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On the Flow of a Compressible Fluid through Orifices 
By D. A. Jobson* 

By making certain basic assumptions, the author has determined a theoretical expression for the 
contraction coefficient, C, appropriate to an orifice when transmitting a compressible fluid, either 
above or below the critical pressure ratio, provided that the corresponding value for incompressible 
flow, Ci, be known. 

INTRODUCTION 
When a fluid is discharged through a convergent nozzle, con- 
ditions across the exit section are generally assumed, with little 
error, to be sensibly uniform. The exit velocity may therefore be 
predicted from one-dimensional considerations, thus enabling 
the mass flow to be determined. This approach is not appropriate 
to the exit conditions across an orifice, since the streamlines are 
generally still contracting, so that the flow pattern is essentially 
two- or three-dimensional in character in this region. If, however, 
conditions may be assumed to be nearly uniform across some 
other section, such as at a wena conhacta or at a throat, the 
principles of energy, momentum, and continuity may enable 
both the size of the jet and the conditions across it to be simply 
determined at this section. 

Such principles, when applied to the discharge of an in- 
compressible fluid through a Borda mouth-piece, for example, 
show that, if friction and gravity may be neglected, the jet has a 
contraction coefficient of 0-5. By the application of similar 
reasoning it will be shown that a theoretical expression for the 
contraction coefficient, C, may be determined, appropriate to an 
orifice when transmitting a compressible fluid, either above or 
below the critical pressure ratio, provided that the corresponding 
value for incompressible flow, Ci, be known. 

Comparison with such experiments as those of Stanton 
(1926)t, Schiller (1933) and Perry (1949) indicates that the mass 
flow through a sharp-edged orifice may be predicted to within a 
few per cent at any pressure ratio. These tests were carried out on 
one type of orifice, transmitting either air or superheated steam, 
but the theory is more general in character, and further com- 
parisons with tests are needed. 

The present analysis considers cases in which the effect of 
friction is small, gravity and heat transfer may be neglected, and 
isentropic changes of state may be represented over the range 
considered by a law of the type : 

plpn = constant 
The above assumptions, which are adopted in most nozzle and 

orifice problems, are generally found in practice to give adequate 
accuracy, without making the analysis excessively tedious. The 
theory is divided into two parts; in the first, the pressure ratio 
across the orifice is assumed to be greater than the critical value, 
so that the flow is everywhere subsonic; in the second, choked 
flows are considered. The former case assumes constant con- 
ditions across the vena contracta which the jet may be expected 
ultimately to form, and the latter case makes a similar assumption 
concerning the first throat, where sonic conditions are postulated. 

The contraction coefficient is defined as the ratio of the above 
minimum areas to the nominal projected area of the orifice 
(normal to the jet) and, since at the critical pressure ratio the 
vena contracta may be identified with the first throat, the two 
definitions are compatible for the borderline case dividing the 
two rkgimes. It is perhaps worth noting at this stage that 
although for supercritical conditions the flow is choked, in so far 
as conditions are sonic at the first throat, the mass flow does not 
become independent of the downstream pressure. This charac- 
teristic difference between the behaviour of the flow through a 
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nozzle (which always flows full) as distinct from an orifice 
(through which contraction of the jet occurs), was noted and 
qualitatively explained by Stanton (1926), who indicated that 
the throat of the jet may be expected to increase in size as the 
back pressure is reduced, 

By postulating, in addition, that compressibility effects may 
be neglected in the approach area to the orifice, quantitative 
expressions for these phenomena are deduced. Probably the 
most questionable of the above assumptions is that concerning 
conditions across the throat for supercritical flows, since the 
outermost layer must be at the back pressure. However, the 
curvature of the streamlines, which will be most marked towards 
the edge of the jet, implies a transverse pressure gradient in this 
region. This will give rise to a pressure distribution across the 
throat that is somewhat as indicated in Fig. 1. 
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Fig. 1. Throat Conditions for Supercritical Flows 

It is beyond the scope of a one-dimensional treatment to 
incorporate such refinements and, in the subsequent analysis, 
the throat will be assumed to be at the critical pressure. The 
error introduced by establishing the equation of motion on this 
basis will be largely offset by the corresponding assumption that 
the velocity is sonic across the whole section, whereas in practice 
it must be supersonic towards the edge of the jet, if the effect of 
viscosity is negligible. Since the latter factor must tend to 
retard the outer layers of the jet, some uncertainty, in any event, 
exists concerning conditions in this region. 

Notation. 
A Projected area of orifice. 
a Contracted area of jet. 
C Contraction coefficient of orifice. 
Ci 
C, Viscosity correction factor, m&. 
F 
f Force defect coefficient. 
g Gravitational acceleration. 
H 
K 
KN 
I;! ma Actual mass flow. 
n 

Contraction coefficient of orifice for incompressible flow. 

Force defect on reservoir walls. 

Total hydraulic head in reservoir. 
Theoretical mass-flow coefficient of orifice. 
Theoretical mass-flow coefficient of nozzle. 
Theoretical mass flow (= Wlg). 

