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Summary. The numerical solution by finite differences of two-dimensional 
problems in electromagnetic induction is reexamined with a view to general- 
izing the method to three-dimensional models. Previously published work, in 
which fictitious values were used to derive the finite difference equations, is 
discussed and some errors in the theory which appear to have gone unde- 
tected so far, are pointed out. It is shown that the previously published B- 
polarization formulas are incorrect at points where regions of different 
conductivity meet, and that the E-polarization formulas are inaccurate when 
the step sizes of the numerical grid around the point are uneven. An appro- 
priately-modified version of the two-dimensional theory is developed on the 
assumption that the Earth’s conductivity is a smoothly-varying function of 
position, a method which naturally lends itself to three-dimensional generali- 
zation. All the required finite-difference formulas are derived in detail, and 
presented in a form which is suitable for programming. A simple numerical 
calculation is given to illustrate the application of the method and the results 
are compared with those obtained from previous work. 

1 Introduction 

The solution of two-dimensional induction problems by numerical methods has received 
widespread attention during the last several years. The various techniques that have been 
used (transmission line analogy, integral equation, finite-element and finite-difference 
methods) have recently been reviewed by Jones (1973) and by Ward, Peeples & Ryu (1973). 
In many of the published papers, authors have emphasized the presentation of numerical 
results for particular models rather than the development of the algebraic equations they 
have solved, with the result that it  has not always been possible to acquire a detailed know- 
ledge of their procedures. The outstanding exceptions are Jones & Pascoe (1971) and Pascoe 
& Jones (1972) who have not only published the theory but also the F O R T R A N  program 
of their finite-difference method for solving the problem of induction in a general two- 
dimensional structure embedded in a layered earth. By doing this they have generously 
enabled other researchers to use the program directly for solving particular induction prob- 
lems, but as a result they have exposed the algebraic details of their own work to greater 
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scrutiny than that of other authors. An error in their finite difference representation of 
second derivatives for variable grid spacings was discovered by Williamson, Hewlett & Tam- 
memagi (1974). Jones & Thomson (1974) have shown that its effect on calculated results 
is much reduced when a numerical grid whose spacings are not too irregular is used. 

Research activity in this field is now directed towards the solution of three-dimensional 
problems. An elegant and economical formulation of this problem in terms of a vector 
integral equation has been published by Raiche (1974), and independently by Weidelt 
(1975) who has described and applied the method in some detail. Lines &Jones (1973a,b) 
have derived a three-dimensional generalization of the finite difference method of solving 
for the electric vector and have applied it to models representing islands located near a long 
coastline. Such a model approaches a straight-forward coastline problem at large distances 
from the island, so that two-dimensional problems still have to be solved in order to first 
determine the boundary conditions for the three-dimensional model. 

It is for this reason that in formulating a finite difference method for solving three- 
dimensional models in terms of the magnetic rather than the electric vector we have had 
occasion to reexamine the two-dimensional theory. In doing so we believe we have 
uncovered some misconceptions and errors (other than the one pointed out by Williamson 
et al. (1974)) in previously published work. 

In this paper we shall discuss these points of difficulty in detail and show one way of 
overcoming them. This leads to a new finite-difference formulation of the general two- 
dimensional induction problem which can be used as an alternative to finite element and 
other methods in which the difficulties mentioned do not arise. 
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2 The equations of the electromagnetic field 

The basic equations of electromagnetic induction in a region of conductivity (T and vacuum 
permeability pFco are (in SI units) 

curlE = - iwB 

where E exp (iwt) and B exp (iwt) are respectively the electric and magnetic field vectors 
varying in time t with angular frequency w.  It follows from (2.1) and (2.2) that E and B 
satisfy the respective differential equations 

curl curl E = -if& (2.3) 

(2.4) pV2B - grad p x curl B = iB 

where K = l / p  = wpou. 
Let the unit vectors x, y, z define a rectangular Cartesian coordinate system in whch, for 

a two-dimensional problem, it may be assumed that u, E and B are independent of the 
variable x. It is well known that a general two-dimensional field of this type separates into 
(i) an E-polarization field, 

and (ii) a B-polarization field 

B = B ~ ,  E = OP(Y as j az -zaB/ay )  (2.6) 
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and that these two cases may be considered independently. For E-polarization, equation 
(2.3) reduces to 

a2Elay2 t a2E/az2 = iKE (2.7) 

and for B-polarization equation (2.4) can be written as 

aZB a2B ap aB apaB 
p + p  -+- -t-- =iB. 

ay az2 ay ay az az 

In a nonconducting region (u  = 0), equation (2.2) may be replaced by the simpler equation 

B = -grad C2 (2 -9 ) 

where, by equation (2.1) 

v2il = 0. (2.10) 

In E-polarization, equations (2.5) and (2.9) imply 

while in B-polarization equations (2.6) and (2.9) yield 

B = H(const). (2.12) 

We shall be concerned with the problem of solving equations (3.7) and (2.8) in the 
half-space z > 0 for a given function K corresponding to the conductivity distribution within 
the Earth. The region z < 0 above the Earth's surface will be taken as non-conducting, and 
we shall assume that the inducing magnetic field is horizontal and uniform over the entire 
region. 

3 Boundary conditions 

We make the basic assumption that u becomes a function of z alone as 1y 1 +. 00. Thus in both 
polarizations the problem reduces at large horizontal distances to one of induction by a 
uniform, horizontal magnetic field in an earth whose conductivity varies only with depth. It 
is a well-known property of this one-dimensional problem (e.g. Jones & Price 1970) that the 
total magnetic field above the conductor is horizontal, uniform and independent of the 
conductivity distribution in the Earth. Since the inducing field is the same everywhere it 
follows that the total magnetic field must have the same constant limiting value Has y +. f m 

in z < 0. Also, in the region z > 0, B +. 0 as z -+ 00. The development of the remaining 
boundary conditions is different for the two polarizations and we shall treat them 
separately. 

