
 [ 309 ]

 IX. On the illathematical Foundations of Theoretical Statistics.

 1By R. A. FISHER, M.A., Fellow of Gonville and Caims College, Cambridge, Chief
 Statistician, Rothamsted Experimental Station, Harpenden.

 Communicated by DR. E. J. RUSSELL, F.R.S.

 Received June 25,--Read November 17, 1921.

 CONTENTS.
 Section Page

 1. The Neglect of Theoretical Statistics . . . . . . . . . . . . . .. . 310
 2. The Purpose of Statistical Methods ....... . . ....... 311
 3. The Problems of Statistics ..................... . 313

 4. Criteria of Estimation .. . . ................ . 316

 5. Examples of the Use of Criterion of Consistency ... ........ . 317
 6. Formal Solution of Problems of Estimation .. . ......... . 323

 7. Satisfaction of the Criterion of Sufficiency ........ . . .... . 330
 8. The Efficiency of the Method of Moments in Fitting Curves of the Pearsonian Type I . . 332
 9. Location and Scaling of Frequency Curves in general .......... .... 338
 10. The Efficiency of the Method of Moments in Fitting Pearsonian Curves . . . . . . . . 342
 11. The Reason for the Efficiency of the Method of Mom.ents in a Simall Region surrounding the

 Normal Curve .. . .................. 355

 12. Discontinuous Distributions . . . . . . . . . . . . . . . . . . . . . 356

 (1) The Poisson Series . . .. . . . . . . . . . . . . . .. . 359
 (2) Grouped Normal Data . . ............ . . 359
 (3) Distribution of Observations in a Dilution Series .. . 363

 13. Summary .................. 366

 DEFINITIONS.

 Centre of Location.--That abscissa of a frequency curve for which the sampling errors
 of optimum location are uncorrelated with those of optimum scaling. (9.)

 Consistency.-A statistic satisfies the criterion of consistency, if, when it is calculated
 from the whole population, it is equal to the required parameter. (4.)

 Distribution.-Problems of distribution are those in which it is required to calculate
 the distribution of one, or the sirmultaneous distribution of a number, of functions of

 quantities distributed in a known manner. (3.)
 Eficiency.-The efficiency of a statistic is the ratio (usually expressed as a percentage)

 which its intrinsic accuracy bears to that of the most efficient statistic possible. It
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 IMR. R. A. FISHER ON THE MATHEMATICAL

 expresses the proportion of the total available relevant information of which that
 statistic makes use. (4 and 10.)

 Efficiency (Criterion).-The criterion of efficiency is satisfied by those statistics which,
 when derived from large samples, tend to a normal distribution with the least possible
 standard deviation. (4.)

 Estimation.-Problems of estimation are those in which it is required to estimate the
 value of one or more of the population parameters from a random sample of the
 population. (3.)
 Intrinsic Accuracy.-The intrinsic accuracy of an error curve is the weight in large

 samples, divided by the number in the sample, of that statistic of location which satisfies
 the criterion of sufficiency. (9.)
 Isostatistical Regions.-If each sample be represented in a generalized space of which

 the observations are the co-ordinates, then any region throughout which any set of
 statistics have identical values is termed an isostatistical region.
 Likelihood.-The likelihood that any parameter (or set of parameters) should have

 any assigned value (or set of values) is proportional to the probability that if this were
 so, the totality of observations should be that observed.

 Location.-The location of a frequency distribution of known form and scale is the
 process of estimation of its position with respect to each of the several variates. (8.)

 Optimum.-The optimum value of any parameter (or set of parameters) is that value
 (or set of values) of which the likelihood is greatest. (6.)
 Scaling.-The scaling of a frequency distribution of known form is the process of

 estimation of the magnitudes of the deviations of each of the several variates. (8.)
 Specification.-Problems of specification are those in which it is required to specify

 the mathematical form of the distribution of the hypothetical population from which
 a sample is to be regarded as drawn. (3.)

 Sufficiency.-A statistic satisfies the criterion.of sufficiency when no other statistic
 which can be calculated from the same sample provides any additional information as
 to the value of the parameter to be estimated. (4.)

 Validity.-The region of validity of a statistic is the region comprised within its
 contour of zero efficiency. (10.)

 1. THE NEGLECT OF THEORETICAL STATISTICS.

 SEVERAL reasons have contributed to the prolonged neglect into which the study of
 statistics, in its theoretical aspects, has fallen. In spite of the immense amount of
 fruitful labour which has been expended in its practical applications, the basic principles
 of this organ of science are still in a state of obscurity, and it cannot be denied that,
 during the recent rapid development of practical methods, fundamental problems have
 been ignored and fundamental paradoxes left unresolved. This anomalous state of
 statistical science is strikingly exemplified by a recent paper (1) entitled " The Funda-
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 FOUNDATIONS OF THEORETICAL STATISTICS.

 mental Problem of Practical Statistics," in which one of the most eminent of modern

 statisticians presents what purports to be a general proof of BAYES' postulate, a proof
 which, in the opinion of a second statistician of equal eminence, " seems to rest upon a
 very peculiar-not to say hardly supposable-relation." (2.)

 Leaving aside the specific question here cited, to which we shall recur, the obscurity
 which envelops the theoretical bases of statistical methods may perhaps be ascribed
 to two considerations. In the first place, it appears to be widely thought, or rather
 felt, that in a subject in which all results are liable to greater or smaller errors, precise
 definition of ideas or concepts is, if not impossible, at least not a practical necessity.
 In the second place, it has happened that in statistics a purely verbal confusion has
 hindered the distinct formulation of statistical problems; for it is customary to apply
 the same name, mean, standard deviation, correlation coefficient, etc., both to the true
 value which we should like to know,. but can only estimate, and to the particular value
 at which we happen to arrive by our methods of estimation; so also in applying the
 term probable error, writers sometimes would appear to suggest that the former quantity,
 and not merely the latter, is subject to error.

 It is this last confusion, in the writer's opinion, more than any other, which has led
 to the survival to the present day of the fundamental paradox of inverse probability,
 which like an impenetrable jungle arrests progress towards precision of statistical
 concepts. The criticisms of BOOLE, VENN, and CHRYSTAL have done something towards
 banishing the rnethod, at least from the elementary text-books of Algebra ; but though
 we may agree wholly with CHRYSTAL that inverse probability is a mistake (perhaps the
 only mistake to which the mathematical world has so deeply committed itself), there
 yet remains the feeling that such a mistake would not have captivated the minds of
 LAPLACE and POISSON if there had been nothing in it but error.

 2. THE PURPOSE OF STATISTICAL METHODS.

 In order to arrive at a distinct formulation of statistical problems, it is necessary to
 define the task which the statistician sets himself: briefly, and in its most concrete
 form, the object of statistical methods is the reduction of data. A quantity of data,
 which usually by its mere bulk is incapable of entering the mind, is to be replaced by
 relatively few quantities which shall adequately represent the whole, or which, in other
 words, shall contain as much as possible, ideally the whole, of the relevant information
 contained in the original data.

