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where 

o(N)=p-%lA(N-‘lnN)“2-N-‘ln 

(61 J. K. Omura,  “‘A coding theorem for discrete-time sources,” IEEE 
Trans. Inform. Theory, vol. IT-19, pp. 490-498,  July 1973.  

. (A-14) [7] S. Singh and  N. S. Kambo, “Source code error bound  in the excess 
rate region,” IEEE Trans. Inform. Theov, vol. IT-23, pp. 65-70, 

Note that o(N) is independent  of I and  that 

lim [o(N)/(N-‘lnN)“2]=/3-‘lnA. 
N+C=Z 

(A-15) 

That is, o(N) goes  to zero as  fast as  (N -‘In N)‘12. 
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On the Algorithm ic Foundation 
of Information Theory 

ROLAND HEIM 

Abstmct--The information content of binary sequences is defined by 
minimal program complexity measures and is related to computable 
martingales. The equivalence of the complexity approach and the 
martingale approach after restriction to effective random tests is used to 
establish generalized source coding theorems and converses. Fiuite state 
complexity and decomposable martingales are related to classical block 
codes and the relative frequency behavior of sequences. 

I. INTRODUCTION 

I NFORMATION theory, usually viewed as a branch 
of classical probability theory, has inherently com- 

putational concepts. Block coding schemes are examples 
of how to apply an algorithmic procedure when some 
regularities of an information source or channel are 
known. On the other hand, most coding algorithms thus 
far considered in the classical theory are of the finite state 
type and are, from a computational point of view, not the 
most general way to handle data. 
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This paper is devoted to a generalization of universal 
source coding using Turing-computable procedures. Jni- 
tiated by Kolmogoroff [5], Martin-Liif [6], and Chaitin 
[8]-[lo], the algorithmic approach to a measure of infor- 
mation content and the closely related concept of ran- 
domness is now an intriguing alternative to the well 
established statistical and measure theoretic one. The 
following discussion is based on  the important contribu- 
tions of Schnorr [l], [2], [4], who reintroduced the 
martingales of Ville [17] and proposed a uniform defini- 
tion of a  random sequence. Whereas Schnorr’s concern 
was to construct a  consistent algorithmic theory of proba- 
bility, the aim of this paper is to indicate how algorithmic 
information theory could be formulated. One attractive 
feature of this approach is its complete independence of 
any probabilistic concepts. Minimal program complexity 
measures are a quite natural and intuitively appealing way 
to quantify the information content of a  message. 

In the next section we restate the basic definitions of 
the so-called effective random tests introduced by 
Schnorr. We  restrict our attention to Kolmogoroff’s pro- 
gram complexity measure and to the martingales first 
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investigated by Ville [ 171 in his criticism of early, tentative 
definitions of random sequences [15], [16]. In Section III 
we formulate the familiar block codes of classical infor- 
mation theory in terms of martingales instead of probabil- 
ities and demonstrate the relationship between finite-state 
complexity and relative frequency. In Section IV we 
establish a generalized source coding theorem by showing 
that Schnorr’s effective random tests can be translated 
into each other by a constructive procedure. We show that 
sequential coding schemes also can be derived from 
martingales. In Section V, starting with Fine’s theorem 
about apparently convergent relative frequencies [ 131, we 
state the conditions under which an infinite sequence has 
a maximal compression factor H(p). 

II. EFFECTIVE TESTS AND RANDOM SEQUENCES 

We start with some basic definitions of effective ran- 
dom tests and random sequences. We omit Martin-Lof’s 
recursive sequential tests [6], based on constructive 
measure theory, which form the bridge between classical 
probability theory and the algorithmic approach. Instead, 
we will concentrate on the computational aspects of any 
coding procedure. For a thorough discussion of random 
tests and their interrelations see [l]. 

For simplicity we restrict ourselves to the binary 
alphabet A = (0, 1 }. We denote the set of all finite (in- 
finite) binary sequences by A * (A “). A EA * is the empty 
sequence. For z EA*uAm we write z(n)=zlzZ* * sz,,, 
z(m,n)=z,z,+1. . . z, for m <n. Also N, Q and R denote 
the natural, rational, and real numbers, respectively. The 
cardinality of a set is denoted by #. 

Definition 2.1: A computable martingale is a comput- 
able function V: A*+R+ with the following properties: 

V(A) = 1, 

V(x) = $ V(x0) + f V(xl), XEA*. (W 

We can think of V(z(n)) as our fortune after n plays in 
a fair binary game when we bet according to a recursive 
strategy, start with an initial capital of one, and the 
sequence z E A” denotes the outcomes of the game. We 
assume that debts are forbidden and the payoff is accord- 
ing to an assumed equal distribution of the zeros and ones 
in z. It is straightforward to generalize this martingale 
concept to arbitrary distributions. 

Definition 2.2: A computable probability function (cpf) is 
a computable mapping p: A *+[O, l] with the property 

P(4 = 1, 

P(X) =p(xO) +p(xl), xEA*. (2.1) 
Definition 2.3: A computable p-martingale is a comput- 

able mapping P’: A*+R+ u {co} with the property 

VP(R) = 1 

p(x) V”(x) =p(xO) VP(xO) +p(x1) V”(xl), XEA*, 

by,) 

for a cpf p. If p(x) = 0, we set VP(x) = cc andp(x) VP(x) = 
0. 

Corollary 2.1: For a cpf p and a computable martingale 
VP, the product pa VP is again a cpf. 

Comparing (M) and (M,), we see that (M) is the 
special case where p(xa)/p(x) =p(aJx) = f, a E A, for all 
XEA*. 

We next establish an interesting relation between p- 
martingales. 

Lemma 2.1: Let VP be a p-martingale and p,q cpf’s 
with the property that p(x)=0 iff q(x)=0 for all x EA*. 
Then the function VP with 

P(X) V”(x) = 4(x) V4(x), 
is a q-martingale. 

XEA*, (2.2) 

Proof: This is evident from (M,). 

