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abstract:

In order to expand the galform monte carlo merger tree code to quintessence models,

it is vital to test whether the changes to the code suggested by Parkinson et al. (2008)

are as accurate in quintessence as they are in ΛCDM. This will be done by comparing

the trees to two previously conducted high-resolution N-body simulations. In this work,

the quintessence models will be limited to those whose DE equation of state w = p/ρ can

be described by the Corasaniti-Copeland-Parametrisation (Corasaniti & Copeland, 2003).

However, in principle, this can later be expanded to arbitrary w(a).

We expect the galaxy formation to change mainly due to different initial power spectra

P (k), expansion histories, and different sets best-fit parameters for those cosmologies (as

discussed in Jennings et al. (2010)). These effects all manifest themselves in the growth

function D(a), and the density contrast δ that is used to quantitavely describe structure

formation and sets the seeds for galaxy formation.

Once reasonable agreement of the results of the merger tree algorithm for quintessence

models are established, it would be most interesting to study how those models change

galaxy formation with respect to ΛCDM, and what changes have to be made to galform’s

initial parameters, and in what way they restrict the parameter space by comparing to

observations.
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“All difficult things have their origin in that which is easy,

and great things in that which is small.”

–Laozi

(Tao Te Ching chapter 63)
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1. Introduction

1.1. Motivation

As the 2011 Nobel Prize in physics was awarded to three observational cosmologists “for the

discovery of the accelerating expansion of the Universe through observations of distant su-

pernovae”∗, we are once again reminded that much of the relatively young field of physical

cosmology is still terra incognita on the map of fundamental research in physics. There have

been ground–breaking discoveries in the last 20 years, among them the determination of cos-

mological parameters defined by models like ΛCDM within tight bounds, which is hailed as

the beginning of an era of precision cosmology. We might as well use this new precision to go

back to the drawing board and see if ΛCDM is not maybe a simplistic view of the universe. A

varying Dark Energy (‘Quintessence’) or warm Dark Matter (WDM) are among those ideas.

However, some discoveries raise more questions than they answer. Now that we think that

roughly 73% of the cosmos’ energy density is made up of Dark Energy, we would very much like

to know what it actually is and where it came from. The same goes for the no less mysterious

Dark Matter, making up about 23%. The rest, a meagre 4% or so is no less than all the things

that occupied scientists and scholars for the last couple of centuries: Galaxies, stars, planets,

moons, space stations, humans, atoms, elementary particles, and light itself. The things we can

see around us are literally the tip of the iceberg.

To figure out the reasons and mechanisms behind this cosmic balance that was able to spawn

life to ask those questions in the first place is one of the main goals of physical cosmology. There

are obviously big overlaps with other fields, such as particle physics, spawning new, exciting

fields like astroparticle physics.

As we know very little about Dark Energy, apart from the fact that it is currently accelerating

the expansion of the universe, there is a lot of speculation about its nature and origin. The

arguably easiest way to account for it, is to give Einstein’s “cosmological constant” Λ (Einstein,

1917) another chance. Or maybe leave some degrees of freedom and assume dynamical Dark

Energy. This substance varies its equation of state (w = p/ρ) over time. There are also at-

tempts to couple Dark Energy and Dark Matter; and, of course, to alter the laws of Einsteinian

gravity.

The appeals of having a dynamical Dark Energy are obvious: Firstly, we have no reason why we

should limit Λ to be constant over time. While this approximation is in very good agreement

with observations, we cannot justify it physically. Apart from that, it would be a beautiful

simplification to wed today’s Dark Energy with models for Inflation in the very early universe.

To explain some of the cosmos’ properties, such as its fine-tuned flatness and homogeneity, the

idea of cosmic inflation came up in the early 1980’s (Guth, 1981). According to this idea, the

universe must have undergone accelerated expansion in its very infancy.

∗http://www.nobelprize.org/nobel_prizes/physics/laureates/2011/
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Since the mechanisms that drive spacetime to expand in an accelerated manner are the same,

trying to unify them is a physicist’s first instinctive reaction.

1.2. This Project

The goal of this project work is to find out whether a non-constant equation of state w(a) of

dark energy will visibly affect galaxy formation. If a strong enough correlation between the dark

energy model and predicted galaxy properties is found, with upcoming high–redshift surveys,

this can be a novel observable of dark energy and maybe favour some models over others.

This particular question has not been explored vigorously enough by other authors, since galaxy

formation models are cutting–edge research, albeit fast converging towards highly sophisticated

semi–analytical codes such as Durham’s galform (Cole et al. (2000), Benson et al. (2002),

Benson et al. (2003), Baugh et al. (2005)). Also, a number of high-resolution N-body simula-

tions would be needed, each with a different cosmology. However, fast and accurate monte-carlo

implementations to deliver dark matter halo merger trees to post-hoc galaxy formation codes

have recently been delivered, such as the merger-trees algorithm that now comes with gal-

form (Cole et al., 2008) (and its next-order corrections, see (Parkinson et al., 2008)). With

new high-z surveys coming up, the observational end of this gap is closing fast as well.

Previous authors, such as Wang et al. (2007) have argued that changing cosmological parame-

ters does not visibly affect galaxy properties, at least at low redshift. This conclusion is more

or less a byproduct of comparing WMAP1 and WMAP3 parameters and testing the predicted

galaxy formation against the SDSS catalogue. It is noteworthy that three different parameter

sets for the semi–analytical model was used, and only those closest to SDSS were kept – in other

words, the change in parameters for the background cosmology delivered different predictions

for the galaxy formation and its history for the same galaxy formation parameter set.
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2. Theoretical Background

2.1. General Dark Energy

Starting from Einstein’s field equations,

Gµν + Λgµν = 8πGTµν , (2.1)

where Einstein’s ‘biggest bluder’, Λ, represents a force counteracting gravity, we assume a

perfect fluid (i.e. Tµν = (ρ+ p)uµuν + pgµν), and obtain Friedmann’s equations,(
ȧ

a

)2

:= H2 =
8πG

3
ρ (2.2)

and
ä

a
= −4πG

3
ρ(1 + 3w), (2.3)

where the following parameters have been implied

w :=
p

ρ
and H :=

ȧ

a
. (2.4)

w is called the equation of state and plays a vital role in this work.

