“, MathWorks:

On-Target Testing in the Simulink
Model-Based Design Environment

Richard Anderson
Senior Developer MathWorks UK Ltd.

© 2015 The MathWorks, Inc.

‘ &\ MathWorks

Agenda

= Introduction to Model-Based Design and automatic
code generation

= Use of processor-in-the-loop (PIL) for on-target testing

@\ MathWorks

Airbus Develops Fuel Management System
for the A380 Using Model-Based Design

i N
/’4/'1?7 3
A # =

AL .
»""'::’/ :
a5

Challenge

Develop a controller for the Airbus A380 fuel management
system

Airbus A380, the world’s largest
commercial aircraft.

Solution

Use MATLAB, Simulink, and Stateflow for Model-Based
Design to model and simulate the control logic,
communicate the functional specification, and accelerate
the development of simulators

Results

= Months of development time eliminated

= Models reused throughout development

= Additional complexity handled without staff increases

Link to user story

“Model-Based Design gave us
advanced visibility into the
functional design of the system.
We also completed requirements
validation earlier than was
previously possible and simulated
multiple simultaneous component
failures, so we know what will
happen and have confidence that
the control logic will manage it.”

Christopher Slack
Airbus

http://www.mathworks.com/company/user_stories/Airbus-Develops-Fuel-Management-System-for-the-A380-Using-Model-Based-Design.html
http://www.mathworks.com/company/user_stories/Airbus-Develops-Fuel-Management-System-for-the-A380-Using-Model-Based-Design.html

&\ MathWorks:

Eurocopter Uses Model-Based Design
to Accelerate Development of DO-178B
Certified Systems

Challenge

Speed up DO-178 development cycle while stabilizing system
and software definitions by using models for validation and
reusing the data for verification

Solution

= Develop Plan for Software Aspects of Certification (PSAC)
consistent with latest recommendations from European

Aviation Safety Agency (EASA) for DO-178B, taking into
account DO-178C concepts for Model-Based Design “Using Simulink for systems and

= Create models in Simulink for software architecture,
high-level requirements, and low-level requirements

= Generate flight source code using Embedded Coder

software development has
provided efficient means to
validate the requirements and

Results design the system and saves

= Early requirements validation and execution of time on verification and
simulation test cases with Simulink validation.”

- Seamless object code verification by reusing simulation Ronald Bl e
test cases

Eurocopter Group — Avionic System
= EASA approval for the software certification with use of Avionic Certification/EADS Expert

code generated by Embedded Coder |

4

4\ MathWorks'

Traditional development processes prevent
errors from being caught early in the program

Test and
Verification

Requirements
and Specs

Design Implementation

Text Physical Manual Traditional testing
documents prototypes implementation errors found
prevents rapid incomplete, separate tools & late in process
iteration expensive human error

Can the work flow be improved?

4\ MathWorks'

Test and
Verification

Requirements Design Implementation
and Specs Ny M

Text Physical Manual § Traditional testing
documents prototypes implementation errors found
incomplete, separate tools & late in process
expensive human error

Executable Specification A
» Unambiguous spec, supplemented by text
* One set of models for all teams
* Model whole system including environment
» Block diagram description

_ Early validation and test development -

4\ MathWorks'

Test and
Verification

Implementation

Requirements
and Specs

Text Physical Manual § Traditional testing
documents prototypes implementation errors found
prevents rapid e . separate tools & late in process
iteration human error

Design with Simulation
» Systematic design exploration and optimisation
* Find flaws before implementation
* Bit/cycle-accurate simulation of hardware-specific components
& Incremental design from system level to implementation J?

