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Introduction

Hyperbolic conservation laws are of vast importance in applied mathematics and engineer-
ing science. Among the many physical and technical applications which can be mathe-
matically modeled by them, phenomena in fluid dynamics, elastodynamics, biomechanics,
astrophysics and traffic systems should be mentioned.
In the general case it will not be possible to find an analytical solution of the hyperbolic dif-
ferential equation system, so that it is more important to look for numerical solutions. The
exact solution of hyperbolic equations is often characterized by discontinuities and shocks.
With the popular class of finite volume methods, discontinuous approximate solutions of
the hyperbolic system can be computed. For multidimensional hyperbolic problems, M.
Lukáčová-Medvid’ová, K. W. Morton, and G. Warnecke obtained good numerical solutions
with the genuinely multidimensional finite volume evolution Galerkin method, cf. [7].
Another important class of schemes for the modeling of partial differential equations is
given by the finite element methods. In the usual case, these methods produce numeri-
cal solutions that are piecewise polynomial and continuous. As a result shocks are often
smeared out. A possibility of combining the advantages of the finite element methods with
those of the finite volume schemes is given by the discontinuous Galerkin method (DG
method). This finite element method allows the construction of discontinuous numerical
solutions. Being a finite element method, the DG scheme can easily accommodate complex
geometries. The domain is subdivided into a grid of a finite number of elements. Grids
of arbitrarily shaped elements can be constructed and are easily refined, where necessary.
A piecewise polynomial numerical solution which can be discontinuous on cell interfaces is
constructed. Interface fluxes are computed with approaches from the finite volume schemes.
This bears the advantage that the numerical solution will reflect the conservation property
which is characteristic for conservation laws. Finite volume solutions always reflect this
property.
In this work we will apply the DG scheme to two hyperbolic problems, namely the Burgers
equation and the shallow water equations, and compare the numerical solution with that
obtained with a given implementation of the FVEG scheme and with solutions obtained
with standard FV schemes.
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Chapter 1

Discontinuous Galerkin Method

1.1 Standard Methods for Hyperbolic Conservation

Laws

Hyperbolic Conservation Laws

A conservation law in two space dimensions has the following form

∂

∂t
w (x, t) +

∂

∂x1

f1 (w (x, t)) +
∂

∂x2

f2 (w (x, t)) = 0, in Ω× (0, T ), (1.1)

where w (x, t) ∈ Rm, x = (x1, x2). By m we denote the dimension of the system of
equations. The functions f1, f2 ∈ C1 (Rm; Rm) are the fluxes of the conserved quantity w
in x1 and x2 direction, respectively. If their Jacobians As ∈ C (Rm; Rm×m) , s = 1, 2,

A1 =
df1

dw
,

A2 =
df2

dw
,

(1.2)

and all their linear combinations are diagonalizable with real eigenvalues, (1.1) is called
hyperbolic.

The Finite Volume Method

When integrating (1.1) over a domain Ω and applying Green’s theorem∫
Ω

div w dx =

∫
∂Ω

w · n dS, (1.3)

we can derive an integral formulation of the conservation law:

d

dt

∫
Ω

w (x, t) dx =

∫
∂Ω

f1n1 + f2n2 dS, (1.4)

1



2 CHAPTER 1. DISCONTINUOUS GALERKIN METHOD

where n = (n1, n2)
T denotes the outer normal to the boundary ∂Ω. This integral formu-

lation of (1.1) expresses that changes to the integral of w over Ω occur only due to a flux
through the boundary ∂Ω. We say that w is conserved in the spatial domain Ω. This is
the characteristic conservation property of conservation laws. In order to find a discrete
formulation of (1.1) we integrate (1.1) over a time interval [tn, tn+1] and get∫

Ω

wn+1 dx−
∫

Ω

wn dx = −
∫ tn+1

tn

∫
∂Ω

f1n1 + f2n2 dS. (1.5)

Now the domain Ω is subdivided into a finite number of cells. We consider a mesh dis-
cretization Th of a polygonal approximation Ωh of the computational domain Ω. The
elements Ki of the mesh discretization are numbered with indices i ∈ I, where I is a suit-
able index set. We thus have Th = {Ki}i∈I . By Γij we denote the interface between two
neighbouring elements Ki, Kj and by S(i) ⊆ I an index set with j ∈ S(i) if Ki and Kj are
neighbours. We reformulate (1.5) for each cell Ki and get

1

|Ki|

∫
Ki

wn+1 dx− 1

|Ki|

∫
Ki

wn dx =

−
∫ tn+1

tn

1

|Ki|
∑

j∈S(i)

∫
Γij

f1n1 + f2n2 dS.
(1.6)

We approximate time integrals in (1.6) by the rectangle rule at old time levels. Due to
possibly discontinuous solutions w it will be necessary to approximate flux integrals by a
numerical flux H

(
wn

i , wn
j , nij

)
:

H
(
wn

i , wn
j , nij

)
≈ f1(w

n)n1 + f2(w
n)n2 dS. (1.7)

Assuming a piecewise constant numerical solution, H
(
wn

i , wn
j , nij

)
will be constant on

cell interfaces and we have

H
(
wn

i , wn
j , nij

)
≈ 1

|Γij|

∫
Γij

f1(w
n)n1 + f2(w

n)n2 dS. (1.8)

The equation (1.6) then yields at each time level tn+1 an approximation W n+1
i of the piece-

wise constant cell averaged values 1
|Ki|

∫
Ki

wn+1dx, which will be the numerical solution of

(1.1)

W n+1
i ≈ 1

|Ki|

∫
Ki

wn+1 dx. (1.9)

Applying (1.6), (1.8), (1.9), we obtain the finite volume formulation of a general hyperbolic
conservation law

W n+1
i = W n

i −
∆t

|Ki|
∑

j∈S(i)

H
(
wn

i , wn
j , nij

)
|Γij|. (1.10)
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Consider now a rectangular grid with cells, which are aligned to the axes of the cartesian
coordinate system, and denote by ∆x1 and ∆x2 the lengths of the cell interfaces. Assume
that Γij denotes either the right or left interface of a cell Ki, and Γik the upper or lower
cell interface, i.e. j, k ∈ S(i). In horizontal direction we can then set

F1,Γij
(wn) ≈ 1

∆x2

∫
Γij

f1 dS. (1.11)

and in vertical direction we set

F2,Γik
(wn) ≈ 1

∆x1

∫
Γik

f2 dS. (1.12)

Then we can formulate the finite volume discretization of the conservation law (1.4) in the
following way

W n+1
i = W n

i −
∆t

∆x1

[
F n

1,Γi,Right
− F n

1,Γi,Left

]
− ∆t

∆x2

[
F n

2,Γi,Up
− F n

2,Γi,Down

]
. (1.13)

In literature, a wide variety of possible approximations of numerical flux functions can be
found, cf. e.g. [3].

Approximate Riemann solvers

In this work we have implemented several approaches for the approximation of the integral
fluxes, which belong all to the class of approximate Riemann solvers, also called methods of
Godunov type. Their derivation follows from the analysis of the following one-dimensional
linear Riemann problem:

∂w

∂t
+ A

∂w

∂x
= 0, (x, t) ∈ R× (0,∞), (1.14)

with the following initial condition

w(x, 0) = w0 =

{
u, x < 0,

v, x > 0.
(1.15)

We again assume that A is diagonalizable with real eigenvalues λi. The exact solution w
of (1.14), (1.15) is given by

w(x, t) =
m∑

i=1

[βiH(x− λit) + αi(1−H(x− λit))] ri, (1.16)

where ri are the right eigenvectors of A, the scalars αi, βi are the coefficients in the following
linear combinations

u =
m∑

i=1

αiri, v =
m∑

i=1

βiri, (1.17)
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and H(x) is the Heavyside function defined as follows

H(x) =

{
1, x > 0,

0, x < 0.
(1.18)

If we compute a finite volume solution of a linear one-dimensional hyperbolic problem

∂w

∂t
+ A

∂w

∂x
= 0, (x, t) ∈ R× (0,∞),

w(x, t) = w0, x ∈ R,
(1.19)

with arbitrary initial data w0, according to (1.10), the computation of the approximate
solution on an interface Γij from the data w|Ki

and w|Kj
in two adjacent cells Ki, Kj can

be understood as just such a linear one-dimensional Riemann problem (1.14), (1.15) with

u = wn|Ki
,

v = wn|Kj
.

(1.20)

The numerical fluxes in (1.10) can then be computed by inserting the exact solution of the
arising local linear Riemann problem into the numerical flux functions f of the hyperbolic
system.
We then get the following numerical fluxes

F n
Γij

= A+wn|Ki
+ A−wn|Kj

. (1.21)

The matrices A+, A− are defined as follows

A± = RΛ±L,

Λ± = diag(λ±1 , . . . , λ±m),

λ+
i = max(λi, 0), λ−i = min(λi, 0), i = 1, . . . ,m.

(1.22)

Here R, L denote the matrices consisting of right and left eigenvectors of A = df
dw

, respec-
tively, and λi, i = 1, . . . ,m their eigenvalues. A derivation of (1.21) as well as further
details on Riemann problems and finite volume methods for hyperbolic problems can be
found in [2]. The concept of computing the numerical fluxes in (1.13) according to (1.20),
(1.21) is called exact Riemann solver.
For a nonlinear hyperbolic problem of the form (1.1) we cannot compute in general the ex-
act solution of the local Riemann problem, efficiently. The so called approximate Riemann
solver proposes to set

F n
s,Γij

= gR
s (u, v),

gR
s (u, v) = f+

s (u) + f−
s (v),

(1.23)

where

fs(w) = f+
s (w) + f−

s (w),

df±
s (w)

dw
= A±

s (w), s = 1, 2.
(1.24)
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For linear problems we have

fs(w) = Asw, (1.25)

and can thus set

f+
s (w) = A+

s w,

f−
s (w) = A−

s w.
(1.26)

Therefore, the idea (1.20), (1.23) is consistent with the approach (1.20), (1.21) of the exact
Riemann solver.
If the hyperbolic problem fulfills the following homogeneity condition

fs(w) = As(w)w, (1.27)

the vectors f+
s , f−

s in (1.23) can be constructed in the following way

f±
s (w) = A±

s (w)w,

fs(w) = A+
s (w)w + A−

s (w)w.
(1.28)

On the basis of (1.28) we can derive the Steger-Warming scheme, reading

gSW
s (u, v) = A+

s (u) u + A−
s (v) v. (1.29)

Another approach, also based on the homogeneity condition, is given by the Vijayasun-
daram scheme

gV
s (u, v) = A+

s

(
u + v

2

)
u + A−

s

(
u + v

2

)
v. (1.30)

Unfortunately, not all hyperbolic problems fulfill (1.27). In this work we have set our focus
on the Burgers equation (4.1) and on the shallow water equations (5.1), (5.2), presented
in the Chapters 4 and 5, for both of which we have

f(w) 6= A(w)w. (1.31)

For these equations the Van Leer scheme, which does not require (1.27) is an appropriate
choice

gV L
s (u, v) =

1

2

{
fs(u) + fs(v)−

∣∣∣∣As

(
u + v

2

)∣∣∣∣} , (1.32)

with

|As| = Rs|Λs|Ls,

|Λs| = diag(|λs,1|, . . . , |λs,m|).
(1.33)
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The Finite Volume Evolution Galerkin Method

The FVEG method is a genuinely multidimensional finite volume scheme. Instead of
approximating the average fluxes through the cell interfaces by a one-dimensional approach,
as is the case for the above presented approximate Riemann solvers, the fluxes are computed
with a truly multidimensional approach, the so-called evolution operator E∆. The evolution
operator maps the approximate solution at time tn to its value at an intermediate time
level tn+ 1

2 . It is an approximation of the exact evolution operator of the hyperbolic system,
which describes the time evolution of the solution along so-called bicharacteristics. With
this approach, the numerical solution can be computed at the interfaces of each cell Ki

and inserted into the flux functions f1, f2. For a regular rectangular grid the numerical
fluxes can be formulated as follows

F n
1,Γij

=
1

∆x2

∫
Γij

f1

(
E

Γij

∆t/2U
n
)

dS,

F n
2,Γik

=
1

∆x1

∫
Γik

f2

(
EΓik

∆t/2U
n
)

dS.