Note that we assumed zero curvature and absorbed Λ into the total energy density ρ, which

is mathematically equivalent of having an extra term ∝ Λ. This means phyiscally that this

repellent force is nothing else but a constituent of energy density in the universe. The two

Friedmann equations can be combined to find the conservation equation

ρ̇+ 3Hρ(1 + w) = 0. (2.5)

Solving eq. (2.2) for ρ gives what is conventionally called the critical density:

ρcrit =
3H2

8πG
. (2.6)

It means that if ρmean = ρcrit, then the universe has zero curvature (since we ignored the

curvature term in the Friedmann equations). If we now introduce

Ωtot :=
ρ

ρcrit
and Ωk := − K

a2H2
, (2.7)

we find Ωtot + Ωk = 1 by definition. The advantage is that we now distinguish between physical

energy density and curvature contributions.

We can now start to categorise different species of matter. For ordinary matter, like baryons,

but also the (cold) dark matter component have a negible kinetic energy compared to their rest

3
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mass, which means they are pressureless: p = 0→ w = 0.

For highly relativistic matter, like photons or neutrinos where T � m, we get ρ = 3p (meaning

w = 1/3) from statistical physics. Note that this holds for Bosons and Fermions.

The next logical question to ask is how those species react on the expansion of the universe.

Assuming w to be constant, integrating eq. (2.5) gives

ρ ∝ exp

(
−3

∫ a

1

d ln(a′)(1 + w(a′))

)
, (2.8)

assuming w = w(a). This becomes ∝ a−3(1+w) if w = const. For a static Λ, we require

ρ = const., therefore by eq. (2.8), w = −1.

The energy density ρ is most often devided into different constituents. Hence, we also get a

fractional contribution Ωi := ρi/ρcrit for each of them.

2.2. Dark Energy model used in this project

The Dark Energy equation of state parametrisation we will be using here is the Corasaniti-

Copeland-Parametrisation (Corasaniti & Copeland, 2003). It has 4 parameters which describe

the behaviour of the equation of state. For example, w0 is the value that w(a) takes at a = 1.

All of the models used here are undergoing a phase transition at an earlier time, described by

am, converging towards wm for a→ 0. ∆m quantifies the ‘severity’ of the transition.

w(a) = w0 + (wm − w0)×
1 + exp

(
am
∆m

)
1 + exp

(
−a−am

∆m

) × 1− exp
(
−a−1

∆m

)
1− exp

(
1

∆m

) (2.9)

The six models that will be investigated are identical with the ones from Jennings et al. (2010).

We have to consider that the best-fit values for cosmological parameters such as H0, Ωm, Ωb

from observations will change if we change the equation of state parameter. Jennings et al.

(2010) present a method based on Komatsu et al. (2009) to find the ‘WMAP7’ best-fit for the

given DE model. Basically, it is assumed that the distance priors used by Komatsu et al. should

stay the same, while H0, Ωm, and Ωb are treated as free parameters. They are fitted to three

independent datasets, minimising χ2
tot = χ2

WMAP7 + χ2
BAO + χ2

SN . This should give consistent

and reliable fits. Another assumption is a zero curvature space, as always throughout this work

as well.

The distance priors mentioned are the decoupling redshift, z∗, a ratio called the ‘acoustic scale’,

lA, and a ratio called the ‘shift parameter’, R(z∗). The BAO and SN datasets have similar

parameters with different names, but the idea is the same: fitting known scales to the models

so that they meet early boundary conditions. This also distinguishes our models somewhat,

and we have to be careful to check which effects come from the change in expansion history

4
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Model w0 wm am ∆m

INV1 −0.4 −0.27 0.18 0.5
INV2 −0.79 −0.67 0.29 0.4

SUGRA −0.82 −0.18 0.1 0.7
2EXP −1.0 0.01 0.19 0.043

AS −0.96 −0.01 0.53 0.13
CNR −1.0 0.1 0.15 0.016

Table 1: The parameters used for eq. (2.9) in order to reproduce different models of Dark Energy.
The INVs are inverse power–law potentials, SUGRA and CNR are tracking fields (i.e. Ωφ is
catching up with ΩM ), while 2EXP and AS are scaling solutions (i.e. the field behaves like
a cosmological constant at late times).

Model H0 Ωm,0 Ωb,0

Millennium 73 0.25 0.045
ΛCDM 70.50± 1.3 0.2732± 0.006 0.046± 0.0008
wCDM 69.70± 1.4 0.2781± 0.009 0.047± 0.0009
Sanchez 71.50± 1.1 0.2610± 0.005 0.044± 0.0007

INV1 63.13± 0.5 0.2886± 0.022 0.095± 0.0023
INV2 68.21± 0.7 0.2666± 0.011 0.051± 0.0014

SUGRA 67.63± 0.7 0.2427± 0.014 0.059± 0.0016
2EXP 70.01± 0.8 0.2816± 0.005 0.045± 0.0017

AS 70.42± 0.9 0.1734± 0.021 0.043± 0.0017
CNR 70.05± 1.2 0.2853± 0.022 0.426± 0.0026

Table 2: The best fit parameters as described above. The errors are 1σ. The values are overall
roughly consistent with the concordance model of 1

4 dust and 3
4 Dark Energy with a Hubble

parameter of somewhere around 70 km
Mpc·s . Included are also the values used for the MS, the

5-year best fit ΛCDM and wCDM. The tuple labelled ‘Sanchez’ is a cosmology used in one
of the two large N-body simulations that had been carried out at the ICC, it derives its
values (and name) from Sánchez et al. (2009). All are in flat space, so ΩDE,0 = 1− Ωm,0.

and which come from the change in the other cosmological parameters, such as Ωm,0. The best

fit values given by Jennings et al. can be found in Table 2. Something that will be affected by

the Dark Energy equation of state is doubtless the (normalised) growth factor G = D/a. How

D is calculated in the linear regime can be seen in the appendix.

