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On the Comparison of Gauge Freedom Handling in

Optimization-based Visual-Inertial State Estimation
Zichao Zhang, Guillermo Gallego, Davide Scaramuzza

Abstract—It is well known that visual-inertial state estimation
is possible up to a four degrees-of-freedom (DoF) transformation
(rotation around gravity and translation), and the extra DoFs
(“gauge freedom”) have to be handled properly. While different
approaches for handling the gauge freedom have been used in
practice, no previous study has been carried out to systematically
analyze their differences. In this paper, we present the first
comparative analysis of different methods for handling the gauge
freedom in optimization-based visual-inertial state estimation. We
experimentally compare three commonly used approaches: fixing
the unobservable states to some given values, setting a prior on
such states, or letting the states evolve freely during optimization.
Specifically, we show that (i) the accuracy and computational time
of the three methods are similar, with the free gauge approach
being slightly faster; (ii) the covariance estimation from the free
gauge approach appears dramatically different, but is actually
tightly related to the other approaches. Our findings are validated
both in simulation and on real-world datasets and can be useful
for designing optimization-based visual-inertial state estimation
algorithms.

Index Terms—Sensor Fusion, SLAM, Optimization and Opti-
mal Control

I. INTRODUCTION

V ISUAL-INERTIAL (VI) sensor fusion is an active re-

search field in robotics. Cameras and inertial sensors

are complementary [1], and a combination of both provides

reliable and accurate state estimation. While the majority of

the research on VI fusion focuses on filter-based methods

[2], [3], [4], nonlinear optimization has become increasingly

popular within the last few years. Compared with filter-based

methods, nonlinear optimization based methods suffer less

from the accumulation of linearization errors. Their main

drawback, high computational cost, has been mitigated by

the advance of both hardware and theory [5], [6]. Recent

work [5], [7], [8], [9] has shown impressive real-time VI state

estimation results in challenging environments using nonlinear

optimization.

Although these works share the same underlying principle,

i.e., solving the state estimation as a nonlinear least squares

optimization problem, they use different methods to handle
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Fig. 1: Different pose uncertainties of the keyframes on the Machine Hall
sequence of the EuRoC MAV Dataset [15] (MAV moving toward the negative
x direction). The left plot shows the uncertainties from the free gauge
approach, where no reference frame is selected. On the right we set the
reference frame to be the first frame, and, consequently, the uncertainties
grow as the VI system moves. For visualization purposes, the uncertainties
have been enlarged. We can clearly identify the difference in the parameter
uncertainties from free gauge and gauge fixation approaches. However, by
using the covariance transformation in Section VI-B, we show that the free
gauge covariance can be transformed to satisfy the gauge fixation condition.
The transformed uncertainties agree well with the gauge fixation ones.

the unobservable DoF in VI systems. It is well known that for

a VI system, global position and yaw are not observable [3],

[10], which in this paper we call gauge freedom following the

convention from the field of bundle adjustment [11]. Given this

gauge freedom, a natural way to get a unique solution is to fix

the corresponding states (i.e., parameters) in the optimization

[12]. Another possibility is to set a prior on the unobservable

states, and the prior essentially acts as a virtual measurement

in the optimization [5], [8], [13], [7]. Finally, one may instead

allow the optimization algorithm to change the unobservable

states freely during the iterations. While these three methods

all prove to work in the existing literature, there is no compar-

ison study of their differences in VI state estimation: they are

often presented as implementation details and therefore not

well studied and understood. Moreover, although the similar

problem for vision-only bundle adjustment has already been

studied (e.g., [11], [14] with 7 unobservable DoFs in the

monocular case), to the best of our knowledge, such a study

has not been done for VI systems (which have 4 unobservable

DoFs).

In this work, we present the first comparative analysis of

the different approaches for handling the gauge freedom in

optimization-based visual-inertial state estimation. We com-

pare these approaches, namely the gauge fixation approach,

the gauge prior approach and the free gauge approach on

simulated and real-world data in terms of their accuracy,

computational cost and estimated covariance (which is of
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interest for, e.g., active SLAM [16]). While all these methods

have similar performance in terms of estimation error, the free

gauge approach is slightly faster, due to the fewer iterations

required for convergence. We also find that, as mentioned

by [7], in the free gauge approach, the resulting covariance

from the optimization is not associated to any particular

reference frame (as opposed to the one from the gauge

fixation approach), which makes it difficult to interpret the

uncertainties in a meaningful way. However, in this work we

further show that by applying a covariance transformation,

the free gauge covariance is actually closely related to other

approaches (see Fig. 1).

