On Scalable Matrix Multiply via OpenMP Workqueuing
A Technical Paper Submitted to ICPADS’06

Robert A. van de Geijn
Field G. Van Zee
The University of Texas at Austin
Austin, TX 78712

January 2006

Abstract

Multicore processors with a few cores are already becoming available and processors with numerous
cores are reportedly not far behind. Initially, we can expect to program such processors much like
SMP architectures via multi-threading and OpenMP. Eventually we anticipate numerous threads to
be executing on numerous cores which raises the important question of how to program such systems.
Surprisingly, even for the otherwise well-studied matrix-matrix multiplication operation little on this
can be found in the literature. In this paper we present initial results from an empirical study on how
to program and attain high performance for this operation on SMP systems with a large number of
processors. We believe this gives some insight into how multicore processors with a moderate number of
cores (16-64) may need to be programmed. Performance on a 16 CPU Itanium2 server is reported.

1 Introduction

The scientific computing community is unequivocally obsessed with high-performance matrix-matrix multi-
plication. This obsession is well justified, however; it has been shown that fast matrix-matrix multiplication
is also an essential building block of many other linear algebra operations like those supported by the Level-3
Basic Linear Algebra Subprograms (BLAS) [9, 19] and the Linear Algebra Package (LAPACK) [2]. As new
architectures become available, this obsession continues.

The high-performance implementation of matrix-matrix multiplication on serial architectures is well
understood [14, 11]. So is the practical, scalable parallelization of this operation on distributed memory
parallel architectures [1, 27, 12]. Surprisingly, little or no literature exists on the scalable implementation
of this operation on symmetric multiprocessors (SMPs). With the advent of multicore processors, it is
conceivable that SMPs with hundreds of threads of simultaneous execution will be widespread within a
decade, since each processor of an SMP will have multiple cores. Programmability as well as scalability is
an issue that must thus be addressed for this and related operations.

The Formal Linear Algebra Methods Environment (FLAME) project at UT-Austin pursues a new ap-
proach to deriving and implementing high-performance algorithms [3]. Algorithms for linear algebra oper-
ations are systematically (and, more recently, often mechanically) derived and then expressed in code in a
way that hides indexing details. The methodology has been shown to be applicable to all of the BLAS, most
of LAPACK, and many similar operations [13, 4, 22]. More recently, it has been extended to support SMP
parallelism using OpenMP directives [21, 20].



In this paper, we demonstrate how FLAME supports SMP parallelism by utilizing the workqueuing model.
We show empirical evidence that available processors need to be viewed as forming a two-dimensional grid
of processors to which work is distributed. This is similar to the two-dimensional data and work distribution
required for scalability on distributed memory architectures [8, 1, 27, 28, 25]. Performance results on a 16
CPU Itanium2 server are given to support this insight. An important part of this paper is the conclusion in
which the presented results are used to suggest future directions that need to be pursued.

2 General matrix-matrix multiply

In this section we review the different special cases of matrix-matrix multiply that arise in practice as well
as algorithms that support these different cases.

2.1 Basic algorithmic variants

In this paper, we focus on the general matriz-matriz multiply, or GEMM operation: C := aAB + SC where
A, B, and C are general (non-symmetric, non-triangular) matrices of dimensions m x k, k x n, and m X n,
respectively. For simplicity, we will assume a = 3 = 1.

Partition each matrix by rows and by columns:

Xo
X=(Xo|X1|)=|X]|,xe{4a B0},

which represent a partitioning by columns and rows, respectively. Then

Co Ay AyB
C(1 = A1 B = Al B

so that C; = A;B. Also,
(Co|Cif-)=A(Bo|[Bi]-)=(ABo[AB |- )
so that C; = AB;. Finally,
By
C= (a4 ) | B

so that C = AgBy + A1 B; + ---. We will refer to these algorithms as GEMM_VARmM, GEMM_VARn, and
GEMM_VARK, respectively, to indicate that the matrices are partitioned along the m, n, and k, dimensions,
respectively.