It follows (Linder & Jenkins, 2003)

G′′ +

(
7

2
− 3

2

w(a)

1 +X(a)

)
G′

a
+

3

2

1− w(a)

1 +X(a)

G

a2
= 0, (2.10)

with

X(a) =
Ωm

1− Ωm

exp

(
−3

∫ 1

a

d ln a′ w(a′)

)
.

So although the power spectra should be normalised to the same σR today, the history of

stucture growth is expected to be different.
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Figure 1: Left panel: D(a) for the different cosmologies presented in table 1. They are all using
the same H0, Ωm,0, Ωb,0 (Millennium parameters). Yet, there are noticable differences.
The function has been normalised so that D(a0) = 1.
Right panel: DDE/DΛCDM, notice that big relative differences of ∼ 10% already at
a = 0.5, or z = 1.

Figure 2: Left panel: D(a) for the different cosmologies presented in table 1. This is the parameter
set that uses the best fit for each model.
Right panel: DDE/DΛCDM, same as above. The differences remain as big; the history
equation of state seems to play a vital role.
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Figure 3: Left panel: w(a) for the different cosmologies presented in table 1.
Right panel: Ωde for the associated equations of state.

2.3. Precision cosmology

As stated in the introductory remarks, there have been remarkable advances in physical cos-

mology in the last 20 years. We’ve come from a rough estimation of the age of the universe to

a full and very precise cosmic inventory. The only problem is that we don’t know what it is

that makes up about 95% of what we’re taking inventory of.

The discovery of the cosmic microwave background radiation (CMB or CMBR) (Penzias &

Wilson (1965), Dicke et al. (1965)) was one of the biggest steps forward in this field. The

predicted relic radiation from a hot big bang (which was by no means an accepted paradigm at

this time), a near-perfect blackbody, which has now been redshifted to millimetre-wavelengths,

spurred the research in cosmology.

There have been many observations of the CMB in the last 20 years, but by far the most

precise and ground-breaking have been made by the COBE (Boggess et al., 1992) and WMAP

(Bennett et al., 2003) satellites since the early 90’s and the early 00’s, respectively. The newest

probe, PLANCK, which will measure the CMB to an unprecedented accuracy (Planck Science

Team, 1996), has been operational for nearly 3 years, but results of cosmological importance

have yet to be published. According to the ESA website, they can be expected in early 2013

(Planck Science Team, 2012). The most precise data that is publicly available is the 7–year

WMAP data compiled by Komatsu et al. (2011).

The most remarkable thing about the data seen in table 3 are the comparatively small

error bars. About a decade ago, these were one order of magnitude larger, and people argued

vigorously whether H0 is around 50 or 100 km
s Mpc

.

Also, note that w is very close to −1. However, values < −1 are not excluded. This is a

7
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special case called phantom energy. It has the disturbing property of giving the universe only

a finite time to exist, before ending in a big rip. These models are –as of now– not subject of

this project, but are, due to the high flexibility of the codes used (we will see this in the next

section), not impossible to include.

2.4. Dark Matter Haloes

Our current understanding of galaxy formation is that each galaxy has a halo of dark matter

around it, which extends much farther than the (visible) galaxy itself. These haloes are sus-

pected to form hierarchically, i.e. from small to big scales. Lighter haloes are formed first,

collapsing and merging into bigger and bigger ones as time goes on.

To track these mergers over time is vital to any galaxy formation model, since the galaxies

are mere tracers of those haloes. Of course, individual development of galaxies also has to be

considered and modelled carefully.

2.4.1. Spherical Collapse

In order to simplify the problem of structure formation, it is modeled as spherical halos col-

lapsing. Since they mainly consist of dark matter, another assumption is collisionlessness of the

particles. This does not mean that the collapse goes on forever; at some point, the halo will

virialise, meaning an equilibrium† between potential and kinetic energy is reached. The density

of the collapsed halo in terms of the critical denisity is called ∆V . During matter-domination,

the numerical value of this is ≈ 178.

To see what happens over time when a spherically symmetric (i.e. no angular derivatives, no

shear, etc.) overdensity collapses, a Newtonian approach can be used.

Consider

R̈ = −GM(R)

R2
, (2.11)

which is the Newtonian law of gravity; a dot ˙ represents a total time derivative. If we insert a

spherical mass distribution of constant mass, i.e.

M(r) =
4π

3
ρr3,

and remember that for dust the background density ρ0 scales as a−3, in particular

ρ0 =
3

4π
M(R0)(R0a(t))−3 = ρ

(
R

R0a(t)

)3

,

†this is stable in a Einstein-deSitter Universe; if there is dark energy present, the equilibrium can be assumed
to be stable temporarily

8
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Figure 4: δ as a function of the parameter τ . The red line is the linearised function, the black line is
the nonlinear version. The turnaround at τ = π is marked.

then we can write δ = (ρ0/ρ)− 1 as

δ =

(
R

R0a(t)

)3

− 1. (2.12)

Keep in mind that δ = 0 outside, i.e. delta is a top-hat function. Multiplying both sides of

Eq. 2.11 by 2Ṙ and integrating once we obtain

Ṙ2 = 2
GM

R
− C. (2.13)

This can be solved analytically, albeit parametrically in R-t-space if C > 0:

R = GMC−1(1− cos(τ)), t = GMC−3/2(τ − sin(τ)), τ ∈ (0, 2π). (2.14)

Putting in δ from above and keeping in mind that a(t) ∝ t2/3 during matter domination

(weff = 0)‡, we end up with a function δ(τ):

δ(τ) =
9(τ − sin(τ))2

2(1− cos(τ))3
− 1, (2.15)

which reads, when linearised, according to (12.75) in Amendola & Tsujikawa (2010):

δlin(τ) =
3

5

(
3

4
(τ − sin(τ))

)2/3

. (2.16)

The overall behaviour is as expected (see fig. 4): The sphere expands with background evo-

lution, however, it decelerates, decouples more and more from the Hubble flow, until the

turnaround, at τ = π, and then collapses on itself, i.e. the density diverges. This is, interest-

‡From Eq. 2.2: ρ̇/ρ = −3ȧ/a⇒ ρ ∝ a−3, from Eq. 2.5: ȧ ∝ √ρa ∝ a−1/2 ⇒ a ∝ t2/3

9
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ingly enough, the same behaviour that a closed universe as a whole whould exhibit, according

to Birkhoff’s theorem.

