome available, this obsession ontinues.The high-performane implementation of matrix-matrix multipliation on serial arhitetures is wellunderstood [14, 11℄. So is the pratial, salable parallelization of this operation on distributed memoryparallel arhitetures [1, 27, 12℄. Surprisingly, little or no literature exists on the salable implementationof this operation on symmetri multiproessors (SMPs). With the advent of multiore proessors, it isoneivable that SMPs with hundreds of threads of simultaneous exeution will be widespread within adeade, sine eah proessor of an SMP will have multiple ores. Programmability as well as salability isan issue that must thus be addressed for this and related operations.The Formal Linear Algebra Methods Environment (FLAME) projet at UT-Austin pursues a new ap-proah to deriving and implementing high-performane algorithms [3℄. Algorithms for linear algebra oper-ations are systematially (and, more reently, often mehanially) derived and then expressed in ode in away that hides indexing details. The methodology has been shown to be appliable to all of the BLAS, mostof LAPACK, and many similar operations [13, 4, 22℄. More reently, it has been extended to support SMPparallelism using OpenMP diretives [21, 20℄. 1



In this paper, we demonstrate how FLAME supports SMP parallelismby utilizing the workqueuingmodel.We show empirial evidene that available proessors need to be viewed as forming a two-dimensional gridof proessors to whih work is distributed. This is similar to the two-dimensional data and work distributionrequired for salability on distributed memory arhitetures [8, 1, 27, 28, 25℄. Performane results on a 16CPU Itanium2 server are given to support this insight. An important part of this paper is the onlusion inwhih the presented results are used to suggest future diretions that need to be pursued.2 General matrix-matrix multiplyIn this setion we review the di�erent speial ases of matrix-matrix multiply that arise in pratie as wellas algorithms that support these di�erent ases.2.1 Basi algorithmi variantsIn this paper, we fous on the general matrix-matrix multiply, or gemm operation: C := �AB + �C whereA, B, and C are general (non-symmetri, non-triangular) matries of dimensions m� k, k � n, and m� n,respetively. For simpliity, we will assume � = � = 1.Partition eah matrix by rows and by olumns:X = � X0 X1 � � � � = 0B� �X0�X1... 1CA ; X 2 fA;B;Cg;whih represent a partitioning by olumns and rows, respetively. Then0B� �C0�C1... 1CA = 0B� �A0�A1... 1CAB = 0B� �A0B�A1B... 1CAso that �Ci = �AiB. Also,� C0 C1 � � � � = A � B0 B1 � � � � = � AB0 AB1 � � � �so that Cj = ABj . Finally, C = � A0 A1 � � � �0B� �B0�B1... 1CAso that C = A0 �B0 + A1 �B1 + � � � . We will refer to these algorithms as gemm varm, gemm varn, andgemm vark, respetively, to indiate that the matries are partitioned along the m, n, and k, dimensions,respetively.2.2 Variant aÆnity to matrix shapesMatrix-matrix multipliation almost always ours in ontext. Frequently, the \shape" of the matrixoperands is ditated by this ontext. For most high-performane dense linear algebra operations, like thosesupported by the BLAS and LAPACK, one of the dimensions (m, n, k) is relatively small. In Figs. 1 and 2,2



m n k Illustration Label AÆnitylarge large large := + gemm gemm varmgemm varngemm varklarge large small := + gepp gemm varmgemm varnlarge small large := + gemp gemm varmgemm varksmall large large := + gepm gemm varngemm varksmall large small := + gebp gemm varnlarge small small := + gepb gemm varmsmall small large := + gepdot gemm varksmall small small := + gebbFigure 1: Speial shapes of gemm.Letter Shape Desriptionm Matrix Both dimensions are large or unknown.p Panel One of the dimensions is small.b Blok Both dimensions are small.Figure 2: The labels in Fig. 1 have the form gexy where the letters hosen for x and y indiate the shapesof matries A and B, respetively, aording to the above table.we give all ommonly enountered shapes, and give a speial label to eah resulting