2.2 Variant affinity to matrix shapes

Matrix-matrix multiplication almost always occurs in context. Frequently, the “shape” of the matrix
operands is dictated by this context. For most high-performance dense linear algebra operations, like those
supported by the BLAS and LAPACK, one of the dimensions (m, n, k) is relatively small. In Figs. 1 and 2,



m n k Illustration Label Affinity
- + GEMM_VARM
large | large | large GEMM GEMM_VARD
GEMM_VARk
[
- * GEMM_VARmM
large | large | small GEPP
GEMM_VARN
} - ] * } GEMM_VARmM
large | small | large GEMP
GEMM_VARk
— —J
= * GEMM_VARD
small | large | large GEPM
GEMM_VARKk
—/ Oo— /3
= +
small | large | small GEBP GEMM_VARD
O
|:| - |:| +|:|
large | small | small GEPB GEMM_VARM
O —/ O
small | small | large GEPDOT GEMM_VARk
O O O O
= +
small | small | small GEBB
Figure 1: Special shapes of GEMM.
Letter | Shape | Description
M Matrix | Both dimensions are large or unknown.
P Panel One of the dimensions is small.
B Block Both dimensions are small.

Figure 2: The labels in Fig. 1 have the form GEXY where the letters chosen for X and Y indicate the shapes
of matrices A and B, respectively, according to the above table.

we give all commonly encountered shapes, and give a special label to each resulting matrix-matrix multi-
plication. The term “small” is, of course, subjective. In papers on the high-performance implementation
of sequential matrix-matrix multiplication it has been shown that an optimal small dimension is roughly
proportional to the square-root of the size of the L2 cache [11] 1.

Our goal for partitioning is simple: the matrices should be partitioned so as to create independent
subproblems that may be executed in parallel by multiple threads of computation. Clearly, it is along a
“large” dimension that one should partition, since partition a “small” dimension creates subproblems that
have at least one suboptimal dimension. In Table 1 we indicate that a matrix shape has an affinity to
algorithms GEMM_VARmM, GEMM_VARN, or GEMM_VARk based on this insight.

ILater in this paper, we will take small to equal 128, a reasonable number for our target platform, the ITtanium?2 architecture.



2.3 Composite variants

Algorithms GEMM_VARmM, GEMM_VARnN, and GEMM_VARKk partition along only one of the three dimensions (m,
n, and k). We can synthesize composite variants that perform partitioning along two of the three dimensions
by recognizing that the subcomputation to be performed is itself a matrix-matrix multiplication and that
it therefore can be accomplished by invoking one of the three algorithms. Naturally, invoking an algorithm
that partitions in the same dimension for this subproblem is equivalent to partitioning only one dimension
with a finer partitioning, and therefore not interesting. Let us refer to composite variant GEMM_VARij as
the basic variant GEMM_VARi which invokes variant GEMM_VARj to compute the subproblems. This allows
nine composite variants to be formed from the three basic variants. However, as mentioned we wish to avoid
partitioning along a given dimension more than once. This leaves only six composite algorithms. We will see
that for our study GEMM_VARIj is for all practical purposes equivalent to GEMM_VARji which further reduces
the number of composite algorithms to three.

3 Partitioning for parallelism

The previous section has laid the groundwork for the discussion on parallel algorithms for matrix-matrix
multiplication. Extensive work in the field of distributed-memory matrix-matrix multiplication shows that
a two-dimension partitioning is needed for scalable parallelism [8, 1, 27, 28, 25]. In this paper, we conjecture
that a two-dimensional work partitioning is also necessary to achieve scalable performance in a shared memory
environment. We discuss this further in this section.

3.1 One-dimensional work partitioning

Parallelizing matrix-matrix multiplication on an SMP architecture with ¢ processors is a matter of parti-
tioning the problem into ¢ subproblems (tasks) to be executed in parallel. Let us examine the three original
approaches in detail:

Algorithms GEMM_VARm and GEMM_VARn: These algorithms can proceed by partitioning the target
dimension m or n, respectively, into ¢ (almost) equal parts. After this, ¢ completely independent computations
can proceed: C; .= A;B+ C; on processor ¢ for GEMM_VARm and C; := AB; + C; on processor j for
GEMM_VARn. The only concern is to ensure that the subproblem doesn’t have a dimension that is too small.