The value of δlin at τ = 2π is called critical or collapse density, δcrit ≈ 1.686, since density

contrasts which reach this value in the linear regime, should have collapsed onto themselves.

As mentioned before, virialisation is thought to set it at a ≈ acoll. The density of the halo at

this point is called virial overdensity ∆V . The virial theorem states that if a force resulting from

a potential energy that obeys V (ar) = akV (r), then the kinetic energy T and the potential

energy V are related by

T =
r

2

∂V

∂r
=
kV

2
. (2.17)

For gravity (V ∝ −R−1 → k = −1), this simplifies to T = −V/2.

Assuming energy conservation, we then find

Vta = Vvir + Tvir =
Vvir
2
, (2.18)

since at turnaround (subscript ta), kinetic energy vanishes and at virialisation (subscript vir)

Tvir = −Vvir/2.

For a uniform sphere, U(R) = −3GM/5R; if M = const., then we can infer that Rta = 2Rvir.

Therefore, the virialised density picks up a factor of 23 = 8 with respect to the value at

turnaround. Furthermore, in a matter-dominated universe, we have ρ̄ ∝ a−3 ∝ (t−2/3)3 = t−2.

With tvir = 2tta, we thus pick up another factor of 0.5−2 = 4.

The final density is then

∆V = 4× 8× (δta + 1). (2.19)

Taking eq. at τta = π, we get

∆V ≈ 178. (2.20)

This is the line between background matter fields and highly unlinear structure which we are

interested in. It is being used in Press–Schechter theory (Press & Schechter (1974)). In an

Einstein-de Sitter (EdS) universe (i.e. Ωm = 1 ∀ a), this value is constant.

It changes, however, if Dark Energy is present. How to calculate the critical density contrast

for a given Dark Energy was a challenge to be solved in this work.

2.4.2. Merger Trees

Simulations can only work with discrete time steps. Outputs are usually quite far apart

(∆z = O(10− 0.1)), so the concept of merging haloes are becoming merger trees, where haloes

can only be tracked at fixed and discrete times zi. In N-body simulations, such as the Millen-

nium Simulation (MS), this is usually done by identifying groups of particles (Friends of friends,

FoF), and tracking them over the course of the simulation. Then, post-processing algorithms

10
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are used to analyse these groups further, for example identifying ‘false’ haloes that have been

linked by mistake because they have a residue overdensity of particles between them due to a

previous interaction, but also for finding density peaks within the haloes, so-called sub-haloes

(which are actually the haloes known from galaxy formation. Sub-halo and halo are often used

synonymously, unfortunately adding some confusion for inexperienced readers). In the end, one

should have a database of different merger trees, which can be used further for semi-analytic

galaxy formation models (SAMs).

This method has one major flaw: it is based on N-body simulations, which are computationally

expensive. Depending on size and resolution, a single run can take several days or even weeks

on a medium-sized computing cluster.

z = z0

z = z1

z = z2

z = z3

(z0 < z1 < z2 < z3)

Figure 5: A sample merger tree. The size of a halo
corresponds to its mass. A massive halo
at redshift z0 is the result of a merger
of individual haloes between z1 and z0.
The earlier we go, the more progenitors
are found. This is the priciple of hierar-
chical structure formation.

A much quicker method is a monte-carlo ap-

proach which is only concerned with haloes

and their statistical properties. Another pos-

itive aspect is that the resolution is finer than

with N-body simulations. A downside of this

is obviously that the haloes are not spatially

resolved. However, many important other

galaxy properties, such as luminosity func-

tions, or the star-formation rate can be in-

ferred. This is our method of choice here due

to the many different models of Dark Energy

used.

2.5. The semi-analytical

galaxy formation code galform

galform is being actively developed at the

ICC in Durham. The aim is to have an accu-

rate semi-analytic code for galaxy formation

in hierarchical cosmologies. An advantage of

the code is that it can either take merger-trees

from N-body simulations (which have spatial

resolution) or generate its own trees with its

own monte-carlo based algorithm. One of the aims of this project was to find out what it would

take to re-write this algorithm so that it produced merger-trees for a given Dark Energy model

(for now limited to models whose equation of state is parametrisable with Eq. 2.9).

The tree-forming algorithm, called merger-trees, makes one tree at a time by randomly

splitting base masses according to the power spectrum for each time step. Inputs needed are,

11
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apart from the power spectrum, only the time-dependend critical overdensity, δcrit(a) and the

virial overdensity ∆V . Both sets can be provided in simple ASCII files. Then, trees can be pro-

duced at given redshifts zi, with base redshift z0. The output has to be saved somehow, before

calculating the next tree, as they use the same memory allocation. The code runs quite fast,

but parallelisation could actually be implemented, because the trees are in principle generated

completely independently.

12
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3. Project work progress

First, we had to establish that merger-trees delivers an as-good approximation to the ‘true’

merger trees as well in non-ΛCDM cosmologies; in order to do this, we have snapshots of a large

ΛCDM simulation and a simulation with the SUGRA DE model, using the parameters labelled

‘Sanchez’ and ‘SUGRA’§ respectively in table 2 . Those have been carried out a while ago at the

ICC, but fit our purposes well. One drawback is that the latest snapshot of both of them is at

z = 5. Their box size is L = 50(Mpc/h)3 and particle numbers are N = 10243 ≈ 109, resulting

in a particle mass of Mp = 8.4 · 106M�/h for ‘Sanchez’ and Mp = 7.85 · 106M�/h for SUGRA.