(1.34)

The solution at the new time level can then be computed according to (1.13). The theo-
retical background as well as an extensive numerical analysis of the FVEG scheme can be
found in [7], [8].

The Finite Element Method

Again we consider problem (1.1)

∂

∂t
w (x, t) +

∂

∂x1

f1 (w (x, t)) +
∂

∂x2

f2 (w (x, t)) = 0, in Ω× (0, T ), (1.35)

with a Dirichlet condition which prescribes w at the boundary ∂Ω of the domain Ω

w|∂Ω = wD, (1.36)

with a given function wD. A function w ∈ C1(Ω × (0, T )) that satisfies (1.35), (1.36) is
called a classical solution of (1.35), (1.36).
We will now formulate an integral formulation of (1.35) which allows solutions which are
not necessarily in C1(Ω × (0, T )). For the problems described by (1.35) this yields the
so-called variational solution.
We introduce the Sobolev space H1(Ω) = [H1(Ω)]

m
,

H1(Ω) =
{
u ∈ L2(Ω); Dxu ∈ L2(Ω)

}
, (1.37)

where Dxu is the so-called distributional derivative, defined by∫
Ω

uϕx dx = −
∫

Ω

Dxuϕ dx, ∀ϕ ∈ C∞
0 (Ω). (1.38)
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For u ∈ C1(Ω) we have Dxu = u′x. Thus the concept of distributional derivatives extends
the notion of derivatives for functions which are not differentiable.
There exists another definition of the Sobolev space H1(Ω). We consider the following
norm

||f ||1 =

(∫
Ω

f 2 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2
) 1

2

. (1.39)

The Sobolev space H1(Ω) is the extension of the space C∞(Ω) with respect to this norm

H1(Ω) = (C∞(Ω))
||·||1

. (1.40)

It is possible to prove that (1.37) is equivalent to (1.40).
We further consider the space

H1
0 (Ω) =

{
ϕ ∈ H1(Ω); trace of ϕ on ∂Ω = 0

}
. (1.41)

Now we multiply (1.35) by an arbitrary function ϕ ∈ H1
0 (Ω) = [H1

0 (Ω)]
m

, integrate over
Ω and get

d

dt

∫
Ω

w (x, t) ·ϕ dx = −
∫

Ω

(
∂

∂x1

f1 +
∂

∂x2

f2

)
·ϕ dx, ∀ϕ ∈ H1

0 (Ω). (1.42)

Application of the product rule

∂

∂x1

(f1 ·ϕ) +
∂

∂x2

(f2 ·ϕ) =
∂f1

∂x1

·ϕ +
∂f2

∂x2

·ϕ +
∂ϕ

∂x1

· f1 +
∂ϕ

∂x2

· f2 (1.43)

yields∫
Ω

(
∂

∂x1

f1 +
∂

∂x2

f2

)
·ϕ dx =

∫
Ω

(
∂

∂x1

(f1 ·ϕ) +
∂

∂y
(f2 ·ϕ)− ∂ϕ

∂x1

· f1 −
∂ϕ

∂x2

· f2

)
dx

(1.44)
and thus

d

dt

∫
Ω

w (x, t) ·ϕ dx =−
∫

Ω

(
∂

∂x1

(f1 ·ϕ) +
∂

∂x2

(f2 ·ϕ)

)
dx +∫

Ω

(
∂ϕ

∂x1

· f1 +
∂ϕ

∂x2

· f2

)
dx, ∀ϕ ∈ H1

0 (Ω).

(1.45)

Application of Green’s theorem (1.3) yields a variational formulation of (1.35) which is the
basis of the finite element method

d

dt

∫
Ω

w (x, t) ·ϕ dx =−
∫

∂Ω

(f1 ·ϕn1 + f2 ·ϕn2) dS +∫
Ω

(
∂ϕ

∂x1

· f1 +
∂ϕ

∂x2

· f2

)
dx, ∀ϕ ∈ H1

0 (Ω).

(1.46)



8 CHAPTER 1. DISCONTINUOUS GALERKIN METHOD

As ϕ ∈ H1
0 (Ω), the surface integrals are equal to zero and we get

d

dt

∫
Ω

w (x, t) ·ϕ dx = +

∫
Ω

(
∂ϕ

∂x1

· f1 +
∂ϕ

∂x2

· f2

)
dx, ∀ϕ ∈ H1

0 (Ω). (1.47)

We call (1.47) a variational formulation of (1.35) and any solution w ∈ L2((0, T ); H1(Ω))
of (1.47) a variational solution of (1.35). It represents an extended formulation of problem
(1.35), that allows also solutions which are not in C1(Ω× (0, T )). The variational formu-
lation is consistent with (1.35) because any variational solution which is in C1(Ω× (0, T ))
is also a classical solution of (1.35).
It should be pointed out that in order to derive the above variational formulation we need
to assume a H1(Ω)-regularity of the solution. For physically reasonable solutions it is how-
ever enough that the integral equation (1.5) is satisfied. Such solutions, the so-called weak
solutions, belong to the class of L∞ (Ω× (0, T )) for which the total variation is bounded,
cf. [3].
A discretization of the domain Ω as well as of (1.47), leads to an algebraic system, from
which an approximate solution of (1.47) can be computed.
To this aim we consider a polygonal approximation Ωh of the domain Ω, and construct
a grid by subdividing Ωh into a finite number of cells Ki. In this work we will only be
concerned with regular grids. On the approximate domain Ωh we define the space Xh of
piecewise polynomial functions

Xh =
{
vh ∈ L2(Ωh); vh|Ki

∈ P p(Ki)
}

,

Xh,0 = {ϕ ∈ Xh(Ωh); ϕ|∂Ωh
= 0} ,

(1.48)

where P p(Ki) is the set of all polynomials of degree ≤ p on the cell Ki. An approximate
solution wh of (1.47) lying in the space

Xh = [Xh]
m (1.49)

can now be found by solving the following discretized problem

d

dt

∫
Ωh

wh (x, t) ·ϕh dx =

∫
Ωh

(
∂ϕh

∂x1

· f1 +
∂ϕh

∂x2

· f2

)
dx, ∀ϕh ∈ Xh,0. (1.50)

In contrast to H1
0 (Ω), the space Xh,0 is spanned by a finite number of basis functions ϕh.

We will denote by B the set of basis functions. By claiming (1.50) for each cell Ki and for
each basis function ϕh ∈ B, we get the following system of equations

d

dt

∫
Ki

wh (x, t) ·ϕh dx =

∫
Ki

(
∂ϕh

∂x1

· f1 +
∂ϕh

∂x2

· f2

)
dx, ∀ϕh ∈ B. (1.51)

Note that we can express wh in (1.51) as a linear combination of basis functions

wh =
∑

j

cjϕhj
. (1.52)
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If we approximate the integrals with a suitable quadrature rule, we finally get a linear
system of equations, from which we can compute the coefficients cj and thus obtain the
approximate solution wh. For other boundary conditions the choice of space for the test
functions will be slightly different, but the general proceeding is analogous. Depending on
how the approximate spaces for the discrete solution wh and test functions ϕh are chosen,
different finite element methods can be derived.

1.2 The DG Method

The discontinuous Galerkin method is based on a modified variational formulation of (1.1).
We again consider (1.46), now with ϕ ∈ H1(Ω)

d

dt

∫
Ω

w (x, t) ·ϕ dx =−
∫

∂Ω

(f1 ·ϕn1 + f2 ·ϕn2) dS +∫
Ω

(
∂ϕ

∂x1

· f1 +
∂ϕ

∂x2

· f2

)
dx, ∀ϕ ∈ H1(Ω).

(1.53)

Before we focus on the surface integrals, we will formulate (1.53) for each cell Ki of Ωh

d

dt

∑
i∈I

∫
Ki

w (x, t) ·ϕ dx =−
∑
i∈I

∑
j∈S(i)

∫
Γij

∑
s=1,2

fs ·ϕns dS+

∑
i∈I

∫
Ki

(
∂ϕ

∂x1

· f1 +
∂ϕ

∂x2

· f2

)
dx, ∀ϕ ∈ H1(Ω).

(1.54)

In terms of the [L2]
m

-scalar product

(w, ϕ) =
∑
i∈I

∫
Ki

w (x, t) ·ϕ (x) dx (1.55)

(1.54) leads to

d

dt
(w, ϕ) =−

∑
i∈I

∑
j∈S(i)

∫
Γij

∑
s=1,2

fs ·ϕns dS +

∑
i∈I

∫
Ki

∑
s=1,2

∂ϕ

∂xs

· fs dx, ∀ϕ ∈ H1(Ω).

(1.56)

We choose ϕh ∈ Xh and claim that an approximate weak solution wh ∈ C1 ([0, T ] ; Xh)
has to satisfy a discrete version of (1.56) for all ϕh ∈ Xh.
However, as described before, our objective is to construct a numerical solution which is
possibly discontinuous on cell interfaces, where we have to evaluate the flux functions if
we want to compute the surface integrals in (1.56). We cannot formulate these surface
integrals without defining the fluxes of wh on the cell interfaces.