 This object is accomplished by constructing a hypothetical infinite population, of
 which the actual data are regarded as constituting a random sample. The law of distri-
 bution of this hypothetical population is specified by relatively few parameters, which
 are sufficient to describe it exhaustively in respect of all qualities under discussion.
 Any information given by the sample, wvhich is of use in estimating the values of these
 parameters, is relevant information. Since the number of independent facts supplied in

 2 X 2
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 the data is usually far greater than the nunmber of facts sought, much of the information

 supplied by any actual sample is irrelevant. It is the object of the statistical processes
 employed in the reduction of data to exclude this irrelevant information, and to isolate
 the whole of the relevant information contained in the data.

 When we speak of the probability of a certain object fulfilling a certain condition, we
 imagine all such objects to be divided into two classes, according as they do or do not
 fulfil the condition. This is the only characteristic in them of which we take cognisance.
 For this reason probability is the most elementary of statistical concepts. It is a para-
 meter which specifies a simple dichotomy in an infinite hypothetical population, and it
 represents neither more nor less than the frequency ratio which we imagine such a
 population to exhibit. For example, when we say that the probability of throwing a
 five with a die is one-sixth, we must not be taken to mean that of any six throws with
 that die one and one only will necessarily be a five; or that of any six million
 throws, exactly one million will be fives; but that of a hypothetical population of an
 infinite number of throws, with the die in its original condition, exactly one-sixth will
 be fives. Our statement will not then contain any false assumption about the actual
 die, as that it will not wear out with continued use, or any notion of approximation, as
 in estimating the probability from a finite sample, although this notion may be logically
 developed once the meaning of probability is apprehended.

 The concept of a discontinuous frequency distribution is merely an extension of that of
 a simple dichotomy, for though the number of classes into which the population is
 divided may be infinite, yet the frequency in each class bears a finite ratio to that of the
 whole population. In frequency curves, however, a second infinity is introduced. No
 finite sample has a frequency curve : a finite sample may be represented by a histogram,
 or by a frequency polygon, which to the eye more and more resembles a curve, as the
 size of the sample is increased. To reach a true curve, not only would an infinite number
 of individuals have to be placed in each class, but the number of classes (arrays) into
 which the population is divided must be made infinite. Consequently, it should be
 clear that the concept of a frequency curve includes that of a hypothetical infinite
 population, distributed according to a mathematical law, represented by the curve.
 This law is specified by assigning to each element of the abscissa the corresponding
 element of probability. Thus, in the case of the normal distribution, the probability
 of an observation falling in the range dx, is

 1 (r-mw)'
 __ e 22 d.x,

 7V 27r

 in which expression x is the value of the variate, while m, the mean, and o, the standard
 deviation, are the two parameters by which the hypothetical population is specified.
 If a sample of n be taken from such a population, the data comprise n independent facts.
 The statistical process of the reduction of these data is designed to extract from them
 all relevant information respecting the values of m and a, and to reject all other
 information as irrelevant.
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 FOUNDATIONS OF TtEOTRETICAL STATISTICS.

 It should be noted that there is no falsehood in interpreting any set of independent
 measurements as a random sample from an infinite population; foi any such set of
 numbers are a random sample from the totality of numbers produced by the same
 matrix of causal conditions: the hypothetical population which we are studying is an
 aspect of the totality of the effects of these conditions, of whlatever nature they may be.
 The postulate of randomness thus resolves itself into the question, " Of what population

 is this a random sample ? "which must frequently be asked by every practical statistician.
 It will be seen from the above examples that the process of the reduction of data is,

 even in the simplest cases, performed by interpreting the available observations as a
 sample from a hypothetical infinite population; this is a fortiori the case when we have
 more than one variate, as when we are seeking the values of coefficients of correlation.

 There is one point, however, which may be briefly mentioned here in advance, as it
 has been the cause of some confusion. In the example of the frequency curve mentioned
 above, we took it for granted that the values of both the mean and the standard deviation

 of the population were relevant to the inquiry. This is often the case, but it sometimes
 happens that only one of these quantities, for example the standard deviation, is required
 for discussion. In the same way an infinite normal population of two correlated variates
 will usually require five parameters for its specification, the two means, the two standard
 deviations, and the correlation; of these often only the correlation is required, or if not
 alone of interest, it is discussed without reference to the other four quantities. In such
 cases an alteration has been made in what is, and what is not, relevant, and it is not

 surprising that certain small corrections should appear, or not, according as the other
 parameters of the hypothetical surface are or are not deemed relevant. Even more
 clearly is this discrepancy shown when, as in the treatment of such. fourfold tables- as
 exhibit the recovery from smallpox of vaccinated and unvaccinated patients, the method
 of one school of statisticians treats the proportion of vaccinated as relevant, while
 others dismiss it as irrelevant to the inquiry. (3.)

 3. THE PROBLEMS OF STATISTICS.

 The problems which arise in reduction of data may be conveniently divided into three

 types :

 (1) Problems of Specification. These arise in the choice of the mathematical form of
 the population.

 (2) Problems of Estimation. These involve the choice of methods of calculating from
 a sample statistical derivates, or as we shall call them statistics, whicl are designed

 to estimate the values of the parameters of the hypothetical population.
 (3) Problems of Distribution. These include discussions of the distribution of

 statistics derived from samples, or in general any functions of quantities whose
 distribution is knowln.

 It will be clear that when we know (1) what parameters are required to specify the
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 314  MR. R. A. FISHER ON THE MATHEMATICAL

 population from which the sample is drawn, (2) how best to calculate from the sample
 estimates of these parameters, and (3) the exact form of the distribution, in different
 samples, of our derived statistics, then the theoretical aspect of the treatment of any
 particular body of data has been completely elucidated.
 As regards problems of specification, these are entirely a matter for the practical

 statistician, for those cases where the qualitative nature of the hypothetical population
 is known do not involve any problems of this type. In other cases we may know by
 experience what forms are likely to be suitable, and the adequacy of our choice may
 be tested a posteriori. We must confine ourselves to those forms which we know how
 to handle, or for which any tables which may be necessary have been constructed.
 More or less elaborate forms will be suitable according to the volume of the data.
 Evidently these are considerations the nature of which may change greatly during the
 work of a single generation. We may instance the development by PEARSON of a very
 extensive system of skew curves, the elaboration of a method of calculating their para-
 meters, and the preparation of the necessary tables, a body of work which has enormously
 extended the power of modern statistical practice, and which has been, by pertinacity
 and inspiration alike, practically the work of a single man. Nor is the introduction of
 the Pearsonian system of frequency curves the only contribution which their author has
 made to the solution of problems of specification: of even greater importance is the
 introduction of an objective criterion of goodness of fit. For empirical as the specifica-
 tion of the hypothetical population may be, this empiricism is cleared of its dangers if
 we can apply a rigorous and objective test of the adequacy with which the proposed
 population represents the whole of the available facts. Once a statistic, suitable for
 applying such a test, has been chosen, the exact form of its distribution in random
 samples must be investigated, in order that we may evaluate the probability that a
 worse fit should be obtained from a random sample of a population of the type con-
 sidered. The possibility of developing complete and self-contained tests of goodness of
 fit deserves very careful consideration, since therein lies our justification for the free
 use which is made of empirical frequency formulae. Problems of distribution of great
 mathematical difficulty have to be faced in this direction.

