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1. Introduction 
 

Estimation of outstanding claims is an essential part of actuarial work in general insurance. 

Due to the nature of general insurance contracts and the claim settlement process, almost any 

actuarial task must address the question: have outstanding claims been taken into account? 

 Most of the common actuarial methods for estimating the cost of outstanding claims 

involve extrapolation of a two-dimensional development triangle. The row or vertical 

dimension of the development triangle is normally the accident year or underwriting year, 

and the column or horizontal dimension is the delay between the accident year (underwriting 

year) and successive valuation dates. The developing quantity, which is subject to modelling 

and prediction, is usually one of the following: the number of reported claims, the 

accumulated claim payments, or the amount of reported incurred claims. For a survey of 

traditional actuarial methods for loss reserving, see Taylor (2000). 

While the two-dimensional models may be effective tools to predict the outstanding 

cost of claims per accident year, they do not allow the actuary to make a strict distinction 

between the outstanding cost of claims that are reported but not settled (RBNS), and claims 

that are incurred but not reported (IBNR). The reason for this failing is that claim 

development between two valuation dates comprises two separate types of development: 

changes in the assessment of reported incurred claims, and reports of new claims that are 

received by the insurer. 

An explicit distinction between reported and unreported claims is made by Arjas 

(1989), who provides a structural framework for claim reserving but no operational models. 

Arjas� framework forms the basis of papers by Haastrup & Arjas (1996) and Norberg (1999a, 

1999b), who also provide sketches of operational models. Implementing those models may 

still be a formidable task, as they are formulated in continuous time. 

This paper presents a discrete time model that comprises delay in two dimensions: 

delay between the accident year and the reporting year (hereafter called the reporting delay), 

and delay between the reporting year and the valuation year (hereafter called the valuation 

delay). This model allows a strict distinction between the cost of reported claims and the cost 

of unreported claims. 
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The main features of model follow Norberg (1986, 1999a, 1999b). The occurrence of 

accidents is modelled by a mixed Poisson process, with a possibility for modelling serial 

correlation between accident frequencies in consecutive years. The reporting delay is 

assumed to be governed by a fixed pattern of delay probabilities. The severity of individual 

claims is assumed to be independent of the claim number process, and the model allows for a 

stochastic dependence between the reporting delay and the claim severity. The process of 

partial payments and reassessments is made conditional on the severity of claims reported. 

The proposed predictors of outstanding claim cost are of the credibility-weighted 

form, which includes as limiting cases, the Chain ladder method and the Bornhuetter-

Ferguson method. It is not the purpose of this paper to introduce new credibility models, but 

to show how the existing ones can be exploited in an integrated model. 

To make the model operational one needs to quantify, subjectively or by estimation, 

several sets of fixed parameters. This paper addresses the problem of estimating those 

parameters only cursorily. My main concern is to argue that estimation of outstanding claims 

should be conducted using three, rather than only two time dimensions. 

A three-dimensional model was first proposed and analysed by Ørsted (1999), who 

developed Kalman-filter techniques to update its estimates. The model played a role in the 

recognition of, and subsequent recovery from the Norwegian Workers� Compensation 

debacle of the mid-1990s. At that time the ultimate cost of Workers� Compensation insurance 

claims still was very uncertain. Being able to separate claims IBNR from claims RBNS and 

to show convincingly that the cost of claims RBNS was likely to escalate far beyond what 

most people expected, and with it the cost of claims IBNR, was crucial to gaining acceptance 

for the dire actuarial predictions. 

 

2. A model of claim development � the observables 
 

Conforming with standard actuarial terminology, the discrete time periods will be 

called "years" throughout this paper. In practice it is entirely possible and usually advisable to 

build the model with shorter time periods (quarters or months). The initial investment in 

doing so is more than compensated by the facility with which one can calculate updated 

estimates at shorter time intervals and using a consistent set of assumptions. Now let us get 

on with "years". 
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We denote accident years by j. For an accident year j, we denote the amount of risk 

exposed by jp . The number of claims reported with delay d is denoted by jdN . The 

individual severities of those claims we denote by },,1:{ )(
jd

k
jd NkY L=  and their sum as jdY . 

For a given claim its ultimate severity )(k
jdY  is made up of a series of partial payments )(k

jdtU  

that occur at delay t after the reporting date: 

(2.1) ∑
∞

=

=
0

)()(

t

k
jdt

k
jd UY . 

In addition to partial payments we may observe outstanding case estimates. Denote by 
)(k

jdtV  the change in the outstanding case estimate at delay t after the reporting date. Finally, let 

)()()( k
jdt

k
jdt

k
jdt VUW +=  denote the change in the reported incurred claim cost. Note that  

(2.2) ∑∑
∞

=

∞

=

==
0

)(

0

)()(

t

k
jdt

t

k
jdt

k
jd WUY , 

which states the obvious fact that the total change in the outstanding case estimate from the 

time when the claim is reported to the time when it is settled, is zero.  