Algorithm GEMM_VARk: This algorithms can proceed by partitioning the target dimension & into ¢ (al-
most) equal parts. After this, ¢ completely independent computations can proceed: cw .= A,,Bp is com-
puted on processor p. However, now these partial contributions must be added together to update C:
C:=0C04+cM ...+t 4 C. Thus, the updating by different threads must be carefully orchestrated.
Again, one must ensure that the subproblem doesn’t have a dimension that is too small.

3.2 Two-dimensional work partitioning

For the composite algorithms it suffices to factor the number of threads, ¢, into a local two-dimensional grid,
r X ¢ = t, and then to partition two of the three dimensions (m, n, and/or k) into r and ¢ (almost) equal
parts.

Algorithm GEMM_vARmn: In this case, dimensions m and n are partitioned into r and ¢ (almost) equal
parts. Algorithm GEMM_VARm is employed to create r equal subproblems, each of which is computed using



algorithm GEMM_VARn which subdivides each of these tasks into ¢ subproblems for a total of ¢ tasks. Each
of these tasks updates a separate part of matrix C' so that they can all execute without further interaction.

Algorithms GEMM_VARkm and GEMM_VARnk: For algorithm GEMM_VARkm dimensions m and k are par-
titioned into r and ¢ (almost) equal parts, respectively. Notice that since the k dimension is partitioned, in
that dimension contributions of smaller matrix-matrix multiplications must be summed to the appropriate
submatrix of C. Similarly, for algorithm GEMM_vARnk dimensions k£ and n are partitioned into r and ¢ (al-
most) equal parts, respectively. Again, the & dimension is partitioned and in that dimension contributions of
smaller matrix-matrix multiplications must be summed to the appropriate submatrix of C'. This summation
requires more synchronization between tasks and can thus be expected to incur a higher overhead.

4 Implementation with FLAME /C and Workqueuing

In this section we discuss implementation details related to the Formal Linear Algebra Methods Environment
(FLAME) Application Programming Interface (API) for the C programming language, FLAME/C, and how
it is supported by a model that has been proposed for addition to OpenMP, workqueuing.

4.1 Formal Linear Algebra Methods Environment

The FLAME project embodies a methodology for deriving algorithms for dense linear algebra operations as
well as APIs for representing the resulting algorithms in code. The derivation process presents algorithms us-
ing a somewhat unconventional notation illustrated in Fig. 3(left) for GEMM_vVARm. Notice that the notation
manages movement through operands by tracking submatrices. Details can be found in [6]. In Fig. 3(right),
we present the FLAME/C code. The algorithmic Partition, Repartition and Continue With statements
exist within the FLAME programming interface as subroutines that hide all indexing variables inside matrix
objects (also called “descriptors”). All detailed complexity related to indexing is abstracted away from the
programmer within the FLAME matrix descriptors. In addition, the programmer can manipulate matrix
data simply by passing the appropriate matrix subpartition descriptors to routines such as FLA_Gemm which
perform the same operations corresponding to the BLAS call to dgemm. In this way the FLAME/C API
frees the programmer to think at a higher level of abstraction where the computation is expressed in terms
of separate partitioned regions within the matrices. A full discussion of this API can be found in [5].

4.2 OpenMP task queues

OpenMP is a set of compiler directives and library routines that aids in parallel programming on shared
memory systems [24]. This allows the programmer to explicitly specify regions of code that can be executed
by simultaneous threads of execution. OpenMP directives are expressed in C source code as preprocessor
#pragma directives. An OpenMP-aware compiler recognizes these directives and then performs source code
transformations to insert the “nuts and bolts” that implement the threaded parallelism.

Shah et al. [23] establish the limitations of the two most common forms of OpenMP parallelism: the for
and sections directives. The authors point out that the number of iterations in OpenMP for loops must be
computable upon first entering the loop. Similarly, the sections construct is “non-iterative” and statically
identifies independent regions of computation. In other words, only one parallel section can be instantiated
for every textual occurrence of the section directive within the code. The authors of [23] proposed the
workqueuing model specifically to overcome limitations in the existing set of constructs.

