
1 © 2015 The MathWorks, Inc.

On-Target Testing in the Simulink

Model-Based Design Environment

Richard Anderson

Senior Developer MathWorks UK Ltd.

2

Agenda

 Introduction to Model-Based Design and automatic

code generation

 Use of processor-in-the-loop (PIL) for on-target testing

3

Airbus Develops Fuel Management System

for the A380 Using Model-Based Design

Challenge

Develop a controller for the Airbus A380 fuel management

system

Solution

Use MATLAB, Simulink, and Stateflow for Model-Based

Design to model and simulate the control logic,

communicate the functional specification, and accelerate

the development of simulators

Results

 Months of development time eliminated

 Models reused throughout development

 Additional complexity handled without staff increases

“Model-Based Design gave us

advanced visibility into the

functional design of the system.

We also completed requirements

validation earlier than was

previously possible and simulated

multiple simultaneous component

failures, so we know what will

happen and have confidence that

the control logic will manage it.”

Christopher Slack

Airbus

Link to user story

Airbus A380, the world’s largest

commercial aircraft.

http://www.mathworks.com/company/user_stories/Airbus-Develops-Fuel-Management-System-for-the-A380-Using-Model-Based-Design.html
http://www.mathworks.com/company/user_stories/Airbus-Develops-Fuel-Management-System-for-the-A380-Using-Model-Based-Design.html

4

Eurocopter Uses Model-Based Design

to Accelerate Development of DO-178B

Certified Systems

Challenge

Speed up DO-178 development cycle while stabilizing system

and software definitions by using models for validation and

reusing the data for verification

Solution

 Develop Plan for Software Aspects of Certification (PSAC)

consistent with latest recommendations from European

Aviation Safety Agency (EASA) for DO-178B, taking into

account DO-178C concepts for Model-Based Design

 Create models in Simulink for software architecture,

high-level requirements, and low-level requirements

 Generate flight source code using Embedded Coder

Results

 Early requirements validation and execution of

simulation test cases with Simulink

 Seamless object code verification by reusing simulation

test cases

 EASA approval for the software certification with use of

code generated by Embedded Coder

“Using Simulink for systems and

software development has

provided efficient means to

validate the requirements and

design the system and saves

time on verification and

validation.”

 Ronald Blanrue

Eurocopter Group – Avionic System

Avionic Certification/EADS Expert

5

Text

documents

prevents rapid

iteration

Physical

prototypes

incomplete,

expensive

Manual

implementation

separate tools &

human error

Traditional testing

errors found

late in process

Design Implementation Requirements

and Specs

Test and

Verification

Traditional development processes prevent

errors from being caught early in the program

Can the work flow be improved?

