
On S
alable Matrix Multiply via OpenMP WorkqueuingA Te
hni
al Paper Submitted to ICPADS'06Robert A. van de GeijnField G. Van ZeeThe University of Texas at AustinAustin, TX 78712January 2006Abstra
tMulti
ore pro
essors with a few
ores are already be
oming available and pro
essors with numerous
ores are reportedly not far behind. Initially, we
an expe
t to program su
h pro
essors mu
h likeSMP ar
hite
tures via multi-threading and OpenMP. Eventually we anti
ipate numerous threads tobe exe
uting on numerous
ores whi
h raises the important question of how to program su
h systems.Surprisingly, even for the otherwise well-studied matrix-matrix multipli
ation operation little on this
an be found in the literature. In this paper we present initial results from an empiri
al study on howto program and attain high performan
e for this operation on SMP systems with a large number ofpro
essors. We believe this gives some insight into how multi
ore pro
essors with a moderate number of
ores (16-64) may need to be programmed. Performan
e on a 16 CPU Itanium2 server is reported.1 Introdu
tionThe s
ienti�

omputing
ommunity is unequivo
ally obsessed with high-performan
e matrix-matrix multi-pli
ation. This obsession is well justi�ed, however; it has been shown that fast matrix-matrix multipli
ationis also an essential building blo
k of many other linear algebra operations like those supported by the Level-3Basi
 Linear Algebra Subprograms (BLAS) [9, 19℄ and the Linear Algebra Pa
kage (LAPACK) [2℄. As newar
hite
tures be
ome available, this obsession
ontinues.The high-performan
e implementation of matrix-matrix multipli
ation on serial ar
hite
tures is wellunderstood [14, 11℄. So is the pra
ti
al, s
alable parallelization of this operation on distributed memoryparallel ar
hite
tures [1, 27, 12℄. Surprisingly, little or no literature exists on the s
alable implementationof this operation on symmetri
 multipro
essors (SMPs). With the advent of multi
ore pro
essors, it is
on
eivable that SMPs with hundreds of threads of simultaneous exe
ution will be widespread within ade
ade, sin
e ea
h pro
essor of an SMP will have multiple
ores. Programmability as well as s
alability isan issue that must thus be addressed for this and related operations.The Formal Linear Algebra Methods Environment (FLAME) proje
t at UT-Austin pursues a new ap-proa
h to deriving and implementing high-performan
e algorithms [3℄. Algorithms for linear algebra oper-ations are systemati
ally (and, more re
ently, often me
hani
ally) derived and then expressed in
ode in away that hides indexing details. The methodology has been shown to be appli
able to all of the BLAS, mostof LAPACK, and many similar operations [13, 4, 22℄. More re
ently, it has been extended to support SMPparallelism using OpenMP dire
tives [21, 20℄. 1

In this paper, we demonstrate how FLAME supports SMP parallelismby utilizing the workqueuingmodel.We show empiri
al eviden
e that available pro
essors need to be viewed as forming a two-dimensional gridof pro
essors to whi
h work is distributed. This is similar to the two-dimensional data and work distributionrequired for s
alability on distributed memory ar
hite
tures [8, 1, 27, 28, 25℄. Performan
e results on a 16CPU Itanium2 server are given to support this insight. An important part of this paper is the
on
lusion inwhi
h the presented results are used to suggest future dire
tions that need to be pursued.2 General matrix-matrix multiplyIn this se
tion we review the di�erent spe
ial
ases of matrix-matrix multiply that arise in pra
ti
e as wellas algorithms that support these di�erent
ases.2.1 Basi
 algorithmi
 variantsIn this paper, we fo
us on the general matrix-matrix multiply, or gemm operation: C := �AB + �C whereA, B, and C are general (non-symmetri
, non-triangular) matri
es of dimensions m� k, k � n, and m� n,respe
tively. For simpli
ity, we will assume � = � = 1.Partition ea
h matrix by rows and by
olumns:X = � X0 X1 � � � � = 0B� �X0�X1... 1CA ; X 2 fA;B;Cg;whi
h represent a partitioning by
olumns and rows, respe
tively. Then0B� �C0�C1... 1CA = 0B� �A0�A1... 1CAB = 0B� �A0B�A1B... 1CAso that �Ci = �AiB. Also,� C0 C1 � � � � = A � B0 B1 � � � � = � AB0 AB1 � � � �so that Cj = ABj . Finally, C = � A0 A1 � � � �0B� �B0�B1... 1CAso that C = A0 �B0 + A1 �B1 + � � � . We will refer to these algorithms as gemm varm, gemm varn, andgemm vark, respe
tively, to indi
ate that the matri
es are partitioned along the m, n, and k, dimensions,respe
tively.2.2 Variant aÆnity to matrix shapesMatrix-matrix multipli
ation almost always o