10 CHAPTER 1. DISCONTINUOUS GALERKIN METHOD

The DG method proposes to use the concept of numerical fluxes H
(
wh|Γij

, wh|Γji
, nij

)
,

cf. (1.7), derived from the finite volume methods∫
Γij

∑
s=1,2

fs ·ϕhns dS ≈
∫

Γij

H
(
wh|Γij

, wh|Γji
, nij

)
·ϕh dS. (1.57)

The numerical flux can be computed with approximate Riemann solvers from the values
of the discontinuous conserved variable in the cells adjacent to the considered cell interface.
We now require that for an arbitrary ϕh ∈ Xh the approximate solution wh ∈ C1 (Xh; [0, T ])
fulfills the following discretization of (1.56)

d

dt
(wh, ϕh) =−

∑
i∈I

∑
j∈S(i)

∫
Γij

H
(
wh|Γij

, wh|Γji
, nij

)
·ϕh dS+

∑
i∈I

∫
Ki

∑
s=1,2

∂ϕh

∂xs

· fs dx, ∀ϕh ∈ Xh.

(1.58)

Denoting by B the set of basis functions of Xh – the number of basis functions of the
approximate space is again finite – it is sufficient to satisfy (1.58) for all ϕh ∈ B

d

dt
(wh, ϕh) =−

∑
i∈I

∑
j∈S(i)

∫
Γij

H
(
wh|Γij

, wh|Γji
, nij

)
·ϕh dS +

∑
i

∫
Ki

∑
s=1,2

∂ϕh

∂xs

· fs dx, ∀ϕh ∈ B.

(1.59)

Using the notation

bh(wh, ϕh) =
∑
i∈I

∑
j∈S(i)

∫
Γij

H
(
wh|Γij

, wh|Γji
, nij

)
·ϕh dS −

∑
i∈I

∫
Ki

∑
s=1,2

∂ϕh

∂xs

· fs dx, wh ∈ C1 (Xh; [0, T ]) , ϕh ∈ Xh,

(1.60)

the DG discretization of problem (1.1) results in the following initial value problem

wh ∈ C1 ([0, T ] ; Xh) ,

d

dt
(wh(t), ϕh) + bh(wh(t), ϕh) = 0, ∀ϕh ∈ B,

wh(0) = w0
h.

(1.61)

The basis functions are constructed according to the choice of the grid and of the space
Xh.
A suitable choice of methods for the discretization in time and space, i.e. of suitable
time stepping methods and quadrature rules, completes the discretization and yields an
algorithm to update the unknown values of the numerical solution in each cell for each
time interval.
Implementation examples will be presented and discussed in the next chapter.



Chapter 2

Implementation of DG schemes

2.1 Implementation with Rectangles

As a first implementation example we will consider piecewise bilinear test functions on a
rectangular grid, cf. Figure 2.1. The elements Ki of the grid are numbered with indices
i ∈ I, where I is a suitable index set. By Aiν , ν ∈ V (i) = {0, . . . 3} we denote the four
vertices of a cell Ki. The test functions are associated with the vertices Aiν of the cells.
The set B of basis functions then has the following form

B =
{
φ1

kµ, . . . ,φ
m
kµ

}
, k ∈ I, µ ∈ V (k),

φ1
kµ = (φkµ, 0, . . . , 0)T , . . . , φm

kµ = (0, . . . , 0, φkµ)T ,

φkµ(Aiν) = δikδνµ,

(2.1)

where I denotes the index set of mesh cells. The number of basis functions is equal to m
times the number of vertices, i.e. in our case m times the number of cells times four, where
m is again the dimension of the considered equation system.
In each cell, wh can be expressed as a linear combination of the basis functions associated
with the vertices of this cell. Evaluation of the q-th component of wh in each vertex Akµ

gives the coefficients wq
kµ in the linear combination

wh|Kk
=

m∑
q=1

µ∈V (k)

wq
kµφ

q
kµ. (2.2)

When expressing wh in the scalar product in (1.61) according to (2.2) we get

(wh, ϕh) =
∑
k∈I

∫
Kk

m∑
q=1

µ∈V (k)

wq
kµ(t)φq

kµ ·ϕh dx

=
∑
k∈I

m∑
r=1

µ∈V (k)

wq
kµ(t)

∫
Kk

φq
kµ ·ϕh dx.

(2.3)

11
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We have
ϕh ∈ B =

{
φ1

iν , . . . ,φ
m
iν

}
, i ∈ I, ν ∈ V (i). (2.4)

Equation (1.61) yields

d

dt
(wh, φ

r
iν) + bh(wh(t), φ

r
iν) = 0, i ∈ I, ν ∈ V (i), r = 1, . . . ,m. (2.5)

We will now consider the scalar product on the left hand side of (2.5) more closely. We
state that

(wh, φ
r
iν) =

∑
k∈I

m∑
q=1

µ∈V (k)

wq
kµ(t)

∫
Kk

φq
kµ · φ

r
iν dx, i ∈ I, ν ∈ V (i), r = 1, . . . ,m. (2.6)

According to (2.1) it holds that(
φq

kµ, φ
r
iν

)
= 0, for q 6= r or k 6= i. (2.7)

That is why we get

(wh, φ
r
iν) =

∑
µ∈V (i)

wr
iµ(t)

∫
Ki

φr
iµ · φr

iν dx, ν ∈ V (i), (2.8)

and thus 
(wh, φ

r
i0)

(wh, φ
r
i1)

(wh, φ
r
i2)

(wh, φ
r
i3)

 = M


wr

i0(t)
wr

i1(t)
wr

i2(t)
wr

i3(t)

 , i ∈ I, (2.9)

where M is the so-called mass matrix for the cell Ki

M =


∫

Ki
φr

i0φ
r
i0 dx . . .

∫
Ki

φr
i3φ

r
i0 dx∫

Ki
φr

i0φ
r
i1 dx . . .

∫
Ki

φr
i3φ

r
i1 dx∫

Ki
φr

i0φ
r
i2 dx . . .

∫
Ki

φr
i3φ

r
i2 dx∫

Ki
φr

i0φ
r
i3 dx . . .

∫
Ki

φr
i3φ

r
i3 dx

 . (2.10)

When formulated for the whole grid, the mass matrix has the entries
(
φq

kµ, φ
r
iν

)
for which

we can state that (
φq

kµ, φ
r
iν

)
= 0, for q 6= r or k 6= i. (2.11)

Unfortunately, for the above choice of grid and basis functions the mass matrix is full,
i.e. not a diagonal matrix, which would be the case if the basis functions were orthogonal
respecting the [L2]

m
-scalar product, i.e.

(
φr

iµ, φ
r
iν

)
=

∫
Ki

φr
iµ · φr

iν dx = δµν . (2.12)
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Later in this chapter we will present an implementation with triangles which implies an
[L2]

m
-orthogonality of the basis functions.

If we express wh in (2.5) in terms of (2.9) and of the vectors

wr
i :=


wr

i0(t)
wr

i1(t)
wr

i2(t)
wr

i3(t)

 , bh(wh(t)) :=


bh(wh(t), φ

r
i0)

bh(wh(t), φ
r
i1)

bh(wh(t), φ
r
i2)

bh(wh(t), φ
r
i3)

 , (2.13)

we get
d

dt
Mwr

i (t) + bh(wh(t)) = 0, i ∈ I, r = 1, . . . ,m. (2.14)

Time Discretization

For the time discretization of problem (1.61) a second order Runge-Kutta method has been
implemented:

W (0) = W n
h ,

W (1) = W (0) + τnΦh

(
W (0)

)
,

W (2) = W (1) + τnΦh

(
W (1)

)
,

W n+1
h =

1

2

(
W (0) + W (2)

)
.

(2.15)

However, for the simplicity of the exploration we will formulate the DG update in the
following using the explicit Euler method:

W n+1
h = W n

h + τnΦh (W n
h ) . (2.16)

Application to problem (1.61) yields

wn+1
h ∈ Xh,(

wn+1
h , ϕh

)
= (wn

h , ϕh)− τnbh (wn
h , ϕh) ∀ϕh ∈ Xh.

(2.17)

or equally

M (wr
i )

n+1 = M (wr
i )

n − τnbh(wh(t)) = 0, i ∈ I, r = 1, . . . ,m. (2.18)

The inversion of M yields the vector of unknowns (wr
iν)

n+1 at the new time level

(wr
i )

n+1 = (wr
i )

n −M−1τnbh(wh(t)) = 0, i ∈ I, r = 1, . . . ,m. (2.19)

Obviously a diagonal mass matrix M would be desirable.
The time discretization of (1.61) with the second order Runge-Kutta method is analogous.
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Space Discretization

We will now discuss how to approximate the integral terms of (2.14). In Chapter 3 we
will enter into theoretical results concerning the order of convergence of the DG scheme.
A suitable choice of quadrature rules is necessary, if a second order convergence is to be
obtained. More precisely, in [5], Cockburn et al. state that for second order convergence
on a rectangular grid, the approximations of the volume integrals have to be exact for
polynomials of degree 4 and the approximations of the surface integrals for polynomials
of degree 5. We will mainly use Gaussian quadrature rules for the discretization of the
integral terms. Using k points, the Gauss quadrature rule is exact for polynomials of degree
2k − 1. Consequently on a rectangular grid we have to use Gauss quadrature rules with 3
points for the surface integrals and 3× 3 points for the volume integrals.
The one-dimensional Gauss quadrature formula using k points reads as follows∫ b

a

f(x) dx ≈ b− a

2

k∑
ν=1

cνf

(
b− a

2
xν +

a + b

2

)
. (2.20)

For the volume integrals we apply the one-dimensional Gauss quadrature rule in both space
directions and get∫ d

c

∫ b

a

f(x) dxdy ≈ (b− a)(d− c)

4

k∑
i,j=1

cicjf

(
b− a

2
xi +

a + b

2
,
d− c

2
yj +

c + d

2

)
. (2.21)

Discretization of the mass matrix

For each cell in the quadrilateral grid with cell width ∆x1 and ∆x2 we get the following
mass matrix

M =


4 2 1 2
2 4 2 2
1 2 4 1
2 2 1 4

 ∆x1∆x2

36
, (2.22)

and its inverse reads

M−1 =


4 −2 1 −2
−2 4 −2 2
1 −2 4 −1
−2 1 −2 4

 4

∆x1∆x2

. (2.23)

In order to get a diagonal mass matrix, we can approximate the integrals(
φr

iνφ
r
iµ

)
=

∫
Ki

φr
iν · φr

iµ dx (2.24)

by the trapezoidal rule as(
φr

iνφ
r
iµ

)
≈ ∆x1∆x2

4

∑
η∈V (i)

φr
iν (Aiη) · φr

iµ (Aiη) . (2.25)
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Assumption (2.1) implies that

φiν(Aiη) = δνη, (2.26)

so that (2.25) reduces to

(
φr

iνφ
r
iµ

)
≈ ∆x1∆x2

4

∑
ν,µ∈V (i)

φr
iν (Aiν) · φr

iµ (Aiµ)

=
∆x1∆x2

4
δνµ.