Now assume that the last calendar year and the current valuation date is J. At that time 

we will have recorded the reported number of claims },,0,,,1:{ jJdJjN jd −== LL , 

while }1,,,1:{ +−>= jJdJjN jd L  will still be unreported. The only partial payments that 

we have had the chance to observe are those for which Jtdj ≤++ . The accumulated 

payments to the end of year J are 

(2.3) ∑
+−

=
+−≤ =

)(

0

)()(
)(,

djJ

t

k
jdt

k
djJjd UU , 

with corresponding formulas for the current outstanding case estimate and current reported 

incurred claim cost. The outstanding payments in respect of claims RBNS are 

(2.4)  ∑∑ ∑
=

−

=

∞

++−=

=
J

j

jJ

d djJt
jdtJ U

1 0 1)(

RBNS , 

and the future cost of claims IBNR is 

(2.5)  ∑ ∑ ∑
=

∞

+−=

∞

=

=
J

j jJd t
jdtJ U

1 1 0

IBNR . 
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The development tetrahedron (below) illustrates the three dimensions of claim 

development. Claims that are RBNS at time J have been reported inside the horizontal 

triangle given by Jdj ≤+ , as indicated by a diamond. The observed development of a 

reported claim is indicated by a solid vertical line lying inside the tetrahedron which is 

delimited by Jtdj ≤++ , and its future development is indicated by the dotted extension of 

that line. The development of a claim ends at settlement, indicated by a bullet. A claim that is 

IBNR starts its observed development outside the horizontal triangle and its development 

lifeline is dotted all the way to settlement, or course. The current status of reported claims can 

be "read off" on the simplex given by Jtdj =++ . 

 

Figure 1. The development tetrahedron 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following abbreviation will be used in the rest of this paper: a variable with a subscript 

omitted denotes the sum of the underlying variables across all values of the subscript that has 

Accident 
period j 

Reporting 
delay d 

Valuation 
delay t 

IBNR RBNS

CBNI

J 
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been omitted. A variable with a subscript replaced by an inequality (e.g., )(, djJjdU +−≤ ) denotes 

the sum of the underlying variables that satisfy the inequality. A variable with a subscript 

replaced by ≤  is usually the sum of the underlying variables that lie inside the tetrahedron, 

while a variable with a subscript replaced by > is the sum of the underlying variables that lie 

outside the tetrahedron. 

 

3. A model of claim development �  stochastic assumptions 
 

Having defined the necessary notation for the observed quantities, let us now sketch out a 

stochastic model of their behaviour and interactions. More specific assumptions will be 

proposed in later sections. 

 We assume that conditional on unknown claim frequencies },,1:{ Jjj L=Θ , the 

claim numbers jdN  are independent random variables, each with a Poisson distribution, 

(3.1) )(Poisson~| djjjjjd pN πθθ=Θ , 

with fixed, non-negative delay probabilities },1,0:{ L=ddπ  that add to one. The evolution of 

claim frequencies will be governed by some or other stochastic process. Denote the mean of 

the vector )',,( 1 JJ ΘΘ= LΘ  by Jτ  its covariance matrix by JΛ . 

The severities of individual claims reported in year j+d in respect of accidents 

incurred in year j we denote by },,1:{ )(
jd

k
jd NkY L= . We assume that )(k

jdY  are independent 

random variables with a distribution dG  that may depend on the reporting delay d. We also 

assume that the severities are independent of the claim counts. Denote the mean and variance 

of )(k
jdY  by dξ  and 2

dσ , and let 22
ddd ξσρ +=  denote the non-central second order moment. 

Until such time as all claims are finally and irrevocably settled, the aggregate severity 

jdY  of the claims },,1:{ )(
jd

k
jd NkY L=  will be an unknown and must be estimated. Denote 

the unknown average severity by jdjdjd NY /=Ξ  (zero if 0=jdN ). Conditionally on the 

number of claims, the average severity jdΞ  has mean dξ  and variance jdd N/2σ . 

To model the development of partial payments },1,0:{ L=tU jdt conditionally on the 

number of claims and the unknown average severity, an obvious candidate is the Dirichlet 

distribution. Thus we will assume that 
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(3.2) ( ) jdjdjdjdjdjd NNUU Ξ×Ξ ),,(Dirichlet~,|,, 1010 LL αα , 

with non-negative fixed parameters L,, 10 αα . 

 The Dirichlet distribution not suited to model the conditional development of reported 

incurred claims },1,0:{ L=tW jdt , because its increments are strictly non-negative, while the 

increments of reported incurred claims may be negative. Therefore we will propose a model 

for the development of reported incurred claims, where the },1,0:{ L=tW jdt  are 

conditionally independent, given the number of claims and the unknown average severity, 

and where jdtW  is a compound Poisson random variable with a frequency parameter that is 

proportional to jdjdN Ξ  and a jump size distribution tH  that allows negative jumps: 

(3.3) ),(Poisson  Compound~,| tjdjdjdjdjdt HNNW ΞΞ  

 The assumptions that have been sketched above will be utilised in the sections that 

follow. One more assumption must be mentioned, being that for every reported claim its 

development (consisting of its partial payments, outstanding case estimates and ultimate 

severity) is stochastically independent of everything else, i.e. claim numbers, underlying 

claim frequencies, and the development of all other claims. This assumption is a consequence 

of the marked Poisson process assumption of Norberg (1999a, 1999b). It allows us to predict 

the amount of claims IBNR by predicting their number, and to predict separately the 

development of each cohort of claims RBNS that have been reported at time j+d in respect of 

accident year j. If you need a stringent formulation, see Norberg's papers. 

 

4. Estimation of the number of claims IBNR 
 

4.1 General formulation 
 

We start with a general formulation, using the notation defined in the two previous sections. 