urs in
ontext. Frequently, the \shape" of the matrixoperands is di
tated by this
ontext. For most high-performan
e dense linear algebra operations, like thosesupported by the BLAS and LAPACK, one of the dimensions (m, n, k) is relatively small. In Figs. 1 and 2,2

m n k Illustration Label AÆnitylarge large large := + gemm gemm varmgemm varngemm varklarge large small := + gepp gemm varmgemm varnlarge small large := + gemp gemm varmgemm varksmall large large := + gepm gemm varngemm varksmall large small := + gebp gemm varnlarge small small := + gepb gemm varmsmall small large := + gepdot gemm varksmall small small := + gebbFigure 1: Spe
ial shapes of gemm.Letter Shape Des
riptionm Matrix Both dimensions are large or unknown.p Panel One of the dimensions is small.b Blo
k Both dimensions are small.Figure 2: The labels in Fig. 1 have the form gexy where the letters
hosen for x and y indi
ate the shapesof matri
es A and B, respe
tively, a

ording to the above table.we give all
ommonly en
ountered shapes, and give a spe
ial label to ea
h resulting matrix-matrix multi-pli
ation. The term \small" is, of
ourse, subje
tive. In papers on the high-performan
e implementationof sequential matrix-matrix multipli
ation it has been shown that an optimal small dimension is roughlyproportional to the square-root of the size of the L2
a
he [11℄ 1.Our goal for partitioning is simple: the matri
es should be partitioned so as to
reate independentsubproblems that may be exe
uted in parallel by multiple threads of
omputation. Clearly, it is along a\large" dimension that one should partition, sin
e partition a \small" dimension
reates subproblems thathave at least one suboptimal dimension. In Table 1 we indi
ate that a matrix shape has an aÆnity toalgorithms gemm varm, gemm varn, or gemm vark based on this insight.1Later in this paper, we will take small to equal 128, a reasonable number for our target platform, the Itanium2 ar
hite
ture.3

2.3 Composite variantsAlgorithms gemm varm, gemm varn, and gemm vark partition along only one of the three dimensions (m,n, and k). We
an synthesize
omposite variants that perform partitioning along two of the three dimensionsby re
ognizing that the sub
omputation to be performed is itself a matrix-matrix multipli
ation and thatit therefore
an be a

omplished by invoking one of the three algorithms. Naturally, invoking an algorithmthat partitions in the same dimension for this subproblem is equivalent to partitioning only one dimensionwith a �ner partitioning, and therefore not interesting. Let us refer to
omposite variant gemm varij asthe basi
 variant gemm vari whi
h invokes variant gemm varj to
ompute the subproblems. This allowsnine
omposite variants to be formed from the three basi
 variants. However, as mentioned we wish to avoidpartitioning along a given dimension more than on
e. This leaves only six
omposite algorithms. We will seethat for our study gemm varij is for all pra
ti
al purposes equivalent to gemm varji whi
h further redu
esthe number of
omposite algorithms to three.3 Partitioning for parallelismThe previous se
tion has laid the groundwork for the dis
ussion on parallel algorithms for matrix-matrixmultipli
ation. Extensive work in the �eld of distributed-memory matrix-matrix multipli
ation shows thata two-dimension partitioning is needed for s
alable parallelism [8, 1, 27, 28, 25℄. In this paper, we
onje
turethat a two-dimensionalwork partitioning is also ne
essary to a
hieve s
alable performan
e in a shared memoryenvironment. We dis
uss this further in this se
tion.3.1 One-dimensional work partitioningParallelizing matrix-matrix multipli
ation on an SMP ar
hite
ture with t pro
essors is a matter of parti-tioning the problem into t subproblems (tasks) to be exe
uted in parallel. Let us examine the three originalapproa
hes in detail:Algorithms gemm varm and gemm varn: These algorithms
an pro
eed by partitioning the targetdimensionm or n, respe
tively, into t (almost) equal parts. After this, t
ompletely independent
omputations
an pro
eed: �Ci := �AiB + �Ci on pro
essor i for gemm varm and Cj := ABj + Cj on pro
essor j forgemm varn. The only
on
ern is to ensure that the subproblem doesn't have a dimension that is too small.Algorithm gemm vark: This algorithms
an pro
eed by partitioning the target dimension k into t (al-most) equal parts. After this, t
ompletely independent
omputations
an pro
eed: C(p) := Ap �Bp is
om-puted on pro
essor p. However, now these partial
ontributions must be added together to update C:C := C(0)+C(1)+ � � �+C(t�1)+C. Thus, the updating by di�erent threads must be
arefully or
hestrated.Again, one must ensure that the subproblem doesn't have a dimension that is too small.3.2 Two-dimensional work partitioningFor the
omposite algorithms it suÆ
es to fa
tor the number of threads, t, into a lo
al two-dimensional grid,r �
 = t, and then to partition two of the three dimensions (m, n, and/or k) into r and
 (almost) equalparts.Algorithm gemm varmn: In this
ase, dimensions m and n are partitioned into r and
 (almost) equalparts. Algorithm gemm varm is employed to
reate r equal subproblems, ea
h of whi
h is
omputed using4