(2.27)

Consequently the trapezoidal rule yields the following diagonal approximate mass matrix
M̃

M̃ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ∆x1∆x2

4
. (2.28)

It should be pointed out that this approximation of the volume integrals is not exact for
polynomials of degree 4.
Note that the entries of the mass matrix are integrals over the product of two bilinear
functions. Consequently a quadrature rule which is exact for polynomials of degree 4 – as
is given by the Gauss quadrature with 3 × 3 points – yields the exact entries of the mass
matrix.

Discretization of the form bh

We will now discretize the form bh(wh(t
n), φr

iν). The surface integrals have been discretized
using Gauss quadrature rules. The Gauss quadrature which is exact for polynomials of
degree 3 uses the following computational points and weights

x1 = − 1√
3
, c1 = 1,

x2 = 1√
3
, c2 = 1.

(2.29)

Using

x1 = −
√

3
5
, c1 = 5

9
,

x2 = 0, c2 = 8
9
,

x3 =
√

3
5
, c3 = 5

9
,

(2.30)

we get a quadrature rule which is exact for polynomials of degree 5.
For the discretization of the volume integrals we applied the above formulated Gauss
quadrature rules in both x1− and x2-direction.
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Limiting

When approximating discontinuous solutions with piecewise polynomial functions of order
one or higher, local maxima and minima can arise in the numerical solution, which are
unphysical. To avoid this effect, a limiter has to be applied at each time level. The limiter
smooths local steep gradients and spurious oscillations in the numerical solution.
We have applied the so-called minmod limiter, cf. [4].
In the following we will formulate this limiting strategy when applied to the DG approx-
imation of a scalar equation. For the sake of notational simplicity we will only consider
slopes in x1-direction. As described above the numerical solution will be stored in the
vertices of the cells of the rectangular grid. Averaging yields the values wm, wl and wr of
the numerical solution, which are placed in the cell midpoint, the midpoint of the left cell
interface and the midpoint of the right cell interface, respectively. By wml, wmr we denote
the value in the midpoint of the left and right neighbouring cell. We then set

m =
wr − wl

∆x1

,

ml =
wm − wml

∆x1

,

mr =
wmr − wm

∆x1

,

(2.31)

and apply the minmod strategy, which changes the slope m in the considered cell according
to the following formula

m =

{
min(m, ml, mr), if sign(m) = sign(ml) = sign(mr)

= 0, else.
(2.32)

In x2-direction we procede analogously. Thus locally steep gradients are smoothed out, but
the cell averaged value of the solution

∫
K

w dx remains unchanged, so that the conservation
property of the DG scheme is not destroyed.

Boundary treatment

In order to be able to apply (1.59) at boundary cells, too, we have implemented a layer
of ghost cells, lying outside the computational domain. The values in the cells which are
placed at the boundary of the computational domain are either copied periodically or
extrapolated into these ghost cells. With the help of this implementation, each boundary
cell has four uniquely defined neighbouring cells and the fluxes through the cell interfaces
can be computed at the boundary equally as in the interior of the computational domain
according to (1.59).
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Figure 2.1: Rectangular grid.

Figure 2.2: Triangular grid.
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2.2 Implementation with Triangles

In this work we have besides rectangular meshes examined the effect of a triangular grid
and a corresponding choice of basis functions on the accuracy, stability and convergence of
the DG scheme. In order to model technically relevant flows in complex geometries, it will
be appropriate to subdivide the approximate domain Ωh into arbitrary triangles, yielding
irregular meshes. In this work, we were especially interested in a comparison of different
discretizations of the integrals and their effects on the numerical solution. For this purpose
we have implemented the DG method on a grid, that is obtained when subdividing each
cell of the quadrilateral grid into two triangles as is depicted in Figure 2.2. We should
point out that the implementation using irregular triangular grids is analogous, although
it is more technical.

Basis functions

For the triangular grid the approximate solution and test functions are piecewise linear.
The elements Ki of the grid are numbered with indices i ∈ I, where I is a suitable index
set. By Qiν , ν ∈ V (i) = {0, . . . 2} we denote the midpoints of the cell edges of a triangular
element Ki. The basis functions φr

kµ are associated with the edge midpoints Qkµ and are
consequently defined by the following condition

B =
{
φ1

kµ, ..,φ
m
kµ

}
, k ∈ I, µ ∈ V (k),

φ1
kµ = (φkµ, 0, . . . , 0)T , . . . , φm

kµ = (0, . . . , 0, φkµ)T ,

φkµ(Qiν) = δikδνµ.

(2.33)

In the following we will consider the different terms of

d

dt
Mwr

i (t) + bh(wh(t)) = 0, i ∈ I, r = 1, . . . ,m, (2.34)

for this choice of grid and basis functions.

Time Discretization

For the time discretization we have implemented the second order Runge-Kutta method
presented in the previous section.

Space discretization

In order to integrate the piecewise linear basis functions over a considered cell Ki or
cell interface Γij, quadrature rules of lower order are sufficient than for the piecewise
bilinear functions on our quadrilateral grid. The convergence results presented in Chapter
3 indicate that quadrature rules which are exact for polynomials of degree 2 should be
used for the approximation of the volume integrals and that the surface integrals should
be approximated with quadrature rules which are exact for polynomials of degree 3 if a
second order scheme is to be constructed.
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Discretization of the mass matrix

Again we have by definition(
φr

iν , φ
q
kµ

)
= 0, for q 6= r or i 6= k. (2.35)

Note that for this choice of grid and basis functions, we get for a cell Ki with leg length
∆x1 and ∆x2 (

φr
iν , φ

r
iµ

)
=

∫
Ki

φr
iν · φr

iµ dx = δµν
∆x1∆x2

6
, (2.36)

i.e. the basis functions are orthogonal respecting the L2-scalar product, and M is diagonal

M =

1 0 0
0 1 0
0 0 1

 ∆x1∆x2

6
. (2.37)

Consequently, for the triangular grid, the application of the trapezoidal rule(
φr

iµφ
r
iν

)
=

∆x∆y

6

∑
µ,ν∈V (i)

φr
iµ (Qiµ) · φr

iν (Qiν)

=
∆x1∆x2

6
δµν

(2.38)

yields the exact mass matrix M.

Discretization of the form bh

The surface integrals are approximated with the two-point Gauss quadrature rule, which
is exact for polynomials of degree 3.
The volume integrals are approximated by the trapezoidal rule. Summing over the mid-
points of the cell interfaces we get the following approximate volume integrals∫

Kk

∑
s=1,2

fs ·
∂φr

kµ

∂xs

dx ≈ ∆x∆y

6

∑
s=1,2

∑
ν∈V (k)

fs (Qkν) ·
∂φr

kµ

∂xs

(Qkν) . (2.39)

The trapezoidal rule is exact for polynomials of degree 2.

Limiting

For the triangular grid, it is not intuitively clear how to implement the minmod limiter
(2.32) presented in Section 2.1 for the rectangular grid. We have therefore followed the
approach of adaptive limiting proposed by Doleǰśı, see Feistauer et al. [2].
The basic idea of this limiter is to replace the linear numerical solution on a cell Ki by
its integral average over this cell, if the discontinuity on the cell interfaces Γij, j ∈ V (i) is
estimated as too high. Thus, in the vicinity of local discontinuities, the piecewise linear
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solution is made constant on chosen cells. The selection of those cells is carried out by the
so-called discontinuity indicator g(i) which is obtained by integrating over the jumps on
the interfaces Γij of the considered cell Ki

g(i) =
1

|Γij|α
∑

j∈V (i)

∫
Γij

(uh|Γij
− uh|Γji

)2dS, α ∈ (1, 5). (2.40)

If we denote by wn+1
h the solution at time tn+1 obtained from the Euler update

wn+1
h = wn

h + M−1τnbh(w
n
h , ϕh) = 0, i ∈ I, (2.41)

– or analogously from the Runge-Kutta update – and by w̃n+1
h the solution at time tn+1

modified by the adaptive limiter, we can formulate the limiting strategy in the following
way:

w̃n+1
h |Ki

=

{
1

|Ki|

∫
Ki

wn+1
h dx, if g(i) > 1

wn+1
h |Ki

, else.
(2.42)



Chapter 3

Properties of Numerical Methods

Accuracy and Convergence

The accuracy of the numerical method can be measured by the difference between the
numerical solution and the exact solution, i.e. by the so-called global error ε. This can be
expressed as

ε ≡ ‖u(tn)− Un
h ‖X ≤ ‖u(tn)− Phu(tn)‖X + ‖Phu(tn)− Un

h ‖X , (3.1)

where the first term at the RHS denotes the projection error generated by a projection
Ph onto a suitable piecewise polynomial space. The second term is the evolutionary error,
which is in fact generated by the truncation error assuming that the numerical scheme
is stable. The truncation error can be computed by means of the Taylor expansion and
thus, of course, a smooth exact solution has to be assumed. At discontinuities and steep
gradients the truncation error tends to be significant. In order to reduce oscillations of
higher order schemes at discontinuities, further techniques, such as limiters, have to be
added.
The global error should be proportional to a power of the time step ∆t as well as of the
mesh size ∆x. Usually we have

ε = O(∆tp, ∆xq). (3.2)

We then say that the numerical scheme is of order q in time and p in space. The order
describes the rate with which the accuracy of the numerical solution increases in dependence
of the time step and/or the mesh size.
For the three numerical schemes presented in this work, theoretical results concerning the
order of converge can be found in literature, stating that for general scalar multidimensional
nonlinear equations, it holds that

ε ≤ O(∆x
1
4 ). (3.3)

Only for linear equations or systems the order of the schemes can be derived on the basis
of the Taylor expansion. For this case, it can be formally shown for the FV schemes, that

ε ≤ O(∆x2). (3.4)

21
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M. Lukáčová-Medvid’ová et al. confirmed this result for the multidimensional FVEG
scheme in [7]. For the DG scheme, implemented with polynomials of order k, Cockburn et
al. [5] proved with the help of the Taylor expansion, that in order to obtain a scheme of
order k +1, the quadrature rules for the volume integrals must be exact for polynomials of
degree 2k and the approximation of the surface integrals have to be exact for polynomials
of degree 2k + 1.
In consequence, using piecewise bilinear functions, we have to approximate the volume
integrals by quadrature rules exact for polynomials of degree 4 and the surface integrals
by quadrature rules exact for polynomials of degree 5. For piecewise linear functions the
quadrature rules have to be exact for polynomials of degree 2 and 3, respectively.
In order to find out whether our implementations of the different schemes reflect this
theoretical result, we have inspected the order of convergence by systematically refining
the grid and examining the behaviour of the global error. If the exact solution is known,
the order of convergence in a certain norm || · ||X can be computed in the following way

EOC = log2


∥∥∥un

N/2 − un
ref

∥∥∥
X∥∥un

N − un
ref

∥∥
X

 , (3.5)

where the EOC is the so-called experimental order of convergence, N denotes the number
of cells in each direction, u denotes the numerical and uref the exact solution. A suitable
choice of space is X = L2(Ω) or X = L1(Ω). It is possible, too, to compute the EOC on
the basis of the numerical solution obtained on three successively refined grids, if the exact
solution is not known. We then get

EOC = log2


∥∥∥un

N/2 − un
N

∥∥∥
X

‖un
N − un

2N‖X

 . (3.6)

In our numerical experiments with the Burgers equation we will use (3.5). In general, it is
not possible to compute the exact solution, so that the experimental order of convergence
will be computed according to (3.6).