In comparison, the MS had L = 500(Mpc/h)3, N = 21603 ≈ 1010 and Mp = 8.6 · 108M�/h. So

the simulations we can use are better resolved than the MS. Assuming we establish agreement

with both simulations, we might feel the need to establish whether the algorithm also fits well

at lower redshifts.

In order to do so, we need to extract ‘real’ merger trees from the simulations and compare their

properties (such as the mass function w.r.t. time, the conditional mass function w.r.t. halo

masses and time, etc.) to the ones that the monte-carlo code generates.

Fortunately, the merger-trees algorithm is easily altered to give merger trees in an arbitrary

cosmology, as long as structure forms hierarchically. To achieve this, we had to provide the

initial conditions, i.e. generate power spectra for the different cosmologies and – after a bit

of alteration to the code – provide the (linearised) density contrast for which a sphere would

collapse at time a, called δcrit(a).

3.1. Calculating δcrit(a), ∆V for different DE cosmologies

Since merger-trees requires a tabulated file for δcrit and ∆V , it was quite vital to accurately

calculate them for all models. To obtain δcrit(a), the nonlinear evolution equations have to be

evaluated numerically for a big set of different initial conditions, since each run with one set of

ICs gives us exactly one point of the graph of δcrit(a).

This has been realised in Python, see A.2 for the complete code. It takes about an hour to run

on a normal laptop computer and will produce the ASCII file that merger-trees needs.

To see this, consider the non-linear evolution equation of the density contrast for nonrelativis-

tic matter (CDM) in a spherical perturbation (for a derivation from the basic hydrodynamical

equations, the reader is referred to Pace et al. (2010)),

δ′′ +

(
3

a
+
E ′(a)

E

)
δ′ − 4

3

δ′2

1 + δ
− 3

2

Ωm,0

a5E2(a)
δ(δ + 1) = 0, (3.1)

§Supergravity

13
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and its linear counterpart,

δ′′ +

(
3

a
+
E ′(a)

E

)
δ′ − 3

2

Ωm,0

a5E2(a)
δ = 0. (3.2)

The nonlinear equation above is, incidently, the same as Eq. (12.20) in Amendola & Tsujikawa

(2010), the only difference being there, the authors are using the derivative w.r.t. N = ln(a),

whereas we are using derivatives w.r.t. a, as it is – despite being aesthetically less pleasing –

numerically much easier to implement.

The idea is to solve the non-linear equation 3.1 for given inital conditions (δ0, δ
′
0), starting

from a small scale factor ainitial, which has chosen to be ainitial = 10−4. This choice is due to

numerical limitations. Much smaller initial scale factors will take much longer to solve the DEs,

bigger scale factors will start affecting the precision at ‘interesting’ scale factors a ∼ 0.1...1.

The schematics can be seen in fig. 6.

Numerical tests have confirmed the findings of Pace et al. (2010), i.e. that the solution is almost

independent of δ′0, so it has been hard-coded to be δ′0 = 5 ·10−5. Also, since the nonlinear curve

is very steep while diverging, the result is quite insensitive to the actual numerical choice of

when we define the curve as ‘diverged’. In this work, the chosen value was δNL ≥ 5 · 105. To

obtain a whole dataset of (ad, δcrit), we simply have to loop over the above mechanism, while

evolving to ever smaller initial conditions δ0. This has been implemented in the code. The

only input now is the ‘starting’ initial condition δ0 and the number of iterations N , together

with the parameters of the w-parametrisation (table 1) and the three best-fit parameters for

the cosmology from table 2.

For the virial overdensity ∆V , we follow the recipe used by Pace et al. (2010). The idea is to

determine the turnaround scale factor ata by solving the above nonlinear equation and finding

the minimal value for log(1 + δ)a−3 ∝ 1/R, thus maximising the sphere’s radius.

We then only need to multiply (δta + 1) – just as the analytical derivation in section 2.4.1 – by

y−3 = (Rta/Rvir)
3 and x3 = (avir/ata)

3.

We can take avir = acoll. For y, we take the equation for non-clustering dark energy derived by

Maor & Lahav (2005). This is equation (26) in their paper and solve it for y:

− 2y3x−3q + (1 + q)y − 1

2
= 0 (3.3)

Here, q = ΩDE,ta/Ωm,ta. If one takes the limit q → 0 (meaning matter domination, or an EdS

universe), then y → 1/2, reproducing the result we had in section 2.4.1.

14
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Figure 6: One iteration of the algorithm shown in fig. 7. This is fig. 1 directly taken out of Pace
et al. (2010). Here, ad = 1, and we are in an Ωm = 1 case, so δcrit ≈ 1.686.

Solve nonlinear DEs
and

linear DEs

Find time a_d when nonlinear
solution diverges

Find value of linear solution:
δ_linear(a_d)

Output a_d, δ_linear(a_d)

Evolve initial conditions, 
δ_[i+1] > δ_[i]

such that δ_nl will diverge earlier

i > N ?

Choose initial conditions,
δ_[0], δ'_[0]

and Number of iterations N

Start

No

End

Yes

Figure 7: A flowchart illustrating the code that is calculating δcrit for different cosmologies. The
user inputs the inital conditions and the number of iterations, the code then calculates N
times δcrit with decreasing initial condition. If the first IC is chosen correctly to lie around
acoll ≈ 1, then, for around N ≈ 50, the output will span from acoll ∼ 1.0...0.05, spaced
approximately logarithmically.
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Figure 8: Even in such a subtle parameter as δcrit, there are visible differences between the models.
It is quite feasible that the differences will affect galaxy formation in one way or another.
Whether or not these differences produce a strong enough signal to detect is still to be de-
termined. Again, we have to make sure to distinguish between effects from the cosmological
parameters and the ones inherent to the DE cosmologies. It will be difficult to distinguish
between those once we’re considering galaxy formation; there will be some degeneracies.
Left panel: δcrit for the cosmologies with the Millennium parameter set for H0,Ωm,Ωb,
Right panel: δcrit for the cosmologies with their respective best-fit parameter set.

3.2. Power spectra

The first step here was to find a code that provides a power spectrum, a transfer function, and

so on. There are some codes around, the most accomplished of which is probably CMBfast.