E-PO LA R I ZATION 

Let E +. E' and K + K *  as y +. fm in the region z > 0. Then according to equation (2.7), 
E' are the solutions of 

a2Eflaz2 = iK*E* (3.1) 
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subject to the boundary conditions E f  + 0 as z + -, and 
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(aE*/az), = o  = - iwH, (3.2) 

this last condition following from equation (2.5) and the continuity of the magnetic field 
at z = 0. Equation (3.1) can be solved by standard methods either analytically or numeri- 
cally. Only if K’ = K- will E+ = E-. 

The influence of conductivity variations will also vanish at large distances in the region 
z < 0. The general solution of equation (2.1) in z < 0 subject to the condition i2 -+ - Hy 
asz+- - i s  

(3.3) 

where &f(u)/v is the Fourier transform of i2 + Hy at z = 0. Defined in this way, with 
the factor l/u removed, f is a suitably well-behaved function such that the Riemann- 
Lebesgue lemma can be used to ensure that the boundary condition aR/ay -+ - H as Iy I +- 

is automatically satisfied. It follows from equation (2 .I 1) and some algebraic manipulation 
that 

m 

aE/dy = iw { f ( -u )  exp (iyu) - f ( u )  exp ( - iyu) 1 exp (zu) du 
(3.4) 

aE/az = - iwH + w 

Assuming that f can be expanded in a Maclaurin series on either side of u = O ,  we can 
integrate term by term to obtain an asymptotic expansion of the integrals (3.4) for large 
r = (y’ + z’)”’. Neglecting terms 0 (1  / I z )  we find that 

{ f ( -u)  exp (iyu) + f ( u )  exp (- i yu ) }  exp (zv)  du. L- 

aE/ay - iC-z/r’ - C+y/r’ 

aE/az - - iwH - C+z/r’ - iC-y/r’ 
(3.5) 

where C, = o { f ( + O )  f f(- 0)). Since aE/ay + 0 as 1 y 1 + a, it follows at once that C+ = 0 
and hence that 

E - A - iwHz - iC-arctan ( y / l z  I )  (3.6) 

where A is a constant of integration. Now as y + f m on z = 0, arctan ( y / i z  I )  + f ‘An and 
E + (E‘)= = o ,  these last values being given by the solution of equation (3.1). Substituting 
these conditions in equation (3.6), eliminating A and C-, and defining 

E = ‘A(E++ E-) z = o ,  AE = ( E + - E - ) z = o  (3.7) 

we deduce that 

E - E -  iwHz +(&In) arctan (y/Izl). (3.8) 

This serves as an adequate approximation to the field at large distances (y’ + z’)l/* in the 
region z < 0, and completes the boundary conditions required for solving E-polarization 
problems. 

It should be noted that equation (3.8) differs slightly from the corresponding one derived 
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by Jones & Price (1970) using rather different arguments. They considered a rectangular 
boundary enclosing the region z < 0 and assumed that the vertical magnetic field (i.e. aE/ay) 
is constant along the upper boundary z = -R for large R. In our equation, however, aE/ay 
has a small variation with y on z = -R, which is probably an indication of the increasing 
accuracy of our asymptotic formula towards the upper comers of a rectangular boundary. 
Equation (3.8) should really be applied around the semi-circular boundary r=R. Never- 
theless near z = 0 and y = 0 it should agree exactly with the Jones & Price formula for the 
rectangular boundary y = k R ,  (O<z<-R) and z=-R, (lyl<R). As z+-O,  y+%, 
equation (3.8) reduces to 

E - (E'), = - ioHz (3.9) 

and as lyl + 0, z +. - R ,  it becomes 

E E+ iwHR + y AE/nR. (3.10) 

Equation (3.9) is exactly the same as the corresponding Jones & Price boundary conditions 
(their equations (20) and (21)), but equation (3.10) differs from theirs (equation (27) with 
k = ho = R) in the third term where they have a factor ?4 in place of our lln. (Actually they 
also omitted the second term in equation (3.10) but this appears to be a minor slip resulting 
from a wrong substitution for E at y = f k.) 

Another way of dealing with equations (3.4) is to apply a negative Hilbert transform 

(3.1 1) 

to the function aE/ay. It is simple to show by repeated integration that 

~ [ a ~ i a y ]  = i o H  + aE/az (3.12) 

so that, in particular, at z = 0 we have the boundary condition 

( a q a z ) ,  = = - iwH + K [(aE/ay), = O l .  (3.13) 

This serves as an integral boundary condition equivalent to the one devised by Schmucker 
(1971), with K representing the operator introduced by Kertz (1954). It has the advantage 
of effectively removing the region z < 0 from further consideration but complicates the 
finite difference formulation of the problem somewhat by relating the field at a point on 
the surface not just to the field at four neighbouring grid points but to the field at all the 
other grid points on z = 0. We shall not use the integral boundary condition in this paper 
but it is interesting to see that both it and the Jones-Price type of boundary condition are 
different manifestations of the same integrals (3.4). 

B - P O L A R I Z A T I O N  

In this polarization we need only consider the region z > 0 with (B), = ,-, = H(const) as the 
boundary condition don the surface according to equation (2.12). For side boundary 
conditions we have B + B as y +. f m where B* are solutions of B 

,.a2~' ap' aB* 
p -g+-- = iB' 

az az 
(3.14) 

subject to (Bf)z=o = H. 
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4 Discussion of finite difference methods 

Equations (2.7) and (2.8) can be solved numerically by finite difference methods. In this 
section we shall consider a mesh whose grid points have an equal separation h in both the 
y- and z-directions. Variable grid separations could be easily incorporated in the theory but 
at this point they would only distract from the main theme of the discussion. 