 Although problems of estimation and of distribution may be studied separately, they
 are intimately related in the development of statistical methods. Logically problems of
 distribution should have prior consideration, for the study of the random distribution of
 different suggested statistics, derived from samples of a given size, must guide us in the
 choice of which statistic it is most profitable to calculate. The fact is, however, that
 very little progress has been made in the study of the distribution of statistics derived
 from. samples. In 1900 PEARSON (15) gave the exact form of the distribution of x2, the
 Pearsonian test of goodness of fit, and in 1915 the same author published (18) a similar
 result of more general scope, valid when the observations are regarded as subject to
 linear constraints. By an easy adaptation (17) the tables of probability derived from
 this formula may be made available for the more numerous cases in which linear con-
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 FOUNDATIONS OF THEORETICAL STATISTICS.

 straiilt-s are imposed upon -tlhe hlypothetical population by the means which we employ
 in its reconstruction. The distributiori of the mean of samples of n from a normal
 population has long been known, but in 1908 "Student :' (4) broke new ground by
 calculating the distribution of the ratio which the deviation of the mean from its popula-
 tion value bears to the standard deviation calculated from the sample. At the same
 time he gave the exact form of the distribution in samples of the standard deviation.
 In 1915 FISHER (5) published the curve of distribution of the correlation coefficient for
 the standard method of calculation, and in 1921 (6) he published the corresponding
 series of curves for intraclass correlations. The brevity of this list is emphasised by the
 absence of investigation of other important statistics, such as the regression coefficients,

 multiple correlations, and the correlation ratio. A formula for the probable error of any
 statistic is, of course, a practical necessity, if that statistic is to be of service: and in
 the majority of cases such formuloe have been found, chiefly by the labours of PEARSON
 and his school, by a first approximation, which describes the distribution with sufficient
 accuracy if the sample is sufficiently large. Problems of distribution, other than the
 distribution of statistics, used to be not uncommon as examination problems in proba-
 bility, and the physical importance of problems of this type may be exemplified by the
 chemical laws of mass action, by the statistical mechanics of GIBBS, developed by
 JEANS in its application to the theory of gases, by the electron theory of LORENTZ, and
 by PIANCK'S development of the theory of quanta, although in all these appli-
 cations the methods employed have been, from the statistical point of view, relatively
 simple.

 The discussions of theoretical statistics may be regarded as alternating between
 problems of estimation and problems of distribution. In the first place a method of
 calculating one of the population parameters is devised from common-sense considera-
 tions : we next require to know its probable error, and therefore an approximate solution
 of the distribution, in samples, of the statistic calculated. It may then become apparent
 that other statistics may be used as estimates of the same parameter. When the
 probable errors of these statistics are compared, it is usually found that, in large samples,
 one particular method of calculation gives a result less subject to random errors than
 those given by other methods of calculation. Attacking the problem more thoroughly,
 and calculating the surface of distribution of any two statistics, we may find that the
 whole of the relevant information contained in one is contained in the other: or, in
 other words, that when once we know the other, knowledge of the first gives us no
 further information as to the value of the parameter. Finally it may be possible to
 prove, as in the case of the Mean Square Error, derived from a sample of normal popula-
 tion (7), that a particular statistic summarises the whole of the information relevant
 to the corresponding parameter, which the sample contains. In such a case the problem
 of estimation is completely solved.

 31 5
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 AIR. R. A. FISHER ON THE MATHEMATICAL

 4. CRITERIA OF ESTIMATION.

 The common-sense criterion employed in problems of estimation nlay be stated thus :-
 That when applied to the whole population the derived statistic should be equal to the
 parameter. This may be called the Criterion of Consistency. It is often the only test
 applied: thus, in estimating the standard deviation of a normally distributed population,
 from an ungrouped sample, either of the two statistics-

 = n A S (Ix- |) (Mean error)
 and

 ,2 = S/ (x-P)2 (Mean square error) n

 will lead to the correct value, r , when calculated from the whole population. They both
 thus satisfy the criterion of consistency, and this has led many computers to use the
 first formula, although the result of the second has 14 per cent. greater weight (7), and
 the labour of increasing the number of observations by 14 per cent. can seldom be less
 than that of applying the more accurate formula.

 Consideration of the above example will suggest a second criterion, namely :-That in
 large samples, when the distributions of the statistics tend to normality, that statistic
 is to be chosen which has the least probable error.

 This may be called the Criterion of Efficiency. It is evident that if for large samples
 one statistic has a probable error double that of a second, while both are proportional
 to n-:, then the first method applied to a sample of 4n values will be no more accurate
 than the second applied to a sample of any n values. If the second method makes use
 of the whole of the information available, the first makes use of only one-quarter of it,
 and its efficiency may therefore be said to be 25 per cent. To calculate the efficiency of
 any given method, we must therefore know the probable error of the statistic calculated
 by that method, and that of the most efficient statistic which could be used. The
 square of the ratio of these two quantities then measures the efficiency.
 The criterion of efficiency is still to some extent incomplete, for different

 methods of calculation may tend to agreement for large samples, and yet differ for
 all finite samples. The complete criterion suggested by our work on the mean
 square error (7) is:-

 That the statistic chosen should summarise the whole of the relevant information

 supplied by the sample.

 This may be called the Criterion of Sufficiency.

 In mathematical language we may interpret this statement by saying that if 0 be
 the parameter to be estimated, 0, a statistic which contains the whole of the information

 as to the value of 0, which the sample supplies, and 02 any other statistic, then the

 31.6
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 surface of distribution of pairs of values of 01 and 0,, for a given value of 0, is such that
 for a given value of 0,, the distribution of 02 does not involve 0. In other words, when

 0, is known, knowledge of the value of 0, throws no further light upon the value of 0.
 It may be shown that a statistic which fulfils the criterion of sufficiency will also

 fulfil the criterion of efficiency, when the latter is applicable. For, if this be so, the
 distribution of the statistics will in large samples be normal, the standard deviations
 being proportional to n-. Let this distribution be

 d I 1 {02 2'01-0--0 + 0- -2 0 df = ->-e T-7 1 2 -rrz 2-2 d J do0 s,

 then the distribution of 0o is

 1 82o-
 df = --/ e d 21 del,

 so that for a given value of 0, the distribution of 02 is

 1 ,_ sr,0,-oi 0__
 e ^ vT- 21"^r V2 de2; df = - - .2// e 21-2 { d--o' }d2; Cr2 /27ri

 and if this does not involve 0, we must have

 r'a2 = O;

 showing that a- is necessarily less than o2, and that the efficiency of 02 is measured by
 r2, when r is its correlation in large samples with 01.