However, since it doesn’t support a variable w, we decided to go with the CMBfast-based

CAMB (Lewis et al., 2000), which provides a neat addition to its original code by W. Fang

(Fang et al., 2008) that allowes an arbitrary w(a), by simply providing a tabulated ASCII

file for it. This can easily be achieved by writing a script that calculates those for our given

cosmologies (see tables 1 & 2). We were lucky enough to obtain the original data and code

from Jennings et al. (2010), since the current, updated version of CAMB doesn’t work with

Fang’s modifications. Since the code is the same, we get identical power spectra. We have to

be careful about the parameter changes again. To illustrate the differences, fig. 9 shows the

power spectra of our used cosmologies both with their own best-fit values and with ΛCDM

concordance values. The power spectra used in our work are all normalised to σ8 = 0.8 at z = 0

as observations require. In the plots, they are normalised to the CMB fluctuations due to the

readability of the graph.

16



Project Report 3.3. CONDITIONAL MASS FUNCTIONS

Figure 9: Left panel: P (k) at z = 0 for the different cosmologies presented in table 1. They are
all using the same H0, Ωm,0, Ωb,0 (Millennium). There are obvious differences, expecially
in the turnover position. They are normalised to have the same fluctuations (σ8) at the
recombination redshift. This way, they are further apart in this plot and the differences
in shape can be seen. Also, the strength of the different Dark Energies on the fluctuations
show themselves in the difference in amplitude.
Right panel: P (k) at z = 0 for the different cosmologies presented in table 1, with their
best fit values from table 2. The differences to the left panel are only subtle.

3.3. Conditional mass functions

After having adapted the Fortran code for merger-trees to be able to read in the produced

files for δcrit instead of producing its own version of it, the given cosmologies can be theoretically

produced by the code. To test this, we found two simulations which were done a while ago at

the ICC, one for a ‘Sanchez’ and one for a ‘SUGRA’ cosmology. We decided to check if the

conditional mass function, an indicator of halo splitting ratios, was still in as good agreement

as in Parkinson et al. (2008), or if the adaptions of ‘new trees’ had to be looked at again. Also,

the ΛCDM case of our version of the code should reproduce the results of the original code

with the same cosmology.

The conditional mass function is the fraction of the final halo mass (M2) that is in progenitors

of mass M1 per unit log bin in logM1 (see, for example, (Cole et al., 2008)).

The ones from Parkinson et al., which are done for ΛCDM (i.e. a ‘Millennium’ cosmology),

have been successfully reproduced, see fig. 10. The apparent downside is that the ‘custom’

cosmology almost perfectly lines up with the ΛCDM case. This had to be investigated more

closely. Obviously, the SUGRA cosmology here uses the best-fit parameters also used in the

N-body simulation. So we have two different cosmologies lining up albeit having different

parameters. If we produce a plot for a Sanchez cosmology, with only quite small changes w.r.t.

the Millennium case, the differences become apparent (see fig. 11).
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This is a part success of what we have been trying to find, i.e. that the equation of state w(a)

affects structure formation visibly. The problem in the first plot (fig. 10) is that the shifts

in H0 and Ω0 end up compensating the different growth function (and thus δcrit) and power

spectrum. To compute the conditional mass functions, we have written another Python script.

It takes – depening on the resolution – a couple of hours to run. For portability, the programme

was written in a modular fashion, see again A.2.

3.4. Analysing the gadget–simulations

Fortunately, there are 2 gadget-simulations on the storage at the ICC with identical param-

eters (boxsize, particle mass, etc.), except for the cosmologies. These were going to be our

benchmark to see how well merger-trees is dealing with different cosmologies. To do this

however, we have to extract merger trees from the snapshots, which proved to be a complicated

process. First, we need to run subfind (Springel et al., 2001) on the snapshots to seperate

friends-of-friends groups into subhaloes. These then in turn have to be linked over timesteps,

and possibly extrapolated if at some timestep, a certain halo was not found by either FoF or

subsequently SubFind. This is done by a set of Fortran programmes that John Helly provided;

the runtime on a high performance computer such as cordelia in the ICC is on the order of 20

hours.

The outputs are binary files, which can be read in using yet another Python script (which

heavily borrows functions from a Python script of John Helly’s).

The conditional mass functions didn’t quite look as expected. So, in order to troubleshoot, the

first thing we did was see what the mass function at z = 5 (the latest output redshift) looked

like for the simulations. The results were unexpected. There seems to be a plateau-like feature

in the mass functions, which obviously isn’t supposed to be there. Since the code works fine on

simulations we know to be correct (e.g. the Millennium Simulation), we assume the simulations

to be faulty. The outputs have not yet been used for anything, so we are the first ones to

examine these particular simulations. What could be the reason for such an apparent failure

to reproduce analytical fits to mass functions (such as Sheth & Tormen (2002)) will have to be

subject to further inquiry.
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Figure 10: The conditional mass functions for 10000 halos evenly distributed around mass M2 with a
factor of

√
2 on each side for given redshifts. This is quite similar to figure 1 in Parkinson

et al. (2008). It goes further towards small masses on the left hand side because the
resultion of our halo was much bigger. ‘Tabulated’ and ‘Original’ are MS cosmologies,
to see if our adapted code reproduces the original code in the limiting case of a ΛCDM
cosmology. The other cosmology plotted is a SUGRA case, since we had a simulation
for this cosmology at our disposal to check the modified merger-trees code against an
N-body simulation.)
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Figure 11: The conditional mass functions for 10000 halos evenly distributed around mass M2 with
a factor of

√
2 on each side for given redshifts. The ΛCDM-case here is ‘Sanchez’. In this

verison, we can see clearly that there are differences arising at redshifts z ∼ 2. This is due
to the different expansion histories of the cosmolgies and could possibily be detectable
in the galaxy population, if galform is run on these cosmologies. The differences seem
also greater for bigger base masses M2.
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Figure 12: Left panel: The mass function extracted from the MS using our code. It fits nicely to
the analytical mass function of Sheth & Tormen (2002). To calculate this, we have used
the according module of the ‘Cosmology Routine Library’ maintained by E. Komatsu
(http://www.mpa-garching.mpg.de/~komatsu/CRL/).
Right panel: The odd mass function of the ‘Sanchez’ simulation. Both the FoF output
and the post-subfind output are shown, both have the same features. Thus, our code
(which is implemented post-subfind) is not causing this. Something has gone awry,
there are many objects missing on the low mass scale, and the function, although lining
up with the analytical curve, never quite touches it. The same is the case for the SUGRA
simulation.
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4. Results

The results are clearly encouraging. The implementation of a monte-carlo algorithm that takes

different cosmologies has been completed. We still need to check its viability against N-body

simulations, which have been provided but were shown to be faulty. So the code still needs to

be verified, which requires at least 2 well-resolved N-body simulations. In the case of ΛCDM,

the altered code reproduces the original’s results very well.