Index of isentropic expansion (= y for a perfect gas). 
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Pressure in reservoir. 
Back pressure. 
Pressure ratio, p/po.  
Critical pressure ratio. 
Velocity through contracted area. 
Critical velocity. 
Discharge, weiglitltime. 
Discharge through corresponding nozzle. 
Specific weight in reservoir. 
Ratio of specific heats, cp/&. 
Density at contracted area. 
Density in reservoir (= wo/g). 

SUBCRITICAL FLOW A N D  THE FORCE DEFECT 
COEFFICIENT 

Suppose that a compressible fluid issues from a reservoir in 
which conditions are steady, through an orifice having a pro- 
jected area, A, normal to the axis of the fluid jet, as indicated in 
Fig. 2a. By equating the resultant force acting on the fluid 

a For subcritical conditions. 

ti 
FORCE 
DEFECT F 

b For supercritical conditions. 
Fig. 2. Forces on Control Volume 

contained within the boundaries AA and BB to the cor- 
responding flux of momentum through them, an equation of 
motion is obtained : 

(p,-p)A+F=vi?u . . . . .  (1) 
The first term represents the direct driving force across the 

orifice area, and the second term the integral of the resolved 
components of the defects of pressure along the walls of the 
reservoir surrounding the aperture. This latter force defect, F, 
is associated with the velocity of the fluid as it approaches the 
orifice, the increase of kinetic energy occurring at the expense 

of its pressure energy. The tailing-off of pressure due to this 
sink effect adds to the driving force as indicated, enhancing the 
momentum flux through the boundaries. 
For an orifice the fluid velocity will be comparatively small 

along the reservoir walls, and hence the effect of compressibility 
on the flow pattern actually within the reservoir may be neglected. 
This assumption will be increasingly valid as the orifice shape 
approaches that of a Borda mouth-piece from a nozzle-like form. 
If, however, the effect of compressibility on the force defect may 
be neglected, it should be possible to express it in terms of a 
Newtonian force coefficient which is a constant. That is, if 
the fluid may be assumed sensibly incompressible within the 
reservoir, the force defect, F, should be a unique function of the 
reservoir density po, the size of the orifice, as described by A for 
example, and the efflux, which is probably most conveniently 
expressed in terms of the mass flow, h. This presupposes that the 
streamline pattern within the reservoir is not modified to any 
appreciable extent by changes in the boundary conditions down- 
stream, associated with, for example, compressibility effects on 
the form of the emergent jet. If these assumptions are valid : 

F = #@, A, Po> 
Dimensional considerations suggest that the relation between 

these variables must be of the form : 
F = f p 2  m 2  . . . . . .  (2) 

where f is a dimensionless coefficient having a value depending 
only on the form of the orifice. It will subsequently be referred 
to as the force defect coefficient. Since f may be expected to have 
the same value, whatever the Mach number of the flow, its value 
may be inferred from low-speed or incompressible-flow theory 
or tests. If the contraction coe5cient of the orifice is denoted 
by Ci for incompressible flow, the corresponding volumetric 
flow rate : 

where u is the velocity of the contracted jet which, negledng 
friction, is given by: 

This equation, when re-expressed in terms of the notation of the 
paper, becomes : 

Q = CiAu . . . . . . .  (3) 

= d(2gH) 

In  practice, it is found that the resulting expression for the 
discharge requires factoring by a so-called coefficient of velocity 
to align theory with experiment, but at high Reynolds numbers 
the value of this coefficient is only slightly less than unity. 
Throughout the subsequent analysis of compressible flows the 
effect of friction will be neglected, it being recognized that the 
theoretical mass flow may require a correction for the effect of 
viscosity. This will be presumed to be of the same order as the 
velocity coefficient for incompressible flow. 

Equation (3) may be re-expressed in terms of the mass flow as : 

and, when the theoretical expression for the velocity is substituted 
into this from equation (4), it becomes : 

liz = PoCiAu 

These equations enable the first and last terms in the equation 
of motion (1) to be expressed for incompressible flow as : 

1 tit2 
mu = iz, . pJ 

On making these substitutions, together with that for the 
force defect given by equation (2), f is found to be uniquely 
related to Ci: 

1 ri22 h2 1 m 2  
2 z 2  $S+f .a = ci - * - POA 

that is, 
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Since the incompressible-flow contraction coefficient lies 
between the values for a Borda mouth-piece, for which Cj = 0.5, 
and for a nozzle, for which Ci = 1 ,  it follows that the force defect 
coefficient will lie between the limits O< f <05 That f is zero 
for a Borda mouth-piece might have been anticipated from 
physical considerations, since in this case the velocity along the 
walls of the reservoir tends to zero everywhere (except along 
the re-entrant portion, which gives rise to no additional force 
along the axis of the jet). The above expression for f provides 
the key to the remainder of the analysis since it has been argued 
that it may, with little error, be carried forward unchanged to an 
analysis of compressible flow through the orifice. 