matrix-matrix multi-pliation. The term \small" is, of ourse, subjetive. In papers on the high-performane implementationof sequential matrix-matrix multipliation it has been shown that an optimal small dimension is roughlyproportional to the square-root of the size of the L2 ahe [11℄ 1.Our goal for partitioning is simple: the matries should be partitioned so as to reate independentsubproblems that may be exeuted in parallel by multiple threads of omputation. Clearly, it is along a\large" dimension that one should partition, sine partition a \small" dimension reates subproblems thathave at least one suboptimal dimension. In Table 1 we indiate that a matrix shape has an aÆnity toalgorithms gemm varm, gemm varn, or gemm vark based on this insight.1Later in this paper, we will take small to equal 128, a reasonable number for our target platform, the Itanium2 arhiteture.3



2.3 Composite variantsAlgorithms gemm varm, gemm varn, and gemm vark partition along only one of the three dimensions (m,n, and k). We an synthesize omposite variants that perform partitioning along two of the three dimensionsby reognizing that the subomputation to be performed is itself a matrix-matrix multipliation and thatit therefore an be aomplished by invoking one of the three algorithms. Naturally, invoking an algorithmthat partitions in the same dimension for this subproblem is equivalent to partitioning only one dimensionwith a �ner partitioning, and therefore not interesting. Let us refer to omposite variant gemm varij asthe basi variant gemm vari whih invokes variant gemm varj to ompute the subproblems. This allowsnine omposite variants to be formed from the three basi variants. However, as mentioned we wish to avoidpartitioning along a given dimension more than one. This leaves only six omposite algorithms. We will seethat for our study gemm varij is for all pratial purposes equivalent to gemm varji whih further reduesthe number of omposite algorithms to three.3 Partitioning for parallelismThe previous setion has laid the groundwork for the disussion on parallel algorithms for matrix-matrixmultipliation. Extensive work in the �eld of distributed-memory matrix-matrix multipliation shows thata two-dimension partitioning is needed for salable parallelism [8, 1, 27, 28, 25℄. In this paper, we onjeturethat a two-dimensionalwork partitioning is also neessary to ahieve salable performane in a shared memoryenvironment. We disuss this further in this setion.3.1 One-dimensional work partitioningParallelizing matrix-matrix multipliation on an SMP arhiteture with t proessors is a matter of parti-tioning the problem into t subproblems (tasks) to be exeuted in parallel. Let us examine the three originalapproahes in detail:Algorithms gemm varm and gemm varn: These algorithms an proeed by partitioning the targetdimensionm or n, respetively, into t (almost) equal parts. After this, t ompletely independent omputationsan proeed: �Ci := �AiB + �Ci on proessor i for gemm varm and Cj := ABj + Cj on proessor j forgemm varn. The only onern is to ensure that the subproblem doesn't have a dimension that is too small.Algorithm gemm vark: This algorithms an proeed by partitioning the target dimension k into t (al-most) equal parts. After this, t ompletely independent omputations an proeed: C(p) := Ap �Bp is om-puted on proessor p. However, now these partial ontributions must be added together to update C:C := C(0)+C(1)+ � � �+C(t�1)+C. Thus, the updating by di�erent threads must be arefully orhestrated.Again, one must ensure that the subproblem doesn't have a dimension that is too small.3.2 Two-dimensional work partitioningFor the omposite algorithms it suÆes to fator the number of threads, t, into a loal two-dimensional grid,r �  = t, and then to partition two of the three dimensions (m, n, and/or k) into r and  (almost) equalparts.Algorithm gemm varmn: In this ase, dimensions m and n are partitioned into r and  (almost) equalparts. Algorithm gemm varm is employed to reate r equal subproblems, eah of whih is omputed using4