algorithm gemm varn whi
h subdivides ea
h of these tasks into
 subproblems for a total of t tasks. Ea
hof these tasks updates a separate part of matrix C so that they
an all exe
ute without further intera
tion.Algorithms gemm varkm and gemm varnk: For algorithm gemm varkm dimensionsm and k are par-titioned into r and
 (almost) equal parts, respe
tively. Noti
e that sin
e the k dimension is partitioned, inthat dimension
ontributions of smaller matrix-matrix multipli
ations must be summed to the appropriatesubmatrix of C. Similarly, for algorithm gemm varnk dimensions k and n are partitioned into r and
 (al-most) equal parts, respe
tively. Again, the k dimension is partitioned and in that dimension
ontributions ofsmaller matrix-matrix multipli
ations must be summed to the appropriate submatrix of C. This summationrequires more syn
hronization between tasks and
an thus be expe
ted to in
ur a higher overhead.4 Implementation with FLAME/C and WorkqueuingIn this se
tion we dis
uss implementation details related to the Formal Linear Algebra Methods Environment(FLAME) Appli
ation Programming Interfa
e (API) for the C programming language, FLAME/C, and howit is supported by a model that has been proposed for addition to OpenMP, workqueuing.4.1 Formal Linear Algebra Methods EnvironmentThe FLAME proje
t embodies a methodology for deriving algorithms for dense linear algebra operations aswell as APIs for representing the resulting algorithms in
ode. The derivation pro
ess presents algorithms us-ing a somewhat un
onventional notation illustrated in Fig. 3(left) for gemm varm. Noti
e that the notationmanages movement through operands by tra
king submatri
es. Details
an be found in [6℄. In Fig. 3(right),we present the FLAME/C
ode. The algorithmi
 Partition, Repartition and Continue With statementsexist within the FLAME programming interfa
e as subroutines that hide all indexing variables inside matrixobje
ts (also
alled \des
riptors"). All detailed
omplexity related to indexing is abstra
ted away from theprogrammer within the FLAME matrix des
riptors. In addition, the programmer
an manipulate matrixdata simply by passing the appropriate matrix subpartition des
riptors to routines su
h as FLA Gemm whi
hperform the same operations
orresponding to the BLAS
all to dgemm. In this way the FLAME/C APIfrees the programmer to think at a higher level of abstra
tion where the
omputation is expressed in termsof separate partitioned regions within the matri
es. A full dis
ussion of this API
an be found in [5℄.4.2 OpenMP task queuesOpenMP is a set of
ompiler dire
tives and library routines that aids in parallel programming on sharedmemory systems [24℄. This allows the programmer to expli
itly spe
ify regions of
ode that
an be exe
utedby simultaneous threads of exe
ution. OpenMP dire
tives are expressed in C sour
e
ode as prepro
essor#pragma dire
tives. An OpenMP-aware
ompiler re
ognizes these dire
tives and then performs sour
e
odetransformations to insert the \nuts and bolts" that implement the threaded parallelism.Shah et al. [23℄ establish the limitations of the two most
ommon forms of OpenMP parallelism: the forand se
tions dire
tives. The authors point out that the number of iterations in OpenMP for loops must be
omputable upon �rst entering the loop. Similarly, the se
tions
onstru
t is \non-iterative" and stati
allyidenti�es independent regions of
omputation. In other words, only one parallel se
tion
an be instantiatedfor every textual o