The rest of the paper is organized as follows. In Section II,

we introduce the optimization-based VI state estimation prob-

lem and its non-unique solution. In Section III we present

different approaches for handling gauge freedom. Then we

describe the simulation setup for our comparison study in Sec-

tion IV. The detailed comparison in terms of accuracy/timing

and covariance is presented in Sections V and VI, respectively.

Finally, we show experimental results on real-world datasets

in Section VII.

II. PROBLEM FORMULATION AND INDETERMINACIES

The problem of visual-inertial state estimation consists of

inferring the motion of a combined camera-inertial (IMU)

sensor and the locations of the 3D landmarks seen by the

camera as the sensor moves through the scene. By collecting

the equations of the visual measurements (image points) and

the inertial measurements (accelerometer and gyroscope), the

problem can be written as a non-linear least squares (NLLS)

optimization one, where the goal is to minimize the objective

function (e.g., assuming Gaussian errors)

J(θ)
.
= ‖rV (θ)‖2ΣV

︸ ︷︷ ︸

Visual

+ ‖rI(θ)‖2ΣI
︸ ︷︷ ︸

Inertial

, (1)

where ‖r‖2Σ = r⊤Σ−1r is the squared Mahalanobis norm of the

residual vector r, weighted using the covariance matrix Σ of

the measurements. The cost (1) can be used in full smoothing

[5] or fixed-lag smoothing [7] approaches.

The visual term in (1) consists of the reprojection error

between the measured image points xij and the predicted ones

x̂ij by a metric reconstruction. Assuming a pinhole camera

model, x̂ij(θ) ∝ Ki(R
⊤
i |−R⊤i pi)(X

⊤
j , 1)

⊤, where (Ri,pi) are

the extrinsic parameters of the i-th camera (i = 0, . . . , N − 1)

and Xj are the 3D Euclidean coordinates of the j-th landmark

point (j = 0, . . . ,K−1). We assume that the intrinsic calibra-

tions Ki are noise-free. The inertial term in (1) consists of the

error between the inertial measurements and the predicted ones

by a model of the trajectory of the IMU. For example, [17]

considers the error in the raw acceleration and angular velocity

measurements, whereas [5] considers errors in equivalent,

lower rate measurements (inertial preintegration terms at the

rate of the visual data). In this work, we consider the latter

formulation, although most of the results do not depend on

the choice of formulation.

The parameters of the problem (also known as state),

θ
.
= {pi, Ri,vi,Xj}, (2)

comprise the camera motion parameters1 (extrinsics and linear

velocity) and the 3D scene (landmarks).

The accelerometer and gyroscope biases are usually ex-

pressed in the IMU frame and thus not affected by a fixation

of the coordinate frame. Therefore, we exclude the biases

from the state and assume that the IMU measurements are

already corrected. A full description of the inertial and visual

measurement models is out of the scope of this work, and we

refer the reader to [5] for details.

A. Solution Ambiguities and Geometrical Equivalence

When addressing the VI state estimation problem, it is

essential to note that the objective function (1) is invariant

to certain transformations of the parameters θ′ = g(θ), i.e.,

J(θ) = J(g(θ)). (3)

Specifically, g, defined by homogeneous matrices of the form

g
.
=

(
Rz t

0 1

)

, (4)

is a 4-DoF transformation consisting of an arbitrary translation

t ∈ R
3 and a rotation Rz = Exp(αez) by an arbitrary angle

(yaw) α ∈ (−π, π) around the gravity axis ez = (0, 0, 1)⊤.

For notation simplicity, we define the mapping Exp(θ)
.
=

exp(θ∧), where exp is the exponential map of the Special

Orthogonal group SO(3), and θ∧ is the skew-symmetric ma-

trix associated with the cross-product, i.e., a∧b = a× b, ∀b.

This is the well-known Rodrigues formula.

Applying a transformation (4) to the reconstruction (2) gives

another reconstruction g(θ) = θ′ ≡ {p′
i, R

′
i,v

′
i,X

′
j},

p′
i = Rzpi + t R′i = RzRi

v′
i = Rzvi X′

j = RzXj + t
(5)

Both parameters θ and θ′ represent the same underlying

scene geometry (camera trajectory and 3D points), i.e., they

are geometrically equivalent. They generate the same predicted

measurements; and, therefore, the same error (1).