OpenMP workqueuing, proposed for inclusion in the OpenMP 3.0 standard, provides a novel way to
obtain parallelism [26]. The model consists of two new OpenMP directives: taskq and task. Conceptually,



void GEMM_VARm( FLA_Obj A, FLA_Obj B, FLA_Obj C, int nthreads )

{
FLA_Obj AT, A0, CcT, CO,
AB, A1, CB, C1,
Algorithm: C := GEMM_VARm( A, B, C ) A2, c2;
Partition int m, bm;
A AT , FLA_Part_2x1( A,  &AT,
Ap ZAB, 0, FLA_TOP );
Cr FLA_Part_2x1( C, &CT,
C— o %CB, 0, FLA_TOP );

m = FLA_Obj_length( A );

where A7 has 0 rows, Cp has 0 rows #pragna intel omp parallel taskq

while m(Ar) < m(A) do

Determine block size b, while ( FLA_Obj_length( AT ) < FLA_Obj_length( A ) ){
Repartition bm = min( FLA_Obj_length( AB ), m/nthreads );
Ao FLA_Repart_2x1_to_3x1( AT, &AO,
AT — [ kk k[ [k k% %/
( AL )H A | A1,
A AB, &A2, bm, FLA_BOTTOM );
CO FLA_Repart_2x1_to_3x1( CT, &CO0,
CT N C_ /* %% %/ [x ¥% %/
Cp 1 &C1,
Ca CB, &C2, bm, FLA_BOTTOM );
where A; has b,, rows, C; has b,, rows /% /

#pragma intel omp task captureprivate( A1, C1 )

Cy:=A1B+Cq
FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
ONE, A1, B, ONE, C1 );
} // end of task scope

Continue with

A g /* /
AB A i ’ FLA_Cont_with_3x1_to_2x1( &AT, A0,
As At,
Co [ kx k[ /% k% %/
Cr c %AB, A2, FLA_TOP );
cp ) T | = FLA_Cont_with_3x1_to_2x1( &CT, co,
Ca Cc1,
endwhile [x kk k/ [k k% %/
&CB, c2, FLA_TOP );
}
} // end of taskq scope
}

Figure 3: Left: Algorithm GEMM_VARm expressed as a FLAME algorithm. Right: Representation in C using
the FLAME/C API annotated with proposed OpenMP task queue directives.

encountering a taskq directive causes the main thread to create an empty workqueue (or task queue). The
code within the taskq scope is executed sequentially. As task directives are encountered, the code associated
with the task block is encapsulated and enqueued as a unit of work onto the task queue. A number of other
threads (determined by the runtime system) begin dequeuing and executing tasks from the queue according
to a first-in/first-out (FIFO) policy. When all tasks have been completed, the threads synchronize at the
end of the taskq scope and continue through the program.

Some code implementations, including those presented in Sec. 2.3, require an additional clause to the
task directive: captureprivate. This clause allows the programmer to specify a list of variables whose
values must be recorded when the task is enqueued. Typically, a variable is included in a captureprivate
clause because the the task in question resides within a loop. The OpenMP compiler schedules the value
of this variable to be “captured” at the time the task is enqueued so that sequential semantics may be
preserved.



4.3 Parallelizing of our algorithms

An example of how the taskq and task pragmas can be used to parallelize our algorithms is given in
Fig. 3. The subtasks, themselves matrix-matrix multiplications, can be executed in parallel. Naturally, the
dimension, m, is partitioned into subparts of size m/nthreads in order to achieve load balance. Clearly,
gemm_varn can be parallelized similarly.

The parallelization of gemm_vark is slightly more complex: Here the results of independent matrix-matrix
multiplications must be added to the original matrix C. For details of how FLAME/C handles this we refer
the reader to [20].

The composite algorithms are achieved by inlining the loop that computes the subproblem so that only
a single task queue is required for the implementation. In theory, nested task queues could be used so that
this in-lining needs not be performed. We have not yet experimented with this.

5 Performance Experiments

For our experiments, the host architecture is an NEC ccNUMA Express 5800/1000 series SMP equipped
with 16 Itanium?2 “Madison” core CPUs and 64GB of shared main memory. Each CPU is clocked at 1.5GHz
and contains an on-chip 6MB level-3 (L3) data and instruction cache. Because the Itanium2 can execute
4 floating-point operations per clock period, each Itanium2 CPU has a theoretical peak performance of 6
GFLOPS/sec. Combined peak performance of the system utilizing all CPUs is 96 GFLOPS/sec. In our
graphs, this theoretical peak performance is represented by the maximum y-axis value.