urren
e of the se
tion dire
tive within the
ode. The authors of [23℄ proposed theworkqueuing model spe
i�
ally to over
ome limitations in the existing set of
onstru
ts.OpenMP workqueuing, proposed for in
lusion in the OpenMP 3.0 standard, provides a novel way toobtain parallelism [26℄. The model
onsists of two new OpenMP dire
tives: taskq and task. Con
eptually,5

Algorithm: C := gemm varm(A, B, C)PartitionA! � ATAB � ,C ! � CTCB �where AT has 0 rows, CT has 0 rowswhile m(AT) < m(A) doDetermine blo
k size bmRepartition� ATAB �! 0� A0A1A2 1A ,� CTCB �! 0� C0C1C2 1Awhere A1 has bm rows, C1 has bm rowsC1 := A1B + C1Continue with� ATAB � 0� A0A1A2 1A ,� CTCB � 0� C0C1C2 1Aendwhile

void GEMM_VARm(FLA_Obj A, FLA_Obj B, FLA_Obj C, int nthreads){ FLA_Obj AT, A0, CT, C0,AB, A1, CB, C1,A2, C2;int m, bm;FLA_Part_2x1(A, &AT,&AB, 0, FLA_TOP);FLA_Part_2x1(C, &CT,&CB, 0, FLA_TOP);m = FLA_Obj_length(A);#pragma intel omp parallel taskq{ while (FLA_Obj_length(AT) < FLA_Obj_length(A)){bm = min(FLA_Obj_length(AB), m/nthreads);FLA_Repart_2x1_to_3x1(AT, &A0,/* ** */ /* ** */&A1,AB, &A2, bm, FLA_BOTTOM);FLA_Repart_2x1_to_3x1(CT, &C0,/* ** */ /* ** */&C1,CB, &C2, bm, FLA_BOTTOM);/*--*/#pragma intel omp task
aptureprivate(A1, C1){ FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,ONE, A1, B, ONE, C1);} // end of task s
ope/*--*/FLA_Cont_with_3x1_to_2x1(&AT, A0,A1,/* ** */ /* ** */&AB, A2, FLA_TOP);FLA_Cont_with_3x1_to_2x1(&CT, C0,C1,/* ** */ /* ** */&CB, C2, FLA_TOP);}} // end of taskq s
ope}Figure 3: Left: Algorithm gemm varm expressed as a FLAME algorithm. Right: Representation in C usingthe FLAME/C API annotated with proposed OpenMP task queue dire
tives.en
ountering a taskq dire
tive
auses the main thread to
reate an empty workqueue (or task queue). The
ode within the taskq s
ope is exe
uted sequentially. As task dire
tives are en
ountered, the
ode asso
iatedwith the task blo
k is en
apsulated and enqueued as a unit of work onto the task queue. A number of otherthreads (determined by the runtime system) begin dequeuing and exe
uting tasks from the queue a

ordingto a �rst-in/�rst-out (FIFO) poli
y. When all tasks have been
ompleted, the threads syn
hronize at theend of the taskq s
ope and
ontinue through the program.Some
ode implementations, in
luding those presented in Se
. 2.3, require an additional
lause to thetask dire
tive:
aptureprivate. This
lause allows the programmer to spe
ify a list of variables whosevalues must be re
orded when the task is enqueued. Typi
ally, a variable is in
luded in a
aptureprivate
lause be
ause the the task in question resides within a loop. The OpenMP
ompiler s
hedules the valueof this variable to be \
aptured" at the time the task is enqueued so that sequential semanti
s may bepreserved.
6

4.3 Parallelizing of our algorithmsAn example of how the taskq and task pragmas
an be used to parallelize our algorithms is given inFig. 3. The subtasks, themselves matrix-matrix multipli
ations,
an be exe
uted in parallel. Naturally, thedimension, m, is partitioned into subparts of size m=nthreads in order to a
hieve load balan
e. Clearly,gemm varn
an be parallelized similarly.The parallelization of gemm vark is slightly more
omplex: Here the results of independent matrix-matrixmultipli
ations must be added to the original matrix C. For details of how FLAME/C handles this we referthe reader to [20℄.The
omposite algorithms are a
hieved by inlining the loop that
omputes the subproblem so that onlya single task queue is required for the implementation. In theory, nested task queues
ould be used so thatthis in-lining needs not be performed. We have not yet experimented with this.5 Performan
e ExperimentsFor our experiments, the host ar
hite
ture is an NEC