As a consequence of the invariance (3), the parameter

space M can be partitioned into disjoint sets of geometrically

equivalent reconstructions. Each of these sets is called an

orbit [11] or a leaf [14]. Formally, the orbit associated to θ is

the 4D manifold

Mθ
.
= {g(θ) | g ∈ G}, (6)

where G is the group of transformations of the form (4). Note

that the objective function (1) is constant on each orbit.

The main consequence of the invariance (3) is that (1) does

not have a unique minimizer because there are infinitely many

reconstructions that achieve the same minimum error: all the

reconstructions on the orbit (6) of minimal cost (see Fig. 2),

differing only by 4-DoF transformations (4). Hence, the VI

estimation problem has some indeterminacies or unobservable

states: there are not enough equations to completely specify a

unique solution.

1For simplicity, we assume that the coordinate frames of the camera and
the IMU coincide, e.g., by compensating the camera-IMU calibration [18].
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TABLE I: Three gauge handling approaches considered. (n = 9N + 3K is
the number of parameters in (2))

Size of parameter vec. Hessian (Normal eqs)

Fixed gauge n− 4 inverse, (n− 4)× (n− 4)
Gauge prior n inverse, n× n
Free gauge n pseudoinverse, n× n

B. Additional Constraints: Specifying a Gauge

The process of completing (1) with additional constraints

c(θ) = 0 (7)

that yield a unique solution is called specifying a gauge C
[14], [11]. In other words, equations (7) select a representative

of the orbit (6), i.e., to remove the indeterminacy within the

equivalence class. In VI, this is achieved by specifying a refer-

ence coordinate frame for the 3D reconstruction. For example,

the standard gauge in camera-motion estimation consists of

selecting the reconstruction that has the reference coordinate

frame located at the first (i = 0) camera position and with zero

yaw. These constraints specify a unique transformation (4),

and therefore, a unique solution θC = C ∩ Mθ among all

equivalent ones. By construction, gauges C are transversal to

orbits Mθ , so that θC 6= ∅ [14].

III. OPTIMIZATION AND GAUGE HANDLING

From an optimization point of view, the minimization of the

NLLS function (1) using the Gauss-Newton algorithm presents

some difficulties. Even if we use a minimal parametrization

for all elements of the state (parameter vector) θ, the Hessian

matrix of (1), which drives the parameter updates, is singular

due to the unobservable DoFs. More specifically, it has a rank

deficiency of four, corresponding to the 4-DoFs in (4).

There are several ways to mitigate this issue, as summarized

in Table I. One of them is to optimize in a smaller parameter

space where there are no unobservable states, and therefore the

Hessian is invertible. This essentially enforces hard constraints

on the solution (gauge fixation approach). Another one is

to augment the objective function with an additional penalty

(which yields an invertible Hessian) to favor that the solution

satisfies certain constraints, in a soft manner (gauge prior ap-

proach). Lastly, one can use the pseudoinverse of the singular

Hessian to implicitly provide additional constraints (parameter

updates with smallest norm) for a unique solution (free gauge

approach). The first two strategies require VI problem-specific

knowledge (which state to constrain), whereas the last one is

generic.

A. Rotation Parametrization for Gauge Fixation or Prior

One problem with the gauge fixation and gauge prior

approaches is that fixing the 1-DoF yaw rotation angle of a

camera pose is not straightforward, as we discuss next.

The standard method to update orientation variables (i.e.,

rotations) during the iterations of the NLLS solver (Gauss-

Newton or Levenberg-Marquardt–LM) of (1) is to use local

coordinates, where, at the q-th iteration, the update is

R
q+1 = Exp(δφq)Rq. (8)

Gauge C

Orbit of minimum cost

Mθ

Start

Free gauge

Gauge prior

Gauge fixation

Fig. 2: Illustration of the optimization paths taken by different gauge handling
approaches. The gauge fixation approach always moves on the gauge C,
thus satisfying the gauge constraints. The free gauge approach uses the
pseudoinverse to select parameter steps of minimal size for a given cost
decrease, and therefore, moves perpendicular to the isocontours of the cost (1).
The gauge prior approach follows a path in between the gauge fixation and
free gauge approaches. It minimizes a cost augmented by (11), so it may not
exactly end up on the orbit of minimum visual-inertial cost (1).