All experiments use double precision (64-bit) arithmetic and corresponding invocation of the level-3 BLAS
routine dgemm (via the FLA_Gemm wrapper routine). For the subproblems assigned to each processing thread,
our implementations invoke a single-threaded call dgemm that is part of the popular GotoBLAS library (release
0.95) and is tuned for the Itanium2 architecture [10, 11]. Reference data is obtained from the GotoBLAS
multithreaded dgemm routine. We note that the GotoBLAS are continuously improved and that therefore
the reference numbers may not be representative of the latest release of that library. Indeed, Kazushige Goto
regularly attends our meetings and often makes improvements in response to our experimental insights.

Only performance for composite variants GEMM_VARmn, GEMM_VARkm, and GEMM_VARnk is reported.
We choose to not observe the other composite variants because of the algorithmic symmetry discussed in
Sec. 2.3. We have implemented a convenient mechanism within the FLAME/C API to allow the programmer
to set the ¢ = r x c thread factorization at runtime. Once a factorization is set, the algorithms may compute
appropriate values for the subproblems. Since we were constrained by the 16 processors of the platform,
t=rxc=16.

For each composite variant GEMM_VARIj factorizations of the form ¢ x 1 or 1 x ¢ are algorithmically
equivalent to applying only variant GEMM_VARi or GEMM _VAR}], respectively. These special cases capture one-
dimensional partitionings. For this reason, we do not report separate results for the basic (non-composite)
variants.

Performance results are given in Figs. 4-7 for different shapes of operands. Each data point was computed
from the best wall clock time of three trials. A reference curve is given in each graph corresponding to the
performance results of the GotoBLAS multithreaded dgemm. The results are arranged to allow comparison
between various thread factorizations and composite variants for each matrix shape scenario.

In general, GEMM_VARmn is the best performing variant. There is always a choice of r x ¢ for which
this variant outperforms the reference implementation. However, for some matrix shapes there is a benefit
to choosing a different variant. For example, when m and n are both small, further partitioning of these
dimensions creates subproblems for which the m and n dimensions are suboptimal. In this case the other
two variants, which allow the & dimension to be partitioned, yield better performance, as is demonstrated
in Fig. 6(right).



variant m=n==%

0 16x1
OF |+ gx2
* - 4xa4 Rl ol Ne P
2x8 = % sk
80F| 4 1x16 . MRS CF S
Reference T W
0

GEMM_VARMN
GFLOPS/sec.

30t
20
101
. . . . . ,
0 1000 2000 3000 4000 5000 6000
m=n=k
0 16x1
OF |+ gx2
*-4x4
2x8
80r| o 1x16
Reference ReRP

GEMM_VARnk
GFLOPS/sec.

16x1
8x2
ax4
2x8
1x16
Reference

0x%+0

GEMM_VARkm
GFLOPS/sec.

5000 6000

Figure 4: Performance for square matrices.



variant

n = 300

m = 300

0 16x1

+ 8x2

* - 4x4
2x8

o 1x16

Reference

90

80

0 16x1

+ 8x2

* - 4x4
2x8

o 1x16

Reference

Figure 5: Left: Performance

5000 6000

2000

m=k
when n is “small”

< g g
H H
4 4
> @ @
2 2
| ) )
S S
e e
= 5 5
o 1000 2000 3000 4000 5000 6000 o 1000 2000 3000 4000 5000 6000
m=k n=k
[ [ o 16x1 L 16x1
% + o 8x2 %0 +8x2
* - 4x4 4xa
2x8 2x8
80Fl 5 1x16 0or e 1x
Reference Reference
701 701
é 60 60
< g g
H H
4 4
> @ 3 s0f
2 2
| ) )
S S
e o
= 5 P
g or
ko)
200 p
o
£
1013,
2
o 1000 2000 3000 4000 5000 6000 o 1000 2000 3000 4000 5000 6000
m=k n=k
[[ o 16x1 [ [ o 16x1
% +8x2 %0 +8x2
* - 4x4 * - 4x4
2x8 2x8
80 5 1416 80r| o 1x16
Reference Reference
E 701
< g g
H H
4 4
> @ @
2 2
| ) ]
S S
e e
= 5 5