 Besides this case we shall see that the criterion of sufficiency is also applicable to finite

 samples, and to those cases when the weight of a statistic is not proportional to the
 number of the sample from which it is calculated.

 5. EXAMPLES OF THE USE OF THE CRITERION OF CONSISTENCY.

 In certain cases the criterion of consistency is sufficient for the solution of problems
 of estimation. An example of this occurs when a fourfold table is interpreted as repre-

 senting the double dichotomy of a normal surface. In this case the dichotomic ratios
 of the two variates, together with the correlation, completely specify the four fractions
 into which the population is divided. If these are equated to the four fractions into
 which the sample is divided, the correlation is determined uniquely.

 In other cases where a small correction has to be made, the amount of the correction

 is not of sufficient importance to justify any great refinement in estimation, and it is
 sufficient to calculate the discrepancy which appears when the uncorrected method is
 applied to the whole population. Of this nature is SHEPPARD'S correction for grouping,
 VOL. CCXXII.-A. 2 Y
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 MR. R. A. FISHER ON THE MATHEMATICAL

 and it will illustrate this use of the criterion of consistency if we derive formulae for
 this correction without approximation.
 Let ~ be the value of the variate at the mid point of any group, a the interval of

 grouping, and x the true value of the variate at any point, then the kth moment of an
 infinite grouped sample is

 ekf (x) dx,
 -a

 in which of f(x) dx is the frequency, in any element dx, of the ungrouped population, and

 p being any integer.

 Evidently the kth moment is periodic in 0, we will therefore equate it to

 Ao + A1 sin 0 + A2 sin 20...

 + Bi cos 0+ B2 cos 20....
 Then

 :p - X2r I -la

 Ao= 2 J d f (x) dx

 1 r2i00 o c+ la
 AS sin sO dO s0 (x) dx,

 7r p=_~x 0 u-Ja-

 01 P=00
 Bs=k J cos sgd0J (x) dx.

 But

 0 a C-27rp, 0 a
 therefore

 2w
 do = e

 sin sO = sin -7 s,
 a

 2C
 cos o = cos - se,

 a

 hence

 AO = deF ie f(X)dx = f- X(), dx kC.
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 FOUNDATIONS OF THEORETICAL STATISTICS.

 Inserting the values 1, 2, 3 and 4 for k, we obtain for the aperiodic terms of the four
 moments of the grouped population

 r0

 IAo = I xf(x)dx,

 2Ao = (+ 12f f(x) dx,

 A f (x+ ) f (x) dx,

 4Ao = X 4+ X + 80) f (X) dx.

 If we ignore the periodic terms, these equations lead to the ordinary SHEPPARD
 corrections for the second and fourth moment. The nature of the approximation involved
 is brought out by the periodic terms. In the absence of high contact at the ends of the
 curve, the contribution of these will, of course, include the terms given in a recent paper
 by PEARSON (8); but even with high contact it is of interest to see for what degree of
 coarseness of grouping the periodic terms become sensible.

 Now

 1 =< f" a As=- sin sO dO kf (x)dcx
 p =o0 r-J

 2 r Csin 27 de - :kf(x) dx,
 -a -oo a 1 e-a f

 f (x) dx - sin 2r d. Ca J - x-2a Ca
 But

 2 +2 2 -s a 27sx go sin d$ fo-- cos -rs,
 a Jx-2a a 7rS a

 therefore

 As = (-)'sa cos2 (x) dx;

 similarly the other terms of the different moments may be calculated.
 For a normal curve referred to the true mean

 2
 ,As = (-)C+l2ee 2e2

 bs = 0,
 in which

 a = 27re.

 The error of the mean is therefore

 / 4o-2 9&02

 -2 e-e2 sin o-e-2 2 sin 20 + e 2 sin 30-...).

 2 Y 2
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 320 MR A. R.A.FISHER ON THE MATHEMATICAL

 To illustrate a coarse grouping, take the group interval equal to the standard deviation:
 then

 2r
 e =_

 and the error is

 a' 2,12 - - e- sin 0
 7F

 with sufficient accuracy. The standard error of the mean being -, we may calculate
 V/n

 the size of the sample for which the error due to the periodic terms becomes equal to
 one-tenth of the standard error, by putting

 C C _ 27r2

 10/n n T
 whence

 n = - e42 = 13,790 billion.
 100

 For the second moment
 ( s ( / 2 s2V2 B2 = 2

 and, if we put
 v/22 2 _*<M2

 - = 4- e ,
 o10/n

 there results

 n = -o-e42r = 175 billion.

 The error, while still very minute, is thus more important for the second than for
 the first moment.

 For the third moment

 s 48 2 F4 2 292\ A ~ (Sd e4+
 A, = (--)s - I + 6,_ 3 4 S 6s 'e 2

 putting

 2/10v/n

 = 2 e=' = 14 7 billion.

 While for the fourth moment

 Q 6^ f f 6 1 s30'2

 B= (-) -(7r2_3) 4 (7r2-6) e 22

 so that, if we put,
 v/96 . 2- 4.244

 n = -- e4 = 1- 34 billion.
 32007r4
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 FOUNDATIONS OF THEORETICAL STATISTICS.

 In a similar manner the exact form of SHEPPARD'S correction may be found for other
 curves ; for the normal curve we may say that the periodic terms are exceedingly minute
 so long as a is less than -, though they increase very rapidly if a is increased beyond
 this point. They are of increasing importance as higher moments are used, not only
 absolutely, but relatively to the increasing probable errors of the higher moments.
 The principle upon which the correction is based is merely to find the error when the
 moments are calculated from an infinite grouped sample; the corrected moment therefore

 fulfils the criterion of consistency, and so long as the correction is small no greater
 refinement is required.

 Perhaps the most extended use of the criterion of consistency has been developed by
 PEARSON in the " Method of Moments." In this method, which is without question of
 great practical utility, different forms bf frequency curves are fitted by calculating as
 many moments of the sample as there are parameters to be evaluated. The parameters
 chosen are those of an infinite population of the specified type having the same moments
 as those calculated from the sample.

 The system of curves developed by PEARSON has four variable parameters, and may
 be fitted by means of the first four moments. For this purpose it is necessary to confine
 attention to curves of which the first four moments are finite; further, if the accuracy
 of the fourth moment should increase with the size of the sample, that is, if its probable
 error should not be infinitely great, the first eight moments must be finite. This
 restriction requires that the class of distribution in which this condition is not fulfilled
 should be set aside as " leterotypic," and that the fourth moment should become
 practically valueless as this class is approached. It should be made clear, however,
 that there is nothing anomalous about these so-called " heterotypic " distributions
 except the fact that the method of moments cannot be applied to them. More-
 over, for that class of distribution to which the method can be applied, it has not
 been shown, except in the case of the normal curve, that the best values will be
 obtained by the method of moments. The method will, in these cases, certainly be
 serviceable in yielding an approximation, but to discover whether this approximation
 is a good or a bad one, and to improve it, if necessary, a more adequate criterion is
 required.