algorithm gemm varn whih subdivides eah of these tasks into  subproblems for a total of t tasks. Eahof these tasks updates a separate part of matrix C so that they an all exeute without further interation.Algorithms gemm varkm and gemm varnk: For algorithm gemm varkm dimensionsm and k are par-titioned into r and  (almost) equal parts, respetively. Notie that sine the k dimension is partitioned, inthat dimension ontributions of smaller matrix-matrix multipliations must be summed to the appropriatesubmatrix of C. Similarly, for algorithm gemm varnk dimensions k and n are partitioned into r and  (al-most) equal parts, respetively. Again, the k dimension is partitioned and in that dimension ontributions ofsmaller matrix-matrix multipliations must be summed to the appropriate submatrix of C. This summationrequires more synhronization between tasks and an thus be expeted to inur a higher overhead.4 Implementation with FLAME/C and WorkqueuingIn this setion we disuss implementation details related to the Formal Linear Algebra Methods Environment(FLAME) Appliation Programming Interfae (API) for the C programming language, FLAME/C, and howit is supported by a model that has been proposed for addition to OpenMP, workqueuing.4.1 Formal Linear Algebra Methods EnvironmentThe FLAME projet embodies a methodology for deriving algorithms for dense linear algebra operations aswell as APIs for representing the resulting algorithms in ode. The derivation proess presents algorithms us-ing a somewhat unonventional notation illustrated in Fig. 3(left) for gemm varm. Notie that the notationmanages movement through operands by traking submatries. Details an be found in [6℄. In Fig. 3(right),we present the FLAME/C ode. The algorithmi Partition, Repartition and Continue With statementsexist within the FLAME programming interfae as subroutines that hide all indexing variables inside matrixobjets (also alled \desriptors"). All detailed omplexity related to indexing is abstrated away from theprogrammer within the FLAME matrix desriptors. In addition, the programmer an manipulate matrixdata simply by passing the appropriate matrix subpartition desriptors to routines suh as FLA Gemm whihperform the same operations orresponding to the BLAS all to dgemm. In this way the FLAME/C APIfrees the programmer to think at a higher level of abstration where the omputation is expressed in termsof separate partitioned regions within the matries. A full disussion of this API an be found in [5℄.4.2 OpenMP task queuesOpenMP is a set of ompiler diretives and library routines that aids in parallel programming on sharedmemory systems [24℄. This allows the programmer to expliitly speify regions of ode that an be exeutedby simultaneous threads of exeution. OpenMP diretives are expressed in C soure ode as preproessor#pragma diretives. An OpenMP-aware ompiler reognizes these diretives and then performs soure odetransformations to insert the \nuts and bolts" that implement the threaded parallelism.Shah et al. [23℄ establish the limitations of the two most ommon forms of OpenMP parallelism: the forand setions diretives. The authors point out that the number of iterations in OpenMP for loops must beomputable upon �rst entering the loop. Similarly, the setions onstrut is \non-iterative" and statiallyidenti�es independent regions of omputation. In other words, only one parallel setion an be instantiatedfor every textual ourrene of the setion diretive within the ode. The authors of [23℄ proposed theworkqueuing model spei�ally to overome limitations in the existing set of onstruts.OpenMP workqueuing, proposed for inlusion in the OpenMP 3.0 standard, provides a novel way toobtain parallelism [26℄. The model onsists of two new OpenMP diretives: taskq and task. Coneptually,5



Algorithm: C := gemm varm( A, B, C )PartitionA! � ATAB � ,C ! � CTCB �where AT has 0 rows, CT has 0 rowswhile m(AT ) < m(A) doDetermine blok size bmRepartition� ATAB �! 0� A0A1A2 1A ,� CTCB �! 0� C0C1C2 1Awhere A1 has bm rows, C1 has bm rowsC1 := A1B + C1Continue with� ATAB � 0� A0A1A2 1A ,� CTCB � 0� C0C1C2 1Aendwhile