Consider a typical grid point 0 and its neighbouring points 1-4 in a region of uniform 
conductivity, as shown in Fig. l(a). Since gradp = 0, both equations (2.7) and (2.8) have the 
same finite difference representation 
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Fl + F z + F 3 + F q  = (4+i~h’)F,, (4.1) 

with an error O(h3), where F stands for either E or B and the subscript indicates the grid- 
point at which the field is evaluated. 

I-’ Z 

Figure 1. A typical node. 

Jones & Pascoe (197 1) considered instead the most general configuration possible, as 
shown in Fig. l(b) where the point 0 is at the junction of four regions of different conduc- 
tivities, ul, uz, u3, and u4. They envisaged these different regions as being sharply separated 
by the grid lines A and B through point 0, and sought the appropriate finite difference 
equation by introducing ‘fictitious’ values and by then applying the usual electromagnetic 
boundary conditions across the sharp boundaries. 
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E - P O L A R I Z A T I O N  

Let us examine this procedure for E-polarization. If E p )  represents the fictitious field value 
at the point i which is associated with region j ,  then we may write down the four finite 
difference equations (4.1) which apply at the point 0 as follows 

El t E l 4 )  + E i 4 ) +  E4 = (4 + i K q h z )  Eo. 

The uniqueness of the field values at each grid point is ensured by the continuity of the 
(tangential) electric field across the boundaries. The continuity of the tangential magnetic 
field components provides additional equations. For example, from equation (2.5) we see 
that aE/az is continuous across line A joining points 3 and 1. Using the central difference 
formula for the derivatives at the point 0, we find that 

follow from the continuity of the tangential magnetic field across the line B joining points 
2 and 4. 

We now have eight equations for the eight unknown fictitious values. However, it is easily 
verified that the determinant of the coefficients vanishes, the rank of the coefficient matrix 
being 7. Thus the equations have a solution if and only if the rank of the augmented matrix 
is also 7, and this means that the values Ei (i = 0 ,  1 , 2 , 3 , 4 )  must be connected to each other 
in a certain way. The required condition is most easily obtained by direct algebraic elimina- 
tion of  the fictitious values. We find that 

El  + Ez + E3 t E4 = (4 + ih2K0) Eo (4.5) 

where K~ = % ( K  + K~ t K~ t K ~ )  is the average value of K in the four surrounding regions. 
Jones & Pascoe (1971) also obtained equation (4.5) but by a different procedure which 

involved an application of the boundary conditions using one-sided rather than central 
difference formulas as approximations to the first derivatives. Apart from the fact that the 
one-sided differences have errors O(h2) which are as great as terms retained elsewhere in the 
analysis, their use also meant that the boundary conditions on the tangential magnetic field 
were, in effect, doubly applied at each boundary. Thus instead of the four equations (4.3) 
and (4.4) Jones & Pascoe obtained eight separate equations which, incidentally, contained 
the tacit implication EP) = Ei (i = 1 ,2 ,3 ,4 ) .  Moreover, when taken together with equations 
(4.2) these eight new equations gave rise to an over-determined system which the authors 
made determinate by adding equations (4.2) together to yield a single equation in place of 
the previous four. Although this is not a valid mathematical procedure it is, in fact, equiva- 
lent to averaging the four conductivity values and so leads directly to equation (4.5) which 
does have a valid physical interpretation. 

Unfortunately our own derivation of equation (4.5) is also open to criticism for we have 
so far overlooked the remaining boundary condition which states that the normal compon- 
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ent of B must be continuous. It is easily verified that this condition leads to the additional 
four equations 
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when applied across the four baundaries meeting at the point 0. Thus our system of 
equations (4.2), (4.3), (4.4) and (4.6) is now over-determined unless 

in which case four equations become redundant and the relation (4.5) still holds. The con- 
dition (4.7) includes the plane boundary (al = u2, u3 = u4, or u1 = u4, u2 = u3) as a special 
case, but excludes boundaries with comers. We conclude, therefore, that except for a few 
simple geometries it is not possible to formulate a finite difference representation of the 
general problem depicted in Fig. l(b). 

The way out of this dilemma is to look at equation (4.5) from a different point of view. 
It is identical in form to equation (4.1) with K~ replacing K .  Thus it may be regarded as the 
correct finite difference relation for a point in a region whose conductivity is the average 
of the conductivities of the surrounding regions. In other words, we are not really consider- 
ing a region with sharp boundaries at all, but one in which the conductivity changes 
smoothly from one value to the next in a roughly linear manner. No boundary conditions 
have to be applied (there are no boundaries) and equation (4.5) can be used at each grid 
point once the appropriate value of K~ has been determined. 

It is interesting to note that Lines & Jones (1973a,b) resorted to  the same sort of inter- 
pretation when they replaced sharp boundaries by ‘transition zones’ in order to solve a 
three-dimensional induction problem. Rankin (1973) has claimed that their results were 
invalidated by this device but, on the contrary, this discussion has shown that the concept 
of the ‘transition zone’ is just as much implicit in the two-dimensional finite difference 
formulas, as it is in the three-dimensional ones. It is true, however, that the physical picture 
is more complicated in three-dimensions because of the fact that 

div E = - E .(grad K ) / K  (4.8) 

- by equation (2.2) - and this is non-vanishing when K is a variable function of position, 
thereby indicating an accumulation of volume charge in the transition zones. This problem 
does not arise in two-dimensional E-polarization for which the right-hand side of equation 
(4.8) vanishes identically at all points. 

B - P O L A R I Z A T I O N  

We shall again begin our discussion by attempting to analyse the configuration of Fig. l(b), 
this time for a B-polarization field. Since K is regarded as constant in each of the four regions 
surrounding the point 0, equations (4.2) will continue to hold for the B-field. The value of B 
is uniquely defined at each grid point by virtue of the continuity of the tangential magnetic 
field. According to equation (2.6) the continuity of the tangential electric field across line A 
in Fig. I(b) can be expressed by central difference formulas in the form 

pl(Bi’) - B,) = p4(B4 - B p 3 ,  pZ(Bi2) - Bz)  = p3(B4 - Bl3’) (4.9 ) 

where we have substituted pi = 1 / ~ i  (i = 1 , 2 , 3 , 4 ) .  