Setting the z component of δφq to 0 allows fixating the

yaw with respect to Rq . However, concatenating several such

updates (Q iterations), RQ =
∏Q−1

q=0 Exp(δφq)R0, does not

fixate the yaw with respect to the initial rotation R0, and

therefore, this parametrization cannot be used to fix the yaw-

value of RQ to that of the initial value R0.

Although yaw fixation or prior can be applied to any camera

pose, it is a common practice to use the first camera. Thus, for

the rotations of the other camera poses, we use the standard

iterative update (8), and, for the first camera, R0, we use a

more convenient parametrization. Instead of directly using R0,

we use a left-multiplicative increment:

R0 = Exp(∆φ0)R
0
0, (9)

where the rotation vector ∆φ0 is initialized to zero and up-

dated. Indeed, the rotation vector formulation has a singularity

at ‖∆φ0‖ = π, but it is applicable when the initial rotation

is close to the optimal value (‖∆φ0‖ < π), which is often

the case in real systems (e.g., initial values are provided by a

front-end, such as [5]).

B. Different Approaches for Handling Gauge Freedom

Based on the previous discussion, gauge fixation consists

of fixing the position and yaw angle of the first camera pose

throughout the optimization. This is achieved by setting

p0 = p0
0, ∆φ0z

.
= e⊤z ∆φ0 = 0, (10)

where p0
0 is the initial position of the first camera. Fixing

these values of the parameter vector is equivalent to setting the

corresponding columns of the Jacobian of the residual vector

in (1) to zero, namely Jp0
= 0, J∆φ

0z
= 0.

The gauge prior approach adds to (1) a penalty

‖rP0 ‖
2
ΣP
0

, where rP0 (θ)
.
= (p0 − p0

0, ∆φ0z). (11)

The choice of ΣP0 in (11) will be discussed in Section V.
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Finally, the free gauge approach lets the parameter vector

evolve freely during the optimization. To deal with the singular

Hessian, we may use the pseudoinverse or add some damping

(Levenberg-Marquardt algorithm) so that the NLLS problem

has a well-defined parameter update.

A comparison of the paths followed in parameter space

during the optimization iterations of the three approaches is

illustrated in Fig. 2.

Next, we show an experimental comparison of the three

gauge handling approaches.

IV. COMPARISON STUDY: SIMULATION SETUP

A. Data Generation

We use three 6-DoF trajectories for our experiments, namely

a sine-like shape one, an arc-like one and a rectangular one.

We denote them as sine, arc and rec respectively. We consider

two landmark configurations: plane, where the 3D points are

roughly distributed on several planes and random, where the

3D points are generated randomly along the trajectory. Fig. 3

shows some simulation setup examples.

To generate the inertial measurements, we fit the trajectories

using B-splines and then sample the accelerations and angular

velocities. The sampled values are corrupted with biases

and additive Gaussian noise, and then are used as inertial

measurements. For the visual measurements, we project the 3D

points through a pinhole camera model to get the correspond-

ing image coordinates and then corrupt them with additive

Gaussian noise.

B. Optimization Solver

To solve the VI state estimation problem (1), we use the

LM algorithm in the Ceres solver [19]. We implement the dif-

ferent approaches for handling the gauge freedom described in

Section III. For each trajectory, we sample several keyframes

along the trajectory. Our parameter space contains the states

(i.e., position, rotation and velocity) at these keyframes and

the positions of the 3D points. The initial states are disturbed

randomly from the groundtruth.

C. Evaluation

1) Accuracy: To evaluate the accuracy of an estimated state,

we first calculate a transformation to align the estimation and

the groundtruth. The transformation is calculated from the

first poses of both trajectories. Note that the transformation

has four DoFs, i.e., a translation and a rotation around the

gravity vector. After alignment, we calculate the root mean

squared error (RMSE) of all the keyframes. Specifically, we

use the Euclidean distance for position and velocity errors.

For rotation estimation, we first calculate the relative rotation

(in angle-axis representation) between the aligned rotation and

the groundtruth, and then use the angle of the relative rotation

as the rotation error.

2) Computational Efficiency: To evaluate the computational

cost, we record the convergence time and number of iterations

of the solver. We run each configuration (i.e., the combination

of trajectory and points) for 50 trials and calculate the average

time and accuracy metrics.

Fig. 3: Sample simulation scenarios. The left one shows a sine trajectory with
randomly generated 3D points, and the right one shows an arc trajectory with
the 3D points distributed on two planes.