Part of the extended merger-trees is now a script that computes δcrit for the different cos-

mologies presented in this work. This can easily be appended to other cosmologies, if the

function w(a) is specified.

In the whole process, a variety of code was written to read out and analyse output from

merger-trees, which will be useful for future studies with this algorithm. Furthermore, a

little library called mt_functions for functions that are useful in this context (i.e. reading out

data from monte-carlo and N-body simulations, generating mass functions for N-bodys at given

snapshot, generating conditional mass functions for both, ...) was put together, see A.2.

Currently, the author is looking at ways to parallelise these codes, in order to make use of the

now standard multi-core processors more effictively.

The different models give different growth functions (fig. 1), different power spectra (fig.

9), and different δcrit(a) (fig. 8). This leads to a divergence in the conditional mass functions

(see fig. 11), which, in turn, should affect galaxy formation quite drastically, especially at high

redshift. This is, however, subject to future work, due to the limited time frame available in

this project work.
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5. Conclusions & Future work

5.1. On the Simulations

As stated before, the next step would be to find out what went wrong with the simulations.

It is likely due to the chosen initial conditions. However, we need to get into contact with the

person who ran the simulations to confirm what exactly has been done. Maybe running an own

set of N-body simulations is less time-consuming and more fruitful.

If we then obtain sensible output, we can compare the output of merger-trees to the new

N-body simulations, and see whether the implementation of the new cosmologies was successful.

If it is not, maybe the parameters presented with the ‘New Tree’ corrections by Parkinson et al.

(2008) have to be revised.

5.2. Running Galform

If the output of the algorithm matches the simulations well enough, we can comfortably (and

quickly!) generate merger trees for our different cosmologies. Running galform on those then

will give us numerous observables, such as the luminosity function, galaxy counts, SFR, etc.

This can then finally be compared to large surveys such as SDSS or GAMA. This will be a

novel piece of information. By looking at extremes, maybe we can rule out models (i.e. if we

find older galaxies in our universe than one model predicts).

Do we maybe have to tweak the parameters of galform very strongly to reproduce observed

galaxy properties? Can we perhaps rule out a model from requiring unrealistic points in pa-

rameter space to fit observations?

There is clearly a lot of exciting work ahead if the modified merger-trees code proves to

be consistent with different cosmologies. Obviously, the ultimative test of all physics is always

observation of nature. If a theory doesn’t agree with observations, it is advisable to find some-

thing that does, until the observations (or the experiments, to not be branch-specific) get more

precise or more general. Therefore, we should find a recent catalogue that has enough high-z

galaxies to compare it to our models.

5.3. Final conclusions

To sum up, this project is well underway of at least delivering the answers to the question

whether the current version of merger–trees is compatible with different Dark Energy cos-

mologies. If it is, we have a lot of work ahead to establish how Dark Energy can affect galaxy

formation. Global galaxy properties can then perhaps established as novel Dark Energy ob-

servable.

If we can not establish merger–trees’ compatibility to different cosmologies, maybe a further
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correction in the style of Parkinson et al. (2008) can solve this problem and generalise the code

further.
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A. Appendix

A.1. WMAP 7 data

WMAP Cosmological Parameters

Model: wcdm+sz+lens

Data: wmap7+bao+h0

102Ωbh
2 2.246± 0.058 1− ns 0.041+0.015

−0.014

1− ns 0.012 < 1− ns < 0.068 (95% CL) 1 + w −0.10± 0.14

1 + w −0.39 < 1 + w < 0.15 (95% CL) ABAO(z = 0.35) 0.471± 0.012

C220 5755± 40 dA(zeq) 14188± 144 Mpc

dA(z∗) 14022± 146 Mpc ∆2
R (2.49± 0.12)× 10−9

h 0.720+0.027
−0.028 H0 72.0+2.7

−2.8 km/s/Mpc

keq 0.01004+0.00038
−0.00037 ℓeq 140.7± 4.0

ℓ∗ 302.54+0.78
−0.79 ns 0.959+0.014

−0.015

Ωb 0.0435+0.0036
−0.0037 Ωbh

2 0.02246± 0.00058

Ωc 0.222+0.015
−0.016 Ωch

2 0.1150+0.0053
−0.0052

ΩΛ 0.734+0.019
−0.018 Ωm 0.266+0.018

−0.019

Ωmh2 0.1374+0.0052
−0.0051 rhor(zdec) 283.3+2.7

−2.8 Mpc

rs(zd) 152.1± 1.5 Mpc rs(zd)/Dv(z = 0.2) 0.1914+0.0043
−0.0042

rs(zd)/Dv(z = 0.35) 0.1142± 0.0021 rs(z∗) 145.6± 1.4 Mpc

R 1.733± 0.018 σ8 0.846± 0.059

ASZ 0.92+0.69
−0.92 t0 13.74± 0.11 Gyr

τ 0.086± 0.014 θ∗ 0.010384± 0.000027

θ∗ 0.5950± 0.0015 ◦ t∗ 375369+4704
−4792 yr

w −1.10± 0.14 zdec 1088.5± 1.2

zd 1020.4+1.3
−1.4 zeq 3292+125

−123

zreion 10.4+1.1
−1.2 z∗ 1091.31+0.98

−0.97

Table 3: Cosmological parameter table taken from (?); its underlying model is WCDM, meaning that
the Dark Energy equation of state is allowed to vary in time and that the dark matter is
cold (i.e. T � m). The precision is of the parameters is remarkable, given their great
number, even if there are degeneracies here and there. The WMAP data is complemented
by BAO (baryo-accoustic oscillations, the remnants of the fact that the baryons followed
the photons’ oscillations before decoupling) (Reid et al., 2010) and H0 from Hubble Space
Telescope (HST) observations (Riess et al., 2009).