 A single example will be sufficient to illustrate the practical difficulty alluded to
 above. If a point P lie at known (unit) distance from a straight line AB, and lines be
 drawn at random through P, then the distribution of the points of intersection with
 AB will be distributed so that the frequency in any range dx is

 = 1 dx df =
 7' 1 + (X-m)2

 in which x is the distance of the infinitesimal range dx from a fixed point 0 on the line,
 and m is the distance, from this point, of the foot of the perpendicular PM. The distri-
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 bution will be a svyumetrical one (Type VII.) having its centre at x =-m v (fig. 1). It is
 therefore a perfectly definite problem to estimate the value of m (to find the best value of
 m) from a random sample of values of x. We have stated the problem in its simplest

 possible form: only one parameter is required, the middle point of the distribution.

 -6 -5 -4 -3 -2 -10 1 2 3 4 5 6

 Fig. 1. Symmetrical error curves of equal intrinsic accuracy.

 A . .f . . . . . +
 rr l+x2.

 B . . . . . . . e 4

 By the method of moments, this should be given by the first moment, that is by the
 mean of the observations: such would seem to be at least a good estimate. It is,
 however, entirely valueless. The distribution of the mean of such samples is in fact the
 same, identically, as that of a single observation. In taking the mean of 100 values of
 x, we are no nearer obtaining the value of m than if we had chosen any value of x out
 of the 100. The problem, however, is not in the least an impracticable one: clearly
 from a large sample we ought to be able to estimate the centre of the distribution with

 some precision; the mean, however, is an entirely useless statistic for the purpose.
 By taking the median of a large sample, a fair approximation is obtained, for the standard

 error of the median of a large sample of n is 2- which, alone, is enough to show that

 by adopting adequate statistical methods it must be possible to estimate the value for
 m, with increasing accuracy, as the size of the sample is increased.
 This example serves also to illustrate the practical difficulty which observers often
 find, that a few extreme observations appear to dominate the value of the mean. In
 these cases the rejection of extreme values is often advocated, and it may often happen
 that gross errors are thus rejected. As a statistical measure, however, the rejection of
 observations is too crude to be defended: and unless there are other reasons for rejec-
 tion than mere divergence from the majority, it would be more philosophical to accept
 these extreme values, not as gross errors, but as indications that the distribution of
 errors is not normal. As we shall show, the only Pearsonian curve for which the mean
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 is the best statistic for locating the curve, is the normal or gaussian curve of errors. If
 the curve is not of this form the mean is not necessarily, as we have seen, of any value
 whatever. The determination of the true curves of variation for different types of work
 is therefore of great practical importance, and this can only be done by different workers
 recording their data in full without rejections, however they may please to treat the
 data so recorded. Assuredly an observer need be exposed to no criticism, if after
 recording data which are not probably normal in distribution, he prefers to adopt some
 value other than the arithmetic mean.

 6. FORMAL SOLUTION OF PROBLEMS OF ESTIMATION.

 The form in which the criterion of sufficiency has been presented is not of direct
 assistance in the solution of problems of estimation. For it is necessary first to know
 the statistic concerned and its surface of distribution, with an infinite number of other

 statistics, before its sufficiency can be tested. For the solution of problems of
 estimation we require a method which for each particular problem will lead us
 automatically to the statistic by which the criterion of sufficiency is satisfied. Such a
 method is, I believe, provided by the Method of Maximum Likelihood, although I am
 not satisfied as to the mathematical rigour of any proof which I can put forward to
 that effect. Readers of the ensuing pages are invited to form their own opinion as
 to the possibility of the method of the maximum likelihood leading in any case to an
 insufficient statistic. For my own part I should gladly have withheld publication until
 a rigorously complete proof could have been formulated; but the number and variety
 of the new results which the method discloses press for publication, and at the same
 time I am not insensible of the advantage which accrues to Applied Mathematics from
 the co-operation of the Pure Mathematician, and this co-operation is not infrequently
 called forth by the very imperfections of writers on Applied Mathematics.

 If in any distribution involving unknown parameters 0,, 02, 0,..., the chance of
 an observation falling in the range dx be represented by

 f(x, 0, 02, ... ) dx,

 then the chance that in a sample of n, n, fall in the range dx,, n2 in the range dx2, and
 so on, vwill be

 ( (!) f ( v, 01, 02, ... ) dx)'n

 The method of maximum likelihood consists simply in choosing that set of values
 for the parameters which makes this quantity a maximum, and since in this expression
 the parameters are only involved in the functionf, we have to make

 S (logf)
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 a maximum for variations of 01, 02, 0, &c. In this form the method is applicable to
 the fitting of populations involving any number of variates, and equally to discontinuous
 as to continuous distributions.

 In order to make clear the (listinction between this Imethod and that of BAYES, we

 will apply it to the same type of probleim as that wvhich BAYES discussed, in the hope
 of making clear exactly of wThat kind is the information which a sample is capable of
 supplying. This question naturally first arose, not with respect to populations distri-
 buted in frequency curves and surfaces, but with respect to a population regarded as
 divided into two classes only, in fact in problems of probability. A certain proportion,
 p, of an infinite population is supposed to be of a certain kind, e.g., " successes," the
 remainder are then " failures." A sample of n is taken and found to contain x successes
 and y failures. The chance of obtaining such a sample is evidently

 ! P'(1-P)Y

 Applying the method of maximum likelihood, we have

 S (logf) = x log p+y log (I -)

 whence, differentiating with respect to p, in order to make this quantity a maximum,

 y A x --= _ , or - -.
 p 1p n

 The question then arises as to the accuracy of this determination. This question was
 first discussed by BAYES (10), in a form which we may state thus. After observing
 this sample, when we know p, what is the probability that p lies in any range dp ? In
 other words, what is the frequency distribution of the values of p in populations which
 are selected by the restriction that a sample of n taken from each of them yields x
 successes. Without further data, as BAYES perceived, this problem is insoluble. To
 render it capable of mathematical treatment, BAYES introduced the datum, that among
 the populations upon which the experiment was tried, those in which p lay in the range
 dp were equally frequent for all equal ranges dp. The probability that the value of p
 lay in any range dp was therefore assumed to be simply dp, before the sample was
 taken. After the selection effected by observing the sample, the probability is clearly

 proportional to
 px ( l-p)Ydp.

 After giving this solution, based upon the particular datum stated, BAYES adds a
 scholium the purport of which would seem to be that in the absence of all knowledge
 save that supplied by the sample, it is reasonable to assume this particular a priori
 distribution of p. The result, the datum, and the postulate implied by the scholium, have
 all been somewhat loosely spoken of as BAYES' Theorem.

 324

This content downloaded from 
�������������198.82.230.35 on Sun, 18 Apr 2021 16:55:16 UTC������������� 

All use subject to https://about.jstor.org/terms



 FOUNDATIONS OF THEORETICAL STATISTICS.