NUMA Express 5800/1000 series SMP equippedwith 16 Itanium2 \Madison"
ore CPUs and 64GB of shared main memory. Ea
h CPU is
lo
ked at 1.5GHzand
ontains an on-
hip 6MB level-3 (L3) data and instru
tion
a
he. Be
ause the Itanium2
an exe
ute4
oating-point operations per
lo
k period, ea
h Itanium2 CPU has a theoreti
al peak performan
e of 6GFLOPS/se
. Combined peak performan
e of the system utilizing all CPUs is 96 GFLOPS/se
. In ourgraphs, this theoreti
al peak performan
e is represented by the maximum y-axis value.All experiments use double pre
ision (64-bit) arithmeti
 and
orresponding invo
ation of the level-3 BLASroutine dgemm (via the FLA Gemm wrapper routine). For the subproblems assigned to ea
h pro
essing thread,our implementations invoke a single-threaded
all dgemm that is part of the popular GotoBLAS library (release0.95) and is tuned for the Itanium2 ar
hite
ture [10, 11℄. Referen
e data is obtained from the GotoBLASmultithreaded dgemm routine. We note that the GotoBLAS are
ontinuously improved and that thereforethe referen
e numbers may not be representative of the latest release of that library. Indeed, Kazushige Gotoregularly attends our meetings and often makes improvements in response to our experimental insights.Only performan
e for
omposite variants gemm varmn, gemm varkm, and gemm varnk is reported.We
hoose to not observe the other
omposite variants be
ause of the algorithmi
 symmetry dis
ussed inSe
. 2.3. We have implemented a
onvenient me
hanism within the FLAME/C API to allow the programmerto set the t = r�
 thread fa
torization at runtime. On
e a fa
torization is set, the algorithms may
omputeappropriate values for the subproblems. Sin
e we were
onstrained by the 16 pro
essors of the platform,t = r �
 = 16.For ea
h
omposite variant gemm varij fa
torizations of the form t � 1 or 1 � t are algorithmi
allyequivalent to applying only variant gemm vari or gemm varj, respe
tively. These spe
ial
ases
apture one-dimensional partitionings. For this reason, we do not report separate results for the basi
 (non-
omposite)variants.Performan
e results are given in Figs. 4-7 for di�erent shapes of operands. Ea
h data point was
omputedfrom the best wall
lo
k time of three trials. A referen
e
urve is given in ea
h graph
orresponding to theperforman
e results of the GotoBLAS multithreaded dgemm. The results are arranged to allow
omparisonbetween various thread fa
torizations and
omposite variants for ea
h matrix shape s
enario.In general, gemm varmn is the best performing variant. There is always a
hoi
e of r �
 for whi
hthis variant outperforms the referen
e implementation. However, for some matrix shapes there is a bene�tto
hoosing a di�erent variant. For example, when m and n are both small, further partitioning of thesedimensions
reates subproblems for whi
h the m and n dimensions are suboptimal. In this
ase the othertwo variants, whi
h allow the k dimension to be partitioned, yield better performan
e, as is demonstratedin Fig. 6(right). 7

variant m = n = k
gemmvarmn

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

m = n = k

G
F

LO
P

S
/s

ec
.

16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
Reference

gemmvarnk
0 1000 2000 3000 4000 5000 6000

0

10

20

30

40

50

60

70

80

90

m = n = k

G
F

LO
P

S
/s

ec
.

16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
Reference

gemmvarkm
0 1000 2000 3000 4000 5000 6000

0

10

20

30

40

50

60

70

80

90

m = n = k

G
F

LO
P

S
/s

ec
.

16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
Reference

Figure 4: Performan
e for square matri
es.
8

variant n = 300 m = 300
gemmvarmn

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

m = k

G
F

LO
P

S
/s

ec
.

16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
Reference

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

n = k

G
F

LO
P

S
/s

ec
.