The finite difference solution 383 

Once again the eight unknown fictitious values satisfy a system of eight equations whose 
matrix of coefficients has rank 7, and it is easily shown by elimination that they possess a 
solution if and only if 

(4.1 1) 

(4.12) 

The corresponding result obtained by Jones & Pascoe (1971) was not the same because 
they again used one-sided difference formulas for first derivatives and derived their final 
formula from an over-determined system of equations. In fact we have been unable to find 
a satisfactory interpretation of their B-polarization formula, except to note that it reduces 
to the correct form when u1 = uz = u3 = u4. Ward et  al. (1973) on the other hand have used 
the central difference formulas to derive equations for two subcases of the general con- 
figuration in Fig. l(b), namely the 'vertical discontinuity' (ul = u4, uz = u3) and the 'three- 
way comer' (ul = u4, u2 # u3), which do agree with the corresponding special cases of our 
equation (4.1 1). But new problems of inconsistency appear in their analysis of the 'wedge- 
comer' (u, = uz = u3 = u # u4) shown in Fig. l(c). This is because the five-point finite differ- 
ence formula for the differential equation satisfied by B in the three-quarter space of con- 
ductivity u is indistinguishable from equation (4.1) for the uniform region of Fig. l(a). 
Thus Ward et al. obtained two inconsistent equations for the nodal point 0, one being 
equation (4.1) - containing no fictitious values - and the other resulting from the equation 
for the corner region with its two fictitious values (at nodes 2 and 3) eliminated by the 
boundary conditions on the tangential electric field. Their quoted final formula appears to 
have been found by adding the two inconsistent equations together, whereas the limiting 
form of equation (4.1 1) is obtained by adding the equations weighted in the ratio 3 : l .  

We have derived equation (4.1 1) by imposing the boundary conditions on the tangential 
electric and magnetic fields, just as we obtained equation (4.5) for the E-polarization field. 
However, since displacement currents have been neglected, we must also ensure that the 
normal component of the current density j = uE is continuous across the boundary between 
two conducting media. According to equation (2.6) we see that this corresponds to a state- 
ment of the natural boundary conditions that aB/ay is continuous across line A and that 
aB/& is continuous across line B. Expressing these conditions in terms of fictitious values 
we obtain the additional four equations 

(4.13) 

Thus we have reached the same impasse as before. When all the boundary conditions are 
taken into account we obtain too many equations for the number of unknown fictitious 
values. Indeed it is immediately apparent that equations (4.13) are inconsistent with 
equations (4.9) and (4.10) unless 

0 1 0 3  = 0204. (4.14) 

It is easy to see by a simple physical argument how this condition arises. Suppose that 
near the point 0 in the second quadrant the y-component of the electric field is E .  By con- 
tinuity of tangential electric fields the same component in the third quadrant must also be 
E .  The normal component of current density approaching line B is therefore uzE in the 
second quadrant and u& in the third, as shown in Fig. l(d). Now this current is continuous 
across line B, so that the ycomponent of the electric field just to the right of the point 0 is 
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qE/ul in the first quadrant, and u&/u4 in the fourth quadrant. These two fields are in turn 
continuous across line A and must, therefore, be equal to each other. If equation (4.14) is 
satisfied this will be so; otherwise the electric field must vanish or have a singularity at the 
node 0 which suggests that we are dealing with an improperly devised mathematical model 
of the physical situation we are trying to represent. 

Even if the condition (4.14) is satisfied, six of the fictitious values can still be eliminated 
from equations (4.9), (4.10) and (4.13) leaving two unknowns satisfying the four equations 
(4.2). It can be shown that two of these remaining equations become redundant if either 
(i) u1 = q or (ii) 9 = u3. Taken together with (4.14), (i) implies u3 = u4 and (ii) implies 
u4 = ul. We conclude, therefore, that our derivation of equation (4.1 1) is generally valid 
only at vertical or horizontal plane boundaries. 

At this point we are forced back to the idea of abandoning the concept of sharp 
boundaries in favour of a conductivity which is a smoothly-varying function of position, just 
as we did for E-polarization. In B-polarization, however, this is more than a simple re- 
interpretation of a given finite difference formula because it means the introduction of new 
terms into the basic differential equation, namely those in equation (2.8) whose coefficients 
involve derivatives of p. In the subsequent sections we describe a way of doing this and 
obtain the appropriate finite difference formulas for a mesh with variable node spacings. 
Apart from the fact that this new approach will remove the difficulties we have encountered 
in this discussion it is also a natural one for generalization to three-dimensional models. 

C. R. Brewitt-Taylor and J. T. Weaver 

5 The conductivity model 

Let the yz-plane be covered by a mesh whose nodes (m, n), 1 6 m < M, 1 G n < N, corre- 
spond to the points y = ym , z = z,. In this notation, the left and right side boundaries and 
the top and bottom boundaries are at y = y l ,  y = y ~ ,  z = z1 6 0 and z = ZN > 0 respectively. 
For simplicity we assume in this paper that z = ZN is the surface of a superconductor. We 
take zq = 0 so that the nodes corresponding to n = 4 are on the surface of the Earth. (In 
B-polarization problems the surface z = 0 is the upper boundary of the numerical grid, i.e. 
q = 1 in B-polarization.) Variable node spacings are introduced by the definitions 

h,  = ~ , + ~ - y , ,  k, = Z , + ~ - Z ,  ( l < m < M - l , l < n < N - l ) .  (5.1) 

The numerical model is shown in Fig. 2. 
In the region z < 0 the conductivity is zero everywhere, giving 