 The postulate would, if true, be of great importance in bringing an immense variety
 of questions within the domain of probability. It is, however, evidently extremely arbi-
 trary. Apart from evolving a vitally important piece of knowledge, that of the exact
 form of the distribution of values of p, out of an assumption of complete ignorance, it is
 not even a unique solution. For we might never have happened to direct our attention
 to the particular quantity p: we might equally have measured probability upon an
 entirely different scale. If, for instance,

 sin 0 = 2p -1,

 the quantity, 0, measures the degree of probability, just as well as p, and is even, for
 some purposes, the more suitable variable. The chance of obtaining a sample of x
 successes and y failures is now

 ! (1 +sin 0) ( 1-sin 0)Y; 2 x y!

 applying the method of maximum likelihood,

 S (logf) = x log (1 +siin 0) +y log ( -sin 0) -n log 2,

 and differentiating with respect to 0,

 x cos 0 y cos 0 . y xcos0 _ ycos0 whence sin 0 -
 l.+sn 0 1-sinO' 2n

 an exactly equivalent solution to that obtained using the variable p. But what a priori
 assumption are we to make as to the distribution of 0 ? Are we to assume that 0 is
 equally likely to lie in all equal ranges do ? In this case the a priori probability will
 be d0/7r, and that after making the observations will be proportional to

 (1 + sin 0)x ( -sin o0) d0.

 But if we interpret this in terms of p, we obtain

 px (1-P)y dp p- (1 -p)Y dp,
 vp (1-p)"

 a result inconsistent with that obtained previously. In fact, the distribution previously
 assumed for p was equivalent to assuming the special distribution for 0,

 cos 0
 df= de,

 the arbitrariness of which is fully apparent when we use any variable other than p.
 In a less obtrusive form the same species of arbitrary assumption underlies the method
 VOL. CCXXII.-A, 2 4
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 known as that of inverse probability. Thus, if the same observed result A might be
 the consequence of one or other of two hypothetical conditions X and Y, it is assumed
 that the probabilities of X and Y are in the same ratio as the probabilities of A occurring
 on the two assumptions, X is true, Y is true. This amounts to assuming that before
 A was observed, it was known that our universe had been selected at random for an

 infinite population in which X was true in one half, and Y true in the other half.
 Clearly such an assumption is entirely arbitrary, nor has any method been put forward
 by which such assumptions can be made even with consistent uniqueness. There
 is nothing to prevent an irrelevant distinction being drawn among the hypothetical
 conditions represented by X, so that we have to consider two hypothetical possibilities
 X, and X2, on both of which A will occur with equal frequency. Such a distinction
 should make no difference whatever to our conclusions; but on the principle of inverse
 probability it does so, for if previously the relative probabilities were reckoned to be
 in the ratio x to y, they must now be reckoned 2x to y. Nor has any criterion been
 suggested by which it is possible to separate such irrelevant distinctions from those
 which are relevant.

 There would be no need to emphasise the baseless character of the assumptions made
 under the titles of inverse probability and BAYES' Theorem in view of the decisive
 criticism to which they have been exposed at the hands of BOOLE, VENN, and CHRYSTAL,

 were it not for the fact that the older writers, such as LAPLACE and POISSON, who accepted
 these assumptions, also laid the foundations of the modern theory of statistics, and have
 introduced into their discussions of this subject ideas of a similar character. I must
 indeed plead guilty in my original statement of the Method of the Maximum Likeli-
 ]lood (9) to having based my argument upon the principle of inverse probability; in the
 same paper, it is true, I emphasised the fact that such inverse probabilities were relative
 only. That is to say, that while we might speak of one value of p as having an inverse
 probability three times that of another value of p, we might on no account introduce
 the differential element dp, so as to be able to say that it was three times as probable
 that p should lie in one rather than the other of two equal elements. Upon considera-
 tion, therefore, I perceive that the word probability is wrongly used in such a connection:

 probability is a ratio of frequencies, and about the frequencies of such values we can
 know nothing whatever. We must return to the actual fact that one value of p, of
 the frequency of which we know nothing, would yield the observed result three times
 as frequently as would another value of p. If we need a word to characterise this
 relative property of different values of p, I suggest that we may speak without confusion

 of the likelihood of one value of p being thrice the likelihood of another, bearing always
 in mind that likelihood is not here used loosely as a synonym of probability, but simply
 to express the relative frequencies with which such values of the hypothetical quantity
 p would in fact yield the observed sample.

 The solution of the problems of calculating from a sample the parameters of the
 hypothetical population, which we have put forward in the method of maximum likeli-
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 hood, consists, then, simply of choosing such values of these parameters as have the
 maximum likelihood. Formally, therefore, it resembles the calculation of the mode of
 an inverse frequency distribution. This resemblance is quite superficial: if the scale
 of measurement of the hypothetical quantity be altered, the mode must change its
 position, and can be brought to have any value, by an appropriate change of scale; but
 the optimum, as the position of maximum likelihood may be called, is entirely unchanged
 by any such transformation. Likelihood also differs from probability* in that it is not
 a differential element, and is incapable of being integrated : it is assigned to a particular
 point of the range of variation, not to a particular element of it. There is therefore an

 absolute measure of probability in that the unit is chosen so as to make all the elementary
 probabilities add up to unity. There is no such absolute measure of likelihood. It
 may be convenient to assign the value unity to the maximum value, and to neasure
 other likelihoods by comparison, but there will then be an infinite number of values
 whose likelihood is greater than one-half. The sum of the likelihoods of admissible
 values will always be infinite.

 Our interpretation of BAYES' problem, then, is that the likelihood of any value of p
 is proportional to

 pX (1p)Y,

 and is therefore a maximum when
 x

 . . . . p --- _,-7
 n

 which is the best value obtainable from the sample; we shall term this the optimum
 value of p. Other values of p for which the likelihood is not much less cannot, however,
 be deemed unlikely values for the true value of p. We do not, and cannot, know, from
 the information supplied by a sample, anything about the probability that p should lie
 between any named values.
 The reliance to be placed on such a result must depend upon the frequency distribution
 of x, in different samples from the same population. This is a perfectly objective
 statistical problem, of the kind we have called problems of distribution ; it is, however,
 capable of an approximate solution, directly from the mathematical form of the
 likelihood.

 When for large samples the distribution of any statistic, 01, tends to normality, we

 * It should be remarked that likelihood, as above defined, is not only fundamentally distinct from
 mathematical probability, but also from the logical " probability " by which Mr. KEYNES (21) has recently
 attempted to develop a method of treatment of uncertain inference, applicable to those cases where we

 lack the statistical information necessary for the application of mathematical probability. Although, in
 an important class of cases, the likelihood may be held to measure the degree of our rational belief in a

 conclusion, in the same sense as Mr. KEYNES' " probability," yet since the latter quantity is constrained,
 somewhat arbitrarily, to obey the addition theorem of mathematical probability, the likelihood is a
 quantity which falls definitely outside its scope.

 2 z 2
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 may write down the chance for a given value of the parameter 0, that 0, should lie in
 the range do, in the form

 ( 01 (-0)

 $ ==-=:e d6,.

 The mean value of 0, will be the true value 0, and the standard deviation is a-, the
 sample being assumed sufficiently large for us to disregard the dependence of aC upon O.