As an instructive example, let us consider the Bernoulli 
cpf p(x) = roS,cX)rS1cx), where s,(x) denotes the number of 
occurrences of w E A* in the sequence x, and r,,, r, are 
computable positive reals with r0 + r, = 1. As a p- 
martingale, we choose the constant function VP(x)= 1 for 
all x E A*, the result of taking no risk. For the special 
Bernoulli cpf p(x) = 2- ‘~4 Z(x) being the length of x, the , 
transformation rule (2.2) reads p(x) VP(x) = 2-(“‘V(x) or 
V(x)= 2’(X)r$(X)rS1(X). Now let z E A” have the property 
clim ,+,-n -‘s,(z(n)) = qO, a E A (where clim denotes con- 
structive limit or equivalently that q0 is a computable 
real). Then we can write (with log=log,, exp=exp,) 

V(z(n))=exp[n+q,logr,+q,logr,+o(n)] 

=exp[ 41 -ff(r,q))+o(n)] (2.3) 

where H(r,q) is the “subjective” entropy which reflects 
the uncertainty of an observer who estimates the distribu- 
tion to be r when the true distribution is q. 

The role of a p-martingale as a random test is based on 
the intuitive idea that if the tested sequence has distribu- 
tion p but no further regularities, then there is no strategy 
resulting in an unlimited growth of the gambler’s capital. 
In the above example the selection of a constant p- 
martingale is equivalent to the assumption of having a 
p-distributed random sequence, since taking no risk is 
always the best we can do in this case. On the other hand, 
a martingale (p(x) =2-‘(“)) is an absolute random test 
since an equal distribution of zeros and ones is a neces- 
sary condition for maximal irregularity. In (2.3) we have 
an exponentially growing martingale V unless H(r, q) = 1. 
The speed of growth is essentially determined by the 
redundancy 1 - H(r, q). 

Later we will show the intimate relationship between 
exponentially growing martingales and relative frequen- 
cies of words w E A *. As a consequence, martingales are 
finer random tests than statistical ones, as the growing 
speed may be polynomial, logarithmic, etc. 

Before giving a precise definition of randomness and 
p-randomness in the algorithmic framework we introduce 
the set 8 of growth functions and a partial ordering <9 
with respect to growth rate. 
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Definition 2.4: A growth function is a recursive, nonde- 
creasing, unbounded function f: I%+ N. 

Definition 2.5: Let g, h  be arbitrary functions g, h: NA 
R. The relation <g is given by 

g<shwYf EC3 : qn~N: g(n)<h(n)+f(n), 

where V means for all and i means for all but finitely 
many. For a set of functions 5? we call g  E 9 9 -maximal 
iff h<gg for all hE9. 

It is clear how to define the relations <g, =g, >g, >g. 
For instance, g=,h iff g<gh and h <sg. Now we are 
ready for the martingale definition of randomness and 
p-randomness. 

Definition 2.6: A sequence z E A m  is random (p-ran- 
dom) iff V(z(n))= ,l ( VP(z(n))= gl) for all martingales 
(p-martingales). 

Note that in Definition 2.6 we do not require that the 
martingale be bounded. The essential point is that the 
growth rate of the martingale is effective only if the 
underlying sequence has regularities. A justification of the 
twofold effective Definition 2.6 is given at the end of this 
section. 

Now we give an important theorem of Schnorr and 
Fuchs [23]. 

Let z be p-random. Then by definition we have 
VP(z(n)) = ,l for allp-martingales. By applying the 
transformation rule (2.2) we see that V(z(n))= 
2”p(z(n)) is 4  -maximal. 

Theorem 2.1: A sequence z E A m  is p-random iff there 
is a martingale V with the property log V(z(n)) 
>glog V’(z(n)) for all martingales V’. 

Proof: 
a) 

b) Let V be a 9 -maximal martingale on z. By 
Corollary 2.1, p(x) = 2 - ‘(“)V(x) is a cpf . Then we 
have with (2.2) 

Vp(4n)> = 2-“V(z(n))/p(z(n)) = 1 . 0  
The significance of Theorem 2.1 lies in the fact that, as 

we will see in Section IV, the existence of a  4 -maximal 
martingale is equivalent to the existence of an optimal 
coding scheme. Since there is a maximal amount of data 
compression using effective methods, we may say that 
p-random sequences have a definite information content. 

Now let us turn to the minimal program complexity 
measures. Let ?? be the set of partial recursive mappings 
‘I’: A*-+A*. 

Definition 2.7: Let x E A* and q E 9. The program 
complexity K,(x) is 

I min { Z(p)l\E(p) = x} , if x is in the range of \E, 
K,(x) = PEA* 

l(x), otherwise. 

(There is no loss of generality in defining K+(x)= I(x) 
when x is not in the range of ‘k, instead of the more usual 
q(x) = cc.) It is also possible to define the universal 
program complexity with respect to all partial recursive 
functions, but we do not need the definition here. 
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In general, the program complexity K is not recursive. 
Otherwise we could construct a  sequence’of high complex- 
ity by a recursive procedure, a  contradiction. More form- 
ally, the problem of the recursiveness of K can be reduced 
to the undecidable halting problem of Turing machines. 
To get a counterpart to effective martingales, it is neces- 
sary to restrict the class of complexity measures to effec- 
tive complexity measures. 

Definition 2.8: A program complexity K is effective iff 
K: A*+fW is a recursive function. 

Unless otherwise stated we assume complexity measures 
to be effective. We  omit the subscript \k if a  specification 
is not necessary and write R(x) for the program re- 
dundancy R(x) = Z(x) - K(x). 

As an example of an important class of effective com- 
plexity measures, take the block coding schemes of classi- 
cal information theory, e.g., Huffman coding. The en- 
coded sequence plays the role of the program p, the 
algorithm q is the mapping codeword + block. We  will 
treat this in full detail in Section III. 

We  can characterize the same class of random 
sequences by effective complexity measures as we can by 
martingales. The corresponding definition reads as 
follows. 

Definition 2.9: A sequence z E A * is random iff 

for all effective complexity measures. 
It is not possible to characterizep-randomness for arbi- 

trary cpf’s by complexity measures. We  will return to this 
problem in Section V. 