Otherwise the conductivity values are not specified at the nodes themselves, but at the 
centres of the rectangular elements of the mesh. We define urn +%,, + %  (1 6 m < M - 1 ,  
4 < n G N - 1) to be the given conductivity at (m + 'A, n + 'A), i.e. the pointy = y m  t Urn, 
z = z ,  t 'k,, and we envisage a smooth variation in conductivity between neighbouring 
values. The actual form of this variation is not specified in the numerical model. Thus we 
are at liberty to assign to the nodes themselves any suitable conductivity values which are 
consistent with a reasonable functional behaviour between adjacent conductivities. For 
example, we could assume that either u or the resistivity l/u changes linearly from one value 
to the next (with some rounding at the ends to form a smooth join). It turns out, however, 
that neither of these choices is satisfactory. In fact we shall find it appropriate to postulate 
two different types of variation, one for E-polarization and the other for B-polarization. 
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E-PO L A R I  2 AT10 N 

Since we have assumed that au/ay + 0 as 1 y I -+ - the conductivity values on, for example, 
the left side of the grid are defined by u , , ~ + %  = uAn+%,  (4 G n G N - 1). There is no 
difficulty in using fictitious values to derive the one-aimensional finite difference equation 
at a node (1, n )  because condition (4.7) is always satisfied at a boundary between two 
regions when the conductivity is only varying with depth. Thus we can regard the node 
( 1 ,  n )  as being on a sharp  boundary between the region z , - ~  < z < zn of constant conduc- 
tivity ul ,n -H and the region zn < Z < Z , + ~  of constant conductivity U ~ , ~ + H .  Following 
the procedure described in Section 4, accounting this time for the different grid spacings 
when representing derivatives by central difference formulas, we can readily show that 

Now equation (5.3) is precisely the finite difference representation of equation (3.1) at 
(1, n)  assuming that K - = K ~ , ~  there. Thus the finite difference equation (5.3) holds equally 
well if the conductivity vanes from one value to the next in such a way that the value of K 

at a side node is an average of the two given values above and below weighted according to 
the formula (5.4). The numerical model is just not precise enough to distinguish between 
sharp boundaries and a variable conductivity of this type. 

We now generalize this result to two dimensions. For consistency with one-dimensional 
equations we must average the conductivity in the same way in both they-  and z-directions. 
Thus we shall define 

Km,n  + Km,n  - 1 + Km - 1,n + Km - 1,n - 1 
Km,n = 

( h r n + h m - l ) ( k n + k n - l )  

at the node (m, n ) ,  2 G m G M -  1,q G n G N - 1, where 

Km,n = hmkn Km + s , n  + %. 

By analogy with equation (5.4), at the nodes on the extreme right of the grid we have 

k n - l K M , n - H t  k n K M , n + H  

kn + kn - 1 
KM,n  = 

for q G n G N -  1. Note that if the surface of the Earth is interpreted as a sharp boundary, 
then the conductivity at the node (m,q) must be taken as 0 on z = - 0  and on 
z = to where 

However if the surface is regarded as a transition zone between 
(5.5)gives, for ~ G ~ G M - 1 ,  

and urn ,q -%=O,  
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B - P O L A R I Z A T I O N  

As in the case of E-polarization we begin by considering a node (1, n )  on the left side of the 
mesh and assume that it is on a sharp boundary between the two regions Zn - 1 < z < Z n  and 
zn < z < zn+ of constant conductivities u l ,  - 4i and u l ,  n+ ~2 respectively. Since we may 
use the method of fictitious values at plane boundaries without difficulty, we can follow the 
procedure described in Section 4 to obtain the finite difference equation 

n - iPi ,n+ 4i + knh,n - 4i 

- 1 + knki - 1 

i 
+-)Bl,n 2 (5.9) 

P1,n +1/,B1, n+ 1 

kn(kn + kn - 1 

PI ,  n - 1/,B1,n - 1 

kn - l(kn + kn - 1 )  
+ 

for 2 G n g N - 1. (Recall q = 1 for B-polarization.) After some algebraic rearrangement 
this equation can be put in the form 

2Pl,nB1, n + 1 2P1,n BI, n 2Pl,nBl,n-l + - 
kn(kn +kn- d knkn - 1  kn - l(kn + kn - 1 )  

knB1,n - 1 

kn-l(kn +kn - 1 )  
- )= 81,. (5.10) 

kn - 1 B1, n+ 1 (kn - kn - 1 )  B1, n 

knkn - 1 
+ +(?) az I, n ( ,kn(kn + kn - 1 ) 

where 

(5.1 1) 

(5.12) 

The interpretation of equation (5.10) is clear. It is a direct finte difference representation 
of equation (3.14) at the node (1,n) under the assumption that and ap-/az= 
(ap/az),,. there. Thus equation (5.9) serves equally well if instead of a sharp boundary at 
(1,n) we imagine that the conductivity is varying smoothly from ul,n-% to ul,n+y; in such 
a way that p attains the weighted average value given by (5.1 1) at the node, and has a slope 
there given by (5.12). In fact this slope is just the linear gradient between the given values of 
p immediately above and below the node, and we know by the mean value theorem that this 
slope must be attained somewhere in the interval if u (and hence p )  is smoothly varying. 

The generalization to two-dimensions is quite straightforward. At a node (m, n), 2 d m 6 
M -  1,2 6 n d N - 1, we define 

(5.13) 
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In the last two formulas the slopes have simply been expressed as linear gradients between 
the appropriate weighted average values of p.  For example, the right-hand side of equation 
(5.15) is equivalent to the gradient (Pm,n+% - P m , n - % ) / % ( k n  t k n - 1 ) .  