 The likelihood of any value, 0, is proportional to

 (e, -ey2

 this quantity having its maximum value, unity, when

 log 0;

 Differentiating now a second time

 2" 1
 a02 log : 2= 2

 Now 4) stands for the total frequency of all samples for which the chosen statistic
 has the value 01, consequently =- S' (0), the summation being taken over all such
 examples, where /s stands for the probability of occurrence of a certain specified sample.
 For which we know that

 iog p = CJ+S (logf),

 the summation being taken over the individual members of the sample.
 If now we expand logf in the form

 --2

 log f (0) logf (0) ?-, log (0) + log f(o,) f ...,)
 or

 log f = log i + 0-01+ 2 0-0 +...,
 we have

 log = c+0-0os(a)+0-01e, (b)+...;

 now for optimum statistics
 S (a) 0,

 and for sufficiently large samples S (b) differs from nb only by a quantity of order v/nab ;
 moreover, 0-01 being of order n-~, the only terms in log p which are not reduced
 without limit, as n is increased, are

 log C + nT_0 ;

 328

This content downloaded from 
�������������198.82.230.35 on Sun, 18 Apr 2021 16:55:16 UTC������������� 

All use subject to https://about.jstor.org/terms



 FOUNDATIONS OF THEORETICAL STATISTICS.

 hence

 ^oc e~ ?----.

 Now this factor is constant for all samples which have the same value of 0,, hence
 the variation of 4) with respect to 0 is represented by the same factor, and conse-
 quently

 log q = C'+nn b 0-01;
 whence

 1 a2
 2--; = ~-flog I = n6,

 where

 b -= logf(01),
 p32

 01 being the optimum value of 0.
 The formula

 - = ax log

 supplies the most direct way known to me of finding the probable errors of statistics.
 It may be seen that the above proof applies only to statistics obtained by the method
 of maximum likelihood.*

 For example, to find the standard deviation of

 A X

 n

 * A similar method of obtaining the standard deviations and correlations of statistics derived from
 large samples was developed by PEARSON and FILON in 1898 (16). It is unfortunate that in this memoir

 no sufficient distinction is drawn between the population and the sample, in consequence of which the
 formulae obtained indicate that the likelihood is always a maximum (for continuous distributions) when

 the mean of each variate in the sample is equated to the corresponding mean in the population (16, p. 232,

 A, = 0 "). If this were so the mean would always be a sufficient statistic for location; but as we have
 already seen, and will see later in more detail, this is far from being the case. The same argument, indeed,

 is applied to all statistics, as to which nothing but their consistency can be truly affirmed.

 The probable errors obtained in this way are those appropriate to the method of maximum likelihood,
 but not in other cases to statistics obtained by the method of moments, by which method the examples

 given were fitted. In the ' Tables for Statisticians and Biometricians ' (1914), the probable errors of the

 constants of the Pearsonian curves are those proper to the method of moments; no mention is there made

 of this change of practice, nor is the publication of 1898 referred to.

 It would appear that shortly before 1898 the process which leads to the correct value, of the probable
 errors of optimnum statistics, was hit upon and found to agree with the probable errors of statistics found

 by the method of moments for normal curves and surfaces; without further enquiry it would appear to

 have been assumed that this process was valid in all cases, its directness and simplicity being peculiarly
 attractive. The mistake was at that time, perhaps, a natural one; but that it should have been discovered
 and corrected without revealing the inefficiency of the method of moments is a very remarkable circumstance.

 In 1903 the correct formulhe for the probable errors of statistics found by the method of moments are
 given in ' Biometrika ' (19); references are there given to SHEPPARD (20), whose method is employed, as
 well as to PEARSON and FILON (16), although both the method and the results differ from those of the latter.
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 in samples from an infinite population of which the true value is p,

 logf = log p+ y log ( -p),

 l * .' x y

 _x y -log f = ---
 ap2 p lI-p

 Now the mean value of x in pn, and of y is (l--p) n, hence the mean value of

 -logfi 1 is-
 therefore

 2_p(L-p)
 2'~ - --

 n

 the well-known formula for the standard error of p.

 7. SATISFACTION OF THE CRITERION OF SUFFICIENCY.

 That the criterion of sufficiency is generally satisfied by the solution obtained by
 the method of maximum likelihood appears from the following considerations.

 If the individual values of any sample of data are regarded as co-ordinates in
 hyperspace, then any sample may be represented by a single point, and the frequency
 distribution of an infinite number of random samples is represented by a density
 distribution in hyperspace. If any set of statistics be chosen to be calculated from
 the samples, certain regions will provide identical sets of statistics; these may be called
 isostatistical regions. For any particular space element, corresponding to an actual
 sample, there will be a particular set of parameters for which the frequency in that
 element is a maximum; this will be the optimum set of parameters for that element.
 If now the set of statistics chosen are those which give the optimum values of the
 parameters, then all the elements of any part of the same isostatistical region will
 contain the greatest possible frequency for the same set of values of the parameters,
 and therefore any region which lies wholly within an isostatistical region will contain
 its maximum frequency for that set of values.

 Now let 0 be the value of any parameter, 0 the statistic calculated by the method of
 maximum. likelihood, and 01 any other statistic designed to estimate the value of 0,
 then for a sample of given size, we may take

 f (, 0, e1)d do1d

 to represent the frequency with which 0 and 0, lie in the assigned ranges do and dol.
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 The region dOdol evidently lies wholly in the isostatistical region d4. Hence the
 equation

 a log/f(, 4, 1) = o

 is satisfied, irrespective of 01, by the value 0 = . This condition is satisfied if

 y(0, 0, o ,)= ) (o, 4) 0'.0 (, 0);
 for then

 alog =a log ,

 and the equation for the optimum degenerates into

 i log q (, 4) 0,

 which does not involve 01.

 But the factorisation of f into factors involving (0, 6) and (4, 01) respectively is merely
 a -mathematical expression of the condition of sufficiency; and it appears that any
 statistic which fulfils the condition of sufficiency must be a solution obtained by the
 method of the optimum.

 It may be expected, therefore, that we shall be led to a sufficient solution of problems
 of estimation in general by the following procedure. Write down the formula for the
 probability of an observation falling in the range dx in the form

 f(0, x) dx,

 where 0 is an unknown parameter. Then if

 L= S(logf)

 the summation being extended over the observed sample, L differs by a constant only
 from the logarithm of the likelihood of any value of 0. The most likely value, 0, is
 found by the equation

 aL
 -= O,

 80

 and the standard deviation of 4, by a second differentiation, from the formula

 2_L 1,
 802 ~ 2

 this latter formula being applicable only where 6 is normally distributed, as is often
 the case with considerable accuracy in large samples. The value 0- so found is in
 these cases the least possible value for the standard deviation of a statistic designed to
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 estimate the same parameter; it may therefore be applied to calcullate the efficiency of
 any other such statistic.