16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
Reference

gemmvarnk
0 1000 2000 3000 4000 5000 6000

0

10

20

30

40

50

60

70

80

90

m = k

G
F

LO
P

S
/s

ec
.

16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
Reference

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

n = k

G
F

LO
P

S
/s

ec
.

16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
Reference

gemmvarkm
0 1000 2000 3000 4000 5000 6000

0

10

20

30

40

50

60

70

80

90

m = k

G
F

LO
P

S
/s

ec
.

16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
Reference

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

n = k

G
F

LO
P

S
/s

ec
.

16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
Reference

Figure 5: Left: Performan
e when n is \small" (gemp). Right: Performan
e when m is \small" (gepm).
9

variant k = 300 m = n = 300
gemmvarmn

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

m = n

G
F

LO
P

S
/s

ec
.

16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
Reference

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

k

G
F

LO
P

S
/s

ec
.

16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
Reference

gemmvarnk
0 1000 2000 3000 4000 5000 6000

0

10

20

30

40

50

60

70

80

90

m = n

G
F

LO
P

S
/s

ec
.

16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
Reference

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

k

G
F

LO
P

S
/s

ec
.

16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
Reference

gemmvarkm
0 1000 2000 3000 4000 5000 6000

0

10

20

30

40

50

60

70

80

90

m = n

G
F

LO
P

S
/s

ec
.

16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
Reference

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

k

G
F

LO
P

S
/s

ec
.

16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
Reference

Figure 6: Left: Performan
e when k = 300 (gepp). Right: Performan
e when m = n = 300 (gepdot).
10

variant n = k = 300 m = k = 300
gemmvarmn

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

m

G
F

LO
P

S
/s

ec
.

16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
Reference

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

n

G
F

LO
P

S
/s

ec
.

16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
Reference

gemmvarnk
0 1000 2000 3000 4000 5000 6000

0

10

20

30

40

50

60

70

80

90

m

G
F

LO
P

S
/s

ec
.

16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
Reference

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

n

G
F

LO
P

S
/s

ec
.

16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
Reference

gemmvarkm
0 1000 2000 3000 4000 5000 6000

0

10

20

30

40

50

60

70

80

90

m

G
F

LO
P

S
/s

ec
.

16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
Reference

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

n

G
F

LO
P

S
/s

ec
.

16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
Reference

Figure 7: Left: Performan
e when n = k = 300 (gepb). Right: Performan
e when m = k = 300 (gebp).
11

Note to the referees: We have realized that rather than setting small equal to 300 in theseexperiments, we should have take it to equal 128 so that partitioning in the small dimensionindeed would
reate subproblems with an unfavorably small dimension. We believe that thiswould show mu
h more dramati
ally the point we are trying to make. Unfortunately, thesixteen CPU system on whi
h we had performed our experiments was dismantled before werealized this. We have every intention of identifying another sixteen CPU Itanium2 system sothat we
an substitute su
h data in the �nal version of this paper.6 Con
lusionsWe have illustrated issues related to the parallel implementation of the matrix-matrix multipli
ation op-eration on SMP ar
hite
tures. Initial empiri
al eviden
e has been given that partitioning work along twodimensions is ne
essary for s
alability. The elegan
e and e�e
tiveness of the work queuing model as proposedfor OpenMP 3.0 was also illustrated, espe
ially for FLAME
ode.A number of issues are not dis
ussed in this paper and are ripe for future resear
h.� How
an workqueuing be supported in the absen
e of OpenMP task queues or in the absen
e ofOpenMP altogether? We have prototyped a me
hanism to support this for FLAME whi
h will be thetopi
 of a future paper.� How
an
ompiler te
hnology be used to redu
e some of the overhead asso
iated with the pe
uliarindexing me
hanism used by FLAME? We believe that abstra
ting away from detailed indexing isbene�
ial and makes more information available to a
ompiler like Broadway [16, 18, 17, 15℄.� How
an one determine optimal parameters? In this paper we merely illustrate that parameters forpartitioning the threads into a grid and other blo
king parameters impa
t performan
e. We do notbelieve that approa
hes like PHiPAC [7℄ and ATLAS [29℄ are feasible. What we do believe is that theunderlying matrix-matrix multiply provided by the GotoBLAS [11℄
an be highly a