In order to use the equation of motion to determine the dis- 
charge for compressible flows in terms off, which will now be 
presumed known, an expression is required for the velocity 
developed by the contracted jet. For the ideal case of a reversible 
adiabatic expansion, the Saint-Venant and Wanzel equation is 
appropriate, and this is, for subcritical flows : 

where r denotes the pressure ratio, p/fl0, and n is the index which 
best represents isentropic expansions by a law of the type : 

pip" = constant 
For a near-perfect gas n may, of course, be identified with y, 

the ratio of the specific heats. If the contraction coefficient be 
denoted by C, the mass flow is then : 

m = pCAu 

By substituting the value C = 1 the corresponding widely used 
expression for a nozzle is obtained. This suggests that the 
corresponding mass-flow coefficient for a nozzle, KN, may be 
used as a convenient substitution : 

Hence, for a nozzle : 

and, for an orifice, 
= K,A1/(PoPo) 

liz = CKNA~/(POPO) - . . . . (9) 
The velocity through the contracted area of the jet is, in either 

case, given by equation (6) which on substituting for KN reduces 
to : 

Hence, for subcritical compressible flows, the last term in the 
equation of motion ( 1 )  for an orifice becomes : 

The force defect may similarly be expressed in terms of KN as : 
F = f . mZ/p& 

= f C2(Kd2AP0 
so that the equation of motion gives, with those substitutions, a 
quadratic expression for C : 

that is, 
Therefore 

Since it will be noted that KN depends only on r and n, the 
contraction coefficient is thus determined for subcritical flows 
as a function of r, n, and f, the latter being found from the 
incompressible-flow contraction coefficient, Ci. 

The theoretical mass flow may then be deduced by factoring 
the Saint-Venant and Wanzel equation for the mass flow by the 

contraction coefficient. It remains to develop an expression 
corresponding with equation (11) ,  to cover those cases in which 
the local Mach number reaches unity in the jet. Such flows, 
which wi!l be referred to as supercritical, are investigated in the 
next section. 

SUPERCRITICAL FLOWS 
It has been assumed above that the flow was both reversible 

and adiabatic during its expansion between the reservoir and 
the downstream pressures. This implied that friction and heat 
transfer could be neglected, and experiments with real fluids 
support this assumption for high-speed compressible flows. If, 
however, the downstream pressure is less than a certain critical 
pressure, pc, so that the stream may become supersonic, the 
assumption of isentropic flow cannot be valid a Pria; even 
though the flow be both frictionless and thermally insulated. 
This is due to the fact that shock waves may form as the fluid 
recompresses after over-expanding downstream of the first 
throat. Evidence of this alternative expansion and compression 
is provided by schlieren and shadowgraph photographs of fluid 
jets, and these wave phenomena might also be foreseen from 
theoretical considerations (for example, Stanton 1926). 

It is therefore preferable to analyse supercritical flows in terms 
of a reference section across the first throat, rather than one 
across the section at which the fluid has expanded to the down- 
stream pressure. This corresponds to the use of the throat as the 
control section in convergent-divergent nozzle problems, where 
conditions at exit are examined subsequently. The equations of 
motion will therefore be established in terms of the boundaries 
indicated in Fig. 2b. The pressure and velocity across the jet are 
considered to have values corresponding to sonic conditions. If 
these critical values are denoted by sufl ix  c the equation of 
motion is : 

The left-hand side of this equation consists of the direct driving 
force across the area of the orifice, together with the force defect, 
as before. In this case, however, although the force on boundary 
AA is unchanged, the back pressure across the area of the orifice, 
A, is now considered to consist of two parts, the critical pressure, 
pc, being assumed to act across the throat area (a = CA) and the 
downstream pressure, p, to act over the area remaining. 

For supercritical conditions the expressions for the throat 
velocity and mass flow are obtained by substituting the critical 
value of the pressure ratio into equations (6) and (7), as for a 
choked nozzle : 

poA -pA(l- C) -pcCA+ F = lizuc 

If the substitution KN is introduced as before to denote the 
mass-flow coefficient of the corresponding nozzle which, being 
choked, has the value : 

the expressions for uc and tk become : 

= CKNA~/(POPO) . . (14) 
These equations are analogous to equations (9) and (10) 

although in this case r is replaced by the constant value rc so that 
KN is now independent of the pressure ratio r. The flux of 
momentum and the force defect may now be expressed as : 
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so that the equation of motion for choked flows is : 

This again yields a quadratic expression for C: 