3) Covariance: We also compare the covariances produced

by the optimization algorithm, which are of interest for appli-

cations such as active SLAM [20]. The covariance matrix of

the estimated parameters is given by the inverse of the Hessian.

For the free gauge approach, the Moore-Penrose pseudoinverse

is used, since the Hessian is singular [11].

V. COMPARISON STUDY: TIMING AND ACCURACY

A. Gauge Prior: Choosing the Appropriate Prior Weight

Before comparing the three approaches from Section III,

we need to choose the prior covariance ΣP0 in the gauge prior

approach. A common choice is ΣP0 = σ2
0 I, for which the

prior (11) becomes ‖rP0 ‖
2
ΣP
0

= wP ‖rP0 ‖
2, with wP = 1/σ2

0 .

We tested a wide range of the prior weight wP on different

configurations and the results were similar. Therefore, we will

look at one configuration in detail. Note that wP = 0 is

essentially the free gauge approach, whereas wP → ∞ is

the gauge fixation approach.

1) Accuracy: Fig. 4 shows how the RMSE changes with

the prior weight. It can be seen that the estimation errors of

different prior weights are very similar (note the numbers on

the vertical axis). While there is no clear optimal prior weight

for different configurations of trajectories and 3D points, the

RMSE stabilizes at one value after the weight increases above

a certain threshold (e.g., 500 in Fig. 4).

2) Computational Cost: Fig. 5 illustrates the computational

cost for different prior weights. Similarly to Fig. 4, the number

of iterations and the convergence time stabilize when the prior

weight is above a certain value. Interestingly, there is a peak

in the computational time when the prior weight increases

from zero to the threshold where it stabilizes. The same

behavior is observed for all configurations. To investigate this

behavior in detail, we plot in Fig. 6 the prior error with

respect to the average reprojection error at each iteration for

several prior weight values. The position prior error is the

Euclidean distance between the current estimate of the first

position and its initial value, the yaw prior error is the z-

component of the relative rotation of the current estimate of the

first rotation with respect to its initial value, and the average

reprojection error is the total visual residual averaged by the

number of observed 3D points in all keyframes. For very large

prior weights (108 in the plot), the algorithm decreases the

reprojection error while keeping the prior error almost equal to
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Fig. 5: Number of iterations and computing time for different prior weights.

zero. In contrast, for smaller prior weights (e.g., 50–500), the

optimization algorithm reduces the reprojection error during

the first two iterations at the expense of increasing the prior

error. Then the optimization algorithm spends many iterations

fine-tuning the prior error while keeping the reprojection error

small (moving along the orbit), hence the computational time

increases.

3) Discussion: While the accuracy of the solution does

not significantly change for different prior weights (Fig. 4),

a proper choice of the prior weight is required in the gauge

prior approach to keep the computational cost small (Fig. 5).

Extremely large weights are discarded since they sometimes

make the optimization unstable. We observe similar behavior

for different configurations (trajectory and points combina-

tion). Therefore, in the rest of the section we use a proper

prior weight (e.g., 105) for the gauge prior approach.

B. Accuracy and Computational Effort

We compare the performance of the three approaches on

the six combinations of simulated trajectories (sine, arc and

rec) and 3D points (plane and random). We optimize the

objective function for differently perturbed initializations and

observe that the results are similar. For the results presented

in this section, we perturb the groundtruth positions by a

random vector of 5 cm (with respect to a trajectory of 5m), the

orientations by a random rotation of 6 degrees, the velocities

by a uniformly distributed variable in [−0.05, 0.05] m/s (with

respect to a mean velocity of 2m/s) and the 3D point positions

by a uniform random variable in [−7.5, 7.5] cm.
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Fig. 6: Prior error vs. average reprojection error for some representative prior
weights. Each dot in the plot stands for an iteration with the corresponding
prior weight. The optimization starts from the bottom-right corner, where
the reprojection errors are the same and the prior errors are zero. As the
optimization proceeds, the reprojection error decreases and there are different
behaviors for different prior weights regarding the prior error. Note that the
free gauge case behaves as the zero prior weight.

The average RMSEs of 50 trials are listed in Table II. We

omit the results for the gauge prior approach because they are

identical to the ones from the gauge fixation approach up to

around 8 digits after the decimal. It can be seen that there are

only small differences between the free gauge approach and

the gauge fixation approach, and neither of them has a better

accuracy in all simulated configurations.

The convergence time and number of iterations are plotted

in Fig. 7. The computational cost of the gauge prior approach

and the gauge fixation approach are almost identical. The

free gauge approach is slightly faster than the other two.