void GEMM_VARm( FLA_Obj A, FLA_Obj B, FLA_Obj C, int nthreads ){ FLA_Obj AT, A0, CT, C0,AB, A1, CB, C1,A2, C2;int m, bm;FLA_Part_2x1( A, &AT,&AB, 0, FLA_TOP );FLA_Part_2x1( C, &CT,&CB, 0, FLA_TOP );m = FLA_Obj_length( A );#pragma intel omp parallel taskq{ while ( FLA_Obj_length( AT ) < FLA_Obj_length( A ) ){bm = min( FLA_Obj_length( AB ), m/nthreads );FLA_Repart_2x1_to_3x1( AT, &A0,/* ** */ /* ** */&A1,AB, &A2, bm, FLA_BOTTOM );FLA_Repart_2x1_to_3x1( CT, &C0,/* ** */ /* ** */&C1,CB, &C2, bm, FLA_BOTTOM );/*--------------------------------------------------*/#pragma intel omp task aptureprivate( A1, C1 ){ FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,ONE, A1, B, ONE, C1 );} // end of task sope/*--------------------------------------------------*/FLA_Cont_with_3x1_to_2x1( &AT, A0,A1,/* ** */ /* ** */&AB, A2, FLA_TOP );FLA_Cont_with_3x1_to_2x1( &CT, C0,C1,/* ** */ /* ** */&CB, C2, FLA_TOP );}} // end of taskq sope}Figure 3: Left: Algorithm gemm varm expressed as a FLAME algorithm. Right: Representation in C usingthe FLAME/C API annotated with proposed OpenMP task queue diretives.enountering a taskq diretive auses the main thread to reate an empty workqueue (or task queue). Theode within the taskq sope is exeuted sequentially. As task diretives are enountered, the ode assoiatedwith the task blok is enapsulated and enqueued as a unit of work onto the task queue. A number of otherthreads (determined by the runtime system) begin dequeuing and exeuting tasks from the queue aordingto a �rst-in/�rst-out (FIFO) poliy. When all tasks have been ompleted, the threads synhronize at theend of the taskq sope and ontinue through the program.Some ode implementations, inluding those presented in Se. 2.3, require an additional lause to thetask diretive: aptureprivate. This lause allows the programmer to speify a list of variables whosevalues must be reorded when the task is enqueued. Typially, a variable is inluded in a aptureprivatelause beause the the task in question resides within a loop. The OpenMP ompiler shedules the valueof this variable to be \aptured" at the time the task is enqueued so that sequential semantis may bepreserved.
6



4.3 Parallelizing of our algorithmsAn example of how the taskq and task pragmas an be used to parallelize our algorithms is given inFig. 3. The subtasks, themselves matrix-matrix multipliations, an be exeuted in parallel. Naturally, thedimension, m, is partitioned into subparts of size m=nthreads in order to ahieve load balane. Clearly,gemm varn an be parallelized similarly.The parallelization of gemm vark is slightly more omplex: Here the results of independent matrix-matrixmultipliations must be added to the original matrix C. For details of how FLAME/C handles this we referthe reader to [20℄.The omposite algorithms are ahieved by inlining the loop that omputes the subproblem so that onlya single task queue is required for the implementation. In theory, nested task queues ould be used so thatthis in-lining needs not be performed. We have not yet experimented with this.5 Performane ExperimentsFor our experiments, the host arhiteture is an NEC NUMA Express 5800/1000 series SMP equippedwith 16 Itanium2 \Madison" ore CPUs and 64GB of shared main memory. Eah CPU is loked at 1.5GHzand ontains an on-hip 6MB level-3 (L3) data and instrution ahe. Beause the Itanium2 an exeute4 oating-point operations per lok period, eah Itanium2 CPU has a theoretial peak performane of 6GFLOPS/se. Combined peak performane of the system utilizing all CPUs is 96 GFLOPS/se. In ourgraphs, this theoretial peak performane is represented by the maximum y-axis value.All experiments use double preision (64-bit) arithmeti and orresponding invoation of the level-3 BLASroutine dgemm (via the FLA Gemm wrapper routine). For the subproblems assigned to eah proessing thread,our implementations invoke a single-threaded all dgemm that is part of the popular GotoBLAS library (release0.95) and