This expression, which determines the contraction coefficient 
of a choked orifice, is seen to reduce to equation (11) when the 
overall pressure ratio, r, is equal to the critical value, rC. The 
two equations together determine the contraction coefficient 
throughout the whole range of pressure ratios. The basic 
assumption is that the effect of compressibility on the force 
defect along the reservoir walls may be neglected; this may be 
expected to be valid so long as the orifice does not approach a 
nozzle form. For a Borda mouth-piece the force defect is zero 
and in this case the theory is, in this sense, exact. For such a 
mouth-piece it is convenient to return to the original quadratic 
expressions for C, since these reduce to linear equations in the 
limiting case when f is zero. For a Borda mouth-piece the 
expressions for its contraction coefficient, C,, thus reduce to,: 

rl/n(l -r)  
W N I 2  

c, = ___ . . . . . (16) 

for subcritical flows, that is, when rc<r<l ,  and 

for choked flows, that is, when O<r<rc. 
By substituting the choked value of KN from equation (12) 

in equation (17), the latter may be expressed more simply, after 
some algebraic manipulation, as : 

'B = rc(l+n)-r 
This theoretical expression presupposes that the mouth-piece 
is short enough for the emergent jet to clear the outer lip of the 
orifice, although,of course, not so short that there is an appreciable 
approach velocity along the reservoir wall. 

1 -r 

SUMMARY AND THEORETICAL CURVES 
The purpose of the paper is to present a method of finding 

the discharge through any orifice, when transmitting a com- 
pressible fluid, either above or below the critical pressure ratio. 

It is presumed that the incompressible-flow contraction 
coefficient, Ci, is known either from theory or experiment; for 
example, C; = 0.5 for a Borda mouth-piece and Ci = 'rr/(?~+2) 
= 0.611 for a plane slit. From C; the strength of the sink effect 
along the reservoir walls may be inferred. Its intensity determines 
the magnitude of a force defect coefficient, f, such that : 

On the assumption that the flow pattern Within the reservoir 
is very little influenced by the effect of compressibility, f enables 
theoretical expressions for the contraction coefficient, C, to be 
deduced for compressible flows, both above and below the critical 
pressure ratio. This contraction coefficient enables the mass 
flow to be determined from the expression : 

= C~i-iAl/(POPO) 
For a nozzle C = 1, and hence KN is the widely used mass- 

flow coefficient for a nozzle, based on the Saint-Venant and 
Wanzel equation. This mass-flow coefficient is shown dotted in 
Fig. 3 for the typical case of n = 1.4. The contraction Coefficient 
at any particular pressure ratio may be found by first determining 
f and KN and substituting their values into either equation (1 1) 
or equation (15) according to whether r is greater or less than 
the critical value r,. Some representative curves have been 

obtained in this way and plotted in Fig. 4. They indicate that, 
as the back pressure is reduced, the jet expands progressively, 
thus causing a continuous increase in the flow rate. This process 
continues into the supercritical flow range (although at a 
decreasing rate) so that even though the flow is choked, in the 
sense that conditions at the throat remain constant, the mass 
flow continues to increase. This fact is emphasized by defining 
a theoretical mass-flow coefficient for an orifice K such that : 

k 
A d(POP0) 

K = C K , =  
Curves showing the theoretical variation of K with pressure 

ratio have been plotted in Fig. 3, which includes the cor- 
responding curve for a nozzle (KN). Comparison of the orifice 

" I  

0 0.2 0:4 I *'o 

Fig. 3. Theoretical Mass-flow Coefficient Plotted as a 
Function of Pressure Ratio for n = 1.4 

PRESSURE RATIO, r 

0 :2 0 :4 I :o 
PRESSURE RATIO, I 

Fig. 4. Theoretical Contraction Coefficient Plotted as a 
Function of Pressure Ratio for n = 1.4 
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1.000 
0.932 
0.867 
0805 
0.747 
0.692 
0.639 
0.590 
0.543 
0.528 

and nozzle curves indicates the characteristic difference between 
their behaviour, the choking of the former being completely 
masked by the variation of C with r. A numerical example is 
given in Appendix I. 

0.61 1 
0.623 
0.636 
0650 
0.665 
0.681 
0.699 
0.717 
0.738 
0.745 

COMPARISON W I T H  THE HODOGRAPH S O L U T I O N  
FOR A P L A N E  S L I T  

Theoretical results for incompressible flow through orifices 
can, under certain conditions, be extended to compressible flows, 
using a hodograph method (Howarth 1953). The results shown 
in Table 1 for the contraction coefficient of a slit in a plane wall 

TABLE 1. CONTRACTION COEFPICIENT OF SLIT IN PLANE 
WALL 

0.61 1 
0.622 
0.635 
0.648 
0.663 
0679 
0.696 
0.714 
0.734 
0.741 

- 
-0.001 
-0*001 
-0.002 
-0.002 
-0002 
-0.003 
-0.003 
-0.004 
-0.004 

have been computed, using tables due to Ferguson and Lighthill 
(1947). 

The results in Table 1 are appropriate to y = 1.4 and the 
method applies to subsonic flows only (r>0528). 

The corresponding values obtained by the method outlined 
in the paper are as given in Table 2, at roughly comparable 

TABLE 2. CORRESPONDING VALUES FOR CONTRACTION 
COEFFICIENT OBTAINED BY METHOD OUTLINED IN THE PAPER 

z I C 1 Error 

1 .oo 
0.932 
0.865 
0.805 
0.745 
0.690 
0.640 
0.590 
0.545 
0.528 

values of r, together with the ‘error’ treating the hodograph 
solution as ‘exact’. 