6

Text

documents

prevents rapid

iteration

Physical

prototypes

incomplete,

expensive

Manual

implementation

separate tools &

human error

Traditional testing

errors found

late in process

Design Implementation Requirements

and Specs

Test and

Verification

Executable Specification
• Unambiguous spec, supplemented by text

• One set of models for all teams

• Model whole system including environment

• Block diagram description

• Early validation and test development

7

Text

documents

prevents rapid

iteration

Physical

prototypes

incomplete,

expensive

Manual

implementation

separate tools &

human error

Traditional testing

errors found

late in process

Design Implementation Requirements

and Specs

Test and

Verification

Design with Simulation
• Systematic design exploration and optimisation

• Find flaws before implementation

• Bit/cycle-accurate simulation of hardware-specific components

• Incremental design from system level to implementation

8

Text

documents

prevents rapid

iteration

Physical

prototypes

incomplete,

expensive

Manual

implementation

separate tools &

human error

Traditional testing

errors found

late in process

Design Implementation Requirements

and Specs

Test and

Verification

Automatic Code Generation
• No manual coding errors

• Hardware target portability

• Improved testability due to repeatability

• Bridge between domain, software and hardware knowledge

9

Text

documents

prevents rapid

iteration

Physical

prototypes

incomplete,

expensive

Manual

implementation

separate tools &

human error

Traditional testing

errors found

late in process

Design Implementation Requirements

and Specs

Test and

Verification

Continuous Test and Verification
• Detect errors early in development

• Reduce dependency on physical prototypes

• Implementations that work the first time

• Reuse test suites across development stages

10

Model elaboration

Continuous verification

Design Implementation Requirements

and Specs

Test and

Verification

Model-Based Design

11

Benefits of the tools

 MATLAB and Simulink provide a flexible software environment

for designing multi-domain systems, simulating high-fidelity

behavioural dynamics, testing and analysis, and generating safety-

critical computer code

 MATLAB and Simulink promote agility and communication

along the supply chain, by providing a common software

environment for sharing data, designs, and specifications across

organisations

 This approach minimizes program risk and enables teams to

develop mission-critical systems faster

12

Engineers and scientists worldwide rely on our products to
accelerate the pace of discovery, innovation, and development

Model-Based Design

Process Previous time taken Model-Based Design

time taken

Overall development effort 100 man years 10 man years

Original design to code (1st

time model elaboration)

> 2 years 3 months

Subsequent design iterations > 2 months < 1 week

Testing > 2 weeks 8 hours

Documentation update > 2 weeks 10 minutes

13

Continuous Verification

 Executable specifications allow system

behaviour/performance to be continually evaluated

 Our Verification tools include

– Static Analysis

– Standards conformance

– Dynamic Verification

14

Dynamic Verification within Simulink

 Examine behaviour of system using

– Closed loop plant models

– Captured input data

– Specific test cases

– Auto-generated test cases

 To demonstrate particular system properties

 Round out test coverage

 In-the-loop testing extends these to the

generated code

– Software-in-the-Loop Testing

– Processor-in-the-Loop Testing

15

Simulation (MIL), SIL and PIL within the High

Integrity Workflow

PIL
SIL

MIL

16

How SIL and PIL work
 The Test Harness

Code

Generation

Object Code for

Algorithm Under Test

SIL/PIL Test Harness

MATLAB Host computer (SIL)

Production Processor (PIL)

17

Software-in-the-Loop (SIL)
Verify compiled object code matches simulation

Non-real-time execution:

synchronized with simulation • Verify numerical equivalence

• Assess execution time

• Collect code coverage

• Create certification artifacts

Communication

Gateway

• Software-in-the-Loop (SIL) No

additional tools / hardware required

18

Processor-in-the-Loop (PIL)
Verify compiled object code matches simulation

Non-real-time execution:

synchronized with simulation • Verify numerical equivalence

• Assess execution time

• Collect code coverage

• Create certification artifacts

Communication

Gateway

• Processor-in-the-Loop (SIL) for

testing on production hardware

19

Key Benefits of SIL and PIL

 Controlled and easy to debug environment owing to

non-real-time execution in the context of a Simulink

simulation

 Verify correct execution behaviour of compiled code

 Collect metrics for the generated code

– Code coverage (Bullseye, LDRA)

– Execution profiling

 Evaluate hardware specific optimisations

 Generate artefacts for IEC 61508, ISO 26262, EN

50128, and DO-178 certification

 Early verification and defect detection reduces costs

20

Function Execution Times for Code

Running on Embedded Hardware

 Call-site instrumentation to

measure execution time of

functions in the generated code

 Includes initialization, shared

utility and math library functions

 Configurable units for reporting

of measured execution times

Comprehensive measurement

of function call execution

times

Default units are

nanoseconds

21

Target Support Packages available for Download

22

Integration API to extend to your Hardware

 There is a growing list of

Support Packages

 Support Packages cannot

support PIL for an arbitrary

combination of

– Processor

– Compiler

– Debugger or download utility

– Communications channel

 A fully documented API stable

across MathWorks releases

Simulink

PIL Application

(harness to test

algorithm

object code)

Algorithm

Object Code

(generated from

the model)

Target-Side Comms

Build

Process

Launcher

Host-Side Comms

PIL API Components

Real Target or Simulator

23

Multiple PIL Targets on the Network

Dev 1 Dev 2 Dev 3 Dev n

Gateway

Target 1

MPC5644

Target 2

Cortex-M

Target 3

Tricore

CANcase

XL
USB Hub

JTAG i/f JTAG i/f JTAG i/f

TCP/IP

CAN

USB

.