Stability

A prerequisite for convergence is the stability of the numerical method. Stability means
that the numerical solution stays bounded as long as the initial data is bounded, i.e.

‖Un‖X ≤ ‖U0‖X , tn ∈ (0, T ), (3.7)

where X is a suitable vector space. For linear problems X = L2(Ω) is a suitable choice and
we speak about the von Neumann stability analysis, based on the Fourier transformation.
For nonlinear problems, such as the shallow water system (5.1), (5.2), this problem is more
difficult. For one-dimensional nonlinear systems X = L1(Ω) ∩ BV – where BV denotes
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spaces with bounded variations. In the case of multidimensional scalar equations, such
as the Burgers equation, X = L∞(Ω) can be an appropriate choice, cf. [1] for a stability
analysis of monotone FV schemes. For time explicit numerical schemes it is necessary to
fulfill the so-called Courant-Friedrichs-Lewy stability condition (CFL condition) in order to
satisfy (3.7). The CFL condition is a condition on the relationship between ∆t and ∆x. It
expresses the fact that the time step has to be chosen so small that any discrete wave can
propagate mostly at the next mesh cell at one time step. For a two-dimensional problem
we get

∆t ≤ CFL ∆xs

σ(As(wn))
, s = 1, 2. (3.8)

Here σ(As) denotes the spectral radius of the flux Jacobian As and wn the solution at
time tn. Methods that only convergence for restricted time steps due to (3.7) but produce
oscillations if the time step is not bounded are called conditionally stable.
With the von Neumann stability analysis the stability of a numerical method can be
investigated and the CFL number can be found. M. Lukáčová-Medvid’ová et al. found
with the help of the von Neumann analysis out that the FVEG scheme is stable for CFL
numbers smaller than 0.75 for the second order schemes and 0.79 for the first order methods,
cf. [7], [9] for more details.



Chapter 4

Burgers Equation

The Burgers equation is one of the simplest nonlinear hyperbolic conservation laws. In two
space dimensions it reads as follows

∂u

∂t
+ u

∂u

∂x1

+ u
∂u

∂x2

= 0 in Ω× (0, T ). (4.1)

Comparison with the general formulation (1.1) of a hyperbolic problem yields

f(u) =
u2

2
,

A(u) = u,
(4.2)

and we have A(u)u 6= f(u). The homogeneity condition (1.27) is not fulfilled. We have
therefore mainly used the Van Leer scheme for our numerical experiments. In the test
cases 2 and 4, however, we show numerical results for the Vijayasundaram scheme and the
Steger-Warming scheme, too.

4.1 Test cases

In our numerical experiments we focused on the examination of the accuracy, stability and
convergence of the different schemes.
For the Burgers equation we show a comparison of the DG scheme and the FV scheme
as well as a of the three different implementations of the DG scheme, presented in the
Chapter 2.
In four test cases we will analyse the numerical solution of the Burgers equation (4.1) with
the initial data given by

u0(x) = 0.25 + 0.5 sin(π(x1 + x2)), x ∈ Ω. (4.3)

On the basis of these test cases we will examine the properties of the different implemen-
tations of the DG scheme and of the standard FV scheme. All test cases are based on the

24
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following discretizations.

Time Discretization: second order Runge-Kutta method
Domain size: [−1, 1]× [−1, 1]
Boundary Treatment: periodic boundary condition

The test cases 1 and 2 consider the discontinuous solution of (4.1), (4.3) at time t = 0.4,
cf. Figures 4.1 to 4.2 and 4.7 to 4.8. At t = 0.1 the solution of (4.1), (4.3) is smooth and
therefore suitable for the computation of the order of convergence of the different schemes,
which is examined in the test case 4 and shown in the Tables 4.1 to 4.6. Test case 2 analyses
the stability of the numerical solution for both the continuous and the discontinuous case.
The results can be seen in Figures 4.3 to 4.6.

Test Case 1 Accuracy

Details
Computation of the numerical fluxes: Van Leer
Limiting: minmod
CFL number: 0.45
Simulation time: 0.4 (discontinuous solution)
Grid size: 30× 30, 80× 80 and 200× 200 cells
Implementation of the DG scheme: rectangles, mass matrix approximated

by a trapezoidal rule
Volume integrals in bh (DG scheme): Gauss quadrature with 2× 2 points
Surface integrals (DG and FV scheme): Gauss quadrature with 2 points

In Figure 4.1 to Figure 4.2 we compare the accuracy of the DG scheme with that of the
FV scheme for problem (4.1), (4.3) on different grids. We can see that for course meshes
the discontinuities are slightly smoothed out, but for finer meshes, the solution converges
to the exact solution and the discontinuities are resolved sharply, by both schemes.
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Test Case 2A Stability

Details
Computation of the numerical fluxes: Van Leer
Limiting: minmod
Simulation time: 0.4 (discontinuous solution)
Grid size: 80× 80 cells
Implementation of the DG scheme: rectangles, mass matrix approximated

by a trapezoidal rule
Volume integrals in bh (DG scheme): Gauss quadrature with 2× 2 points
Surface integrals (DG and FV scheme): Gauss quadrature with 2 points

We show the discontinuous numerical solution of (4.1), (4.3) for a series of augmenting
CFL numbers in Figure 4.3. Here the mesh sizes ∆x1, ∆x2 are constant so that the CFL
number is closely related to the time step. One can see a convergence in dependence of
the time step, the solution approaches the exact solution for small CFL numbers, whereas
at a CFL number 0, 5 the stability limit for the computation of the discontinuous solution
is reached, at a CFL number of 0.6 the solution begins to oscillate.

Test Case 2B Stability

Details
Computation of the numerical fluxes: Van Leer
Limiting: minmod
Simulation time: 0.1 (smooth solution)
Grid size: 80× 80 cells
Implementation of the DG scheme: – rectangles, mass matrix approximated

by a trapezoidal rule
– rectangles, exact mass matrix
– triangles

Volume integrals in bh (DG scheme): Gauss quadrature with 2× 2 points
Surface integrals (DG and FV scheme): Gauss quadrature with 2 points

A comparison of the different implementations of the DG scheme for the solution of the
Burgers equation at t = 0.1 in Figure 4.4 to 4.6 shows that not all implementations
are equally stable. Whereas the implementation with rectangles and approximate mass
matrix is stable at a CFL number of 0.9 for 160× 160 cells, and more, cf. Figure 4.5, the
implementation with the exact mass matrix is at such a high CFL number only stable for
up to 100× 100 cells. If the grid is refined further, lower CFL numbers have to be chosen,
as can be seen in Figure 4.4. Our implementation with triangles shows already oscillations
at 80× 80 cells at a CFL number of 0.4, cf. Figure 4.6.



4.1. TEST CASES 27

Test Case 3 Flux functions

Details
Computation of the numerical fluxes: – Van Leer

– Steger-Warming
– Vijayasundaram

Limiting: minmod
Simulation time: 0.4 (discontinuous solution)
CFL number: 0.45
Grid size: 80× 80 cells
Implementation of the DG scheme: rectangles, mass matrix approximated

by a trapezoidal rule
Volume integrals in bh (DG scheme): Gauss quadrature with 2× 2 points
Surface integrals (DG and FV scheme): Gauss quadrature with 2 points

In the Figures 4.7 and 4.8 the numerical solution of (4.1), (4.3) is shown for different
numerical fluxes. Although the Burgers equation does not fulfill the homogeneity condition
(1.27), the use of the Vijayasundaram scheme and of the Steger-Warming scheme, does not
negatively influence the accuracy or convergence of the schemes.

Test Case 4A Convergence

Details
Computation of the numerical fluxes: Van Leer
Limiting: no limiting
Simulation time: 0.1 (smooth solution)
Implementation of the DG scheme:
– Implementation 1:

rectangles
mass matrix: approximated by a trapezoidal rule
volume integrals in bh: Gauss quadrature with 3× 3 points
surface integrals: Gauss quadrature with 3 points

– Implementation 2:
rectangles
mass matrix: exact
volume integrals in bh: Gauss quadrature with 3× 3 points
surface integrals: Gauss quadrature with 3 points

– Implementation 3:
triangles
mass matrix: exact
volume integrals in bh: trapezoidal rule
surface integrals: Gauss quadrature with 2 points

Implementation of the FV scheme:
Surface integrals: Gauss quadrature with 3 points
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For our convergence experiments in Tables 4.1 to 4.4 we again consider the smooth solution
at t = 0.1 of problem (4.1), (4.3). When comparing the order of convergence of the
different implementations at low CFL numbers, an implementation of the DG scheme
with triangles or rectangles and exact mass matrix seems to be desirable. However, the
instability of these implementations, which is of course reflected by the EOCs, speaks in
favour of an implementation with rectangles and approximate mass matrix. Unfortunately,
the approximation of the integrals in the mass matrix with the trapezoidal rule is not
enough in order to achieve the second order convergence. Here we obtain an EOC of about
1.49 for the L2-norm. The EOC computed in the L1-norm approaches a value of 1.7 for
increasing cell numbers. With the FV scheme we have obtained a stable experimental
order of convergence of about 2 which confirms the formal truncation error analysis in case
of linear problems.

Test Case 4B Convergence

Details
Computation of the numerical fluxes: – Van Leer

– Steger-Warming
– Vijayasundaram

Limiting: no limiting
Simulation time: 0.1 (smooth solution)
CFL number: 0.4
Implementation of the DG scheme: rectangles, mass matrix approximated

by a trapezoidal rule
Volume integrals in bh (DG scheme): Gauss quadrature with 3× 3 points
Surface integrals (DG and FV scheme): Gauss quadrature with 3 points

In Tabels 4.5 and 4.6 we show the experimental order of convergence for different numerical
flux functions. No relevant differences can be seen in the obtained EOCs.
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DG scheme, 30× 30 cells FV scheme, 30× 30 cells

DG scheme, 80× 80 cells FV scheme, 80× 80 cells

DG scheme, 200× 200 cells FV scheme, 200× 200 cells

Figure 4.1: Test case 1, accuracy of FV and DG scheme for different grid sizes.
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30× 30 cells

80× 80 cells

200× 200 cells

Figure 4.2: Test case 1, accuracy of FV and DG scheme for different grid sizes, u at y = 0,
blue dots: exact solution, red dots: FV solution, black dots: DG solution, remarkable
differences between the lines occur only at the discontinuity.
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CFL = 0.1 CFL = 0.2

CFL = 0.3 CFL = 0.4

CFL = 0.5 CFL = 0.6

Figure 4.3: Test case 2A, stability of DG and FV scheme for different CFL numbers, u at
y = 0, blue dots: exact solution, red dots: FV solution, black dots: DG solution.
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100× 100 cells, CFL = 0.9 160× 160 cells, CFL = 0.2

160× 160 cells, CFL = 0.3 160× 160 cells, CFL = 0.4

Figure 4.4: Test case 2B, stability of DG scheme for different implementations, rectangles,
exact mass matrix, u at y = 0, red dots: exact solution, black dots: DG solution.
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160× 160 cells, CFL = 0.9

Figure 4.5: Test case 2B, stability of DG scheme for different implementations, rectangles,
mass matrix with a trapezoidal rule, u at y = 0, red dots: exact solution, black dots: DG
solution.