Specifically, except for the sine trajectory with random 3D

points, the free gauge approach takes fewer iterations and

less time to converge. Note that the gauge fixation approach

takes the least time per iteration due to the smaller number of

variables in the optimization (see Table I).

C. Discussion

Based on the results in this section, we conclude that:

• The three approaches have almost the same accuracy.

• In the gauge prior approach, one needs to select the proper

prior weight to avoid increasing the computational cost.

• With a proper weight, the gauge prior approach has almost

the same performance (accuracy and computational cost) as

the gauge fixation approach.

• The free gauge approach is slightly faster than the others,

because it takes fewer iterations to converge (cf. [14]).

While it may be possible to fix the unobservable DoFs (recall

that we use a tailored parametrization (9) to fix the yaw DoF),

the free gauge approach has the additional advantage that is

generic, i.e., not specific of VI, and therefore it does not

require any special treatment on rotation parametrization.

VI. COMPARISON STUDY: COVARIANCE

A. Covariance Comparison

Given a high prior weight, as discussed in the previous

section, the covariance matrix from the gauge prior approach
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TABLE II: RMSE on different trajectories and 3D points configurations. The
smallest errors (e.g., p gauge fixation vs. p free gauge) are highlighted.

Configuration Gauge fixation Free gauge

p φ v p φ v

sine plane 0.04141 0.1084 0.02182 0.04141 0.1084 0.02183

arc plane 0.02328 0.6987 0.01303 0.02329 0.6987 0.01303

rec plane 0.01772 0.1668 0.01496 0.01774 0.1668 0.01495

sine random 0.03932 0.0885 0.01902 0.03908 0.0874 0.01886

arc random 0.02680 0.6895 0.01167 0.02678 0.6895 0.01166

rec random 0.02218 0.1330 0.009882 0.02220 0.1330 0.009881

Position, rotation and velocity RMSE are measured in m, deg and m/s, respectively.
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Fig. 7: Number of iterations, total convergence time and time per iteration
for all configurations. The time per iteration is the ratio with respect to the
gauge fixation approach (in blue), which takes least time per iteration.

is similar to the gauge fixation approach and therefore omitted

here. We only compare the covariances of the free gauge

approach and the gauge fixation approach in this section.

An example of the covariance matrices of the free gauge

and gauge fixation approaches is visualized in Fig. 9. If we

look at the top-left block of the covariance matrix, which

corresponds to the position components of the states: (i) for

the gauge fixation approach (Fig. 9c), the uncertainty of the

first position is zero due to the fixation, and the position

uncertainty increases afterwards (cf. Fig. 1b); (ii) in contrast,

the uncertainty in the free gauge case (Fig. .9a) is “distributed”

over all the positions (cf. Fig. 1a). This is due to the fact that

the free gauge approach is not fixed to any reference frame.

Therefore, the uncertainties directly read from the free gauge

covariance matrix are not interpretable in a geometrically-

meaningful way. However, this does not mean the covariance

estimation from the free gauge approach is useless: it can be

transformed to a geometrically-meaningful form by enforcing

a gauge fixation condition, as we show next.

B. Covariance Transformation

Covariances are averages of squared perturbations of the

estimated parameter. A perturbation ∆θ of a reconstruction

θ can be decomposed into two components: one parallel to

the orbit Mθ (6) and one parallel to the gauge C (7). The

component of ∆θ parallel to the orbit Mθ is not geometrically

meaningful since the perturbed reconstruction is also in the

orbit (thus, arbitrarily large perturbations produce no change

θ θC

g

∆θ

∆θC = QC
θC

∂θC

∂θ
∆θ

MθC

∂θC

∂θ
QC
θC

Tθ(Mθ)

TθC
(Mθ)

TθC
(C)

Fig. 8: Illustration of the covariance transformation in the parameter space.
Mθ is the subspace that contains all the parameters that are equivalent to
free gauge estimation θ (i.e., different by a 4-DoF transformation). C is
that subspace that contains all the parameters that satisfy the gauge fixation
condition (10). We first transform θ to the gauge fixation estimation θC along
Mθ , together with the perturbation ∆θ 7→ (∂θC/∂θ)∆θ. Then we project
the perturbation onto the tangent space to the gauge TθC

(C), parallel to the

Mθ , using the projector QC
θC

. The average of the outer product of these

transformed perturbations is the covariance Cov(θC).

of the scene geometry). Therefore, only perturbations along

the gauge C, ∆θC , represent changes of the reconstructed

geometry and are therefore meaningful. Such perturbations

live on the tangent space TθC
(C). Hence, geometrically-

meaningful perturbations are gauge-dependent [14], [11].