Execute

24

Takeaways

 Model Based Design provides

– Easier collaboration, bringing

 cost savings, and

 innovation

– Earlier problem detection

– An Executable specification supporting system optimisation

and exploration throughout the design lifecycle

 Processor-in-the-Loop promotes

– Early and accessible on-target testing

– Gathering metrics

– Easy reuse of tests with real production hardware

25

Questions?

 Thank you

– Richard.Anderson@Mathworks.co.uk

26

28

Overview of MathWorks Tool Chain
Example of DO-178 Software life-cycle

Trace

Requirements

Models

Verify
C code

EOC

Abbreviations

DV: Simulink Design Verifier

MA: Model Advisor

MC: Model Coverage

RMI: Requirements Management Interface

RTE: Run-Time Error

PIL: Processor-in-the-Loop

SDD: System Design Description

VV: Verification and Validation

Validate

Develop

Compile & Build

Code coverage

DO Qualification Kit Support

Simulink®

Stateflow®

Simulink® Design VerifierTM

Simulink® Validation VerificationTM (MC)

Simulink® Validation

VerificationTM (MA)

Simulink® Validation

VerificationTM (RMI)

Simulink® Stateflow®

Simulink® Design VerifierTM

Simulink® CoderTM Simulink Real-TimeTM

Simulink® Code InspectorTM

Polyspace® (MISRA, RTE)

Simulink® Code InspectorTM

Embedded CoderTM (PIL)

SimulinkTestTM

Polyspace® (RTE)

Embedded CoderTM (PIL)

SimulinkTestTM

Polyspace® (RTE)

Embedded CoderTM

Simulink® Report

GeneratorTM (SDD)

29

Simulink Design Verifier

Formal methods on model to:

 Generate Tests (or find untestable algorithm)

 Detect Design Errors

 Prove Properties: e.g. thrust reverser shall not deploy when [Condition]

30

Automatic Code Reviews

- Simulink Code Inspector

 Demonstrate that model and

source code match structurally

 Provide modelcode

traceability data

 Eliminate / reduce manual code

reviews for DO-178 software

 Independence from Coder

 Same credits as qualified coder

 Coder

Code

verification

Code traceability

Source code Model

31

Simulink Code Inspector

Simulink Code Inspector

Code

inspection

report

?

Normalized

Model IR
Normalized

Code IR

Model IR Code IR

IR transformations

Matching

Embedded

Coder

C source

code

Simulink

model

Traceability

report

• Independently verify that

Embedded Coder generated

code traces to and complies

with low-level requirements

• Demonstrate that model and

source code match structurally

and functionally

• Provide model code

traceability data

• Eliminate/reduce manual code

reviews for DO-178 software

32

How does Polyspace help you?

 Finds bugs

 Checks coding rule conformance (MISRA/JSF/Custom)

 Provides metrics (Cyclomatic complexity etc.)

 Proves the existence and absence of errors

 Indicates when you’ve reached the desired quality level

 Certification help for DO-178 C, ISO 26262, …

33

Code Coverage via On-Target (PIL) Simulation

 Code coverage via SIL is fully automated

– Using LDRA Testbed or Bullseye

 Use of PIL for code coverage is an alternative to code

coverage via SIL

 Code coverage via PIL

– Fully automated if target (e.g. instruction set simulator) can

write directly to the host file system

– Possible for any target using custom approach for data

collection

 Code coverage via PIL is as simple as code coverage

via SIL