4\ MathWorks'

Test and
Verification

Requirements
and Specs

Implementation

Text Physical Manual § Traditional testing
documents prototypes iImplementation errors found
prevents rapid incomplete, R e late in process
iteration expensive - =i
E= - | e

SN, R

(Automatic Code Generation

* No manual coding errors

* Hardware target portability

* Improved testability due to repeatability
_* Bridge between domain, software and hardware knowledge /

4\ MathWorks'

Test and
Verification

Implementation

Requirements
and Specs

Text Physical Manual
documents prototypes implementation errors found
prevents rapid incomplete, separate tools & e
iteration expensive human error - =

(Continuous Test and Verification
 Detect errors early in development
* Reduce dependency on physical prototypes
* Implementations that work the first time
_* Reuse test suites across development stages -

Model-Based Design

Requirements Design
and Specs

4\ MathWorks

Implementation Test and
Verification

1l

- -

10

&\ MathWorks

Benefits of the tools

MATLAB and Simulink provide a flexible software environment
for designing multi-domain systems, simulating high-fidelity
behavioural dynamics, testing and analysis, and generating safety-
critical computer code

MATLAB and Simulink promote agility and communication
along the supply chain, by providing a common software
environment for sharing data, designs, and specifications across
organisations

This approach minimizes program risk and enables teams to
develop mission-critical systems faster

11

@\ MathWorks

Model-Based Design

Engineers and scientists worldwide rely on our products to

accelerate the pace of discovery, innovation, and development
|

Process Previous time taken Model-Based Design
time taken

Overall development effort ~ 100 man years ~ 10 man years

Original design to code (1% > 2 years 3 months

time model elaboration)

Subsequent design iterations > 2 months < 1 week

Testing > 2 weeks 8 hours

Documentation update > 2 weeks 10 minutes

GRID

ALSTOM

&\ MathWorks

Continuous Verification

« EXxecutable specifications allow system
behaviour/performance to be continually evaluated

= Our Verification tools include
— Static Analysis
— Standards conformance
— Dynamic Verification

13

Dynamic Verification within Simulink

= Examine behaviour of system using
— Closed loop plant models
— Captured input data
— Specific test cases

— Auto-generated test cases
= To demonstrate particular system properties
= Round out test coverage

= In-the-loop testing extends these to the
generated code
— Software-in-the-Loop Testing
— Processor-in-the-Loop Testing

&\ MathWorks

14

| 4\ MathWorks

Simulation (MIL), SIL and PIL within the High
Integrity Workflow

High-level
verification
o Low-level =«
e verification)

4 s = —_ =,
.-’ - = Ty . = .
s - - N
& Mﬂde! - |_:!ZIE|E_ - R
. verificatio »° werification N
’ LT T . - =" T — S 4
= . - - - > 5 - - o &
i § “ N /m \
Requirements I Model \ Code . \
C

validation l,.-"f Y i conformance I.-""_"H‘h onformance If'_.-ﬁ"-, Y '
|] L 1 i L] ||| 1
s R R
Requirements |——— s Model »| Source code b—— | Objectcode
* F F
1 L] 1
] | I
i a4 ']
[
4

-
- - -

Model traceability Code traceability

15

4\ MathWorks

How SIL and PIL work

The Test Harness

E! SystemModel _ O]
File Edit View Simulaton Format Tools Help

DI@E%I&EEI@%{H?QI} II‘H].{I' INon‘naI j|$|ﬂ||ﬁ

My Algorithm
(SIL: Top)
input output

Plant (%]
Model g 2

Test Suite

Production Processor (PIL)

Object Code for
Algorithm Under Test

SIL/PIL Test Harness

16

&\ MathWorks

Software-in-the-Loop (SIL)

Verify compiled object code matches simulation

Non-real-time execution:
synchronized with simulation

7] systemModel FEE
Fle Edit View Simulaton Format Tools Help
D@dH&E| 2R E= 4[] =00 [Noma FlEEnE s
MyAlgorithm
R Plant J O
Model "
N Verification
NETN
Q ' Q lode45 i
~y
Q

O
~

Verify numerical equivalence
Assess execution time
Collect code coverage
Create certification artifacts

Software-in-the-Loop (SIL) No
additional tools / hardware required

17

&\ MathWorks

Processor-in-the-Loop (PIL)