80× 80 cells, CFL = 0.3 80× 80 cells, CFL = 0.4

Figure 4.6: Test case 2B, stability of DG scheme for different implementations, triangles,
u at y = 0, red dots: exact solution, black dots: DG solution.
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Figure 4.7: Test case 3, DG scheme for different numerical fluxes, u at y = 0, green
dots: exact solution, black dots: Van Leer, red dots: Vijayasundaram, blue dots: Steger
Warming, no remarkable differences between the numerical fluxes are visible.

Figure 4.8: Test case 3, FV scheme for different numerical fluxes, u at y = 0, green
dots: exact solution, black dots: Van Leer, red dots: Vijayasundaram, blue dots: Steger
Warming, no remarkable differences between the numerical fluxes are visible.
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N ×N cells
∥∥un

N − un
ref

∥∥
L2 EOCL2

∥∥un
N − un

ref

∥∥
L1 EOCL1

20× 20 0.002000 0.002885
40× 40 0.000444 2.171368 0.000659 2.130221
80× 80 0.000100 2.150560 0.000156 2.078732

160× 160 0.000024 2.058894 0.000038 2.037475
320× 320 0.000006 2.000000 0.000010 1.925999

EOCs for CFL = 0.1

N ×N cells
∥∥un

N − un
ref

∥∥
L2 EOCL2

∥∥un
N − un

ref

∥∥
L1 EOCL1

20× 20 0.003050 0.004430
40× 40 0.000848 1.846673 0.001180 1.908520
80× 80 0.000230 1.882430 0.000309 1.933108

160× 160 0.000062 1.891294 0.000082 1.913911
320× 320 0.000016 1.954196 0.000021 1.965235

EOCs for CFL = 0.4

Table 4.1: Test case 4A, Convergence of FV scheme for different CFL numbers.

N ×N cells
∥∥un

N − un
ref

∥∥
L2 EOCL2

∥∥un
N − un

ref

∥∥
L1 EOCL1

20× 20 0.022113 0.034918
40× 40 0.007894 1.486066 0.011794 1.565918
80× 80 0.002820 1.485061 0.003900 1.596507

160× 160 0.001001 1.494253 0.001234 1.660132
320× 320 0.000354 1.499621 0.000375 1.718380

EOCs for CFL = 0.1

N ×N cells
∥∥un

N − un
ref

∥∥
L2 EOCL2

∥∥un
N − un

ref

∥∥
L1 EOCL1

20× 20 0.021296 0.033472
40× 40 0.007675 1.472344 0.011413 1.552277
80× 80 0.002773 1.468719 0.003811 1.582437

160× 160 0.000992 1.483036 0.001211 1.653971
320× 320 0.000352 1.494765 0.000370 1.710602

EOCs for CFL = 0.4

Table 4.2: Test case 4A, convergence of DG scheme for different CFL numbers, implemen-
tation: rectangles, mass matrix approximated with a trapezoidal rule.
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N ×N cells
∥∥un

N − un
ref

∥∥
L2 EOCL2

∥∥un
N − un

ref

∥∥
L1 EOCL1

20× 20 0.013159 0.021236
40× 40 0.003363 1.968229 0.005412 1.972278
80× 80 0.000851 1.982518 0.001365 1.987261

160× 160 0.000214 1.991548 0.000343 1.992620
320× 320 0.000054 1.986579 0.000086 1.995800

EOCs for CFL = 0.1

N ×N cells
∥∥un

N − un
ref

∥∥
L2 EOCL2

∥∥un
N − un

ref

∥∥
L1 EOCL1

20× 20 0.013080 0.021250
40× 40 0.003352 1.964268 0.005417 1.971897
80× 80 0.000848 1.982886 0.001368 1.985426

160× 160 0.000217 1.966369 0.000349 1.970769
320× 320 0.008637 -5.314763 0.002584 -2.888307

EOCs for CFL = 0.2

N ×N cells
∥∥un

N − un
ref

∥∥
L2 EOCL2

∥∥un
N − un

ref

∥∥
L1 EOCL1

20× 20 0.012923 0.021263
40× 40 0.003348 1.948570 0.005497 1.951629
80× 80 0.015604 -2.220544 0.007657 -0.478135

160× 160 0.056578 -1.858325 0.023571 -1.622162
320× 320 0.040961 0.465990 0.016305 0.531699

EOCs for CFL = 0.3

Table 4.3: Test case 4A, convergence of DG scheme for different CFL numbers, implemen-
tation: rectangles, exact mass matrix.
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N ×N cells
∥∥un

N − un
ref

∥∥
L2 EOCL2

∥∥un
N − un

ref

∥∥
L1 EOCL1

20× 20 0.011015 0.016691
40× 40 0.003021 1.866371 0.004494 1.892998
80× 80 0.000787 1.940591 0.001164 1.948909

160× 160 0.000201 1.969168 0.000295 1.980304
320× 320 0.000051 1.978626 0.000075 1.975752

EOCs for CFL = 0.1

N ×N cells
∥∥un

N − un
ref

∥∥
L2 EOCL2

∥∥un
N − un

ref

∥∥
L1 EOCL1

20× 20 0.012354 0.018048
40× 40 0.002886 2.097835 0.004297 2.070437
80× 80 0.000815 1.824199 0.001190 1.852368

160× 160 0.000219 1.895869 0.000311 1.935975
320× 320 0.000059 1.892144 0.000080 1.958843

EOCs for CFL = 0.3

N ×N cells
∥∥un

N − un
ref

∥∥
L2 EOCL2

∥∥un
N − un

ref

∥∥
L1 EOCL1

20× 20 0.027974 0.032120
40× 40 0.012261 1.190010 0.012568 1.353717
80× 80 0.022053 -0.846898 0.016827 -0.421023

160× 160 0.043989 -0.996168 0.027987 -0.733979
320× 320 0.037618 0.225720 0.020683 0.436311

EOCs for CFL = 0.4

Table 4.4: Test case 4A, convergence of DG scheme for different CFL numbers, implemen-
tation: triangles.
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N ×N cells
∥∥un

N − un
ref

∥∥
L2 EOCL2

∥∥un
N − un

ref

∥∥
L1 EOCL1

20× 20 0.021296 0.033472
40× 40 0.007675 1.472344 0.011413 1.552277
80× 80 0.002773 1.468719 0.003811 1.582437

160× 160 0.000992 1.483036 0.001211 1.653971
320× 320 0.000352 1.494765 0.000370 1.710602

EOCs for Van Leer

N ×N cells
∥∥un

N − un
ref

∥∥
L2 EOCL2

∥∥un
N − un

ref

∥∥
L1 EOCL1

20× 20 0.021296 0.033472
40× 40 0.007675 1.472344 0.011413 1.552277
80× 80 0.002773 1.468719 0.003811 1.582437

160× 160 0.000992 1.483036 0.001211 1.653971
320× 320 0.000352 1.494765 0.000370 1.710602

EOCs for Steger Warming

N ×N cells
∥∥un

N − un
ref

∥∥
L2 EOCL2

∥∥un
N − un

ref

∥∥
L1 EOCL1

20× 20 0.021296 0.033472
40× 40 0.007675 1.472344 0.011413 1.552277
80× 80 0.002773 1.468719 0.003811 1.582437

160× 160 0.000992 1.483036 0.001211 1.653971
320× 320 0.000352 1.494765 0.000370 1.710602

EOCs for Vijayasundaram

Table 4.5: Test case 4B, convergence of DG scheme for different numerical fluxes.
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N ×N cells
∥∥un

N − un
ref

∥∥
L2 EOCL2

∥∥un
N − un

ref

∥∥
L1 EOCL1

20× 20 0.003050 0.004430
40× 40 0.000848 1.846673 0.001180 1.908520
80× 80 0.000230 1.882430 0.000309 1.933108

160× 160 0.000062 1.891294 0.000082 1.913911
320× 320 0.000016 1.954196 0.000021 1.965235

EOCs for Van Leer

N ×N cells
∥∥un

N − un
ref

∥∥
L2 EOCL2

∥∥un
N − un

ref

∥∥
L1 EOCL1

20× 20 0.003049 0.004454
40× 40 0.000844 1.853021 0.001176 1.921213
80× 80 0.000230 1.875609 0.000309 1.928209

160× 160 0.000062 1.891294 0.000082 1.913911
320× 320 0.000016 1.954196 0.000021 1.965235

EOCs for Steger-Warming

N ×N cells
∥∥un

N − un
ref

∥∥
L2 EOCL2

∥∥un
N − un

ref

∥∥
L1 EOCL1

20× 20 0.003050 0.004430
40× 40 0.000848 1.846673 0.001180 1.908520
80× 80 0.000230 1.882430 0.000309 1.933108

160× 160 0.000062 1.891294 0.000082 1.913911
320× 320 0.000016 1.954196 0.000021 1.965235

EOCs for Vijaysundaram

Table 4.6: Test case 4B, Convergence of FV scheme for different numerical fluxes.



Chapter 5

Shallow Water Equations

The shallow water equation system plays an important role in the modeling of a variety
of free surface water flows, such as oceanographic flows and flows in lakes and rivers. We
can find their applications in modeling atmospheric and geophysical flows. These types of
flows are all characterized by a free surface, by the influence of gravity and by the vertical
dimension being negligible in comparison to the horizontal dimensions.
The homogeneous shallow water equations written in conservative variables have the fol-
lowing form

∂

∂t
U +

∂

∂x
f1(U ) +

∂

∂y
f2(U ) = 0, (5.1)

with

U =

 h
hu
hv

 ,

f1 =

 hu
hu2 + 1

2
gh2

huv

 , f2 =

 hv
hvu

hv2 + 1
2
gh2

 .

(5.2)

Here and in what follows g is the gravitational accelaration.