urately modeled,whi
h than
an fa
ilitate the highly a

urate modeling of the demonstrated SMP algorithms. Su
h amodel
an then be used to motivate heuristi
s for
hoosing the best algorithms.� How
an redundant e�ort be avoided? High-performan
e matrix-matrix multipli
ation inherently in-volves the
opying of data to make it
ontiguous [11℄. In the proposed algorithms, this
opying isdupli
ated within the
all to FLA Gemm, whi
h is itself a wrapper to the dgemm BLAS routine. Thus,su
h
opying is dupli
ated by ea
h of the threads whi
h is
learly a waste. Worse than that, this
opying
auses the di�erent threads to
ompete for memory bandwidth whi
h further ampli�es overhead.� How do the insights impa
t other BLAS operations? Initial results, reported in [20℄, suggest thatload-balan
ing is somewhat more
omplex for the other level-3 BLAS operations.� What will multi-
ore ar
hite
tures with many
ores look like? And that is the billion dollar questionyet to be answered.All of these questions are part of our future resear
h.Further informationAdditional information regarding the FLAME proje
t may be found by visitinghttp://www.
s.utexas.edu/users/flame/ .12

A
knowledgmentsThe FLAME working group be
ame aware of the OpenMP workqueuingmodel through Dr. TimothyMattson(Intel). The high-level
onstru
ts a�orded by this model were key in guiding our resear
h.Many thanks go to NEC Solutions (Ameri
a), In
 for providing a

ess to their two 16 CPU Itanium2
ompute servers on whi
h many of the performan
e experiments were performed. NEC Solutions (Ameri
a)also provided partial funding for this proje
t. Additional funding
ame from Dr. James Tru
hard, President,CEO, and Cofounder of National Instruments. This resear
h was also partially sponsored by NSF grantsACI-0305163 and CCF-0342369. Any opinions, �ndings and
on
lusions or re
ommendations expressed inthis material are those of the author(s) and do not ne
essarily re
e
t the views of the National S
ien
eFoundation.We thank Kazushige Goto for his te
hni
al advi
e and a
knowledge Paolo Bientinesi, Sukant Hajra, TzeMeng Low, and Dr. Kent Milfeld for their valuable feedba
k throughout the
ourse of this resear
h.Referen
es[1℄ R. C. Agarwal, F. Gustavson, and M. Zubair. A high-performan
e matrix multipli
ation algorithm on adistributed memory parallel
omputer using overlapped
ommuni
ation. IBM Journal of Resear
h andDevelopment, 38(6), 1994.[2℄ E. Anderson, Z. Bai, C. Bis
hof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,A. M
Kenney, S. Ostrou
hov, and D. Sorensen. LAPACK Users' Guide - Release 2.0. SIAM, 1994.[3℄ Paolo Bientinesi, Kazushige Goto, Tze Meng Low, Enrique Quintana-Orti, Robert van de Geijn, andField Van Zee. Flame 2005 prospe
tus: Towards the �nal generation of dense linear algebra libraries.Te
hni
al Report FLAME Working Note 15, CS-TR-05-15, Department of Computer S
ien
es, TheUniversity of Texas at Austin, De
ember 2005. http://www.
s.utexas.edu/users/flame/pubs/.[4℄ Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ort��, and Robert A. van deGeijn. The s
ien
e of deriving dense linear algebra algorithms. ACM Transa
tions on Mathemati
alSoftware, 31(1):1{26, Mar
h 2005.[5℄ Paolo Bientinesi, Enrique S. Quintana-Ort��, and Robert A. van de Geijn. Representing linear algebraalgorithms in
ode: The FLAME APIs. ACM Trans. Math. Soft., 2005. to appear.[6℄ Paolo Bientinesi and Robert van de Geijn. Representing dense linear algebra algorithms: A farewell toindi
es. SIAM Review. submitted.[7℄ J. Bilmes, K. Asanovi
, C.W. Chin, and J. Demmel. Optimizing matrix multiply using PHiPAC: aportable, high-performan
e, ANSI C
oding methodology. In Pro
eedings of the International Conferen
eon Super
omputing. ACM SIGARC, July 1997.[8℄ Almadena Cht
helkanova, John Gunnels, Greg Morrow, James Overfelt, and Robert A. van de Geijn.Parallel implementation of BLAS: General te
hniques for level 3 BLAS. Con
urren
y: Pra
ti
e andExperien
e, 9(9):837{857, Sept. 1997.[9℄ Ja
k J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Du�. A set of level 3 basi
 linearalgebra subprograms. ACM Trans. Math. Soft., 16(1):1{17, Mar
h 1990.[10℄ Kazushige Goto. http://www.
s.utexas.edu/users/kgoto, 2004.13