The reason why we use infi>,R(z(i)) rather than 
R(z(n)) itself as a test for randomness is the oscillation of 
some complexity measures, as first noted by Martin-LGf 
[7]. Let us consider the following example. We  select 
ZEA” and construct an enumeration 7: R&A* of A* in 
lexicographical order. Then we define the algorithm q by 

q(x) = dl(x))x, 
i X, 

if 3i: T(I(x))x=z(i), 
otherwise, 

where 3 means exists. For any z there are infinitely many 
integers i such that z(i)= r(l(x))x. Because 1(7(n)) < logn, 
we have, for infinitely many n, n  - K,Jz(n)) = R,(z(n)) > 
logn. In fact the following theorem holds [7]. 

Theorem 2.2: Select f E 9 such that E nErm2-f(“) di- 
verges. Then for all sequences z E A m, there is a complex- 
ity measure q such that limsup,,,(R,(z(n)) - f(n)) > 0. 

When f(n)= [logn] the series indeed diverges. As an 
application of martingales, we will prove in Appendix I 
that Martin-Lof’s theorem cannot be improved. 

After this digression, we now introduce some special 
classes of algorithms. In contrast to classical source and 
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channel coding procedures, successive representation of 
initial segments of a z E A O” by programs is in general not 
a sequential procedure. That is, from q(p) = x we cannot 
conclude that there are q,y #A such that *(pq) = xy. 
Schnorr proposed the following modification [2]: 

Definition 2.10: An algorithm \k E?? is a process iff 
\k(xy)~\k(x)A* for all x,xy~domain(\k). 

Process complexity measures are much easier to handle 
and do not exhibit oscillatory behavior. In the next sec- 
tion we will prove that limsup,,,(R(z(n))-f(n)) >0 im- 
plies the existence of a martingale V with 
limsup, V(z(n))/g(n) > 0, f,g E 9, for any process re- 
dundancy R . 

While decoding from a process representation is 
sequential, encoding in general is not. If * is a process 
and q(p) = x, q(q) = xy, y#A, q is not necessarily an 
extension of p. In analogy to classical coding schemes, we 
now define coding procedures which are sequential in 
both directions. 

Definition 2.11: A sequential coding scheme is a set 
($, P,g) of processes 1c/, 9 and a growth function gE 9 
such that $(z( g(n))) = Z(h(n)) and 9(Z(h(n))) = z( g(n)) for 
z,.?E A” with z( g(n)) E domain($), T(h(n)) E domain( 
n E M  and h(n) nondecreasing. 

Thus any sequential coding scheme produces an infinite 
sequence as a code of another infinite sequence, whereas a 
program representation by general algorithms is an in- 
finite collection of finite sequences. A different class of 
program-representing algorithms is investigated by 
Chaitin [12], who restricted the admissible domains to 
prefix-free subsets of A*. In classical information theory 
such prefix-free sets are known as instantanous codes. As 
a justification for Chaitin’s point of view, suppose we are 
representing successive initial segments of a z E A” by, 
e.g., Fortran programs. No valid Fortran program can be 
the prefix of another. 

The reason why we have defined random sequences by 
twofold effective (i.e., effective complexity tests and effec- 
tive growth rates) random tests is the following. Of course, 
it is possible to characterize z E A m  as random by requir- 
ing any computable martingale, respectively, the infimum 
of any program redundancy measure, to be bounded. 
However it turns out that this definition yields a different 
class of random sequences, and one that also differs from 
the class of sequences passing Martin-Liif’s recursive 
sequential tests [ 11, [4]. Schnorr’s modification overcomes 
this difficulty in a quite natural way. For instance, we get 
an effective program complexity measure by circumvent- 
ing the halting problem and limiting the number of com- 
putation steps in any procedure. Since all “real” algo- 
rithms are step-limited, this is as irrelevant in practice as 
the restriction to observable growing speeds. 

The other important reason is that the equivalence of 
the different approaches can be demonstrated construc- 
tively through constructive translations between the com- 
plexity measures. These translations will enable us to 
establish generalized universal source coding theorems. 

III. FINITE-STATE COMPLEXITY AND RELATIVE 
FREQUENCY 

In this section we will study the algorithmically simplest 
class of sequential coding schemes, the well-known block 
codes of classical information theory. There is an inti- 
mate relationship between the relative frequency 
lim,,,n-‘s,,,(z(n)) of words WEA* in an infinite z and 
the possibility of data compression by a coding procedure 
realizable by a finite-state automaton. From our algorith- 
mic point of view, the Shannon entropy H is the finite- 
state complexity per symbol. The only tribute to our 
twofold constructive approach is a sometimes necessary 
restriction to computable reals and computable limits 
(clim). But this is also irrelevant, as computable numbers 
are the only ones encountered in practice. 

For a subset C c A*, we use the notation C* for the set 
of all finite concatenations of elements of C. Ak is the set 
of the 2k finite sequences of length k. To indicate that 
XEA~, we write xk. 

A classical block coding scheme is a pair of homomor- 
phisms (w,, Qk) and a codeword set C, c A* such that 

wk(Pd =“k(P)ok(d, forp,qE C,*, 

ok(xY) = ak(X)Qk(Y), forx,yE[wk(Ck)]*c(Ak)*. 

Thus wk and Qk are finite state processes and form a 
sequential coding scheme (Definition 2.11) with growth 
function g(n)= kn. Without loss of generality we assume 
C, to be a complete code, that is, XpEck2-Kp) = 1. 

Now let us formulate noiseless coding in terms of 
martingales instead of probabilities. We define the 
martingale V,: A *+Q+ by 

Vk(Xk) = 
i 

2k - @Mx’9) 9 if xkEWk(Ck) 

0, otherwise 

and 
n-1 

Vk(xk”)= a Vk(xk”(ik+ l,(i+ l)k)), fornElV. 
i=O 

(3.1) 
Because Z ,,,Cc,,Vk(x)=2k, V, agrees with (M) on (A k)* 
and can be extended to a martingale on A* via this 
functional equation. Assume there is a z E A M  with 

$n(kn)-‘Z(Q,(z(kn)))= c&III(~~)-‘Kuk(z(krz))=H. 

Then from (3.1) it follows immediately that 

&(z(kn)) =exp(R&(kn))) 

or 

Vk(z(n)>=exp[ n(l - H) + o(n)] . 