Verify compiled object code matches simulation

7] systemModel [_[O]
File Edit View Simulaton Format Tools Help
DI@E%I&EEI@%{H?QI} II‘ID.D IN-::n‘naI j|$|ﬂ||ﬁ
MyAlgorithm
¥
g cmd Plant o @
¢ Model s
Tealou G Verification
Ready |°d'345 i

Non-real-time execution:
synchronized with simulation

Verify numerical equivalence
Assess execution time
Collect code coverage
Create certification artifacts

Processor-in-the-Loop (SIL) for
testing on production hardware

18

&\ MathWorks

Key Benefits of SIL and PIL

Controlled and easy to debug environment owing to
non-real-time execution in the context of a Simulink
simulation

Verify correct execution behaviour of compiled code

Collect metrics for the generated code
— Code coverage (Bullseye, LDRA)
— Execution profiling

Evaluate hardware specific optimisations

Generate artefacts for IEC 61508, ISO 26262, EN
50128, and DO-178 certification

Early verification and defect detection reduces costs

19

@\ MathWorks

Function Execution Times for Code
Running on Embedded Hardware

CounterTypeA

Comprehensive measurement
of function call execution
times

= Call-site instrumentation to
measure execution time of
functions in the generated code

= |ncludes initialization, shared
utility and math library functions

= Configurable units for reporting
of measured execution times

/* Start for Enabled SubSystem: '<Root>/CounterTypel’

Default units are

— P ticks
countf! nanoseconds
count a
—p reset
Il
f TenableA
Model Code aximum
Section Execufjon Time |
Number
[—]1 rtwdemo silltopmodel initialize 1 202
[+] CounterTypeA 2 105
[+] CounterTypeB / 4 43
[—]1 twdemo sil topmodel step [0,14] 6 1074
CounterTypeA 7 399
CounterTypeB 8 44

N

PROFILE START 809d18550fe660e8 (2147483645U)

CounterTypel Start():

\

PROFILE START TASK SECTION(2147483640U):
rtwdemo sSil topmodel step():

PROFILE END TASK SECTION (2147483640U);

PROFILE END rt 043493862f001c94(2147483645U):

20

| &\ MathWorks:

Target Support Packages available for Download

ﬂ Suppert Package Installer EI@

Select support package to install

show: [all (72) -
Support for: Support packages:
ARM Cortex-A -) Installed Latest - Required Supported
ARM Cartex-M B Ao Version Viersion VEG I Base Product Host Platforms
ARM Cortex-based VEX Microcontroller
ALTOSAR Standard 1 [V] Instal
Altera FPGA Boards (4 hitp:/)
p://www-integ2 mathworks.com/hardw © ~ @ || 4\ ARM Cortex A Support fro... %
Altera SoC 2 [¥] Instal
Analog Devices DSPs A
- Hardware Support . .
Android Sensors - PP B Contact support B Contactsales 5 Trial software
Apple i0S =
Arduing Overview Search Hardware Support Request Hardware Support
BEEcube miniBEE Platform » ARM Cortex A Support from Embedded Coder B .
BeagleBoard ARM Cortex-M Support from Embedded Coder Expand all
BeagleBone Black ARM Cortex-M CMSIS Library Support from DSP System Toolbox
DCAM Hardware E i
Dt Translation Frame Grabhers ARM Cortex A Ne10 Library Support from DSP System Toolbox v Getting Started Resources
Digilent Analog Discovery — vVideos
DirectSound Audio ARM Cortex-A, -R, -M Optimized Code
Freescale Kinetis Microcontrollers MATLAD Coder™.:. Simink Coderl;:and Empedded Generation using MATLAB and Simulink 45:36
GenlCam Interface Coder® generate ANSIISO C/C:*' code that can be s
GigE Vision Hardware compiled and executed on ARTﬂ Cortex® A processors.)
Hamamatsu Hardware Embedded Coder lets you easny‘con‘ﬂgure tnevcode > Documentation
IP Cameras generated from MATLAB® and Simulink® algorithms to > Community
) i 3 5 :
Kinect for Windows Sensor cor:ro software ;meﬁaces, optimize (-zxecunonn Yotber
Kyaser CAN Devices performance, and minimize memory consumption.
LEGO MINDSTORMS EV3
LEGO MINDSTORMS MXT ARM Cortex-A processors compatible with Embedded
Matrox Hard Coder generated code include: .
alrox nardware > MathWorks Requirements
MI Frame Grabbers
MI-8345x 12C/5PT Interface Cortex — A72
MI-CAM
Cortex — AS7
NI‘?'?_Q'T'X S > Third-Party Requirements
Cortex — AS3
Installation folder:
Cortex — A17
- s (= Request Hardware Support
orex — 2
Cortex — A9
Cortex — A8
Cortex — A7
Cortex — AS
v