6000

5000

2000

(GeEMP). Right: Performance when m is “small” (GEPM).



variant k = 300 m =mn = 300

[ [ o 16x1 [ [ o 16x1
Orl 4+ 8x2 OF 1 gx2
* - 4x4 * - 4x4
2x8 2x8
8or 1x16 s 80F| & 1x1s
Reference | . Reference
o
<] 70 2ok
E 60 60
< g
a2 o
> @ 50 G 501
2 o
| S &
% o
E O 40 O 40
*
= Hh ek
& » R N WP AN
T s MR X ki
@} r R e St R
guliiar e e ks
Bt RGaRy h
20 e et
[o]
10

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

m=n 3
[ [ o 16x1 [ [ o 16x1
% +8x2 %0 +8x2
* - 4x4 * - 4x4
2x8 2x8
80 5 1x16 80r| o 1x16
Reference Reference
v 701 701
é 60 60
g §
< g &
> @ 501 @ 501
| S S
z z + + # 4 5%
s z Iy N . % Ca,
O 40+ O 40 R e A + * * s % W\~
. B . biosch 2]
s & e e W@f; g g@:‘? e it
@ ° w© g e i
: R, oSt 0t
@} FF° O RREG, B o
N s xS
4 ) . 20
10
" 4
* o
2000 3000 4000 5000 6000 o 1000 2000 3000 4000 5000 6000
m=n 3
[[ o 16x1 [ [ o 16x1
% +8x2 %0 +8x2
* - 4x4 * - 4x4
2x8 2x8
80 5 1416 80r| o 1x16
Reference Reference
E 70 701
'é 60 60
g g
< g &
> @ 50 @ 501
2 2
| ) ]
S S
E i o
E O 40 O 40
g *

20
10
0 O O T, e L L L L L ,
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
m=n Kk

Figure 6: Left: Performance when k£ = 300 (GEPP). Right: Performance when m = n = 300 (GEPDOT).

10



variant n =k =300 m =k = 300
©--16x1 © - 16x1
OF| 4 gx2 %0 +8x2
* - 4x4 * - 4x4
2x8 2x8
80K 5 1x16 80Fl 5 1x16
Reference Reference O ]
o 000
<] 7 o o,
E oo g o5 oo
60
o o
« s o - 0y
< g 8 T
> ? @ 50 5 § %
| 5} & P
E g 9 SN, . g&f . ;’WM
[ © 40 VR omEy s x
S S A EER T paty a e
g 30 oLt
R AN
7
e g
20 o
0 1ol T (T
o 1000 2000 3000 4000 5000 6000 o 1000 2000 3000 4000 5000 6000
m n
©--16x1 ©--16x1
9OF| 4 gx2 %0 +8x2
* - 4x4 * - 4x4
2x8 2x8
80K 5 1x16 80Fl 5 1x16
Reference Reference
7oF 70
-
é 60
< 8 8
8 8
> @ 501 @
4 2
! S S
2 Gl o &
401
= %&5&0
= 0 o, s
(&) ° o S e
+ ) o
20 h
e
0 | ot e e
o 1000 2000 3000 4000 5000 6000 o 1000 2000 3000 4000 5000 6000
m n
©--16x1 ©--16x1
9OF | 4 gx2 %0 +8x2
* - 4x4 * - 4x4
2x8 2x8
80K 5 1x16 80Fl 5 1x16
Reference Reference
E 7oF 70
< 8 8
3 8
> % 501 @
2 2
| ) ]
S S
T T
E G 40f 9]
&

Figure 7: Left: Performance when n = k£ = 300 (GEPB). Right: Performance when m = k = 300 (GEBP).

0 1000

2000

4000

3000 5000 6000
m

11

1000

4000

2000 3000 5000 6000
n



Note to the referees: We have realized that rather than setting small equal to 300 in these
experiments, we should have take it to equal 128 so that partitioning in the small dimension
indeed would create subproblems with an unfavorably small dimension. We believe that this
would show much more dramatically the point we are trying to make. Unfortunately, the
sixteen CPU system on which we had performed our experiments was dismantled before we
realized this. We have every intention of identifying another sixteen CPU Itanium2 system so
that we can substitute such data in the final version of this paper.