It can be seen that the present method slightly underestimates 
the mass flow, the discrepancy increasing progressively from 
zero to about 0.5 per cent at the critical pressure ratio. 

COMPARISON W I T H  EXPERIMENT, A N D  CONCLUSIONS 
Probably the most exhaustively tested orifice is that of the 

sharp-edged type. The results of Perry (1949) and Schiller 
(1933) using such an orifice to transmit air and steam, respec- 
tively, have been plotted in Fig. 5a and b. Since the incom- 
pressible-flow discharge coefficient is considered to be 0.6 in 
each instance, this corresponds to a velocity coefficient, as used 
in hydraulics, of 0.982, if the contraction coefficient be given 
the datum value of 0.611. It would appear logical to retain the 
correction factor C, for the theoretical curves throughout the 
range of pressure ratios. The actual mass flow for a real fluid, 
ma, is then predicted by : 

It is perhaps preferable to consider C, in the general case as 

an overall correction for viscosity effects, rather than simply as 
a velocity coefficient. In Fig. 5a and b the theoretical curves have 
been drawn, both with and without the factor C, = 0.982. It is 
seen that the experimental results in each instance lie between 
the two curves, making it problematic as to whether such a 
correction is worth while. In  either instance the agreement 
appears satisfactory for most purposes for sharp-edged orifices 
transmitting either air or steam. 

0.6 

0.5 

0.4 

0.3 

a 

\ - 0.2- \ 
\ 
\. n 

3 g 0.1- . 

2 I \ 
U 

.f 
v 

0 
I l= 

Z I ! I I 

PRESSURE RATIO, r 

Fig. 5. Mass-flow Coefficients Plotted as a Function of 
Pressure Ratio 
a For n = 1-4. - o - Perry’s tests, using air. 

Theory (n = 1.4, Ci = 7~/(7+2)). ---- 
b For n = 1.3. 

- o - Schiller’s tests, using steam. 
Theory (n = 1.3, Ci = w/(a+2)), ---- 
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772 O N  THE FLOW OF A COMPRESSIBLE FLUID THROUGH ORIFICES 
Further comparisons of the theory with experiment are 

required to establish the full range over which the assumptions 
of the theory are valid. Since the neglect of compressibility 
within the reservoir cannot be justified when the orifice tends 
to a nozzle-like form, an upper limit of Cj = 0-7 for application 
of the theory is tentatively suggested. 
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A P P E N D I X  I* 

NUMERICAL EXAMPLE 
Many engineers prefer to work in terms of the weight flow, W, 

and specific weight, w, rather than the mass flow, ri?, and density, 
p, to which they are related by: 

W - mg 
w = Pg 

From equation (9) the discharge in terms of W becomes : 
= cKNAgd(popO) 

that is, 
w = CKNA~(gpoW0) . . . . (18) 

For a nozzle C = 1, so that the corresponding nozzle discharge 
is : 

WN = KNAz/(g&%) . . . - (19) 
A number of methods, using charts, tables, or working rules, 

have been developed by engineers for calculating W,. As a 
typical example may be quoted Napier’s equation for a choked 
nozzle discharging steam : 

in which WNis the discharge in Lb. per sec; A is the throat area 
in in2; and po is the reservoir pressure in Lb/in2. 

The discharge through an orifice is related to the cor- 
responding nozzle discharge by : 

C is the contraction coefficient, which may be obtained from 
Fig. 4 for a specified pressure ratio, r, and incompressible-flow 
contraction coefficient, C;, as used in hydraulics. Fig. 4 refers 
strictly to an expansion index n = 1.4, but the value of C does 
not appear to be critically dependent on n. The corresponding 
algebraic expressions for C are equations (11) and (15) for sub- 
critical and choked flows, respectively. In the former expression 
KN is given by equation (8) and in the latter by equation (12). 
If the equivalent nozzle discharge has been determined without 
reference to these equations, KN may alternatively be deduced 
from WN by use of equation (19). 

As a typical numerical example the leakage rate through an 
annular slit which is 6 inches in diameter and 0.01 inch wide 
will be estimated. It has an area : 

A = n- x 6 in x 0.01 in = 0.1885 in2  

and, if it were one stage of a labryrinth seal, for example, it 
would probably have a hydraulic (that is, incompressible-flow) 
contraction coefficient, Ci = 0.6. Thus the corresponding force 
defect coefficient is, by equation (5) : 

WN = Apo/7O . . . a . (20) 

w =  CwN . . . (21) 

1 1  f =--- 
Ci 2 6 3 2  

* The nomenclature used in this appendix was adopted at the 
special request of the author. 