Define the diagonal matrix  

(4.1) 



















=

≤

−≤

−≤

0

22

11

00
0

0
00

π

π
π

J

J

J

J

p

p
p

L

OM

M

L

V  
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At any time J, the vector of reported claim counts )',,( 0,1,1 ≤−≤= JJJ NN LN  is linearly 

regressed on the vector )',,( 1 JJ ΘΘ= LΘ  of claim frequencies through the equation 

(4.2) JJJJ ΘVΘN ⋅=)|(E , 

and has a covariance matrix given by 

(4.3) )(diag)|(Cov JJJJ ΘVΘN ⋅= . 

Using the apparatus of linear greatest accuracy credibility theory, we know that the 

best linear estimator of JΘ  based on the vector of observations JN  is 

(4.4) JJJJJ τZIΘZΘ )(� −+= , 

i.e., it is a credibility-weighted average of the "chain-ladder estimates" 

(4.5) 
′









==

≤

≤

−≤

−≤−

0

0,

11

1,11 ,,�
ππ J

J

J

J
JJJ p

N
p
N

LNVΘ , 

and the prior mean Jτ , where  the credibility matrix is  

(4.6) ( ) 11)(diag −−⋅+= JJJJJ VτΛΛZ . 

It is relatively easy to verify that the mean squared error matrix of the estimator JΘ  is 

(4.7) )'()()(diag)')((E)( '1
JJJJJJJJJJJJ ZIΛZIZτVZΘΘΘΘZQ −−+=−−= − . 

The credibility predictor of the number of claims IBNR in respect of accidents 

incurred in year j, is 

(4.8) jJjjjJj pN −>−> Θ= π, , 

and its mean squared error is 

(4.9) [ ] jjJjjjJjJjjJjjJj ppNN τππ −>−>−>−> +=− )()()(E 22
,, ZQ . 

The credibility predictor of the total number of claims IBNR is 

(4.10) ∑
=

−>> Θ=
J

j
jJjjpN

1

π , 

with mean squared error 

(4.11) [ ] ∑∑∑
=

−>
= =

−>−>>> +=−
J

j
jjJj

J

j

J

j
jJjjjJjJj pppNN

11 1'
'''

2 )()()()(E τπππ ZQ . 

 We now turn to estimating the cost of claims IBNR. In the conditional distribution 

given )',,( 1 JJ θθ L=Θ , the amounts },,1:{ , JjY jJj L=−>  of claims IBNR are independent 
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random variables, and jJjY −>,  has a compound Poisson distribution with frequency parameter 

jJjjp −>πθ  and a mixed severity distribution (the tail severity distribution) 

(4.12) ∑
∞

+−=

−
−>−> =

1

1

jJd
ddjJjJ GG ππ .  

Slightly abusing notation, we let the inequality subscript in conjunction with a bar denote a 

−π weighted average. The non-central first and second order moments of the tail severity 

distribution are then 

(4.13) ∑
∞

+−=

−
−>−> =

1

1

jJd
ddjJjJ ξππξ  and  

(4.14) ∑
∞

+−=

−
−>−> =

1

1

jJd
ddjJjJ ρππρ . 

 The credibility predictor of the amount of claims IBNR in respect of accidents 

incurred in year j, is 

(4.15) jJjJjjjJj pY −>−>−> Θ= ξπ, , 

and its mean squared error is 

(4.16) ( ) ( ) [ ] jJjJjjjjJjJjJjjJjjJj ppYY −>−>−>−>−>−> +=− ρπτξπ )(E 22
,, ZQ . 

The credibility predictor of the total amount of claims IBNR in respect of all accident years is 

(4.17) jJ

J

j
jJjjpY −>

=
−>> ∑ Θ= ξπ

1

, 

with mean squared error 

(4.18) [ ] jJ

J

j
jjJj

J

j

J

j
jJjJjjjJjJjJj pppYY −>

=
−>

= =
−>−>−>−>>> ∑∑∑ +=− ρτπξπξπ

11 1'
''''

2 )()()()(E ZQ . 

 Having written up general formulas for the credibility predictors and their mean 

squared error, we will now propose a handful of models for the process ∞
=1}{ JJΘ  that can be 

used to determine the mean Jτ  and the covariance matrix JΛ . The purpose in this paper is 

not to study these models in any detail, only to show how they fit into the general framework. 

 

4.2 Bühlmann-Straub model 
 

The Bühlmann-Straub model makes the assumption that the single-year accident frequencies 
J
jj 1}{Θ =   are independent and identically distributed random variables with a known mean τ  
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and a known variance λ . In that case one finds that 1×⋅= J
J 1τ τ  and  JJ

J
×⋅= IΛ λ  and easily 

derives the optimal credibility matrix 










+
=

−≤

−≤

τπλ
πλ

jJj

jJj
J p

p
diagZ  and its mean squared error 

matrix )')(()( '1
JJJJJJ ZIZIZVZZQ −−⋅+⋅= − λτ . Note that since the optimal credibility 

matrix is diagonal, each accident year's claim frequency is estimated on the basis of that 

accident year's claim numbers alone. 

 

4.3 Hierarchical model 
 

One can replace the known mean τ  of the Bühlmann-Straub model with an unknown random 

variable T  that has mean 0τ  and variance 0λ  and assume that conditionally on τ=T  the jΘ  

are i.i.d. random variables with mean τ  and a known variance λ . In that case one finds that 

1τ ⋅= 0τJ  and I11Λ ⋅+⋅= λλ '0J . The optimal credibility estimator may be written up 

explicitly, but in my opinion one may just as well stick to the matrix formulas (4.4)-(4.6). 