The covariance from the free gauge approach Cov∗(θ) at an

estimate θ can be transformed into the covariance of a given

gauge fixation C (10) by the following formula [14]:

Cov(θC) ≈

(

Q
C
θC

∂θC

∂θ

)
∗

Cov(θ)

(

Q
C
θC

∂θC

∂θ

)⊤

, (12)

where θC = C ∩Mθ = g(θ) is the equivalent parameter that

satisfies the gauge. Specifically, g ≡ {Rz, t} (4) is obtained

by “pushing” θ along Mθ (Fig. 8) until it meets C, satisfying

pC
0 = Rzp0 + t,

0 = e⊤z Log(Rz Exp(∆φ0)), (13)

where {p0,∆φ0} ∈ θ and pC
0 ∈ θC . Recall that the

rotation of the first camera pose is parameterized differ-

ently (9), and therefore should be transformed as ∆φC
0 =

Log(Rz Exp(∆φ0)), where Log is the inverse operator of Exp,

defined in Section II-A.

The transformation rule (12) consists of two operations (also

illustrated in Fig. 8): (i) transferring perturbations along the

orbit Mθ (operator ∂θC/∂θ), and (ii) projecting the pertur-

bations on the tangent space to the gauge TθC
(C) (operator

QCθC
). These operators are specified in Appendix A.

In Fig. 9, we show an example of covariance transformation

on simulated data. Because VI systems are mostly used for

motion estimation, we only show the covariance of the motion

parameters. To better appreciate the entries of the covariance

in spite of their magnitude difference, we use a logarithmic

scale for visualization. Specifically, we plot log10(|σij | + ε),
where Cov ≡ Σ = (σij) is the covariance matrix, and

ε = 10−7 defines the value corresponding to the white color.

We transform the free gauge covariance to the reference frame

specified by the gauge fixation constraint (10). It can be

seen that the transformed covariance agrees well with the

covariance from the the gauge fixation, with a very small

relative error in Frobenius norm (0.11%).
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Fig. 9: Covariance of free gauge (Fig. 9a) and gauge fixation (Fig. 9c) approaches using N = 10 keyframes. In the middle (Fig. 9b), the free gauge covariance
transformed using (12) shows very good agreement with the gauge fixation covariance: the relative difference between them is ‖Σb − Σc‖F /‖Σc‖F ≈ 0.11%
(‖·‖F denotes Frobenius norm). For better visualization, the magnitude of the covariance entries is displayed in logarithmic scale. The yellow bands of the
gauge fixation and transformed covariances indicate zero entries due to the fixed 4-DoFs (the position and the yaw angle of the first camera).
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Fig. 10: Covariance comparison and transformation using N = 30 keyframes of the EuRoC Vicon 1 sequence (VI1). Same color scheme as in Fig. 9. The
relative difference between (b) and (c) is ‖Σb − Σc‖F /‖Σc‖F ≈ 0.02%. Observe that, in the gauge fixation covariance, the uncertainty of the first position
and yaw is zero, and it grows for the rest of the camera poses (darker color), as illustrated in Fig. 1b.

C. Discussion

In this section, we have seen that the parameter covariance

from the free gauge approach is different from the other

approaches and cannot be directly interpreted in a mean-

ingful way. However, we can actually transform the free

gauge covariance into the gauge fixation one by a linear

transformation (12). The covariance transformation method

in Section VI-B, which is a special case of the general theory

in [14], not only provides insights into the differences and

connections of the compared methods, but it can also be useful

for covariance calculation if the optimization method is used

as a black box (i.e., cannot directly calculate the covariance—

inverse of the Hessian matrix—from the Jacobians of the

measurement model).