21

Integration API to extend to your Hardware

« There is a growing list of
Support Packages

= Support Packages cannot
support PIL for an arbitrary
combination of
— Processor
— Compiler
— Debugger or download utility
— Communications channel

« A fully documented API stable
across MathWorks releases

PIL APl Components

Build
Simulink Process
» Launcher
I Host-Side Comms
Target-Side Comms
PIL Application Algorithm
(harness to test Object Code
algorithm (generated from
object code) the model)

Real Target or Simulator

&\ MathWorks

22

‘ MathWorks

Multiple PIL Targets on the Network

TCP/IP

Target 1 Target 2 Target 3
MPC5644 Cortex-M Tricore

Execute

JTAG iff JTAG i/f JTAG iff

23

&\ MathWorks

Takeaways

= Model Based Design provides

— Easier collaboration, bringing
= Cost savings, and
= innovation

— Earlier problem detection
— An Executable specification supporting system optimisation
and exploration throughout the design lifecycle
= Processor-in-the-Loop promotes
— Early and accessible on-target testing
— Gathering metrics
— Easy reuse of tests with real production hardware

24

Questions?

« Thank you
— Richard.Anderson@Mathworks.co.uk

&\ MathWorks

25

4\ MathWorks

26

@\ MathWorks

Overview of MathWorks Tool Chain
Example of DO-178 Software life-cycle

Simulink Real-Time™ Simulink® Coder™
Simulink® Stateflow® _+**"" e,
Simulink® Design Verifier™ % 'Q
_ === Requirements
’
g |
/
/ Simulink® Simulink® Design Verifier™
- o 1 3 Embedded Coder™ (PIL
Simulink® Yalidation Stateflow® simulink® Validation Verification™ (MC)(() b
Verlflcatlon\ (RMI) I SimulinkTest™ O
\ Simulink® Report O Simulink® Validation O Polyspace® (RTE) O
N\ ~ Generator™ (SDD) ‘(Verification™ (MA) ~
~ o Code coverage
~ —
_ === Models
-
,
7
Simulink® Code Inspector™ O Embedded Coder™ (PIL)
' Embedded Coder™ L ™
i Simulink® Code Inspector™ O Sm_wulkaest O
\ Polyspace® (RTE) O
\
N Polyspace® (MISRA, RTE) ()
~ ~ \ 2
@rnnnnnnn Valldate ~ o - C Code
+«— Verify
<= = Trace Compile & Build Abbreviations

DV: Simulink Design Verifier
MA: Model Advisor
MC: Model Coverage

<+— Develop
. . . EOC RMI: Requirements Management Interface
O DO Qualification Kit Support RTE: Run-Time Error
PIL: Processor-in-the-Loop
SDD: System Design Description 28
VV: Verification and Validation

Simulin

k Design Verifier

Formal methods on model to:

= Generate Tests (or find untestable algorithm)
= Detect Design Errors

= Prove Properties: e.qg. thrust reverser shall not deploy when [Condition]