 

4.4 Random walk model 
 

The Bühlmann-Straub model stipulates that the claim frequencies are statistically constant, in 

the sense that each accident year´s claim frequency a priori has the same expected value. It 

also stipulates that the claim frequencies JΘΘ ,,1 L  are independent; therefore in estimating 

the claim frequency of a specific accident year, nothing can be gained by including data from 

other accident years. The hierarchical model allows for transfer of information between 

accident years, but it still retains the underlying assumption that claim frequencies are 

statistically constant.  

In real-life situations, claim frequencies are neither constant nor independent, but 

rather behave like a correlated time series. A simple assumption that reflects that observation 

would be that the claim frequencies follow a random walk, jjj ε+Θ=Θ −1 , where Jεε ,,1 L  

are independent and identically distributed error terms with mean zero and variance λ . 

Assume also, pro forma, that there exists an initial random variable 0Θ  that has mean 

)(E 00 Θ=τ and variance )Var( 00 Θ=λ . Then it is easy to verify that the random vector 
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)',,( 1 JJ ΘΘ= LΘ  has a mean vector 1τ ⋅= 0τJ  and a covariance matrix )( 'jjλ=Λ , with 

elements λλλ )',min(0' jjjj += . These can be inserted into (4.4)-(4.7). 

 One could argue that strictly positive claim frequencies cannot be modelled as a 

random walk, i.e. a martingale, that will converge almost surely when bounded. In my 

opinion, the error that one commits in making the random walk assumption, is of the same 

nature as the error one commits by modelling recruits' height by a normal distribution - i.e., 

negligible for practical purposes. 

One can develop more sophisticated models for the time series of claim frequencies. 

For example, if the basic time period is shorter than a year, it may be necessary to model 

seasonal variation. This can be done, at the expense of having to specify a larger number of 

model parameters. 

 

4.5 Kalman filter 
 

Several authors have proposed the Kalman filter as a tool in the estimation of outstanding 

claims. In my opinion, the Kalman filter is an elegant tool, but not particularly well suited in 

the estimation of outstanding claims. I will put forward some arguments for my view.  

 It goes beyond the scope of this paper to introduce the Kalman filter for readers who 

are not familiar with it. Let it suffice to say that the Kalman filter updating formula is of the 

form (using the same model and notation as before) 

(4.19) 1|

00,

111,1

| )(
/

/

−

−−

−+















= JJJ

JJ

JJ

JJJ

pN

pN
ΘKIKΘ

π

π
M . 

Here, JJ |Θ  denotes the credibility estimator of )',,( 1 JJ ΘΘ= LΘ  at valuation date J. The 

vector ( )'
1|

'
1|11| Θ, −−−− = JJJJJJ ΘΘ  consists of the credibility estimator of )',,( 111 −− ΘΘ= JJ LΘ  

at valuation date J -1, and a credibility predictor of JΘ  based on what was known at time J -

1. The credibility predictor of JΘ  depends of course on the dynamics of the underlying 

process model; in the random walk model it is 1|11| ΘΘ −−− = JJJJ . The Kalman gain matrix JK  

can be calculated recursively by formulas that are similar to the formula for the credibility 

estimator (4.6), which involves the inversion of a JJ ×  matrix. The vector of observations in 

big brackets consists of the incremental claim counts - i.e. new claims reported in period J - 
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scaled by the appropriate exposures. To sum up, the Kalman filter is a device to update the 

estimate of JΘ  in the light of new information as it emerges. Why don't I like it then? 

In normal time-series applications, with a long time series and observation vectors of 

fixed dimension, the Kalman filter is an algorithm that allows one to calculate the latest state 

estimates without having to invert large matrices. In estimation of outstanding claims, 

however, the dimension of the matrix to be inverted is always be equal to the length of the 

time series. Therefore the Kalman filter does not reduce computational effort compared with 

(4.4)-(4.7). 

 Secondly, the Kalman filter is intended for automatic updating of estimates as new 

data becomes available. I have yet to see a line of insurance where the estimation of 

outstanding claims can be left to the automatic pilot for any length of time. Any adjustment in 

the parameters necessitates a whole new run of the filter through all time points j=1,�,J, 

which can be more easily accomplished by a straight application of (4.4)-(4.7). 

 After these critical comments about the Kalman filter, I must add that dynamic linear 

modelling, of which the random walk model is the very simplest example, fits perfectly into 

the framework of estimating the number of claims IBNR. 

 

5. Estimation of the amount of claims RBNS 
 

Let us now turn to the problem of estimating the ultimate cost of a cohort of claims that has 

been reported in calendar year j+d and was incurred in accident year j, where of course 

Jdj ≤+ . We know with certainty the number of claims that have been reported ( jdN ) and 

any activity that has already been recorded on the claims. We pretend to know the ultimate 

cost of claims that are closed but, let�s face it, they could be reopened. In fact, the ultimate 

claim cost of those claims will never be known with full certainty. 