Hyperbolic Structure

For the computation of the numerical fluxes we need the hyperbolic structure of the flux
functions f1, f2. We denote by A1, A2 the Jacobians of f1, f2, respectively, by λ1

i , λ
2
i their

eigenvalues and by l1i , l
2
i and r1

i , r
2
i their left and right eigenvectors, i = 0, 1, 2. Furthermore

we define

a =
√

gh. (5.3)

40
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The hyperbolic structure of f1 then reads

A1 =

 0 1 0
a2 − u2 2u 0
−uv v u

 ,

λ1
0 = u− a, λ1

1 = u, λ1
2 = u + a,

R1
0 = α0

 1
u− a

v

 , R1
1 = α1

0
0
1

 , R1
2 = α2

 1
v + a

v

 ,

L2
0 = α̃0

u + a
−1
0

T

, L2
1 = α̃1

−v
0
1

T

, L2
2 = α̃2

u− a
−1
0

T

.

(5.4)

For f2 we have

A2 =

 0 0 1
−uv v u

a2 − v2 0 2v

 ,

λ2
0 = v − a, λ2

1 = v, λ2
2 = v + a,

R2
0 = β0

 1
u

v − a

 , R2
1 = β1

0
1
0

 , R2
2 = β2

 1
u

v + a

 ,

L2
0 = β̃0

v + a
0
−1

T

, L2
1 = β̃1

−u
1
0

T

, L2
2 = β̃2

v − a
0
−1

T

.

(5.5)

The scaling factors αi, α̃i and βi, β̃i must be chosen such that

Li ·Rj = δij. (5.6)

This condition yields the following relations

α0 =
1

2aα̃0

, α1 =
1

α̃1

, α2 = − 1

2aα̃2

,

β0 =
1

2aβ̃0

, β1 =
1

β̃1

, β2 = − 1

2aβ̃2

.
(5.7)

For the shallow water equations we have

A1U =

 0 1 0
a2 − u2 2u 0
−uv v u

 h
hu
hv

 =

 hu
hu2 + gh2

huv

 6= f1 (U ) , (5.8)
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A2U =

 0 0 1
−uv v u

a2 − v2 0 2v

 h
hu
hv

 =

 hv
huv

hv2 + gh2

 6= f2 (U ) . (5.9)

The homogeneity condition (1.27) does not hold for the shallow water equations, either. An
application of the Vijayasundaram scheme and of the Steger-Warming scheme is therefore
not justified. Our numerical experiments confirm this fact, cf. test case 3, Figures 5.25 to
5.36.

5.1 Test cases

For the shallow water equations our main goal is the comparison between the DG scheme
and the FVEG scheme. The numerical experiments with the DG scheme have been carried
out with rectangles and approximate mass matrix. The stability results for the Burgers
equation described above confirm the applicability of this choice. The present implemen-
tation of the FVEG scheme is based on rectangles, too, so that the comparison is relevant.
Again we show results with standard FV schemes, which are also implemented on a rect-
angular grid.
In three test cases we have analysed the accuracy and stability of the discontinuous solu-
tion of the so-called Sod problem. It describes a two-dimensional dam break and considers
the shallow water equations (5.1),(5.2) for the following initial data

h = 0.1, u = 0, v = 0, for ||x|| > 0.3, t = 0,
h = 1, u = 0, v = 0, for ||x|| < 0.3, t = 0.

(5.10)

In the fourth test case we again consider the order of convergence of the different schemes.
To this end we computed the smooth numerical solution of the shallow water equations
(5.1),(5.2) with initial data

h = 0.25,

u = 1 + 0.5 sin(πy) + 0.25 cos(πx),

v = 1 + 0.25 sin(πx) + 0.5 cos(πy), x, y ∈ Ω, t = 0.

(5.11)

The numerical solution of (5.1),(5.2), (5.10) is depicted in the Figures 5.1 to 5.36. The
convergence of the methods for problem (5.1),(5.2), (5.11) can be seen in the Tables 5.1 to
5.3.
The following choice of discretizations and parameters are valid for all test cases.

Time Discretization
– DG and standard FV scheme: second order Runge-Kutta method
– FVEG scheme: midpoint rule
Implementation of the DG scheme: rectangles, mass matrix approximated

by a trapezoidal rule
Gravitational acceleration g: 10
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Test Case 1 Accuracy

Details
Computation of the numerical fluxes: Van Leer
Limiting: minmod
Boundary Treatment: constant extrapolation
CFL number: 0.45
Simulation time: 0.25
Domain size: [−1, 1]× [−1, 1]
Grid size: 100× 100 and 200× 200 cells
Volume integrals in bh (DG scheme): Gauss quadrature with 2× 2 points
Surface integrals
– DG and FV scheme: Gauss quadrature with 2 points
– FVEG scheme: Simpson rule

The accuracy with which the discontinuous solution of the Sod problem (5.1), (5.2), (5.10)
is resolved by the DG scheme, the FVEG scheme and the standard FV scheme can be seen
in Figure 5.1 to Figure 5.20. The numerical solutions obtained with these three schemes,
are comparable in accuracy. The plots at y = 0 show slight differences in the second veloc-
ity component. Note however that the scale goes to 10−2. The differences at the boundary,
which attract one’s attention in Figure 5.10, are only due to a different implementation
of the boundary condition. Whereas for the FVEG scheme the ghost cells, which contain
the extrapolated values at the boundary, are placed within the computational domain, the
other two schemes are implemented with the ghost cell layers lying without the domain.
Important differences between the three schemes occur only in the resolution of multidi-
mensional effects. The velocity contour plots show that the sharpest resolution of these
effects is obtained with the FVEG scheme.
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Test Case 2 Stability

Details
Computation of the numerical fluxes: Van Leer
Limiting: minmod
Boundary Treatment: constant extrapolation
Simulation time: 0.25
Domain size: [−1, 1]× [−1, 1]
Grid size: 100× 100 cells
Volume integrals in bh (DG scheme): Gauss quadrature with 2× 2 points
Surface integrals
– DG and FV scheme: Gauss quadrature with 2 points
– FVEG scheme: Simpson rule

For the purpose of finding out the stability limits of the DG and the standard FV scheme
we show plots of the numerical solution of the Sod problem (5.1), (5.2), (5.10) for high
CFL numbers, cf. Figure 5.21 to Figure 5.24. We have already mentioned in Chapter 3
that the FVEG is stable for CFL numbers smaller than 0.75. The stability limits that we
obtained for the FV scheme and the DG scheme are depicted in Figures 5.21 to 5.24. The
DG scheme shows first small oscillations in the order of 10−2 at a CFL number of 0.9, for
the FV scheme these oscillations are first visible at a CFL number of 0.7.

Test Case 3 Flux functions

Details
Computation of the numerical fluxes: – Van Leer

– Steger-Warming
– Vijayasundaram

Boundary Treatment: constant extrapolation
Limiting: minmod
CFL number: 0.45
Simulation time: 0.25
Domain size: [−1, 1]× [−1, 1] and [−1.5, 1.5]× [−1.5, 1.5]
Grid size: 100× 100 cells and 150× 150 cells
Volume integrals in bh (DG scheme): Gauss quadrature with 2× 2 points
Surface integrals
– DG and FV scheme: Gauss quadrature with 2 points
– FVEG scheme: Simpson rule

In this test case we have applied different numerical fluxes and compared the obtained
numerical solution of the Sod problem (5.1), (5.2), (5.10), which can be seen in Figure
5.25 to Figure 5.36. In order to avoid an influence of boundary effects on the numerical
solution, we have computed the solution on two different domain sizes [−1, 1]× [−1, 1] and
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[−1.5, 1.5]× [−1.5, 1.5] with 100× 100 cells and 150× 150 cells, respectively.
In contrast to the Burgers equation, we can see for the shallow water equations an evident
difference between the numerical flux functions. The Figures 5.25 to 5.36 show that the
Vijaysundaram scheme and the Steger-Warming do not approximate the fluxes appropri-
ately. These effects are equally visible for the DG scheme and the FV scheme. Especially
at the boundary the accuracy of the solution suffers from the inappropriate application
of these schemes. When considering a larger domain size, these problems are partially re-
moved, but the Van Leer scheme is again clearly more accurate. This phenomenon can be
explained by the homogeneity condition (1.27) which is not fulfilled by the shallow water
equation and required by the Vijaysundaram scheme and the Steger-Warming scheme.

Test Case 4 Convergence

Details
Computation of the numerical fluxes: Van Leer
Boundary Treatment: periodic boundary condition
Limiting no limiting
CFL number: 0.4
Simulation time: 0.2
Domain size: [−1, 1]× [−1, 1]
Volume integrals in bh (DG scheme): Gauss quadrature with 3× 3 points
Surface integrals
– DG and FV scheme: Gauss quadrature with 3 points
– FVEG scheme: Simpson rule

Finally, we will again focus on the EOCs of the different schemes. To this end we consider
in Tables 5.1 to 5.3 the smooth solution of problem (5.1), (5.2), (5.11). The FVEG scheme
as well as the FV scheme show a stable EOC of about 2. Astonishingly, for the shallow wa-
ter equations, the EOCs we obtained with the DG scheme are higher than those obtained
for the Burgers equation with the same implementation, cf. Table 4.2. Here, the EOCs
of the DG scheme approach those obtained with the FVEG scheme and the FV scheme.
Note however that the absolute value of the global error indicates a superiority of the FV
schemes in accuracy.
Apart from these numerical results we can further state some advantages and disadvan-
tages of the different schemes. For the DG scheme, the choice of a wide variety of elements
and basis functions is possible, and easily implemented. Thus complex geometries can be
easily discretized, and higher order schemes can be constructed. For the FVEG scheme an
implementation with triangles is possible, although more technical effort is necessary than
for the implementation with rectangles, cf. [10]. The construction of higher order finite
volume schemes is more technical, too, cf. [3]. The standard FV scheme can accommodate
any cell form.



46 CHAPTER 5. SHALLOW WATER EQUATIONS
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Figure 5.1: Test case 1, accuracy of DG scheme, 100× 100 cells.
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Figure 5.2: Test case 1, accuracy of DG scheme, contour plots, 100× 100 cells.
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Figure 5.3: Test case 1, accuracy of DG scheme, plots at y = 0, 100× 100 cells.
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Figure 5.4: Test case 1, accuracy of FVEG scheme, 100× 100 cells.
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Figure 5.5: Test case 1, accuracy of FVEG scheme, contour plots, 100× 100 cells.
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Figure 5.6: Test case 1, accuracy of FVEG scheme, plots at y = 0, 100× 100 cells.
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Figure 5.7: Test case 1, accuracy of FV scheme, 100× 100 cells.
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Figure 5.8: Test case 1, accuracy of FV scheme, contour plots, 100× 100 cells.