" i A
Condition
A=>B

B
Verification Point:
Implies No Deploy when in Flight:

Airspeed

P

41 Simulink Design Verifier Results (o= | =]
= - 5%
Back fo summary - Close results
my_sldvdemo_thrustrvs_verification/Verifica
tion and Validation Model/REQ 1.2.1
Airspeed1/Verification Point: No Deploy
when in Flight: Airspeed

Objective: T VALID

@ Simulink Design Verifier Report =N =R

File Edit View Go Debug Desktop Window Help

- O ..é @ | Location: Demos/ThrustReverser/sldv_output/my_sldvdemo_thrustrvs_verificati

Chapter 3. Proof Objectives Status

Table of Contents
Objectives Proven Yalid

Objectives Proven Valid

([Type Model Item Description Counterexample
erification and Yalidation
Froof Model/REQ 1.2.1 e
! objective |AirspeedlMVerification Point: Mo Chjective: T a
Deploy when in Flight: Airspeed

Chapter 4. Properties

Table of Contents

Verification and Validation Model/REQ 1.2.1 Airspeed]Merification Point: Mo Deploy when in
Elight: Airspeed

Verification and Validation Model/REQ 1.2.1
Airspeed1/Verification Point: No Deploy when in Flight:
Airspeed

Summary
Verification and Validation Model/REQ 1.2.1 AirspeedlMerification Point: No
Model ltem: P
Deploy when in Flight: Airspeed
Property: Cbjective: T
Status: Proven valid

4 m

£

-

[

4\ MathWorks'

29

Automatic Code Reviews
- Simulink Code Inspector

* | Simulink Code Inspecto|

File Edit Yiew Go Debug
- | = | % | Location:E

Demonstrate that model and
source code match structurally

4\ MathWorks'

Simulink Code Inspector Verifi

[-]1 Function:

Provide model<—->code
traceability data

[-] Interface Verificatio
[-] Code to Model Trac

[-]1 Function:

Eliminate / reduce manual code
reviews for DO-178 software

PASSED : &

Independence from Coder

[-] Interface Verificatio
[-] Model to Code Verifl

Code
verificatio
4 el
ol el
—» Model » Source code—> | |
Coder
X j
Code traceability

01

[-] Code to Model Traceability:

Same credits as qualified coder 1 Blackstatus:

Block

Initialization Function Step Function

Simulink Code Inspector
Verification Details for
riwdemo_forloopl:

Smathworks /devel/sandbox /jshankar/Aleaf SCI_0511 fmatlab/test/toolb

30

&\ MathWorks

Simulink Code Inspector

* Independently verify that
Embedded Coder generated
code traces to and complies
with low-level requirements

« Demonstrate that model and
source code match structurally
and functionally

* Provide model €<->code
traceabllity data

 Eliminate/reduce manual code
reviews for DO-178 software

4\ Simulink Code Inspector

Simulink

»

model

1l

Embedded

C source ,
code

Coder

1l

Modeﬁ

Code IRjE

! | IR transformations | |

Normalized
Model IR

Normalized

S~
i R

Code IR

inspection
report

Code J

Traceability
report

31

&\ MathWorks

|
How does Polyspace help you?

A/, %7
Finds bugs

= Checks coding rule conformance (MISRA/JSF/Custom)
Provides metrics (Cyclomatic complexity etc.)
Proves the existence and absence of errors
Indicates when you've reached the desired quality level

= Certification help for DO-178 C, ISO 26262, ...

32

&\ MathWorks

Code Coverage via On-Target (PIL) Simulation

= Code coverage via SIL is fully automated
— Using LDRA Testbed or Bullseye

= Use of PIL for code coverage is an alternative to code
coverage via SIL

- Code coverage via PIL

— Fully automated if target (e.g. instruction set simulator) can
write directly to the host file system

— Possible for any target using custom approach for data
collection

= Code coverage via PIL is as simple as code coverage
via SIL

33