 In this section two models will be proposed to estimate the ultimate cost. One model 

is based on payments and the other model is based on reported incurred claims, i.e. payments 

plus case estimates. It would be nice to have formulated a model that utilises payment 

information and case estimate information simultaneously, but I have not found any elegant 

and tractable model yet. Anyone who has cared to read so far is hereby invited to join the 

search party. 
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5.1 Estimation of claims RBNS by payment data 
 

For the cohort of claims that has been reported in calendar year j+d and was incurred in 

accident year j, we denote the payments at delay t after the reporting year by jdtU . The 

unknown ultimate claim cost we denote by jdY  and the unknown average severity by jdΞ . 

To model the development of partial payments },1,0:{ L=tU jdt conditionally on the 

number of claims and the unknown average severity, an obvious candidate is the Dirichlet 

distribution. Thus let us make the assumption that 

(5.1) ( ) jdjdjdjdjdjd NNUU Ξ×Ξ ),,(Dirichlet~,|,, 1010 LL αα , 

with non-negative fixed parameters L,, 10 αα  summing to 0>α . Let ααυ /tt = . The 

conditional moments of the partial payments are then 

(5.2) ( ) jdjdtjdjdjdt NNU Ξ=Ξ υ,|E  and 

(5.3) ( ) ( )2''
' 1

,|,Cov jdjd
ttttt

jdjdjdtjdt NNUU Ξ







+
−=Ξ

α
υυυδ . 

Conditional on only jdN  and before any payments have been recorded, the average 

severity jdΞ  has a "prior mean" of dξ  and a variance of jdd N/2σ . We now use the apparatus 

of linear greatest accuracy credibility theory to find the best linear predictor of jdΞ  in the 

conditional model. It is 

(5.4) djdjdjdjd zz ξ)1(� −+Ξ=Ξ ,  

with �chain ladder estimate� 

(5.5) 
)(

�
djJjd

jdt
jd N

U

+−≤⋅
=Ξ

υ
,  

and a credibility factor of 

(5.6) ( ) )(
22

)(
2

)(
2

)1(
)1(

djJdjdddjJd

djJd
jd N

z
+−>+−≤

+−≤

+++
+

=
υξσυασ

υασ
. 

The conditional mean squared error of the predictor (5.4) is 

(5.7) ( ) ( )










−+

+
+

=Ξ−Ξ=
+−≤

+−>− 22

)(

)(
22

212 )1(
)1(

|)(E)|( djd
djJ

djJdjdd
jdjdjdjdjdjdjdd z

N
zNNNzq σ

υα
υξσ

. 

The best linear predictor of the outstanding payments is 

(5.8) )(,)(, djJjdjdjddjJjd UNU +−≤+−> −Ξ= , 
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with conditional mean squared error 

(5.9) ( )( ) )|(|E 22
)(,)(, jdjddjdjddjJjddjJjd NzqNNUU ⋅=− +−>+−> . 

Due to the independence between the different cohorts, the mean squared error of the overall 

amount of outstanding payments for reported claims is additive. 

 The assumption of the payment pattern being the same for claims at all notification 

delays, is not necessarily realistic. To see why this need not be the case, contrast claims 

notified in the accident year (d=0) with claims notified in the subsequent year (d=1). If 

accidents are spread evenly over the accident year, claim notifications in the accident year 

will be skewed towards the end of the year because of the notification delay. On the other 

hand, unless the reporting pattern is very flat-tailed, claim notifications in the subsequent year 

will occur mostly at the start of the year before they start tailing off. Thus on average, claims 

that are reported in the accident year will have less time for the first batch of payments (t=0) 

to be processed, than claims reported in the subsequent year. Therefore one should expect 

that 0υ  is smaller for d=0 than for d=1. The formulas above extend readily to a model with 

payment patterns that depend on d, i.e. },1,0,:{ L=tddtυ . However, this comes at the 

expense of having to set more parameters. 

 

5.2 Estimation of claims RBNS by reported incurred claims 
 

For the cohort of claims that has been reported in calendar year j+d and was incurred in 

accident year j, we denote the change in the reported incurred claim amount at delay t after 

the reporting year by jdtW . As in the previous section we denote the unknown ultimate claim 

cost by jdY  and the unknown average severity by jdΞ . 

To model the development of },1,0:{ L=tWjdt conditionally on the number of claims 

and the unknown average severity, one needs a distribution that allows negative as well as 

positive increments. That requirement excludes the Dirichlet model. 

Consider the following model: given the number of reported claims jdN  and the 

average claim amount jdΞ , we assume that the jdtW at different delays t are conditionally 

independent and that 

 

(5.10) ),(Poisson  Compound~ tjdjdjdt HNW Ξ . 
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The assumption (5.10) implies that the expected number of claim reassessments at 

delay t (a claim reassessment being a partial payments and/or a change to outstanding case 

estimate) is proportional to the unknown overall claim amount jdjdjd NY Ξ= , and that the 

individual reassessments have a size distribution tH . Let us briefly discuss this assumption. 

 To assume that the expected number of claim reassessments is proportional to the 

number of claims reported, is quite reasonable. To assume that it is actually proportional not 

to the number of claims but to the amount of claims, stretches the imagination a bit more. 

That could be wrong, but it could also be approximately right. I will postulate here that it is 

approximately right, because this assumption makes for nice mathematics. I am of course not 

saying that the expected number of claim reassessments is equal to the aggregate claim 

amount (expressed in some currency or other); it is only the proportionality that counts. The 

distribution function tH  will have a high point mass at zero, so that the number of actual 

claim reassessments will be much smaller. One could generate the same compound Poisson 

distribution using a different model formulation with an explicit proportionality factor in the 

claim frequency parameter and a distribution function tH  that is strictly non-zero. 