Neglecting any velocity of approach or ‘carry over’ effects, the 
nozzle mass-flow coefficient is, for subcritical flows : 

For superheated steam at the critical pressure ratio (r = rc 
= 0.546, if n = 1.3): 

KN = 0.667 
For values of r less than 0546, K N  remains constant at this 

Suppose that the discharge corresponding to a pressure ratio 
value. 

of 0546 is required. From equation (8) (or equation (12)) : 

2 X 0.278 X 0 ~ 5 4 6 ~  

[ l-d{ ( 2 ~ 0 5 4 6 ~ ) ~ ~ 0 * 4 5 4 ~ 0 - 2 7 8  

0.6672 1-  

= 2*865[1-0*744] 
= 0-732 

The equivalent nozzle discharge may be obtained from : 

or by any other preferred method. If the steam is initially at, for 
example, 200 Lb/in2 and has 100 O F  of superheat, its total heat, 
or enthalpy, is 1,258 B.t.u./Lb. Its corresponding specific volume 
is thus, according to Callendar (1939) : 

W N  = KNA d~gporuo> 

1,258-835 ft3/Lb 1 - = 1.253X 2oo 
WO 

that is, 
Therefore, 

wo = 0.377 Lb/ft3 

WN = 0.667 x 0.1885 i n 2  d(32.2 ft/sec2 
x 200 Lb/in2 x 0.377 Lb/ft3}[l ft/12 in] 

Hence, the discharge through the orifice is, finally : 
= 0.516 Lb/sec 

w = C W N  
= 0.732 x 0516 Lb/sec 
= 0.378 Lb/sec 

This flow rate corresponds with a reservoir pressure of 200 
Lb/in2 and a back pressure of 0546 x 200 Lb/in* that is, 109 
Lb/in2. Any reduction in the latter does not affect WN but it 
does increase C, thus increasing the discharge, W, even though 
the orifice is choked. 
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1 *2 
1 -3 
1 *4 
1.667 

Communications 

0.5645 1-1500 
0.5457 1.1462 
0.5283 1.1427 
0.4871 1.1341 

Mr. C. H. BOSANQUET (Billingham) wrote that the author’s 
method of calculating discharge coefficients depended entirely 
on the assumption of the constancy off, using his formula 

dC c3 

df 1-c 
Values of C approaching unity must therefore be very sensitive 
to small variations off. 

For a perfect nozzle C = 1 by definition but iff  = 0.5 and 
n = 1.4 then C, which was initially unity, fell rapidly with 
decreasing r and passed through a minimum value of 0.852 when 
r = 0-7. It then rose to 0.888 at the critical ratio and 0-959 for 
discharge into a vacuum, 

If C was assumed constant then f = 0.5 for small pressure 
differences and rose to 0.571 at and beyond the critical ratio. 

For intermediate conditions it varied nearly linearly with 

Critical data for other values of n were given in Table 3. 

-=- 

pu2. 

TABLE 3. CRITICAL DATA FOR VARIOUS VALUES OF n 

1 .o 0.6065 I 1.1584 
1.1 I 05847 1.1541 

A suggested modification of the method was to multiplyfo by a 
factor which depended on the mean mass flow in the plane of 
the orifice. The modified value off was given by 

Densities and velocities were assumed the same as for a nozzle 
with the same mass flow. The value of pu in the orifice plane 
depended on C so that it was necessary to solve by trial. The cal- 
culation of f was facilitated by employing the useful and 
adequately accurate approximation 

At and beyond the critical ratio the first term was simply equal 
to c 2 .  

Table 1 gave values which fell almost exactly half-way between 
those calculated by the two methods so that the comparison was 
inconclusive. For small discharge coefficients and subsonic 
flows the modification did not make much difference. For values 
of C approaching unity the modified method gave results which 
were at least possible; constant f did not. The modified method 
therefore appeared preferable in spite of its greater complexity. 

Mr. R. P. FRA~FX and Dr. P. N. ROWE (London) wrote that as a 
result of experimental work carried out in the High Speed Fluid 
Kinetics Laboratory of the Imperial College of Science and 
Technology (Fraser and Rowe 1954*, Coulter, Fraser, and Rowe 
(to be published)f., and Coulter 1949$) it was possible to con- 
tribute some data to compare with the theoretical predictions of 
the paper in the supersonic range. 

* FRASER, R. P., and ROW, P. N. 1954 Jl. of the Imperial College 
Chem. Eng. SOC., vol. 8, p. 1, ‘A Method of Measuring Very Large 
G a s  Flow Rates’. 

t C~ULTER, M. O., PRASBR, R. P., and ROW, P. N. (to be published), 
‘A Research into the Design of Supersonic Nozzles for Rockets’. 

$ CO~LTER, M. 0. 1949 Ph.D. Thesis, London University, June, 
‘On the Efficiency of Supersonic Nozzles’. 

Since a velocity coefficient of 1.00 was assumed, the contrad- 
tion coefficient referred to in the paper was equivalent to a dis- 
charge coefficient. They had measured the discharge coefficient 
of various nozzles discharging air at pressure ratios from I equal 
to 0.012 to 0.033. All the nozzles had a’throat of a nominal 
diameter of + inch. Comparative discharge coefficients for 
various nozzles had been obtained by timing the rate of fall of 
reservoir pressure under similar conditions. 