This is an example of an effective translation of a 
complexity measure into a martingale. Given a complexity 
measure K, we can construct a martingale V such that the 
growth rate of the redundancy R corresponds to the 
growth rate of V by an exponential relationship. Con- 
versely, assume there is a martingale V, decomposable 



HEIM: ALGORITHMIC FOUNDATION OF INFORMATION THEORY 561  

into factors as in (3.1), that is, From (3.4) we have 

where x6) means the ith block of length k. The construc- 
tion of a  codeword set C, and the pair of homomorphic 
processes (ak,Qk) is immediate if there are integers Ii such 
that 2k-‘a = V,(x&), V,(x&) > 0. Note that Ei2-ji = 
z xEAk2-kVk(~)= 1. If k-log Vk(xk) is not integer valued, 
then we can proceed as in the well-known classical con- 
structions: take a coarser decomposit ion qk(xjk”) = 
n?=, Vjk(x$) and order the values Vjk(xjk) according to 
their magnitude. Then by applying one of the well-known 
procedures, e.g., the Huffman coding scheme, to the table 
of the martingale values rather than the probabilities 
p(xjk), we get a process ajk in the limit j-see, where the 
relation R,(z(jkn)) = log q,(z(jkn)) holds asymptotically. 

The decomposable martingale of (3.1) is of course also 
of the finite state type, since we only have to know the 
2k+1 - 1  values Vk(x), for x E u :-,,A i. In order to estab- 
lish the announced relationship between finite state com- 
plexity and relative frequency, we state the following 
theorem. 

Theorem 3. I : 
a) Assume for a sequence z E A” there exists 

clim,,, n-‘s,,,(z(n))= r,,, for all w EA*. Then there is 
a sequence of codes C, and homomorphisms wk, 
k 6 N, such that 

clim clim (kn)-‘K+(z(kn))= clim H(AIAj)= H,. 
k-+m”+~ j+w 

(3.2) 

loglIk~(z(kn)) = kn 1 + i 
[ 

i=l SEA ,,,E.yj 

where z[) abbreviates z((i - 1)k + 1, ik). For simplicity we 
.only treat the case w=A; the generalization is obvious. 
W ithout loss of generality we assume k > Z(w) = j. 

Inspection of (3.5) reveals that we have to relate the 
expression n-*X?= lF[k-lsa(z[~)] to F[(kn)-‘s,(z(kn))], a  
EA, where F: [0, l]-+Iw is computable and continuous. 
We  omit the subscript a  and write p(z(n))= n-‘s(z(n)). By 
definition we have 

P(z~))=P(z(ki))+(i-l)[p(z(ki))-p(z(k(i- l>>>]. 

Because of the existence of clim,,,n-‘s(z(n)), there is an 
h E 9 such that, for all n  E lV, Ip(z(n)) - rl Q  h(n)-‘. From 
[s(z(ki)) - s(z&)]/k(i - 1) = p(z(k(i - l))), it follows that 

P(z(ki))--p(z(k(i- 1))) =(i- l>-’ 4’tO> 7 -p(z(ki)) . 1 
Assuming constructively convergent relative frequen- 

cies, there are functions gi E 9 such that for all k E N 

S(Zt)) - -p(z(ki))l <g,(k)-‘. 
k 

b) For a sequence z E A m  there is an injective homo- 
morphism o: (C)*-+(A k)* with the property 1) 

Combining the above relations we obtain 

Ip(zti,)-rl <h(ki)-‘+g,(k)-‘. (3.6) 
limsup(kn)-‘R,(z(kn))>O (3.3) n-+cu Furthermore, clim,+mn-‘Z~= ,S(t,p(z&)) exists for t = 0, 

l/k,2/k* . . 1  where 6(t, t’) = 1 if t = t’, 0  otherwise. This 
iff 2) there is a w E AA* such that l imn+oo n-‘L(z(n)) is because all relative frequency limits exist. From (3.6) we 
#2-4”) or the limit does not exist. have the desired result 

Proof: For any martingale V, we define the factoriza- 
tion IIkV by IIkV(xkn+j) = V(xG,) . . * . V(x&) * V(x’). 

clim clim n - ’ Kim n~oo $, FM4,>) = F(r). (3.7) 

Clearly lIkV is again a martingale. 
To prove part a), we have to show the existence of a  In the case w E AA* we have to take into account the 

martingale V whose factorization IIkV has, in the limit boundary effect that the expression Zy= ls,,,(z,$ f(w) Gk, 
k-co, the same growth rate as V on z. We  do not know does not count the w-blocks overlapping the boundary 
the values rW; therefore we adopt an adaptive strategy by between z&y z(+ 1)’ i = 0, n  - 1. We  have the inequality 
defining p w (z(h))- (n-l)(r(w)-l) < 2  pw(zf,) 

kn I ’ 1 I=, 
Implementing this modification, we have, in the limit 
k+co, the same result (3.7) as for w =A. 

if xaEA*wl 

if xaEA*wO 

otherwise (3.4) Now we construct a  complete code Ckj and injective 
homomorphism wkj: (C,,.)*-+(A k)* for any factorization 

where q(w,x) = (s,,(x) - s,,,o(x))/s,,,(x), w E A’ with the IIkVj. A suitably chosen diagonal sequence of code sets 
convention s*(x) = 1 for all x and q(w, x) = 0 iff s,,,(x) = 0. and homomorphisms satisfies (3.2). 
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To prove part b), assume lim,,,n-‘s,,,(z(n)) = 2-‘(“) for 
all w EA*. Let w: (C)*+(Ak)* be an arbitrary bijective 
homomorphism. Then 

(kn)-‘K,(z(kn))= k-’ 2 n-’ 
WEAk 

$, sw(z$))‘z(ntw)) 

= k-’ x [2-““‘+o(l)]~Z(Q(w)). 
WEAk 

(3.8) 
Applying Kraft’s inequality and the standard inequality 
log,t < t - 1, we obtain 

or 

2 2 - ‘Wlog,2’(“(~)) ) 2 2--l(w). log,2’(“’ 
WEAk 

and, after passing to log,, 
WEAk 

2 2-@“Z(ti(w)) > H(A “) = k. 
WEAk 

(3.9) 

From (3.8) and (3.9) it follows that lim,,,(kn)-‘K, 
$z(kn))> 1, that is, 1) implies 2). 