is tuned for the Itanium2 arhiteture [10, 11℄. Referene data is obtained from the GotoBLASmultithreaded dgemm routine. We note that the GotoBLAS are ontinuously improved and that thereforethe referene numbers may not be representative of the latest release of that library. Indeed, Kazushige Gotoregularly attends our meetings and often makes improvements in response to our experimental insights.Only performane for omposite variants gemm varmn, gemm varkm, and gemm varnk is reported.We hoose to not observe the other omposite variants beause of the algorithmi symmetry disussed inSe. 2.3. We have implemented a onvenient mehanism within the FLAME/C API to allow the programmerto set the t = r�  thread fatorization at runtime. One a fatorization is set, the algorithms may omputeappropriate values for the subproblems. Sine we were onstrained by the 16 proessors of the platform,t = r �  = 16.For eah omposite variant gemm varij fatorizations of the form t � 1 or 1 � t are algorithmiallyequivalent to applying only variant gemm vari or gemm varj, respetively. These speial ases apture one-dimensional partitionings. For this reason, we do not report separate results for the basi (non-omposite)variants.Performane results are given in Figs. 4-7 for di�erent shapes of operands. Eah data point was omputedfrom the best wall lok time of three trials. A referene urve is given in eah graph orresponding to theperformane results of the GotoBLAS multithreaded dgemm. The results are arranged to allow omparisonbetween various thread fatorizations and omposite variants for eah matrix shape senario.In general, gemm varmn is the best performing variant. There is always a hoie of r �  for whihthis variant outperforms the referene implementation. However, for some matrix shapes there is a bene�tto hoosing a di�erent variant. For example, when m and n are both small, further partitioning of thesedimensions reates subproblems for whih the m and n dimensions are suboptimal. In this ase the othertwo variants, whih allow the k dimension to be partitioned, yield better performane, as is demonstratedin Fig. 6(right). 7
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Figure 4: Performane for square matries.
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variant n = 300 m = 300
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Figure 5: Left: Performane when n is \small" (gemp). Right: Performane when m is \small" (gepm).
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Figure 6: Left: Performane when k = 300 (gepp). Right: Performane when m = n = 300 (gepdot).
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Figure 7: Left: Performane when n = k = 300 (gepb). Right: Performane when m = k = 300 (gebp).
11



Note to the referees: We have realized that rather than setting small equal to 300 in theseexperiments, we should have take it to equal 128 so that partitioning in the small dimensionindeed would reate subproblems with an unfavorably small dimension. We believe that thiswould show muh more dramatially the point we are trying to make. Unfortunately, thesixteen CPU system on whih we had performed our experiments was dismantled before werealized this. We have every intention of identifying another sixteen CPU Itanium2 system sothat we an substitute suh data in the �nal version of this paper.6 ConlusionsWe have illustrated issues related to the parallel implementation of the matrix-matrix multipliation op-eration on SMP arhitetures. Initial empirial evidene has been given that partitioning work along twodimensions is neessary for salability. The elegane and e�etiveness of the work queuing model as proposedfor OpenMP 3.0 was also illustrated, espeially for FLAME ode.A number of issues are not disussed in this paper and are ripe for future researh.� How an workqueuing be supported in the absene of OpenMP task queues or in the absene ofOpenMP altogether? We have prototyped a mehanism to support this for FLAME whih will be thetopi of a future paper.