Fig. 6 showed the effect of the entry radius on the discharge 
coefficient of a supersonic convergent-divergent nozzle. Since 
the stream was everywhere supersonic downstream of the throat, 
it could not influence conditions upstream. In other words, in 
any supersonic nozzle the upstream flow was unaffected by the 
divergent section and, in particular, the discharge coefficient was 
unaltered by the supersonic expansion section. That was indeed 

A, / A ,  6.0 R1 
a 

b I:O 
RADIUS OF ENTRY, R/D* 

b 

Fig. 6. Effect of Entry Radius on Discharge Coefficient of 
Supersonic Convergent-divergent Nozzle 

RID 0 0.5 2.0 

CJJ 1 0.939 1 0.960 1 0.986 

the case in practice for experiments had shown that the dis- 
charge coefficient was independent of the divergent section 
within the limits of experimental error (&0.01). Thus, the 
nozzle with RIDr = 0 was, in the supersonic (i.e., the author’s 
supercritical) region, equivalent to an orifike where Cj = 0.6. 
One with RID, = 2.0 corresponded to a nozzle where Ci = 1.0. 
The author had predicted a difference in discharge coefficient 
between those two nozzles of about 0.14 (Fig. 4) whereas they 
had found 0.047. However, an increased contraction coefficient 
for incompressible flow (which they had not measured) would 
bring those results more into line. 
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In addition to measuring the discharge coefficient, they had 

measured the thrust reaction generated by the jets from various 
nozzles. Since the thrust was proportional to the product of dis- 
charge rate and the acceleration occurring in the nozzle, the 
thrust coefficient was equal to the product of discharge co- 
efficient and velocity coefficient. For the case of a convergent- 

COMMUNICATIONS ON THE FLOW OF A COMPRESSIBLE FLUID THROUGH ORIFICES 
modified approach was 0.908 (&0.007). (Unfortunately they 
had no data for the conventional orifice treated in the paper.) 
The discharge coefficient for the radiused nozzle was known 
from the data of Fig. 6 (0.986) and so its velocity coefficient was 
0*975/0*986 = 0.989 which justified the author’s assumption, in 
that instance, that the velocity coefficient was unity. If for the 
orifice with the modified approach the discharge coefficient for 
a nozzle of RIDr = 0 was used (0.939), the velocity coefficient 
for that was 0.908/0.0939 = 0.967 so that in that instance the 
assumption of a velocity coefficient of unity was much less 
accurate. 

The author appeared to have assumed that there was a vena 
contracta in compressible flow at small pressure ratios (i.e. high 
reservoir pressures). Expansion at the exit plane according to the 
Prandtl-Meyer theory would produce immediate divergence as 

I 
a Radiused nozzle. b Orifice with modified approach. 

Fig. 7. Two Nozzles 

divergent nozzle cut off at the throat (i.e., without a supersonic 
expansion section), the velocity coefficient corresponded to that 
of the author which he had assumed to be unity. 

Thrust measurements made on the two nozzles of Fig. 7 
showed that the thrust coefficient for that with the radiused 
approach (RID, = 2.0) was 0.975 and that for the orifice with a 

Fig. 8. Pressure Ratio Plotted Against Resultant Angle of 
Emergence 

Experimental points for radiused nozzle. 
o Experimental points for orifice with modified approach. 

Fig. 9. Shadow Photographs 
r = 0.024. 
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shown in Fig. 8, in which the full line showed the theoretical 
expansion angle that would result from flow through a nozzle 
subjected to a pressure ratio, r. The treatment was for two- 
dimensional flow, y = 1-40, and it was assumed that the flow 
approached the throat perpendicularly. Those angles were 
achieved in practice for the three-dimensional flow of air through 
a radiused nozzle at different pressure ratios as was seen from 
the shadow photograph in Fig. 9a. The emergence angle had 
been measured from photographs of the jet at different pressure 
ratios and, for a radiused nozzle, they agreed closely with the 
theoretical angle as would be seen in Fig. 8. 

Unfortunately, in the standard orifice the throat plane was not 
normally visible, which prevented photographic determination 
of the emergence angle. For the orifice with a modified approach, 
it would be seen that the emergence angle had been reduced 
(Figs. 8 and 9b) because the fluid now had radial velocity 
directed towards its flow axis which produced a contracting 

a For radiused nozzle with 
r = 0.23. 

b For orifice with modified 
approach and r = 0.23. 

c For radiused nozzle with d For orifice with modified 
r = 0.13. approach and r = 0.13. 

Fig. 10. Emereence of a Substantiallv Parallel Tet 

effect. That was precisely the effect the author had been con- 
sidering but the result was a net enlargement, not a contraction. 