Now assume 2) holds. Then we can construct a 
martingale whose factorization grows exponentially. If 
w E A’, then inspection of (3.4) reveals that, for a suitably 
choosen k >j, the expressions enclosed in brackets in (3.5) 
take values >c >0 infinitely many times since either 
liminf,,,n-‘s,(z(n))#2-‘(“) or limsup,+,n-‘s,(z(n))# 
2-4”‘). Then 1) holds for an injective homomorphism 
associated with III”?. cl 

Part a) of Theorem 3.1 is the noiseless coding theorem 
of classical information theory stated algorithmically. 
Note that the only assumption was the existence of the 
relative frequencies, not their concrete values. This is in 
analogy with the work of Davisson [24], which establishes 
universal coding theorems under the assumption of 
stationarity but not ergodicity. 

From part b) we learn that the possibility of com- 
pressing a sequence z E A* by a factor H < 1 using a 
finite state procedure depends on the relative frequency 
behavior. Any deviation from the Bernouilli property 
lim,,,n -?s,(z(n))=2-‘(“) can be detected by, e.g., an 
exponential growth rate of a finite state martingale. An 
exponential growth rate of a martingale implies a linear 
growth rate of the corresponding program redundancy, a 
necessary condition for a compression factor less than 
one. There are two possibilities. a) The relative frequency 
limits exist but are different from 22”“). Then the limit 
limk-*mlimn+m (kn)-‘K,(z(kn)) = H, < 1 exists. H, is 
computable if the clim’s exist. In this sense H, is the 
finite state complexity per letter. b) The relative frequency 
does not exist. Then the finite state martingale as well as 
the finite state redundancy oscillate. We show in 
Appendix II that we can always replace a martin- 
gale by a slightly slower growing but strictly increasing 

martingale. This replacement, however, generally does not 
preserve the martingale’s finite-state character. But 
there is a sequential coding scheme such that 
limk+mlimn+m (kn)-‘K,(z(kn)) < 1. This follows from the 
generalized coding theorem which we will prove in the 
next section. After establishing the generalized coding 
theorem we will return to the relations between relative 
frequencies, p-martingales and complexity measures. We 
close this section with a martingale construction exhibit- 
ing a technical advantage of martingales. Let { tn},,I be a 
sequence of computable and nonnegative reals summing 
to one. Then for a sequence { V,},,I of martingales, 
ZnEItn V, is again a martingale. 

The martingale (3.4) has an exponential growth rate 
essentially determined by the relative-frequency-based re- 
dundancy 1 - H(A IAj). We now construct a martingale as 
a superposition of various random tests having a growth 
rate determined by, for simplicity, the first order re- 
dundancy 1 - H(A). 

Let A; denote the subset of A” containing all sequences 
with exactlyp zeros. We define the martingale Vn,p by 

Yl,p(x) = 
2”.(3’, if x EAFA*, 

0, if x @ Ap”A * and I( X) > n. 

Because ExEA”A~Vn,p(~)=2n+k, Vn,p agrees with (M) 
on A”A* and can be extended to A* by this functional 
equation. Now we define the martingale V,,(x) = 
(n + 1)-*X’ proV,p(x) and the desired martingale V(x)= 
EnEN[n(n + l)]-iVn(x). By observing the fact that (nn,), 
nr integer valued, grows as 2”H@) for large n, it is easy 
to verify that V(z(n)) = exp[n(l - H(r)) + o(n)] for any p- 
random sequence z with Bernoulli measure p(x) = 
r&)( 1 - r)slw. 

See [3] for a detailed discussion of finite-state regulari- 
ties using a different approach. 

IV. GENERALIZED SOURCE CODING 

Applying a finite-state block coding procedure to z E 
Am, one starts with a partition of z into blocks of length k 
according to a partition function g(n)= kn. Then one 
constructs an invertible mapping between Ak and the 
codeword set C, GA*. As a finite-state procedure, the 
encoding (respectively decoding) is performed indepen- 
dently on previous segments of z (respectively the en- 
coded sequence Z E A “). The asymptotically best result is 
reached, in general, in the limit k+ao. 

For Turing-computable martingales we have to adopt 
the following modifications. Instead of g(n) dividing z 
into blocks of equal length, we have to use growth func- 
tions of linear, polynomial, exponential, etc. order. The 
mapping block H codeword is generally performed by 
using the knowledge of all initial segments already coded. 

Theorem 4.1: Let V: A*+R+ be a computable martin- 
gale and ZEAL be such that lim SUP~+~ V(z(n))/ 
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f(n) > 0 for some f~ 4. Then there exists a sequential 
coding scheme (#, Q,g) with g(n + 1) -g(n) = h(n) E 4 
such that 

growing h E 9 

limsup V(z(h(n))).exp[ -(f(h(n))-logf(n))] >O. (4.3) 
n-tm 

lim sup [ Rd4 g(n))) - (log f( g(n)) - n) ] > - ~23. n+cc 
(4.1) 

Proof: Any martingale V can be written as a pseudo- 
factorization V(xyz * 6  * ) = V(x) * V,(y) * V,,(z) * * * * , 
X,Y,Z’ * . E A *. Given the pseudofactorization 

n-1 

Proofi We  define the recursive sets Y = {x E A *(R(x) 
>f( l(x))} and Y = Y n A “A *. Ypf denotes the largest pre- 
fix-free subset of Y; that is, no element of Ypr is prefix of 
another. Then we define the following function V,: A*-+ 
Cl+: 

where g(0) -0, we construct (e.g. by the Huffman proce- 
dure) an optimal and complete code w~(~(~~): CZ(,gj+A h(i) 
for all i. The code for the initial segment z( g(n)) is simply 
the concatenation 

n-1 

VJx)= z 2flr(xy))-r(“)+ 2 Iypl(x(k)).2f(‘(X)), (4.4) 
xy E YPJ k <l(x) 

where 1 is an indicator function. We  show that V, has the 
martingale property (M). To this end we consider the 
following four cases. 

1) x is the prefix of an xauE Ypf, aEA, uEA*. Then 
in (4.4) xau contributes the following (6= 1, i=O) 

$44 g(n))) = IJo wzjL(i))(z( di)) + Mi+ 1))). 