A.2. Python source code

Since the original idea of printing the code with the report was quite wasteful, digital copies of the

code can be found here: http://tinyurl.com/mergertrees-code
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A.3. Linear density field evolution

Let’s ask ourselves how the fluids are behaving given a specific background cosmology. On the linear

level, this can be solved analytically, as we will see in this section. However, most of the interesting

physics is going on during the highly nonlinear periods. This is where numerical solutions, computer

simulations and semi–analytical models have to be considered.

The basis for this is perturbation theory. The first step is perturbing the background metric by a

small amount δgµν :

gµν = g(0)
µν + δgµν (A.1)

The perturbed metric is usually depicted thusly:

δgµν = a2

(
−2Ψ wi

wi 2Φδij + hij

)
(A.2)

Note that wi here is an arbitrary 3-vector, and has nothing to do with the equation of state.

From there, symmetry arguments, Helmholtz’ theorem and gauge choice leads to this line element (see

e.g. (Amendola & Tsujikawa, 2010) or most standard cosmology textbooks for a detailed derivation):

ds2 = (−1− 2Ψ)dt2 + a2(1 + 2Φ)δijdx
idxj (A.3)

Then, by plugging this into Einstein’s field equations, only keeping terms of first order in δ and

assuming the energy–stress–tensor to be that of a perfect fluid, one arrives at a set of equations, for

simplicity usually written in Fourier space, which can be combined to yield the relativistic Poisson

equation,

k2Φ = 4πGa2ρ[δ + 3H(w + 1)
θ

k2
], (A.4)

a differential equation for the gravitational potential Φ (which is related to Ψ via Φ = −Ψ iff Tµν is

shearless, i.e. Tij = 0. This is true for (cold) Dark Matter and standard Dark Energy.),

Φ′′ + 3H(1 + c2
s)Φ
′ + (c2

sk
2 + 3H2c2

s + 2H′ +H2)Φ = 0, (A.5)

where the density contrast δ := (ρ(x, t) − ρ0)/ρ0, the velocity divergence θ := ∂iv
i, the conformal

Hubble function H := aH and the soundspeed c2
s = dP

dρ . Note that a prime denotes a derivative

w.r.t. conformal time η¶ The former two equations can be combined into one handy equation for the

‘total-matter variable’ δ̃ := δ + 3H(w + 1)θ/k2:

δ̃′′ +H(1 + 3c2
s − 6w)δ̃′ −

(
3H2

2
(1− 6c2

s − 3w2 + 8w)− c2
sk

2

)
δ̃ = 0 (A.6)

This equation can now be specified for different kinds of fluid. If we’re looking at scales much smaller

than the Hubble radius (i.e. k � H), and restrict ourselves to a pressureless fluid with small sound

¶Conformal time: η(t) =
∫ t

0
a−1dt′
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speed (i.e. cold dark matter, or decoupled baryons), the former equation reduces to

δ′′ +Hδ′ +
(
c2
sk

2δ − 3

2
H
)
δ = 0, (A.7)

which is basically a fluid wave with Hubble friction.

For csk � H (again, CDM or decoupled baryons), this becomes

δ′′ +Hδ′ − 3

2
H2δ = 0, (A.8)

which can be neatly re-written if we take derivatives w.r.t. d ln a instead of dη:

d2

d ln a2
δ +

1

2

d

d ln a
δ − 3

2
δ = 0. (A.9)

The two analytic solutions to this are

δ+ = Aa δ− = Ba−3/2 (A.10)

A and B are fixed by boundary conditions. Here, subscript ‘+’ denotes a growing solution, and ‘-’

a decaying one. The former is the more interesting one if we’re looking for gravitational instabilities

that form the seeds for galaxy formation. This solution, dubbed the growth function D(a), is ∝ a in

a matter–dominated universe. It will be < a if something else, such as Dark Energy takes over and

accelerates the Hubble expansion faster than the gravitational potential Φ grows. Again, for a more

detailed treatment of the matter, the reader is referred to their favourite cosmology textbook.

A.4. The matter power spectrum

The importance of the power spectrum to cosmology cannot be overstated. It is a statistical measure

of correlation in k-space and does not evolve during linear structure growth, since in this regime, the

gravitational potential (and therefore the density contrast) can be seperated according to

Φ(k, a) = 0.9Φ(k, ainitial)T (k)D(a). (A.11)

To show that this seperation is valid is a nontrivial exercise, as said before, most textbooks cover it

or refer to a proof (e.g. Amendola & Tsujikawa (2010) or Dodelson (2003)).

The power spectrum is defined by

P (k) = V −1

∫
dVxdVy δ(x)δ(y)e−ik·(x−y), (A.12)

where δ(x)δ(y) = ξ(x − y) = ξ(r) is the 2-point (or auto-) correlation function. In general, there is

an n-point correlation function; for a gaussian distribution, all odd moments (i.e. 2n + 1-correlation

functions) disappear.

Another parameter that quantifies the clustering property of a universe is the root mean square

fluctuations in a given scale R, called σR.
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For a sphere of radius R, this is defined by

σ2
R = (2π2)−1

∫
dk P (k)W 2

R(k)k2. (A.13)

The window function WR is a top hat in real space, cutting off all contributions > R. In k-space it

has oscillatory features. The the prefactor and the factor of k2 are due to the spherical symmetry, and

P (k), as stated before, quantifies the fluctuations. Usually R is taken to be 8Mpc/h, which is more of

a ‘historic relic’ than a conscious choice.
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