6 Conclusions

We have illustrated issues related to the parallel implementation of the matrix-matrix multiplication op-
eration on SMP architectures. Initial empirical evidence has been given that partitioning work along two
dimensions is necessary for scalability. The elegance and effectiveness of the work queuing model as proposed
for OpenMP 3.0 was also illustrated, especially for FLAME code.

A number of issues are not discussed in this paper and are ripe for future research.

e How can workqueuing be supported in the absence of OpenMP task queues or in the absence of
OpenMP altogether? We have prototyped a mechanism to support this for FLAME which will be the
topic of a future paper.

e How can compiler technology be used to reduce some of the overhead associated with the peculiar
indexing mechanism used by FLAME? We believe that abstracting away from detailed indexing is
beneficial and makes more information available to a compiler like Broadway [16, 18, 17, 15].

e How can one determine optimal parameters? In this paper we merely illustrate that parameters for
partitioning the threads into a grid and other blocking parameters impact performance. We do not
believe that approaches like PHIiPAC [7] and ATLAS [29] are feasible. What we do believe is that the
underlying matrix-matrix multiply provided by the GotoBLAS [11] can be highly accurately modeled,
which than can facilitate the highly accurate modeling of the demonstrated SMP algorithms. Such a
model can then be used to motivate heuristics for choosing the best algorithms.

e How can redundant effort be avoided? High-performance matrix-matrix multiplication inherently in-
volves the copying of data to make it contiguous [11]. In the proposed algorithms, this copying is
duplicated within the call to FLA_Gemm, which is itself a wrapper to the dgemm BLAS routine. Thus,
such copying is duplicated by each of the threads which is clearly a waste. Worse than that, this copying
causes the different threads to compete for memory bandwidth which further amplifies overhead.

e How do the insights impact other BLAS operations? Initial results, reported in [20], suggest that
load-balancing is somewhat more complex for the other level-3 BLAS operations.

e What will multi-core architectures with many cores look like? And that is the billion dollar question
yet to be answered.

All of these questions are part of our future research.

Further information

Additional information regarding the FLAME project may be found by visiting
http://www.cs.utexas.edu/users/flame/ .

12



Acknowledgments

The FLAME working group became aware of the OpenMP workqueuing model through Dr. Timothy Mattson
(Intel). The high-level constructs afforded by this model were key in guiding our research.

Many thanks go to NEC Solutions (America), Inc for providing access to their two 16 CPU Itanium2
compute servers on which many of the performance experiments were performed. NEC Solutions (America)
also provided partial funding for this project. Additional funding came from Dr. James Truchard, President,
CEOQO, and Cofounder of National Instruments. This research was also partially sponsored by NSF grants
ACI-0305163 and CCF-0342369. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

We thank Kazushige Goto for his technical advice and acknowledge Paolo Bientinesi, Sukant Hajra, Tze
Meng Low, and Dr. Kent Milfeld for their valuable feedback throughout the course of this research.

References

[1] R. C. Agarwal, F. Gustavson, and M. Zubair. A high-performance matrix multiplication algorithm on a
distributed memory parallel computer using overlapped communication. IBM Journal of Research and
Development, 38(6), 1994.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide - Release 2.0. STAM, 1994.

[3] Paolo Bientinesi, Kazushige Goto, Tze Meng Low, Enrique Quintana-Orti, Robert van de Geijn, and
Field Van Zee. Flame 2005 prospectus: Towards the final generation of dense linear algebra libraries.
Technical Report FLAME Working Note 15, CS-TR-05-15, Department of Computer Sciences, The
University of Texas at Austin, December 2005. http://www.cs.utexas.edu/users/flame/pubs/.

[4] Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Orti, and Robert A. van de
Geijn. The science of deriving dense linear algebra algorithms. ACM Transactions on Mathematical
Software, 31(1):1-26, March 2005.

[6] Paolo Bientinesi, Enrique S. Quintana-Orti, and Robert A. van de Geijn. Representing linear algebra
algorithms in code: The FLAME APIs. ACM Trans. Math. Soft., 2005. to appear.

[6] Paolo Bientinesi and Robert van de Geijn. Representing dense linear algebra algorithms: A farewell to
indices. STAM Review. submitted.