The decoding 9 works as follows. Using the martingale V 
and g E 9, we construct We, C, and identify the uniquely 
determined prefix F(n,) E C, of the encoded FE A M. Then 
V(n,)) = z(g(lN. A ssume we have reconstructed the ini- 
tial segment z( g(i)). Then from V and g we construct 
0  r(g(ijj, Cr(g(ijj and identify the uniquely determined seg- 
ment ?(ni + 1, ni+ i) E Cr(g(ijj. This gives +(y((ni+i)) = 
4 di)h,( g(i)) (F(ni-!- l,i+ 1). 

Now we estimate the process complexity K+, In general, 
log v I(g(ijj(~h(i)) is not an integer. Therefore we can de- 
termine the codeword p of xh(‘) satisfying only the in- 
equality ([18, p. 501) 

to V,(x): ~.2fm”“))-w 

to V,(xa): 2f(Kxau))- l(u) (first sum) . 

to VJxZ): 0  

2) x is an element of YPr. Then we have VJI(x)=2f(‘(X)) 
(first sum), V,(xa) = V,(xE) = 2f(‘(x)) (second sum). 

3) A prefix of x is an element of YPr. Then V,(x)= 
V,(xu) = V,(xZ) = 2f(‘(X)) (second sum). 

4) In the remaining case all sums are zero: V,(x)= 
V,(xu)= V,(xii)=O. 

= g(n) - 1% V(4 g(n))) + 4nh (4.2) 
where e(n) is an error term with e(n)<n. By assumption 
lim s~p~+~ [log V(z(n)) - logj(n)] > - cc and this together 
with (4.2) gives 

l(p)- [h(i)-logVZ~,~j~~(~h(i))] < 1. 

Summing this inequality gives 

a4 g(n))) 
n-1 

= 22 [h(i) -1% V,(g(i)) (z(di)) + Lg(i+ l)))] + c(n) 
i=O 

Cases l)-4) cover all possibilities, so obviously V, has 
the property (M). By assumption there are infinitely many 
prefixes of z such that z(n) E Y,“‘. The recursiveness of Y, 
implies the existence of a  gE 9 such that z(g(n)) E Y[&. 
We  construct a  speed-up function h E B such that for any 
kE IV there is an I EN with h(g(k))=g(/). Furthermore, 
since f is monotone, we can construct g  in such a way that 
clim,,,Zy= ,f(g(i))-* < cc. Define 

V(x) = 2 Vh(g(&M s(n)>- l. 
nEN 

liF:“,“p [ Rd4 g(n)) - @gf( g(n)) - 4n))] > - 00. 

From case 2) and the special construction of g  and h, we 
conclude that V(z(h( g(n)))) > 2f(h(g(n)))/f( g(n)). There- 
fore there are infinitely many n such that V(z(h(n)) > 
exp[ - (f(h(n>) - logf(nNl. 

Finally, we prove the finiteness of V. For the set U,, = 
*-‘( Y,pf), the process property of 9  implies the inequality 

For a sufficiently rapidly growing g we obtain (4.1). 0  

The relation (4.1) shows the significance of the partition 
function g. To get the asymptotically best result, the term 
logf must outgrow the term n. If the martingale V has an 
exponential growth rate, a  sequence of functions kn, k= 
1,2; * * is sufficient. If V grows logarithmically, then g 
has to be selected as doubly exponential, and so on. 

Theorem 4.1 has the following converse. 

Theorem 4.2: Let K be an effective process complexity 
measure and z E A m  be such that limsup,+,[R(z(n))- 
f(n)] > 0. Then we can effectively construct a  martingale V 
such that for a  suitablv chosen and arbitrarilv raoidlv 

V,(A)= 2 2f(KY))-~Cv) < 

y E YPf n 
u?up12-/(u) G 1. (4.5) 

n 
Thus we can normalize v(x)= V(x)/ V(A). The computa- 
bility follows from the recursiveness of Y and Y, and the 
construction. Because V,(A) < 1, palso satisfies (4.3). 0  

More general coding theorems between martingales and 
arbitrary complexity measures can be found in [25]. 

From Theorem 4.1 we can derive an interesting gener- 
alization of Shannon’s definition of the information con- 
tent of a  random variable X : I(X) = - logp(X). In (4.2) 
we may assign the term g(n) -log V(z(g(n))) to the true 

_I ~I-~, 
complexity of the prefix z(g(n)), whereas the term c(n) 
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comes into play for technical reasons. This is a parallel 
to classical block codes, where the average codeword 
length is generally not the entropy H but can only be 
brought to within one digit above H. In analogy to the 
relative frequency-based definition of information con- 
tent, we define a martingale-based function I : A ++R” by 
I(x) = I(x) - log V(x) for all x EA*. Now select a cpf p 
and the constant p-martingale P”(x) = 1. By the transfor- 
mation rule (2.2), we have a corresponding martingale V 
given by V(x) = 2-‘(“‘p(x). This leads to the relation 

I(x) = - lWP(X), for xEA*. (4.6) 
Equation (4.6) is a definition of the information content of 
a finite sequence x based on a cpf which is equivalent to a 
martingale characterization since a constant p-martingale, 
necessary for the transformation leading to (4.6), trivially 
always exists. Thus we may define: 

Definition 4.1: The information content of a sequence 
x E A * relative to a cpf p is given by Z(x) = - logp(x). 

It is an interesting outcome of our constructive ap- 
proach that a meaningful measure of information content 
formally identical to Shannon’s definition can be derived 
and that this measure applies to arbitrary, particularly 
nonstationary cpf’s. 

Theorem 4.1 justifies our introductory remark about 
p-random sequences as being optimally compressible. A 
4 -maximal martingale on a sequence z E A m implies the 
existence of an asymptotically 9 -maximal compression by 
a sequential coding scheme. 

V. COMPLEXITY AND RELATIVE FREQUENCY 

Theorems 4.1 and 4.2 demonstrate the equivalence of 
the martingale and the complexity definition of a random 
sequence. We shall see that it is not possible to char- 
acterize p-randomness for arbitrary cpf’s p via complexity 
measures. In what follows we investigate what is possible 
in this direction. We first quote a theorem of Fine [13]. 