The emergence angles for their orifice indicated a reduction 
of the Prandtl-Meyer angle. Thus, a parallel jet would emerge 
at some pressure ratio and at higher ratios the jet might contract 
outside the nozzle and the sonic plane would move downstream. 
Fig. 10 showed that a substantially parallel jet emerged at a 
pressure ratio of about 0.13 and that above that pressure ratio 
contraction occurred. It was not possible to measure those 
emergence angles very accurately but, undoubtedly, the order 
of the effect was as they had suggested. 

They were of the opinion that the author’s theoretical treat- 
ment must be modified for supersonic flow, particularly at high 
reservoir pressures, to take into account the expansion effect. 
They hoped in the near future to publish a comprehensive ac- 
count of their experimental work in that field (Coulter, Fraser, 
and Rowe (to be published)). 

Mr. D. H. TANTAM (Associate Member) wrote that the mass 
flow of a compressible fluid through an orifice had been given in 
equation (7) as 

In that an infinitely large reservoir to orifice area ratio was con- 
sidered. 

Many applications were concerned with an orifice in a pipeline 
when the ratio was much smaller and an equation which took 
that into account was given by 

where Q was the mass flow; Q, the coefficient of discharge; 
A?, the area of orifice; n, the ratio of area of pipeline to area of 
orifice; pl, the upstream pressure; p,, the downstream pressure; 
W1, the specific weight of fluid; y, the ratio of specific heats; and 
g, the acceleration due to gravity. 

Equation (7) was obtained from it of course when n = co. 
However, in the practical application, the mass flow would 

depend on the contraction coefficient C, theoretical values of 
which had been given in Fig. 4. He would like to know, however, 
whether any recent information had been established on those 
coefficients -in addition to the work of Perry (1949) and Schiller 
(1933) and how those results agreed with theoretical values. 
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Author’s Reply 
Mr. D. A. JOBSON wrote, in reply to the communications, that 
he agreed that the force defect coefficient f could not, in general, 
be considered to be a constant. It was, in some respects, similar 
to a drag coefficient; just as the latter would depend on the 
Mach number, so f depended on the mass-flow coefficient and, 
hence, the pressure ratio r. It was only for orifice-like openings 
that the influence of compressibility on f might be expected to 
be small. The Borda mouth-piece represented one extreme for 
which f was always zero, whatever the value of r. At the other 
end of the scale, as Mr. Bosanquet had pointed out, f for a nozzle 
varied almost linearly with r from fo equal to 0.5 to the typical 
value off equal to 0571 for n equal to 1.4, thereafter it remained 
constant for choked flows. Hence the ratio f/fo might always be 
expected to lie between the limits of 1.0 and 1.14 for that value 
of n, and it could therefore always be estimated with reasonable 
certainty by some such method as he had suggested. That would 
enable the theory to be applied beyond the limit Ci equal to 0.7 
which he himself had suggested, but he doubted whether the 
added complication was justifiable below that value. 

He noted that Mr. Fraser and Dr. Rowe had measured 
discharges on an orifice fitted with an exit cone, which discharges 
were somewhat higher than those obtained and predicted for a 
simple orifice. It was his own belief that that interesting anomaly 
might be traced to the fact that the initial contraction of the jet, 
followed by the subsequent overexpansion downstream, might 
well, if enclosed in an exit cone, trap a region of dead air. The 
pressure in that would be Merent from the pressure at exit, and 
would therefore modify the contraction coefficient and, hence, 
the mass flow. He had referred to that possibility in the paper 
under Supercritical Flows, in connexion with the Borda mouth- 

piece; in that instance also the emergent jet might not always 
clear the outer lip downstream. 

In regard to the shadowgraphs he was interested to note that 
they had recorded jet contraction at r equal to 0.23, even with 
an opening which was heavily countersunk upstream. They had 
also shown that the emergent angle of a nozzle jet, measured from 
the axis of the latter, had correlated well with the theoretical 
Prandtl-Meyer angle. For an orifice, sonic conditions at the lip 
(i.e. M equal to 1 in Fig. 1) were reached by fluid which was 
moving radially inwards. Hence, the theoretical curve of Fig. 8 
would, in that instance, be shifted back 90 deg., indicating 
contraction, even at pressure ratios lower than 0.01. The corre- 
sponding shift for the modified orifice tested by them would be 
much less, as the countersink implied that the fluid would 
approach the lip obliquely. That angle would be even less than 
that of the countersink, owing to local separation at the shoulder, 
so that the upstream conditions were approaching those for a 
nozzle. 

For the extreme case of an orifice discharging into a vacuum, 
Prandtl-Meyer theory suggested an inner contracting jet, 
surrounded by a very small mass of fluid which splayed out- 
wards as in Fig. 46 of Howarth (1953). The motion of the latter 
would in practice be considerably modified by growth of 
boundary layer along the reservoir wall and he was unable to 
suggest any method of allowing for the expansion effect in that 
very limited region. 

In the matter of recent information on contraction coefficients 
raised by Mr. Tantam, he hoped shortly to publish a further 
paper, which would enable velocity of approach effects to be 
accounted for. 
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