54 CHAPTER 5. SHALLOW WATER EQUATIONS

h, u, v h

u v

Figure 5.9: Test case 1, accuracy of FV scheme, plots at y = 0, 100× 100 cells.
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Figure 5.10: Test case 1, accuracy of DG, FVEG and FV scheme, plots at y = 0, 100×100
cells.
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Figure 5.11: Test case 1, accuracy of the DG scheme,200× 200 cells.
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Figure 5.12: Test case 1, accuracy of the DG scheme, contour plots, 200× 200 cells.
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Figure 5.13: Test case 1, accuracy of the DG scheme, plots at y = 0, 200× 200 cells.
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Figure 5.14: Test case 1, accuracy of the FVEG scheme, 200× 200 cells.
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Figure 5.15: Test case 1, accuracy of the FVEG scheme, contour plots, 200× 200 cells.
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Figure 5.16: Test case 1, accuracy of the FVEG scheme, plots at y = 0, 200× 200 cells.
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Figure 5.17: Test case 1, accuracy of the FV scheme, 200× 200 cells.
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Figure 5.18: Test case 1, accuracy of the FV scheme, contour plots, 200× 200 cells.
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Figure 5.19: Test case 1, accuracy of the FV scheme, plots at y = 0, 200× 200 cells.
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Figure 5.20: Test case 1, accuracy of DG, FVEG and FV scheme, plots at y = 0, 200×200
cells.



66 CHAPTER 5. SHALLOW WATER EQUATIONS

h, u, v h

u v

Figure 5.21: Test case 2, stability of the DG scheme, CFL = 0.8, plots at y = 0.
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Figure 5.22: Test case 2, stability of the DG scheme, CFL = 0.9, plots at y = 0.
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Figure 5.23: Test case 2, stability of the FV scheme, CFL = 0.6, plots at y = 0.
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Figure 5.24: Test case 2, stability of the FV scheme, CFL = 0.7, plots at y = 0.
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Figure 5.25: Test case 3, DG scheme for different numerical fluxes, Van Leer, domain size
[−1, 1]× [−1, 1].
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h, u, v at y = 0 h

u v

Figure 5.26: Test case 3, DG scheme for different numerical fluxes, Vijayasundaram, do-
main size [−1, 1]× [−1, 1].
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Figure 5.27: Test case 3, DG scheme for different numerical fluxes, Steger-Warming, domain
size [−1, 1]× [−1, 1].
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h, u, v at y = 0 h

u v

Figure 5.28: Test case 3, DG scheme for different numerical fluxes, Van Leer, domain size
[−1.5, 1.5]× [−1.5, 1.5].
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h, u, v at y = 0 h
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Figure 5.29: Test case 3, DG scheme for different numerical fluxes, Vijayasundaram, do-
main size [−1.5, 1.5]× [−1.5, 1.5].
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h, u, v at y = 0 h

u v

Figure 5.30: Test case 3, DG scheme for different numerical fluxes, Steger-Warming, domain
size [−1.5, 1.5]× [−1.5, 1.5].
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Figure 5.31: Test case 3, ShallowWater/FV scheme for different numerical fluxes, Van Leer,
domain size [−1, 1]× [−1, 1].
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h, u, v at y = 0 h

u v

Figure 5.32: Test case 3, ShallowWater/FV scheme for different numerical fluxes, Vijaya-
sundaram, domain size [−1, 1]× [−1, 1].
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h, u, v at y = 0 h
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Figure 5.33: Test case 3, ShallowWater/FV scheme for different numerical fluxes, Steger-
Warming, domain size [−1, 1]× [−1, 1].
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h, u, v at y = 0 h

u v

Figure 5.34: Test case 3, ShallowWater/FV scheme for different numerical fluxes, Van Leer,
domain size [−1.5, 1.5]× [−1.5, 1.5].
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h, u, v at y = 0 h
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Figure 5.35: Test case 3, ShallowWater/FV scheme for different numerical fluxes, Vijaya-
sundaram, domain size [−1.5, 1.5]× [−1.5, 1.5].
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h, u, v at y = 0 h

u v

Figure 5.36: Test case 3, ShallowWater/FV scheme for different numerical fluxes, Steger-
Warming, domain size [−1.5, 1.5]× [−1.5, 1.5].
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N ×N cells
∥∥∥Un

N/2 − Un
N

∥∥∥
L2

EOCL2

∥∥∥Un
N/2 − Un

N

∥∥∥
L1

EOCL1

40× 40 0.008236 0.020011
80× 80 0.002323 1.825955 0.005512 1.860145

160× 160 0.000608 1.933846 0.001428 1.948580
320× 320 0.000154 1.981141 0.000362 1.979934

EOCs for U = (h, hu, hv)T

N ×N cells
∥∥∥hn

N/2 − hn
N

∥∥∥
L2

EOCL2

∥∥∥hn
N/2 − hn

N

∥∥∥
L1

EOCL1

40× 40 0.002460 0.003842
80× 80 0.000670 1.876425 0.001042 1.882502

160× 160 0.000174 1.945074 0.000270 1.948324
320× 320 0.000044 1.983512 0.000069 1.968291

EOCs for h

N ×N cells
∥∥∥un

N/2 − un
N

∥∥∥
L2

EOCL2

∥∥∥un
N/2 − un

N

∥∥∥
L1

EOCL1

40× 40 0.014166 0.023777
80× 80 0.004089 1.792612 0.006688 1.829920

160× 160 0.001105 1.887702 0.001776 1.912943
320× 320 0.000287 1.944924 0.000458 1.955212

EOCs for u

Table 5.1: Test case T4, convergence of DG scheme, CFL = 0.4



5.1. TEST CASES 83

N ×N cells
∥∥∥Un

N/2 − Un
N

∥∥∥
L2

EOCL2

∥∥∥Un
N/2 − Un

N

∥∥∥
L1

EOCL1

40× 40 0.001305 0.003137
80× 80 0.000259 2.331123 0.000637 2.299331

160× 160 0.000060 2.121213 0.000147 2.119698
320× 320 0.000015 2.029765 0.000036 2.042593

EOCs for U = (h, hu, hv)T

N ×N cells
∥∥∥hn

N/2 − hn
N

∥∥∥
L2

EOCL2

∥∥∥hn
N/2 − hn

N

∥∥∥
L1

EOCL1

40× 40 0.000375 0.000547
80× 80 0.000068 2.469341 0.000105 2.381071

160× 160 0.000014 2.306277 0.000022 2.264561
320× 320 0.000003 2.136968 0.000005 2.134424

EOCs for h

N ×N cells
∥∥∥un

N/2 − un
N

∥∥∥
L2

EOCL2

∥∥∥un
N/2 − un

N

∥∥∥
L1

EOCL1

40× 40 0.002774 0.004200
80× 80 0.000670 2.048535 0.001037 2.017743

160× 160 0.000164 2.033718 0.000256 2.017437
320× 320 0.000040 2.021053 0.000063 2.012732

EOCs for u

Table 5.2: Test case T4, convergence of FVEG scheme, CFL = 0.4.



84 CHAPTER 5. SHALLOW WATER EQUATIONS

N ×N cells
∥∥∥Un

N/2 − Un
N

∥∥∥
L2

‖Un
N/2

−Un
N‖L2

‖Un
N−Un

2N‖L2

∥∥∥Un
N/2 − Un

N

∥∥∥
L1

‖Un
N/2

−Un
N‖L1

‖Un
N−Un

2N‖L1

40× 40 0.004378 0.009941
80× 80 0.001101 1.991457 0.002503 1.989733

160× 160 0.000285 1.949781 0.000649 1.947368
320× 320 0.000073 1.964994 0.000166 1.967035

EOCs for U = (h, hu, hv)T

N ×N cells
∥∥∥hn

N/2 − hn
N

∥∥∥
L2

‖hn
N/2

−hn
N‖L2

‖hn
N−hn

2N‖L2

∥∥∥hn
N/2 − hn

N

∥∥∥
L1

‖hn
N/2

−hn
N‖L1

‖hn
N−hn

2N‖L1

40× 40 0.001187 0.001736
80× 80 0.000296 2.003651 0.000432 2.006664

160× 160 0.000077 1.942667 0.000113 1.934709
320× 320 0.000020 1.944858 0.000029 1.962198

EOCs for h

N ×N cells
∥∥∥un

N/2 − un
N

∥∥∥
L2

‖un
N/2

−un
N‖L2

‖un
N−un

2N‖L2

∥∥∥un
N/2 − un

N

∥∥∥
L1

‖un
N/2

−un
N‖L1

‖un
N−un

2N‖L1

40× 40 0.006433 0.009468
80× 80 0.001528 2.073847 0.002314 2.032671

160× 160 0.000388 1.977516 0.000595 1.959427
320× 320 0.000099 1.970556 0.000152 1.968818

EOCs for u

Table 5.3: Test case T4, convergence of FV scheme, CFL = 0.4.



Conclusions

The aim of this work was a comparison of the discontinuous Galerkin method with the
traditional finite volume methods as well as with the genuinely multidimensional finite
volume evolution Galerkin method, when applied to hyperbolic problems.
For the DG scheme, the construction of linear basis functions on a triangular grid proposed
by Feistauer [2] formed the basis of our implementation. Apart from the implementation
of this approach on a regular triangular grid, we wanted to consider the DG scheme on a
rectangular grid, in order to make a better comparison with the FVEG scheme possible.
An implementation of the FVEG scheme on a rectangular grid was given. Therefore, pro-
ceeding in analogy to the triangular approach, we constructed a DG scheme with piecewise
bilinear basis functions on a rectangular grid. This is our original contribution. Now, the
choice of quadrature rules for the volume and surface integrals needed special attention.
In correspondence to the convergence results derived by Cockburn et al. [5], approxima-
tions differing from those proposed by Feistauer [2] for the triangular grid had to be used.
For the discretization of the numerical fluxes several approaches have been implemented
in order to examine the influence of the numerical flux function on the properties of the
DG scheme. Analogously, we have implemented the traditional FV scheme with different
numerical flux functions on a rectangular grid.
Our extensive numerical results show the accuracy, stability and convergence of the dif-
ferent schemes, when applied to the Burgers equation and to the shallow water equation
system. No large differences can be seen between the approximations obtained with the
different numerical schemes. However, it should be pointed out that in comparison with the
DG scheme, the FVEG scheme is sharper in the resolution of multidimensional effects. The
global error that we obtained when applying the DG scheme to the shallow water equation
system, suggests that the DG scheme is not equal in accuracy to the finite volume schemes,
either. The implementation of the DG scheme with approximate mass matrix is superior
in stability to the finite volume schemes. However, for the other implementations of the
DG scheme, stability is only obtained by strongly limiting the time step. Here a different
choice of the time stepping method might help.
An examination of the stability of the differently implemented DG schemes on the basis
of the von Neumann analysis might be an interesting objective of future study. Further
comparisons between the DG scheme and the FV schemes might be of interest, too, among
which could be named a comparison of the CPU time. Here, the traditional FV schemes
have the advantage, that only the surface integrals have to be computed at each time level,
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whereas the DG update requires the computation of the volume integrals as well as of the
surface integrals. For a better examination of the influence of the different numerical flux
functions on the properties of the DG scheme, hyperbolic problems which do fulfill the
homogeneity condition (1.27) – such as e.g. the Euler equations – should be considered.
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