By analogy with equations (5.1 1 )  and (5.12), when m = M we have 
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(5.16) 

(5.17) 

f o r 2 ~ n ~ N -  1. 
In order to solve B-polarization problems it is also necessary to assign conductivities to 

the nodes (m, 1) and (m, N), 1 G m GM, treated as lying on the surfaces z=+O and 
z = z N -  0 respectively. In other words we regard the surfaces of the Earth and 
superconductor as sharp boundaries with nodes on their inside faces adjoining the finitely- 
conducting region 0 < z < Z N .  We now make the obvious assumption that the conductivity 
does not vary in the z direction from its specified values at depth ?4kl up to the surface 
z = 0, and likewise that it is unchanging from its values at depth ZN - %kN- down to the 
surface z = Z N .  Thus, we have 

(5.19) 

P m  + %,N - % - P m  - % , N -  % 

W h m  + h m  - 1 )  
(5.20) - P m  + H , K -  Prn - %,si 

- - a P  

’ ( E l m ,  N 

and for 1 G m G M 

(aP/azX,,1 = ( a p / a z ) m , N  = 0. 

Finally, we shall find it convenient in later work to define the expressions 

(5.21) 

(5.22) 

6 Finite difference equations for E-polarization 

In order to obtain the boundary values round the edge of the grid it is first necessary to solve 
the one-dimensional equation (3.1) at y = y l  and y = y ~ , ( 0  < z < Z N )  subject to the bound- 
ary condition (3.2). This can usually be done analytically but it is probably easier to solve 
numerically using the finite difference equation (5.3) on y = y1 and the equivalent one on 
y = y ~ .  The boundary condition (3.2) can be translated into finite difference form by 
regarding the surface as a sharp boundary and expanding E in a Taylor series downwards 
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from z = z q .  Substituting for first and second derivatives fiom (3.2) and (3.1) and neglect- 
ing terms O ( k i )  we obtain (on y = y M )  

EM, q + 1 + iakqH = (1 + SkiKM, q + n) EM,q. (6.1) 

At z = z N ,  the surface of a superconductor, we have 

EM,,N = 0.  

For 4 + 1 Q n G N - 1 ,  the equation equivalent to (5.3) is 

kn -lEM,n + 1  + knEM,n - 1  = %(kn + kn -1x2 + iknkn - l K M , n )  EM,n- (6.3) 

The system (6.1), (6.2) and (6.3) which comprises N - 4 t 1 equations can be solved to give 
the N - 4 + 1 boundary values  EM,^(^ Q n Q N). A similar set of equations, obtained by 
formally replacing M by 1, gives the boundary values E 1, (4 G n Q N ) .  

Across the entire bottom boundary z = Z N ,  which is the surface of a superconductor, we 
have 

 em,^ = 0 (1 Q m Q M). (6.4) 

The remaining boundary values are given by the formula (3.8). Written in the form 

this equation gives the boundary values on y = y l  and y = y ~  (1 Q n Q 4 - 1) when m = 1 
and m = M respectively, and the values along the top boundary z = zl, when n = 1. 

It only remains to represent equation (2.7) by a finite difference equation at all the 
interior nodes of the mesh. For 2 Q m Q M - 1 and 2 Q n Q N - 1 we have 

where K ~ , ~  is defined by (5.2) and (5.5). It is clear that this reduces to the form of equation 
(4.5)when h, = h m - l = k n = k f l - l  = h .  

The corresponding equation derived by Jones & Pascoe (1971) differs from equation 
(6.6) in the last term where they have a simple average of the conductivities rather than the 
weighted average K ~ , ~ .  This is because their procedure involved adding together the four 
equations (4.2), as explained in Section 4, and although it gave the correct result for equal 
grid spacings it fails to yield a properly weighted conductivity when the spacings are variable. 
This means that their general formula is inconsistent with the simpler formulas applicable 
at plane boundaries, for, as we have seen, the whole point of weighting the average of the 
conductivity was to preserve t h i s  consistency. Thus the use of their equation could lead to 
unnecessary inaccuracies at the surface of the Earth, and also prevent a proper matching of 
the solution with the side boundary conditions for a layered earth (Pascoe & Jones 1972), 
unless the perpendicularly directed grid spacings on either side of plane boundaries are 
always chosen to be equal. 
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The magnetic field components can be obtained from E by differentiation according to 
equation (2.5). For reasons to be discussed in Section 7 we prefer to compute them at the 
points (m + ?4, n + ?4) where the conductivity values themselves are specified, rather than at 
the nodes (m,n). Using the standard four-point formulas for first derivatives we obtain 
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for 1 G m G M - 1, 1 =G n G N - 1. The magnetic field at the surface of the Earth is of suffi- 
cient interest to warrant separate calculation. The vertical component is given at the points 
(m + ?4,4) ,  1 =G m G M - 1, by the central difference formula 

The horizontal component is more easily obtained at the nodes (m, 4). Regarding the surface 
as a sharp boundary we expand E in a Taylor series downwards from (m, 4) and neglect terms 
O ( k i  - 1) to get 

E m , q + l  =Ern, + k q ( a E / a z ) , ,  - %ki{(a2E/aY2)m, q - iKm, q + %Em, 4 )  

where the last term has been obtained from (2.7). A similar expression is obtained by 
expanding E upwards from (m,4). Substituting for aE/az from (2.5) and eliminating 
azE/ay2 we obtain 

7 Finite difference equations for B-polarization 

Along the upper boundary of the numerical grid, which is the surface of the Earth in this 
polarization, equation (2.12) gives 

Bm, 1 = H. (7.1) 

The lower boundary is the surface of the superconductor where we have Ey = 0 or, by 
equation (2.6), = 0. Thus we can expand B in a Taylor series upwards from the 
nodes ( m , N ) ,  and neglect terms O ( k $ - l ) ,  to get 

a m ,  N a2B 1 a p a B  
(7.2) B m , N - l  - - B r n , N + * & - l ( - - ( Q )  -(---) ] 

Pm, N m , N  P aY aY m,N 

where we have substituted for azB/az2 from equations (2.8) and (5.21), and where p m , N  
is defined by equations (5.18) and (5.19). 