 Also take note that we are not constraining the aggregate claim development to equal 

the aggregate severity, i.e. we are not demanding that jdjdt jdt NW Ξ=∑∞

=0
, as we did in the 

payment model. Thus the aggregate severity takes on the role of the expected level of 

ultimate payments, given the (abstract) severities of claims reported, rather than the definitive 

level of ultimate payments. Thinking about it, it strikes me as quite a realistic assumption that 

with given severities, there is residual randomness in the compensation paid to the claimants. 

So let us get on with the model. 

Denote the first and second order moments of the distribution tH  by 

(5.11) ∫
∞

∞−

= )(duHu ttω  and  

(5.12) ∫
∞

∞−

= )(2 duHu ttη  . 

Then we can easily establish the following conditional moments: 

 

(5.13) tjdjdjdjdjdt NNW ωΞ=Ξ ),|(E , and 
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 (5.14) tjdjdjdjdjdt NNW ηΞ=Ξ ),|Var( . 

We are assuming that 1
0

=∑
∞

=t
tω  and ∞<∑

∞

=0t
tη , but not all tω  need to be non-negative. 

Conditional on only jdN  and before any payments have been recorded, the average 

severity jdΞ  has a "prior mean" of dξ  and a variance of jdd N/2σ . Using the apparatus of 

linear greatest accuracy credibility theory, one can show that the best linear estimator of jdΞ  

in the conditional model, given jdN , is 

 

(5.15) djdjdjdjd zz ξ)1(� −+Ξ=Ξ , with 

 

(5.16) ∑∑
+−

=

−+−

=
⋅








=Ξ

)(

0

1)(

0

2
�

djJ

t jd

jdt

t

t
djJ

t t

t
jd N

W
η
ω

η
ω , and 

 

(5.17) 
1)(

0

2
2

)(

0

2
2

−+−

=

+−

=








+⋅= ∑∑

djJ

t t

t
dd

djJ

t t

t
djdz

η
ωσξ

η
ωσ . 

 

It is interesting to note that the number of claims jdN  does not enter into the credibility factor 

jdz . The reason for this lies in the assumption that the "prior" variance of the unknown jdΞ  

is inversely proportional to jdN  in the conditional model. The conditional mean squared error 

of jdΞ  is 

(5.18) ( )













−+








=Ξ−Ξ=

−+−

=

− ∑ 22
1)(

0

2
212 )1(|)(E)|( djdd

djJ

t t

t
jdjdjdjdjdjdjdd zzNNNzr σξ

η
ω  

Having estimated the average severity by the credibility formula (5.15), the estimator 

of outstanding claim development becomes 

(5.19) )()(, dJJjdjddJJjd NW +−>+−> Ξ= ω , 

with mean squared error 

(5.20) ( ) ( ) )|(|)(E 2
)()(

2
)(,)(, jdjdddJJjddJJdjdjddJJjddJJjd NzrNNNWW +−>+−>+−>+−> +=− ωηξ . 
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6. Inflation and discounting 
 

It is easy to write down expressions for the inflated and possibly discounted value of future 

payments. Denote the rate of inflation by ε  and the discount rate by δ . The inflated, 

discounted  value of the estimated cost of claims IBNR is 

(6.1) ( )∑ ∑ ∑
=

∞

+−=

∞

=

−−++









+
+⋅Θ=

J

j jJd t

Jtdj

tddjjJ p
1 1 0

5.0)(
(ID)

1
1IBNR

δ
ευξπ , 

 

and the inflated, discounted value of the estimated future payments on claims RBNS is 

(6.2) ( )∑∑ ∑
=

−

=

∞

++−=

−−++

+−>
+−≤ 








+
+⋅










⋅−=

J

j

jJ

d djJt

Jtdj

djJ

t
djJjdjdJ UY

1 0 1)(

5.0)(

)(
)(,

(ID)

1
1RBNS

δ
ε

υ
υ . 

By subtracting 0.5 in the exponent we have made allowance for the assumption that claim 

payments will be spread evenly over the payment year. These equations can easily be 

extended to variable rates of inflation or interest. 

 

7. A numerical example 
 

The numerical example is taken from a small portfolio of liability insurances. The data came 

on a file with the following records: 

 

Claim  number Accident date Reporting date Valuation date 
Accumulated payments 
until the valuation date 

Outstanding case estimate 
on the valuation date 

Unique identifier 
of every claim 

dd.mm.yyyy 
(starting 01.01.1988) 

dd.mm.yyyy Every year end 
between the 

reporting date 
and 

31.12.2000 

  

 

This file contains sufficient information to fill the development tetrahedron with cumulative 

payment and case estimate data and claim counts. Tables 1-3 shows the traditional triangles. 