� How an ompiler tehnology be used to redue some of the overhead assoiated with the peuliarindexing mehanism used by FLAME? We believe that abstrating away from detailed indexing isbene�ial and makes more information available to a ompiler like Broadway [16, 18, 17, 15℄.� How an one determine optimal parameters? In this paper we merely illustrate that parameters forpartitioning the threads into a grid and other bloking parameters impat performane. We do notbelieve that approahes like PHiPAC [7℄ and ATLAS [29℄ are feasible. What we do believe is that theunderlying matrix-matrix multiply provided by the GotoBLAS [11℄ an be highly aurately modeled,whih than an failitate the highly aurate modeling of the demonstrated SMP algorithms. Suh amodel an then be used to motivate heuristis for hoosing the best algorithms.� How an redundant e�ort be avoided? High-performane matrix-matrix multipliation inherently in-volves the opying of data to make it ontiguous [11℄. In the proposed algorithms, this opying isdupliated within the all to FLA Gemm, whih is itself a wrapper to the dgemm BLAS routine. Thus,suh opying is dupliated by eah of the threads whih is learly a waste. Worse than that, this opyingauses the di�erent threads to ompete for memory bandwidth whih further ampli�es overhead.� How do the insights impat other BLAS operations? Initial results, reported in [20℄, suggest thatload-balaning is somewhat more omplex for the other level-3 BLAS operations.� What will multi-ore arhitetures with many ores look like? And that is the billion dollar questionyet to be answered.All of these questions are part of our future researh.Further informationAdditional information regarding the FLAME projet may be found by visitinghttp://www.s.utexas.edu/users/flame/ .12



AknowledgmentsThe FLAME working group beame aware of the OpenMP workqueuingmodel through Dr. TimothyMattson(Intel). The high-level onstruts a�orded by this model were key in guiding our researh.Many thanks go to NEC Solutions (Ameria), In for providing aess to their two 16 CPU Itanium2ompute servers on whih many of the performane experiments were performed. NEC Solutions (Ameria)also provided partial funding for this projet. Additional funding ame from Dr. James Truhard, President,CEO, and Cofounder of National Instruments. This researh was also partially sponsored by NSF grantsACI-0305163 and CCF-0342369. Any opinions, �ndings and onlusions or reommendations expressed inthis material are those of the author(s) and do not neessarily reet the views of the National SieneFoundation.We thank Kazushige Goto for his tehnial advie and aknowledge Paolo Bientinesi, Sukant Hajra, TzeMeng Low, and Dr. Kent Milfeld for their valuable feedbak throughout the ourse of this researh.Referenes[1℄ R. C. Agarwal, F. Gustavson, and M. Zubair. A high-performane matrix multipliation algorithm on adistributed memory parallel omputer using overlapped ommuniation. IBM Journal of Researh andDevelopment, 38(6), 1994.[2℄ E. Anderson, Z. Bai, C. Bishof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,A. MKenney, S. Ostrouhov, and D. Sorensen. LAPACK Users' Guide - Release 2.0. SIAM, 1994.[3℄ Paolo Bientinesi, Kazushige Goto, Tze Meng Low, Enrique Quintana-Orti, Robert van de Geijn, andField Van Zee. Flame 2005 prospetus: Towards the �nal generation of dense linear algebra libraries.Tehnial Report FLAME Working Note 15, CS-TR-05-15, Department of Computer Sienes, TheUniversity of Texas at Austin, Deember 2005. http://www.s.utexas.edu/users/flame/pubs/.[4℄ Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ort��, and Robert A. van deGeijn. The siene of deriving dense linear algebra algorithms. ACM Transations on MathematialSoftware, 31(1):1{26, Marh 2005.[5℄ Paolo Bientinesi, Enrique S. Quintana-Ort��, and Robert A. van de Geijn. Representing linear algebraalgorithms in ode: The FLAME APIs. ACM Trans. Math. Soft., 2005. to appear.[6℄ Paolo Bientinesi and Robert van de Geijn. Representing dense linear algebra algorithms: A farewell toindies. SIAM Review. submitted.