At the cornen (1 , N )  and (M,N)  all y-derivatives must vanish. Thus at (M,N), equation 
(7.2) gives 

@ M , N +  W + - ~ ) B M , N  = B M , N - i .  (7.3) 
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On the right side boundary m = M ,  2 G n G N - 1, the equation corresponding to (5.10) Can 
be written as 

kn - ISM, NBM, n + 1 + L T M ,  ~ B M ,  n - 1 = - 3 BM, n (7.4) 

where we have used the definitions (5.22). The N - 1 equations (7.3) and (7.4) can now be 
solved to determine the side boundary values in terms of BM, = H.  A similar set of 
equations, obtained by formally setting M = 1, hold on the left side boundary. 

The finite difference representation of equation (7.2) at the nodes (m,N), 2 G m G M- 1, 
along the lower boundary is 

+ kn - ~ N M ,  n + Tjw, n + 

Pm, N + Ym, N Pm, N + 6m, N 2Pm, N 
Bm+l,N+ Bm - l,N +- Bm,N-1 

hm(hm +hm - 1 )  hm -dhm +hm -1) k&-1 

Finally the representation of equation (2.8) at the interior points of the mesh, 
2 <  m < M -  1 . 2 9  n < N -  1,is 

Pm, n + Ym, n 

hm@m + hm - 1 )  

Pm,n + 5m.n 

hm -l@m + h m  -1) 

Pm, n + Sm, n 

kn@n + kn - 1 1 Bm +l,n + Bm -1,n + Bm,n+l 

(7.6) 
Ym, n + 6m,n 

hmhm - 1 

f m ,  n + Tm,n 

knkn - 1 
+ Pm, n + Tm, n 

k n  - 1(kn + kn - 1 )  
+ 

This completes the solution of the B field. 
The calculation of the electric field components, as given by equation (2.6), poses a slight 

difficulty. We have already remarked that at a node between different conductivity values 
the finite difference formulas for B are equally valid whether we regard the node as being 
in a region of smoothly varying conductivity, or on a plane boundary between two regions 
of (locally) different conductivity. This interchangeability of interpretation no longer applies 
to the electric field at the same node. Its normal component varies rapidly but continuously 
in a smooth transition zone, but is actually discontinuous, and therefore not uniquely 
defined, at a plane boundary. By simply replacing the magnetic field derivatives in equation 
(2.6) with central difference formulas we would obtain some sort of average electric field 
consistent with the former interpretation, but its value would be very sensitive to slight 
changes in position. We feel that more useful information is provided by an application of 
the central-difference formulas away from the regions of possible sharp variations in conduc- 
tivity; for this reason we compute the electric field at points (rn + %, n + %). Recalling that 
these are the points at which the actual conductivities of the model are defined and using 
the four-point formula for first derivatives, we obtain 
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Equation (7.7) does not give the horizontal electric field at the surface z = 0, which is 
the component of greatest interest in practical applications. It can be found by expanding 
B in a Taylor series downwards from the points (m, I), and expressing aB/& in terms of E,, 
by equation (2.6). According to equations (2.8), (5.21) and (7.1) we may also substitute 
iH/p for azB/azz at the surface, so that neglecting terms O(k3 we obtain 
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The reason for calculating the magnetic field components in Section 6 at the points 
(m t ?4, n t ?4) rather than at the nodes (m, n) was basically the same, but a little less 
obvious because in E-polarization the electric field is everywhere continuous since it is 
always tangential to conductivity boundaries. But oE is then discontinuous across a plane 
boundary and hence by equations (2.2) and (2.5) the normal gradient of the tangential 
magnetic field and the normal second derivative of the electric field are also discontinuous. 
It follows that at a node situated in the transition zone between different conductivities the 
gradient of the magnetic field and the second derivative of the electric field will be large, 
thereby causing the central difference formula to lose its order of accuracy at the node. 

The finite-difference equations derived in this section do not agree with the correspond- 
ing B-polarization equations of Jones & Pascoe, even when the node spacings are equal. 
However, we have verified the correctness of our results (for both polarizations) by obtain- 
ing the self-same equations in a completely different way involving an integration of the 
differential equations over the elements of the mesh. The finite element method also leads 
to equations which are the same as ours within the order of accuracy of the finite difference 
approximation. 

We conclude therefore that the B-polarization equations of Jones & Pascoe are incorrect 
except in xegions of uniform conductivity. The extent to which their errors are important 
is examined in the next section where we consider a simple numerical example. 

8 Numericalresults 

A numerical comparison has been made between the method given in this paper and the 
method of Jones & Pascoe (both with and without the correction of Williamson et d.). 
The model used (Fig. 3) consists of a uniform half-space, in which is embedded a square 
block of conductivity ten times as great. A grid of 41 x 41 points was used. The z-direction 
was vertical, increasing downwards, with the surface of the half-space at z = 0. The grid 
points were at the following values ofz:  -7.0, -2.0, -0.5, -0.1, -0.025,0.0,0.025,0.05, 
0.1, 0.125, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.575, 0.60,0.70,0.80, 
0.90, 1.0, 1.2, 1.4, 1.7, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0. The 

- 0 . 5  - 
F e e  3. The. conductivity model. 
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y-direction was horizontal, with y = 0 at the plane of symmetry. The grid points were at the 
following values o f y :  0, 0.05, 0.10, 0.15, 0.20, 0.225,0.25,0.35,0.50,0.75, 1.0, 1.5,2.0, 
2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, together with the same negative values. The unit of 
distance is one skin-depth in the half-space. The conducting block is in the region -0.25 < 
y < 0.25, 0.1 < z < 0.6. This model has been chosen to show the differences between the 
methods without unrealistic exaggeration; greater differences can easily be obtained by using 
a more extreme model. The vertical spacing on either side of the surface of the half-space 
has been made the same; much greater differences between the methods have been found in 
E-polarization when this is not so, as the equally weighted conductivity of Jones & Pascoe. is 
then severely in error (cf: Section 6) .  The perpendicular grid spacings on either side of the 
faces of the conducting block were not the same. 