In order to protect information, I have converted all amounts to a non-existent currency that 

will be denoted N€ (Neuro). It should be obvious from the summary statistics that predicting 

the claim development in the portfolio is not an easy task. In what follows, I will briefly 

outline the estimations that have been made. 
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Table 1. Claim counts by reporting+valuation delay 
Number of claims   Delay d+t  

 Accident year   -  1   2   3  4  5  6  7  8  9   10   11  12 
 1 988   8  12   16   19  20  21  22  23  24  26   27   28  29 
 1 989   3  6   10   14  20  24  28  28  29  30   30   30 
 1 990   3  13   17   24  28  29  29  32  32  32   33  
 1 991   2  10   21   27  30  32  37  40  40  41   
 1 992   4  17   28   39  41  43  44  45  45   
 1 993   12  27   41   50  53  56  56  58   
 1 994   9  28   35   42  46  50  52   
 1 995   10  26   40   43  46  46   
 1 996   9  23   33   39  41   
 1 997   6  25   32   38   
 1 998   8  26   33    
 1 999   2  12     
 2 000   12     

 

Table 2. Claim payments by reporting+valuation delay 
Paid claims (N€)  Delay d+t  

 Accident year   -  1   2   3  4  5  6  7  8  9   10   11  12 
 1 988   0  0   106   185  205  250  250  250  250  250   259   290  296 
 1 989   -  -   151   151  152  179  575  581  581  816   816   819 
 1 990   -  -   49   292  435  447  1 004  1 004  1 022  1 022   1 022  
 1 991   -  5   54   323  1 206  2 747  2 941  3 012  3 013  3 023   
 1 992   -  11   34   40  133  199  273  294  334   
 1 993   -  0   24   530  594  897  898  928   
 1 994   -  0   237   332  487  549  613   
 1 995   -  62   298   733  1 297  2 277   
 1 996   -  0   14   147  501   
 1 997   -  15   55   490   
 1 998   0  43   137    
 1 999   0  1     
 2 000   0     

 

Table 3. Reported incurred claims by reporting+valuation delay 
Reported incurred 
claims (N€)   Delay d+t  
 Accident year   -   1   2   3   4   5   6   7   8   9   10   11   12  

 1 988   60  30   230   235  245  250  350  250  270   350   359   360  460 
 1 989   500  20   151   211  312  299  615  681  641   830   818   821 
 1 990   110  166   355   848  1 143  1 055  1 023  1 028  1 040   1 040   1 054  
 1 991   20  60   794   2 093  2 858  3 087  3 001  3 075  3 085   3 097   
 1 992   30  141   245   547  916  944  1 522  1 547  1 574    
 1 993   100  496   1 066   1 021  1 038  1 156  1 115  1 394    
 1 994   62  669   494   661  912  1 009  1 151    
 1 995   420  1 808   1 961   2 604  2 733  2 788    
 1 996   22  136   425   627  655    
 1 997   318  800   811   836    
 1 998   104  665   1 061     
 1 999   28  149      
 2 000   294      

 

 The reporting pattern },1,0:{ L=ddπ  was estimated by the standard chain ladder 

procedure, which involves calculation of year-to-year development factors in Table 1, 

smoothing the development factors and appending a tail beyond the observed data, and 

converting the cumulative development factors to probabilities. Graph 1 shows the estimated 

reporting pattern. 

 The payment pattern },1,0:{ L=ttυ  was estimated by the same type of procedure, 

using the triangle of accumulated payments by reporting year and valuation delay that is 

shown in Table 4. Graph 2 shows the estimated payment pattern. 
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Table 4. Claim payments by valuation delay 
Paid claims (N€)  Delay t  

 Reporting year   -   1   2   3  4  5  6  7  8  9   10   11  12 
 1 988   2   18   151   153  153  153  153  153  153  153   153   153  153 
 1 989   -   0   118   138  138  138  138  138  138  138   138   138 
 1 990   106   187   189   358  650  650  1 143  1 143  1 153  1 153   1 153  
 1 991   151   308   769   826  1 267  1 267  1 267  1 267  1 267  1 267   
 1 992   0   78   98   251  431  431  482  484  515   
 1 993   9   391   1 111   2 252  2 408  2 469  2 469  2 490   
 1 994   0   9   927   1 083  1 145  1 148  1 158   
 1 995   0   207   368   955  1 019  1 990   
 1 996   61   243   715   1 316  1 331   
 1 997   0   81   234   813   
 1 998   10   51   345    
 1 999   31   129     
 2 000   1      

 

 The claim revaluation pattern },1,0:{ L=ttω  was estimated in the same way, using 

the triangle of accumulated reported incurred claims by reporting year and valuation delay 

that is shown in Table 5. One can see a number of substantial upward revaluations. Graph 3 

shows the estimated claim revaluation pattern. A notional tail was appended to that pattern to 

allow for claims being re-opened. 

 

Table 5. Reported incurred claims by valuation delay 
Reported incurred 
claims  (N€)  Delay t  

 Reporting year   -   1   2   3  4  5  6  7  8  9   10   11  12 
 1 988   132   158   151   153  153  153  153  153  153  153   153   153  153 
 1 989   600   40   128   138  138  138  138  138  138  138   138   138 
 1 990   520   427   519   658  1 050  1 050  1 143  1 143  1 153  1 153   1 153  
 1 991   257   499   850   1 246  1 267  1 267  1 267  1 267  1 267  1 267   
 1 992   171   398   537   569  449  443  496  498  529   
 1 993   1 104   2 063   2 796   2 761  2 571  2 631  2 631  2 911   
 1 994   818   1 326   1 212   1 179  1 191  1 178  1 206   
 1 995   1 416   1 680   1 942   3 239  3 316  3 530   
 1 996   1 557   1 480   1 630   1 692  2 106   
 1 997   800   897   979   1 059   
 1 998   1 103   708   918    
 1 999   1 174   1 198     
 2 000   675      

 

 For the claim frequencies the Bühlmann-Straub model was used, and its parameters τ  

and λ  were estimated with the iterative procedure of De Vylder (1981), treating the 

previously estimated reporting pattern as a given. The volume of risks exposed had been 

stable and was set to one throughout the period, so that jΘ  expresses the expected number of 

accidents in year j. De Vylder�s procedure returned estimates of  50* =τ  and 162* =λ . 