[7℄ J. Bilmes, K. Asanovi, C.W. Chin, and J. Demmel. Optimizing matrix multiply using PHiPAC: aportable, high-performane, ANSI C oding methodology. In Proeedings of the International Confereneon Superomputing. ACM SIGARC, July 1997.[8℄ Almadena Chthelkanova, John Gunnels, Greg Morrow, James Overfelt, and Robert A. van de Geijn.Parallel implementation of BLAS: General tehniques for level 3 BLAS. Conurreny: Pratie andExperiene, 9(9):837{857, Sept. 1997.[9℄ Jak J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Du�. A set of level 3 basi linearalgebra subprograms. ACM Trans. Math. Soft., 16(1):1{17, Marh 1990.[10℄ Kazushige Goto. http://www.s.utexas.edu/users/kgoto, 2004.13



[11℄ Kazushige Goto and Robert van de Geijn. Anatomy of high-performane matrix multipliation. ACMTrans. Math. Soft. submitted.[12℄ John Gunnels, Calvin Lin, Greg Morrow, and Robert van de Geijn. A exible lass of parallel matrixmultipliation algorithms. In Proeedings of First Merged International Parallel Proessing Symposiumand Symposium on Parallel and Distributed Proessing (1998 IPPS/SPDP '98), pages 110{116, 1998.[13℄ John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. FLAME: Formallinear algebra methods environment. ACM Trans. Math. Soft., 27(4):422{455, Deember 2001.[14℄ John A. Gunnels, Greg M. Henry, and Robert A. van de Geijn. A family of high-performane matrixmultipliation algorithms. In Vassil N. Alexandrov, Jak J. Dongarra, Benjoe A. Juliano, Ren�e S.Renner, and C.J. Kenneth Tan, editors, Computational Siene - ICCS 2001, Part I, Leture Notes inComputer Siene 2073, pages 51{60. Springer-Verlag, 2001.[15℄ Samuel Z. Guyer, Emery Berger, and Calvin Lin. Customizing software libraries for performane porta-bility. In 10th SIAM Conferene on Parallel Proessing for Sienti� Computing, Marh 2001.[16℄ Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing software libraries. In SeondConferene on Domain Spei� Languages, pages 39{52, Otober 1999.[17℄ Samuel Z. Guyer and Calvin Lin. Broadway: A Software Arhiteture for Sienti� Computing, pages175{192. Kluwer Aademi Press, Otober 2000.[18℄ Samuel Z. Guyer and Calvin Lin. Optimizing the use of high performane software libraries. In Languagesand Compilers for Parallel Computing, pages 221{238, August 2000.[19℄ B. K�agstr�om, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: High performane model imple-mentations and performane evaluation benhmark. ACM Trans. Math. Soft., 24(3):268{302, 1998.[20℄ Tze Meng Low, Kent Milfeld, Robert van de Geijn, and Field Van Zee. Parallelizing FLAMEode with OpenMP task queues. Tehnial Report FLAME Working Note 15, CS-TR-04-50, Department of Computer Sienes, The University of Texas at Austin, Deember 2005.http://www.s.utexas.edu/users/flame/pubs/.[21℄ Tze Meng Low, Robert van de Geijn, and Field Van Zee. Extrating SMP parallelism for dense linearalgebra algorithms from high-level spei�ations. In Proeedings of PPoPP'05.[22℄ Enrique S. Quintana-Ort�� and Robert A. van de Geijn. Formal derivation of algorithms: The triangularSylvester equation. ACM Transations on Mathematial Software, 29(2):218{243, June 2003.[23℄ Sanjiv Shah, Grant Haab, Paul Peterson, and Joe Throop. Flexible ontrol strutures for parallelismin OpenMP. In EWOMP, 1999.[24℄ Mar Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jak Dongarra. MPI: TheComplete Referene. The MIT Press, 1996.[25℄ G. W. Stewart. Communiation and matrix omputations on large message passing systems. ParallelComputing, 16:27{40, 1990.[26℄ Ernesto Su, Xinmin Tian, Milind Girkar, Grant Haab, Sanjiv Shah, and Paul Peterson. Compilersupport of the workqueuing exeution model for Intel SMP arhitetures. In EWOMP, 2002.14



[27℄ Robert van de Geijn and Jerrell Watts. SUMMA: Salable Universal Matrix Multipliation Algorithm.Conurreny: Pratie and Experiene, 9(4):255{274, April 1997.[28℄ Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Pakage. The MIT Press, 1997.[29℄ R. Clint Whaley and Jak J. Dongarra. Automatially tuned linear algebra software. In Proeedings ofSC'98, 1998.

15