[7] J. Bilmes, K. Asanovic, C.W. Chin, and J. Demmel. Optimizing matrix multiply using PHiPAC: a
portable, high-performance, ANSI C coding methodology. In Proceedings of the International Conference
on Supercomputing. ACM SIGARC, July 1997.

[8] Almadena Chtchelkanova, John Gunnels, Greg Morrow, James Overfelt, and Robert A. van de Geijn.
Parallel implementation of BLAS: General techniques for level 3 BLAS. Concurrency: Practice and
Experience, 9(9):837-857, Sept. 1997.

[9] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Soft., 16(1):1-17, March 1990.

[10] Kazushige Goto. http://wuw.cs.utexas.edu/users/kgoto, 2004.

13



[11]

[12]

[13]

[14]

Kazushige Goto and Robert van de Geijn. Anatomy of high-performance matrix multiplication. ACM
Trans. Math. Soft. submitted.

John Gunnels, Calvin Lin, Greg Morrow, and Robert van de Geijn. A flexible class of parallel matrix

multiplication algorithms. In Proceedings of First Merged International Parallel Processing Symposium
and Symposium on Parallel and Distributed Processing (1998 IPPS/SPDP ’98), pages 110-116, 1998.

John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. FLAME: Formal
linear algebra methods environment. ACM Trans. Math. Soft., 27(4):422-455, December 2001.

John A. Gunnels, Greg M. Henry, and Robert A. van de Geijn. A family of high-performance matrix
multiplication algorithms. In Vassil N. Alexandrov, Jack J. Dongarra, Benjoe A. Juliano, René S.
Renner, and C.J. Kenneth Tan, editors, Computational Science - ICCS 2001, Part I, Lecture Notes in
Computer Science 2073, pages 51-60. Springer-Verlag, 2001.

Samuel Z. Guyer, Emery Berger, and Calvin Lin. Customizing software libraries for performance porta-
bility. In 10t* SIAM Conference on Parallel Processing for Scientific Computing, March 2001.

Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing software libraries. In Second
Conference on Domain Specific Languages, pages 39-52, October 1999.

Samuel Z. Guyer and Calvin Lin. Broadway: A Software Architecture for Scientific Computing, pages
175-192. Kluwer Academic Press, October 2000.

Samuel Z. Guyer and Calvin Lin. Optimizing the use of high performance software libraries. In Languages
and Compilers for Parallel Computing, pages 221-238, August 2000.

B. Kagstrom, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: High performance model imple-
mentations and performance evaluation benchmark. ACM Trans. Math. Soft., 24(3):268-302, 1998.

Tze Meng Low, Kent Milfeld, Robert van de Geijn, and Field Van Zee. Parallelizing FLAME
code with OpenMP task queues. Technical Report FLAME Working Note 15, CS-TR-04-
50, Department of Computer Sciences, The University of Texas at Austin, December 2005.
http://www.cs.utexas.edu/users/flame/pubs/.

Tze Meng Low, Robert van de Geijn, and Field Van Zee. Extracting SMP parallelism for dense linear
algebra algorithms from high-level specifications. In Proceedings of PPoPP’05.

Enrique S. Quintana-Orti and Robert A. van de Geijn. Formal derivation of algorithms: The triangular
Sylvester equation. ACM Transactions on Mathematical Software, 29(2):218-243, June 2003.

Sanjiv Shah, Grant Haab, Paul Peterson, and Joe Throop. Flexible control structures for parallelism
in OpenMP. In EWOMP, 1999.

Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack Dongarra. MPI: The
Complete Reference. The MIT Press, 1996.

G. W. Stewart. Communication and matrix computations on large message passing systems. Parallel
Computing, 16:27-40, 1990.

Ernesto Su, Xinmin Tian, Milind Girkar, Grant Haab, Sanjiv Shah, and Paul Peterson. Compiler
support of the workqueuing execution model for Intel SMP architectures. In EWOMP, 2002.

14



[27] Robert van de Geijn and Jerrell Watts. SUMMA: Scalable Universal Matrix Multiplication Algorithm.
Concurrency: Practice and Ezperience, 9(4):255-274, April 1997.

[28] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press, 1997.

[29] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra software. In Proceedings of
SC’98, 1998.

15