 The means },1,0:{ L=ddξ and variances },1,0:{ 2 L=ddσ  in the severity distribution 

were calculated using individual claim data that had been adjusted with expected future 

revaluations using the previously estimated claim revaluation pattern. Graph 4 shows the 

estimated means as a function of the reporting delay. The variances were estimated on the 

basis of all claims and linked to the means by assuming that the coefficients of variation 
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dd ξσ /  were independent of d. The estimated coefficient of variation, using all claims, was 

( ) 58.3/ * =dd ξσ . 

 The parameter α  in the Dirichlet distribution of partial payments was estimated on 

the basis of the regression equations 

(7.1) ( ) ( ) 





 +

+
−

Ξ=Ξ 222

1
)1(

,|E t
tt

jdjdjdjdjdt NNU υ
α

υυ
, 

where the ultimate claim cost jdjdN Ξ  had been approximated by reported incurred claims 

adjusted for expected revaluations, and the tυ  had been replaced by their estimated values. 

The estimate that came out of the procedure was 37.3* =α . 

 To estimate the sequence },1,0:{ L=ttη  in the compound Poisson distributions for 

reported incurred claims, another simplifying assumption was made, being that tt ηωη = . The 

parameter η  was then estimated on the basis of the regression equations 

(7.2) ( ) ( ) ( ) 22222 ,|E tjdjdtjdjdtjdjdtjdjdjdjdjdt NNNNNW ωηωωη Ξ+Ξ=Ξ+Ξ=Ξ , 

again replacing unknown quantities with the estimates at hand and ignoring correlations. The 

procedure returned an estimate of 176* =η , but admittedly the result was highly uncertain � 

a number of outliers in (7.2) had to be eliminated. The level of censoring has significant 

influence on the resulting estimate. 

Table 6 shows the estimation of outstanding claims, using the development patterns. 

The model estimate of outstanding claim payments is N€ 10 935, of which N€ 4 895 is 

outstanding case estimates, N€ 1 879 is for expected revaluation of claims RBNS and 

N€ 4 161 is for claims IBNR. The table also shows the square root of the MSEP as computed 

by (5.20), (4.11) and (4.18), which of course does not include the effect of parameter 

estimation error. Inflation and discounting have been ignored. 

From a statistical point of view, one could argue that the model is over-parametrised, 

considering the small volume of data and the length of the development delays involved. That 

is probably true. The dataset was chosen for the example mainly because it was well-

organised and clearly illustrates the problems that need to be addressed � long reporting 

delays, slow payments and unreliable case estimates. 
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Graph 1. Estimated reporting pattern *
d≤π   
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Graph 2. Estimated payment pattern *
t≤υ  
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Graph 3. Estimated claim revaluation pattern *
t≤ω  
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Graph 4. Estimated mean severities *
dξ  
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Table 6. Estimation of outstanding claims 
   Model estimates   

   Claim statistics RBNS IBNR Accounts Pricing estimates 

Accident 
year Exposure 

Reported 
number 

of claims

Paid 
claims 

Outst. 
case 

estimates

Reported 
incurred 

claims

Re-
valuations

Number 
of claims 

IBNR

Amount 
of claims 

IBNR

Outst. 
claim 

payments 

Total 
number 

of claims 

Ultimate 
claim cost

1 988 1 29 296 164 460 21 1 16 201 30 497
1 989 1 30 819 2 821 11 2 25 38 32 856
1 990 1 33 1 022 32 1 054 15 2 38 85 35 1 106
1 991 1 41 3 023 75 3 097 41 4 61 176 45 3 199
1 992 1 45 334 1 241 1 574 39 5 88 1 367 50 1 701
1 993 1 58 928 466 1 394 46 8 142 653 66 1 582
1 994 1 52 613 539 1 151 173 10 172 884 62 1 497
1 995 1 46 2 277 511 2 788 148 12 208 867 58 3 144
1 996 1 41 501 154 655 176 13 254 584 54 1 085
1 997 1 38 490 346 836 295 17 345 986 55 1 476
1 998 1 33 137 925 1 061 530 25 564 2 019 58 2 155
1 999 1 12 1 148 149 149 24 622 918 36 919
2 000 1 12 0 294 294 237 54 1 627 2 158 66 2 158

Sum 13 470 10 440 4 895 15 335 1 879 177 4 161 10 935 647 21 375

   sqrt(MSEP) 1 190 17 1 215 1 701  

 

The proposed model will not automatically produce more reliable estimates than the 

traditional models. My point is that by separating claims RBNS from claims IBNR one adds a 

degree of transparency to the outstanding claim estimates which the traditional models do not 

have. This transparency makes it much easier to convey the meaning of the estimates and to 

test alternative assumptions (e.g. in respect of future claim revaluations). 

 Separate models for the development of reported and unreported claims also facilitate 

the analysis of claim development, as one can split up the development into its different 

components: Number of new claims reported (actual vs. predicted), severity of new claims 

reported (actual vs. predicted) and revaluation of old claims (actual vs. predicted). I�ll leave 

that topic for another paper as it requires heavy notation in theory � in practice it�s very easy. 
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