The numerical equations were solved on an I B M  370 computer by a method of Gaussian 
elimination, using double-precision arithmetic throughout; the use of elimination avoids 
any problems with insufficient convergence of an iterative method. The computation was 
exactly the same for all methods, except for the few statements that calculate the coeffici- 
ents in the numerical equations. The boundary conditions were exactly equivalent to those 
of Jones & Pascoe. The same model has also been run using Jones & Pascoe’s (1971) pub- 
lished program, to check the results. 

In E-polarization, Fig. 4(a)(b) show the real and imaginary parts of the electric field at 
the surface of the half-space, normalized so that the electric field is unity at the edge of the 
model. The most obvious feature is the difference between Jones & Pascoe’s original formula 
and the others towards the edge of the model. This is due to their incorrect finite difference 
formulas for derivatives, which make the numerical solution incompatible with the analytic 
solution at the edge. This is overcome by the correction of Williamson et al. (1973), which 
makes the results closer to those obtained using the method of this paper. There remain 
differences of up to 3 per cent in the absolute magnitude of the field, which affect the 
imaginary part over a wide area of the model. A further run was made using the method of 
this paper on the same model, but with a square grid of side 0.05 in the central part of the 
model (-0.5 G y G 0.5, -0.1 G z G 1 .O). The difference between this and the uneven grid 
used above was 0.3 per cent or less, which is much less than the discrepancy between our 
results and those of the other methods. 

In B-polarization the magnetic field is necessarily unity across the surface, so Fig. 
4(c)(d) show the horizontal electric field, calculated according to equation (7.7), and thus 
slightly below the surface. The extrapolation to the surface according to equation (7.9) has 
not been used here, to allow easier comparison with the results of Jones & Pascoe’s program. 
Again the error of Jones & Pascoe’s original formula towards the edge of the model is 
evident, and is overcome by the correction of Williamson et ~ l .  The other obvious feature 
is that the method of this paper gives a narrower dip over the conducting block. Although 
this can be considered as a small sideways shift of the curve, up to one grid position, it 
results in large differences (up to 30 per cent) between the field values calculated at futed 
positions, because of the steepness of the curve. Examination of the results near the faces 
of the conducting block (not shown here) confirm this impression that Jones & Pascoe’s 
method behaves as though the faces of the block were displaced outwards by up to one grid 
spacing from their true position. The use of an even grid over the central part of the model 
caused differences that were usually less than 1 per cent, but some differences of several 
per cent did occur on the edges, and particularly the comers, of the conducting block. But 
whenever the even grid gave a difference of more than 0.5 per cent, the modified method of 
Jones & Pascoe was different by at least five times as much. Thus the method of this paper 
is self-consistent to a considerably better degree than the differences between the methods. 
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9 Conclusions 

The main conclusion to be drawn from this paper is that the finitedifference equations 
which have been used previously to solve two-dimensional problems of electromagnetic 
induction in the Earth need revising. For E-polarization the equations must be modified if 
the step sizes in the numerical grid are unequal across conductivity changes. For B-polariza- 
tion the previously published equations are incorrect and can lead to substantial errors. 

In order to establish the correct form of the finite-difference equations we have re-con- 
structed the theory in a different way which gives a simple physical interpretation to the 
terms involving the conductivity in the relevant differential equations. The interpretation is 
chosen so that the finitedifference equations are consistent with those known to hold at 
plane boundaries and, in particular, in one-dimensional problems. While it might be argued 
that our method is more a well-motivated generalization of the one-dimensional equations 
rather than a rigorous development of the theory from first principles, we have confirmed 
that it is indeed correct by deriving exactly the same equations using more formal pro- 
cedures, including the finite element method, and a method of integrating over the mesh 
elements. A detailed description of these and other methods, and a comparison between 
them, is clearly out of the question here. A comprehensive study of the whole subject will, 
however, be published as an internal report. 

Integrating over the mesh elements is, in one sense, a more general method than the one 
we have described here because it does not depend on an assumed conductivity variation 
between the values specified in the model. (As a matter of fact, the particular variation 
assumed in &polarization models is not unique. The average resistivity values at the nodes 
could have been weighted in any desired manner provided that the finite-difference formulas 
for the first derivatives of the field, considered as weighted averages of two one-sided deriva- 
tives, were modified accordingly.) An advantage of the approach used in this paper is that it 
has a simple physical interpretation which can be immediately generalized to three 
dimensions whereas the more formal development of the three-dimensional theory using 
the integration method requires rather more effort to obtain the equations. It is obvious 
what the appropriate generalizations of equations (5 -5) and (5.13) to (5.1 5) should be to 
define ~ l , ~ , ~ ,  p l ,m,n  and (grad P ) ~ , ~ , ~  respectively, where 1 denotes the node number in the 
x-direction. Thus a numerical solution of a three-dimensional problem could be obtained 
either in terms of the E-vector, in which case K I , ~ , ~  would be used in the finite difference 
representation of equation (2.3), or in terms of the B-vector, in which case the definitions of 
P1,m.n and (grad ~ ) l , ~ , ~  would be used in the finitedifference representation of equation 
(2.4). 

In this connection, we should mention that Lines & Jones (1973a,b) developed their solu- 
tions in t e r n  of the E-vector, but apparently did not use the properly averaged conductivity 
~ l , ~ , ~ .  We suspect, therefore, that their equations do not reduce to the correct form at 
plane boundaries when irregular mesh spacings are used. Their results, and those based on 
their equations which have been published in subsequent papers by Jones and co-workers, 
may require re-interpretation. 
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