Theorem 5.1: 3c: VmEN, V E>O, and VxEA*: 

fG?(XI~(X)>SI(X)) > 1% Z(x) 
( 1 s,(x) 

- log( me”) + c 

implies 

max SI(X(j)) s,(x) <E -- 
m<j<l(x) .i l(x) . 

Here K9 is the noneffective, universal program complexity 
in a modification of Loveland [21] (see [26] where it is 
shown that Loveland’s modification does not affect our 
coding theorems). 

Theorem 5.1 is a “good mixture” condition as it asserts 
that the higher the complexity, the smaller the fluctuations 
of the initial relative frequencies must be. Conversely, the 
failure of convergence forces universal complexity to be 
less than maximal. On the other hand, we know that 
maximal effective complexity (of order n) for all effective 
measures implies randomness which is obviously much 
more than simply well-mixed initial relative frequencies 

and convergence to i. What about a maximal complexity 
of order nH(r) according to the assumption in Fine’s 
theorem? 

In this section, we only deal with the Bernoulli cpf 

p(x) =p(O)““‘“‘p( l)“““‘, XEA*. (5.1) 

Theorem 5.2: Let z E A” be p-random with p(a)# i, 
aEA*, and V a 4 -maximal martingale on z. Then there 
exists YE Am such that clim,,,n-‘s,(z(n))=p(a) and any 
9 -maximal martingale p on Z is 4 -equivalent to V, but t 
is not p-random. 

Proof: We first consider the nontrivial case p(0) #O, 1. 
Let x E A m be a random and y E A M a recursive sequence. 
With f, gE!3 strictly increasing and f(n)#g(n) for all n, 
we define 

xi> if 3i: f(i) = n, 

?n= Yi, 

1 

if 3i: g(i)=n, i,nEN, 

zn, otherwise. 

From the 9 -maximal V we derive a 4 -maximal v on Z as 
follows: 

V(xa) = V(X), 

I 

2.V(x)-6(a,x,), if Eli: f(i)= Z(xa), 

if 3i: g(i) = Z(xa), 

2-p(a)- V(x), otherwise. 

The best strategy on a random sequence is to take no risk. 
The best strategy on a recursive (that is, perfectly predict- 
able) sequence is to bet all the capital, which results in a 
doubling of the capital at each step. Therefore v is 
9 -maximal on t. If f and g are sufficiently fast growing, 
we have clim +,,n-‘.s,(F(n))=p(a). With the abbreviation 
R(p)= 1 - H(p), we can write 

log v(z(n)) = nR(p) + A(z(n)), 

log v(y(n)) = [(n - (F(n) + G(n)))] R(p) 

+ F(n) +E(z(fi)), 

where W(n)> = LEACs,(4n>> - v(a)lhv(a), F(n) = 
#{iENjf(i)<n}, and A(z(ni,)) and G(n) are defined simi- 
larly. Since by assumption O<R(p) < 1, we can construct f 
and g such that (F(n)+ G(n))R(p)=BF(n). By construc- 
tion the term x(5(n)) depends only on the unaltered rest 
of z in t. A recursive deletion of elements cannot change 
thep-random character of a sequence; therefore, we have 
A(z(n)) = s&Y(n)) and V(z(n) = g @F(n)), but because of 
its recursive part y, Z is not p-random. 

In the singular casep(O)=O or 1 and a p-random z has 
the form 1” or O”, respectively. Such a z is recursive, and 
on a recursive sequence the function 2” is always a 9 - 
maximal growth rate. Thus any recursive ?#O”, 1” has 
the desired property. 0 

In the construction of Z the elements of x and y are 
inserted so sparsely, in order to maintain clim,,,n- ’ 
-s,(z(n))=p(a), that no p-martingale on Z can be of ex- 
ponential order; that is, limsup,-, V(Z(n))-2-” =0 for 
all r > 0. This follows from the next theorem. 
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Theorem 5.3: Let p  be a Bernoulli cpf with p(a)#O, 1. 
Then assertions 1) and 2) are equivalent: 

1) clim,,,n -‘s,(z(n))=p(a) and lim,,,n-tK(z(n)) 
> H(p) for all complexity measures K where this 
limit exists. 

2) lim supn+m VP(z(n)).2-” =0 for all p-martingales 
and all r >O. 

Proof: From (2.2) we have 

V(z(n)) =2~~(0)so~z~n~~p(l)sl(Z~“~~~~(z(n)). (5.2) 

To prove 1)+2), we observe that (5.2) can be written as 

V(z(n))= V(z(n)).2-“R@)+0(“). (5.3) 

By assumption V(z(n)) * 2- nRCp) = 2”(“), otherwise there is a 
complexity measure giving a compression factor less than 
H(p). This follows from Theorem 4.1 and Appendix II. 
Then 2) follows immediately from (5.3). 

2)+1): From 2) we conclude clim,,,n- ‘s,(z(n)) = 
p(a); otherwise we could construct an exponential 
p-martingale (see (2.3)). From lim sup, V(z(n)) * 
2-“R(p)-nr+o(n)= 0 for all r >0 we see that V(z(n)) may be  
written as V(z(n)) = 2ZnR’+‘@) where R’ <R(p). This im- 
plies the second part of 1). cl 

In the singular case p(0) =0 or 1, we have either 
VO(z(n))( V’(z(n))) = constant if z = lm(Om), or V”(lkOx) 
=oo= V’(Oklx) for all kEf%J andxEA*. Thus for singu- 
lar Bernoulli cpf’s Theorem 5.3 does not hold. See [ 1, ch. 
51 for a  detailed discussion of singular distributions. 

We  conclude that, except for p(a) = f, a  maximal com- 
pression factor H(p) together with converging relative 
frequencies implies only that any p-martingale will grow 
with slower than exponential rate. 

An example of a  probability law not of exponential 
order is Khintchin’s law of the iterated logarithm. It is 
possible that a  sequence admits no exponentially growing 
martingale but does not pass the iterated-logarithm test. 
The nature of this law in terms of martingale growth rates 
is an open problem [l]. 
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APPENDIX I 

From Theorem 4.1 we know that the constructive d ivergence 
of {suPi<nR(z(9))?& for any process complexity measure im- 
plies the nonrandomness of z. From Martin-L%% Theorem 2.2 
we see that this is in general not true for arbitrary complexity 
measures. For all sequences z EAT, there is a complexity 
measure with the property limsup,,,(R(x(n))-f(n)) >0 if f(n) 
has the property that XnEN 2-‘(‘) is divergent. W e  will see  that 
this condition cannot be improved. 