VII. EXPERIMENTS ON REAL-WORLD DATASETS

We performed the same experimental comparison as in

the simulation on two sequences from the EuRoC MAV

Dataset [15]: Machine Hall 1 (MH1) and Vicon Room 1

(VI1). We used a semi-direct visual odometry algorithm

(SVO [21]) to provide the initialization of the parameters

in the optimization problem (1). We used the stereo setup

of SVO to remove scale ambiguity. As for the biases, we

used the groundtruth values in the dataset. The evaluation

method described in Section IV was used. Note that we did not

run the optimization over the full trajectories but on shorter

segments, which is enough to demonstrate the differences

of the three methods. The computational cost of the three

different approaches is plotted in Fig. 11. The results are

consistent with our simulation experiments: the free gauge

approach, which requires fewer iterations to converge, is faster

than the other two, The accuracies are reported in Table III,

and all three methods have similar estimation error. In Fig. 10,

we observe, as in Fig. 9, the aparent difference between the

covariances and further show that, by applying (12), we can

calculate the covariance in a certain reference frame using

the free gauge covariance, and the result agrees well with the

covariance from actually fixating the gauge (cf. Fig. 10b and

Fig. 10c).

VIII. CONCLUSION

In this work, we presented the first comparison study of

different approaches, namely the gauge fixation approach, the

gauge prior approach and the free gauge approach, for han-

dling the gauge freedom in optimization-based visual-inertial

state estimation. We showed in simulation as well as on real-

world datasets that all these methods have similar accuracy and

efficiency, with the free gauge approach being slightly faster

due to fewer iterations in the optimization. However, one major
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Fig. 11: Computational cost of the three different methods for handling gauge
freedom on two sequences from the EuRoC dataset. The time per iteration is
the ratio with respect to the gauge fixation approach.

TABLE III: RMSE on EuRoC datasets. Same notation as in Table II.

Sequence Gauge fixation Free gauge

p φ v p φ v

EuRoC MH 0.06936 0.07845 0.03092 0.06918 0.07857 0.03091

EuRoC VI 0.07851 0.4382 0.04644 0.07851 0.4382 0.04644

difference we identified is the estimated covariance from the

optimization algorithms are different, especially for the free

gauge approach. To better understand the connection between

the different approaches, we showed how to transform the

free gauge covariance to satisfy the gauge fixation condition,

which indicates the covariances from different approaches are

actually closely related.

APPENDIX A

OPERATORS FOR COVARIANCE TRANSFORMATION

The Jacobian ∂θC

∂θ in (12) is computed from g according to

the relations (5) and the chosen parametrization of θ,θC . It

is a block-diagonal, full-rank square matrix of size 9N +3K.

Differentiating on (5), we obtain the matrices in the diagonal,

∂pC
i /∂pi = ∂vC

i /∂vi = ∂XC
j /∂Xj = Rz . Differentiating

the rotation parameters, we have, for the first camera pose

(parametrization (9)), ∂∆φC
0 /∂∆φ0 = J−1

r (∆φC
0 ) Jr(∆φ0),

where Jr is the right Jacobian of SO(3) [22, p. 40], and for

the remaining poses (parametrization (8)), ∂δφC
i /∂δφi = Rz .

The oblique projector QCθC
in (12) is given by

Q
C
θC

.
= I− UθC

(V⊤θC
UθC

)−1
V
⊤

θC
, (14)

where I is the identity matrix, UθC
is a basis for the tangent

space to the orbit at θC , TθC
(Mθ), and VθC

is a basis for the

orthogonal complement of the tangent space to the gauge C at

θC , (TθC
(C))⊥ (Fig. 8). Both UθC

and VθC
are (9N+3K)×4

matrices and their specific form depend on the choice of

parametrization and gauge constraints. Matrix UθC
can be

obtained by applying to the parameter θC an infinitesimal

transformation (4), δg
.
= {∆Rz,∆t}. The resulting parameter

can be written as δg(θC) ≈ θC+D(θC), where the generators

of the infinitesimal gauge [14] D(θC)
.
= UθC

(∆α,∆t⊤)⊤

are linearly-related with (∆α,∆t⊤)⊤, the local coordinates

describing δg. The rows of UθC
are

UpC
i
=

[
ez × pC

i , I
]

UvC
i
=

[
ez × vC

i , 0
]

U∆φC
0

= [J−1
l (∆φC

0 )ez, 0] UδφC
i
= [ez, 0] , i 6= 0

UXC
j
=

[
ez ×XC

j , I
]
,

(15)

where Jl is the left Jacobian of SO(3) [22, p. 40].

Matrix VθC
is given by the derivative of the constraints (7),

V⊤θC

.
= ∂c

∂θ (θC). In case of the gauge fixation (10), only

two derivatives are non-vanishing: ∂(p0 − p0
0)/∂p0 = I and

∂(e⊤z ∆φ0)/∂∆φ0 = e⊤z .
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