[11℄ Kazushige Goto and Robert van de Geijn. Anatomy of high-performan
e matrix multipli
ation. ACMTrans. Math. Soft. submitted.[12℄ John Gunnels, Calvin Lin, Greg Morrow, and Robert van de Geijn. A
exible
lass of parallel matrixmultipli
ation algorithms. In Pro
eedings of First Merged International Parallel Pro
essing Symposiumand Symposium on Parallel and Distributed Pro
essing (1998 IPPS/SPDP '98), pages 110{116, 1998.[13℄ John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. FLAME: Formallinear algebra methods environment. ACM Trans. Math. Soft., 27(4):422{455, De
ember 2001.[14℄ John A. Gunnels, Greg M. Henry, and Robert A. van de Geijn. A family of high-performan
e matrixmultipli
ation algorithms. In Vassil N. Alexandrov, Ja
k J. Dongarra, Benjoe A. Juliano, Ren�e S.Renner, and C.J. Kenneth Tan, editors, Computational S
ien
e - ICCS 2001, Part I, Le
ture Notes inComputer S
ien
e 2073, pages 51{60. Springer-Verlag, 2001.[15℄ Samuel Z. Guyer, Emery Berger, and Calvin Lin. Customizing software libraries for performan
e porta-bility. In 10th SIAM Conferen
e on Parallel Pro
essing for S
ienti�
 Computing, Mar
h 2001.[16℄ Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing software libraries. In Se
ondConferen
e on Domain Spe
i�
 Languages, pages 39{52, O
tober 1999.[17℄ Samuel Z. Guyer and Calvin Lin. Broadway: A Software Ar
hite
ture for S
ienti�
 Computing, pages175{192. Kluwer A
ademi
 Press, O
tober 2000.[18℄ Samuel Z. Guyer and Calvin Lin. Optimizing the use of high performan
e software libraries. In Languagesand Compilers for Parallel Computing, pages 221{238, August 2000.[19℄ B. K�agstr�om, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: High performan
e model imple-mentations and performan
e evaluation ben
hmark. ACM Trans. Math. Soft., 24(3):268{302, 1998.[20℄ Tze Meng Low, Kent Milfeld, Robert van de Geijn, and Field Van Zee. Parallelizing FLAME
ode with OpenMP task queues. Te
hni
al Report FLAME Working Note 15, CS-TR-04-50, Department of Computer S
ien
es, The University of Texas at Austin, De
ember 2005.http://www.
s.utexas.edu/users/flame/pubs/.[21℄ Tze Meng Low, Robert van de Geijn, and Field Van Zee. Extra
ting SMP parallelism for dense linearalgebra algorithms from high-level spe
i�
ations. In Pro
eedings of PPoPP'05.[22℄ Enrique S. Quintana-Ort�� and Robert A. van de Geijn. Formal derivation of algorithms: The triangularSylvester equation. ACM Transa
tions on Mathemati
al Software, 29(2):218{243, June 2003.[23℄ Sanjiv Shah, Grant Haab, Paul Peterson, and Joe Throop. Flexible
ontrol stru
tures for parallelismin OpenMP. In EWOMP, 1999.[24℄ Mar
 Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Ja
k Dongarra. MPI: TheComplete Referen
e. The MIT Press, 1996.[25℄ G. W. Stewart. Communi
ation and matrix
omputations on large message passing systems. ParallelComputing, 16:27{40, 1990.[26℄ Ernesto Su, Xinmin Tian, Milind Girkar, Grant Haab, Sanjiv Shah, and Paul Peterson. Compilersupport of the workqueuing exe
ution model for Intel SMP ar
hite
tures. In EWOMP, 2002.14

[27℄ Robert van de Geijn and Jerrell Watts. SUMMA: S
alable Universal Matrix Multipli
ation Algorithm.Con
urren
y: Pra
ti
e and Experien
e, 9(4):255{274, April 1997.[28℄ Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Pa
kage. The MIT Press, 1997.[29℄ R. Clint Whaley and Ja
k J. Dongarra. Automati
ally tuned linear algebra software. In Pro
eedings ofSC'98, 1998.

15