565  

We select f~8 such that clim,,,Z:, ,2-j@)< 00. Clearly, it 
is possible to construct g  E 8  having a  sufficiently slow growth 
rate such that clim,,,Z:, i2 &)-f@) < 00 also. Now assume that 

linm_*P (R(z(n)) --f(n)) >O (A.11 

for z E A m and  a  complexity measure K. W e  define the functions 
V,,, which can be  extended to A* by (M), by  

V,(X) =  y.! 
( 

if R(x(n)) >f(n), l(x) an, 
otherwise. 

There are less than 2”-j@) elements in A ’ with the 
property R(x) >f(n). By iteration of (M), we have 
V,(A) =  2-“z,,,.V-Jx) <  2-“2”-f(“)2s(“) =  2g(“)-‘@). Thus 
v(x)=xn~N n  V (x) is finite and  by  construction computable. By 
assumption (A.l), there are infinitely many  n E fU such that 
V(z(n)) > 2s@). For the martingale v(x) =  V(x)/ V(h) we have  

l imsup V(z(n)).2-g(“)>0, 
n-m 

that is, z is a  regular sequence.  

04.2) 

APPENDIX II 

We show that, without loss of generality, we need consider 
only strictly increasing martingales. Given any  martingale we 
can construct a  slightly slower growing but nonoscillating 
martingale. 

Given a  martingale v we define the set Yi =  {x E A * ( v(x) > 
2’). W ithout loss of generality we can assume 5 to be recursive, 
e.g., by  requiring r to be  rational. Since we can approximate a  
computable real-valued function by a rational-valued one as 
closely as  desired, this does  not affect our  definitions and  
theorems concerning martingale growth rates. Now we construct 
functions & by 

v,(x)= c 2’-‘b)+IYP/AA*(x).2’. (A.3) 
xy E Yp/ 

Applying the arguments in the proof of Theorem 4.2 we verify 
that 6  has the property (M). If z(n)~ y@, then <(x(k)) is 
strictly increasing for k <n and  remains constant for k >n. An 
upper  bound  for Vi(A) follows from the definition of Yi and  
(W 

K(A)= x 2’2-‘b)< x 2+“‘~(y)<~(A)=l. 
YEYp’ yEYp 

Select a  sequence {ui}ieN such that clim,,,Z?,,ui <  cc and  an  
arbitrarily rapidly growing g E 9. Define the function V’(x) = 
ZiE Nai Vg(i)(X) and the martingale V(x) = V’(x)/ V’(A). Suppose 
V(z(n)) is unbounded for some z EAm. Because V(xa) G 2V(x), 
a  E A, x E A*, for any  martingale, there is for any  i E N a  k E N 
such that 2g(i) < V(z(k)) < 2g@)+‘. This implies the inequality 
V(z(k)) > V’(z(k)) > ui2di) (we can assume z(k)E Y&. By con- 
struction, V(z(n)) is strictly increasing and  we have  the following 
assertion: to any  f~ 6’ there is an  f E 9  with f<gf but arbitrarily 
close to f in the 8  -ordering, such that limsup,,, r(z(n))/j(n) 
>  0  implies l imn+m V(z(n))/f(n) > 0. 
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Higher Dimensional Hadamard Matrices 
PAUL J. SHLICHTA 

Abstract-The concept of a Hadamard matrix as a binary orthogonal 
matrix ls extended to higher dimensions. An n-dimensional Hadamard 
matrix [hijk..,n] is defined as one in which all parallel (n - I)-dimensional 
layers, in any axis-normal orientation, are uncorrelated. This ls equivalent 
to the requirements that hgk,. n = +- 1  and tbat 

where (pqr . . . yz) represents all permutations of (ijk . . . n). A “proper” 
n-dlmensional Hadamard matrix is defined as a special case of the above 
In which all two-dimensional layers, in all axis-normal orientations, are 
Hadamard matrices, as a consequence of which all intermediate-dimen- 
sional layers are also Hadamard matrices. Procedures are described for 
deriving three- and four-dimensional Hadamard matrices of varying pro 
prlety from two-dimensional Hadamard matrices. A formula is given for a 
fully proper n-dimensional matrix of order two, wblch can be expanded by 
direct multiplication to yield proper (2’r Hadamard matrices. It is sug- 
gested that proper higher dimensional Hadanuud matrices may  find ap- 
plication in error-correcting codes, where theii hierarchy of ortbogoualities 
permit a varlety of checking procedures. Other types of Hadamard 
matrices may  be of use in security codes on the basis of their resemblance 
to random binary matrices. 

Manuscript received November  20, 1978;  revised February 12, 1979.  
This work was presented in part at a  meeting of the American Physical 
Society, August 26, 1971,  Seattle, WA. 

The  author is with the Technical Staff, Jet Propulsion Laboratory, 
California Institute of Technology,  Building 77, Pasadena,  CA 91103.  

I. INTRODUCTION 

H ADAMARD matrices [l], [2] may be defined as 
binary orthogonal matrices or, equivalently, as bi- 

nary matrices in which all parallel rows or columns are 
uncorrelated; i.e., the m2 matrix [h,] is a  Hadamard 
matrix if all h, = + 1 and 

c h, h, = x  hOj h, = ma,,. (1) 
i j 

Aside from the trivial cases of m  = 1 and m  =2, these 
conditions can be satisfied only if m  is a multiple of four. 
Following the work of Paley [3], recent research has 
focused on demonstrating the existence of at least one 
Hadamard matrix for all values of m=4t [4], [5] or on 
generating families of special (e.g., skew) Hadamard 
matrices [6], [7]. 

In recent years, Hadamard matrices have been used 
successfully for a  variety of practical applications such as 
switching networks [S], error-correcting codes and signal 
processing [9], [lo], and high-speed multiplex spectrometry 
[ll]. Several other applications are foreseeable or cur- 
rently under investigation [ 121, [ 171. 

In the light of this interest, it is surprising that no 
attempt has been made to generate or utilize higher 
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