 When several parameters are determnined simultaneously, we nmust equate the second
 differentials of L, with respect to the parameters, to the coefficients of the quadratic
 terms in the index of the normal expression which represents the distribution of the
 corresponding statistics. Thus with two parameters,

 a2L 1 1 a1 L I1

 a2L 1 r

 -2 - - 2.-r 2. a - 2. 4'

 2J __ 1 r
 a01 ae3 1O _ r -r2* a2 a

 or, in effect, a(r is found by dividing the Hessian determinant of L, with respect to the
 parameters, into the corresponding minor.

 The application of these methods to such a series of parameters as occur in the speci-
 fication of frequency curves may best be made clear by an example.

 8. THE EFFICIENCY OF THE METHOD OF MOMENTS IN FITTING CURVES OF THE
 PEARSONIAN TYPE III.

 Curves of PEARSON's Type III. offer a good example for the calculation of the efficiency

 of the Method of Moments. The chance of an observation falling in the range dx is

 drV= -. -6 e a dx.*

 By the method of moments the curve is located by means of the statistic u, its dimen-
 sions are ascertained from the second moment ,2, and the remaining parameter p is
 determined from ,3. Considering first the problem of location, if a and p were known
 and we had only to determine m, we should take, according to the method of moments,

 - A= m,+ (p+ 1),

 where m~ represents the estimate of the parameter m, obtained by using the method of
 moments. The variance of m, is, therefore,

 2 2 = , 2a +1)

 If, on the other hand, we aim at greater accuracy, and make the likelihood of the
 sample a maximum for variations of In, we have

 L =-n log a-n log (p !) +pS ( log xm ) -S(),

 * The expression, x !, is used here and throughout as equivalent to the Gaussian II (x), or to r (+l 1),
 whether x is an integer or not.

 332

This content downloaded from 
�������������198.82.230.35 on Sun, 18 Apr 2021 16:55:16 UTC������������� 

All use subject to https://about.jstor.org/terms



 FOUNDATIONS O THE' REE()'TICAr- SrTATrISTICS,. 833

 and the equation to determine m is

 L., -p 1S ('A = -PS - +- . ; . . . (1) Cm \x-m/ a *

 the accuracy of the value so obtained is found fromr the second differential,

 ,m2 ':\'-p/
 of which the mean value is

 whence

 ( - -
 n

 We now see that the efficiency of location by the method of lmomlents is

 2p-) I- 1.
 P +1 p + 1

 Efficiencies of over 80 per cent. for location are therefore obtained if p exceeds 9; for
 p = 1 the efficiency of location vanishes, as in other cases where the curve makes an
 angle with the axis at the end of its range.
 Turning now to the problem of scaling, we have, by the method of moments,

 .2 =, (2 + l ),

 whence, knowing p, a is obtained. Since

 2 2 [-1 2

 we must have

 2 p321 2 4 + 3 , 2 ___ 2 2
 c-r 4n 8n 2 (p+t) ,

 on the other hand, from the value of L, we find the equation

 |L^ k n(p+ l)+iS(^-) , (2)

 to be solved for m and a as a simultaneous equation with (1) ; whence

 Ia_,
 am a a- t

 and

 a2L (p.) s(-.)
 ;' Ca a5

 3 -\ VOL(. CoXXInl. -- A.
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 of which !thie jmean vaflue is

 n(p 1.)
 a2

 dividing

 cr c (p-1)
 by the dete rminant

 ~" (){p .) , 9t,a

 __ n_ a _ (p + )
 (2

 which reduces to

 2 ^

 whence

 a .....

 2/,

 and the efficiency of sca,lng )by the method of moments is

 p?l 3

 p+ 4 p+ 4

 Efficiency of over 80 per cent. for scaling are, therefore, obtained when p exceeds 11.
 The efficiency of scaling does not, however, vanish for any possible value of p, though
 it tends to zero, as p approaches its limiting value, -1.
 Lastly, p is found by the method of m:oments by putting

 4

 p + 1
 Now

 - _ /2 ('434-242 + 36 + 90/3-12'33 51),

 and for c:rves of r'ypel 11II,

 /,2 3 + V

 / - (s + 23, 3) = -a/ (3A+.:S + 6),
 hence

 2 = ...t.(5Afi + 4) (/, + 4),

 _ 63 ((p+ 2) (p, +6)
 1 , ' p+
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 whence it follows, since n is large, that

 2 = 6(+. L | + ( 1)(p+)2) (p +6).
 * = " .. np+ -

 From the value of L,

 L d
 '-. = --n - log (p!) + S log --- ,

 which equation solved for m, a and p as a simultaneous equation with (1) and (2), w-il
 yield the set of values for the parameters which has the maximum likelihood. To find
 the variance of the value of p, so obtained, observe that

 c?m p \xI /I
 of which the mean value is

 . - ,~~~~~~a

 BaL p - _
 aa ap - 2'

 a2L = 3 f (I ,
 p - 2 ,log !).

 and

 The variance of p, derived from this set of simultaneous equations, is tlherefore found

 by dividing the minor of a L namely
 * 3p -

 2 n2

 P- ]e adt
 by the determinant

 (t4 p-1

 1

 1

 P .

 hence

 When p is large,

 . 1

 P

 p+1 1

 d2
 -- log

 -(1p 12

 ~~(p}v~!)l (

 ct p - dp^ tp-(p
 (?')~~~~~

 I 2

 d' r2d

 's2 (+~= .2- log (p!) 2+
 (-I 2 in p p 2' )

 2

 2. p,
 3 2+1},

 I"j - .5 ' 7p7 '"'
 3 A 2
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 MR. R. A. FISHEIER ON THE MATHEMATICAL

 so that, approximately,
 2= 6(p3+'p);

 for large values of p, the efficiency of the method of moments is, therefore, approximately

 p+ p + 2 p + 6

 Efficiencies of over 80 per cent. occur whein p exceeds 381 (,fi -- 0 102); evidently
 the method of moments is effective for determining the form of the curve only when it
 is relatively close to the normal form. For small values of p, the above approximation
 for the efficiency is not adequate. The true values can easily be obtained from the
 recently published tables of the Trigarima* function (ll). The following values are
 obtained for the integral values of p from 0 to 5.

 p 0 1 2 3 4 5
 Efficiency . . . 0 0-0274 0-0871 0-1532 0-2159 0-2727

 An interesting point which may be resolved at this stage of the enqulir is to find
 the variance of m, when a and p are not known, derived from the above set of simul-

 taneous equations; that is to say, to calculate the accuracy with which the limiting
 point of the curve is determined; such determinations are often stated as the result
 of fitting curves of limited range, but their probable errors are seldonl, if ever, evaluated.

 To obtain the greatest possible accuracy with which such a point can be determined

 we must divide the minor of ,, namely,

 {p+1- log(p!)d2 i
 by

 n3 _L_ __ 1 - * \2 log (p !) + , (t4 p-g (dp2 lVP'I / p2p"
 whence

 2 (tp 1 p + dpS log (!)- 1
 d 2d" 2 1

 2 log (p!)- + 2
 dp2 p p

 The position of the limiting point will, when p is at all large, evidently be determined
 with mtuch less accuracy than is the position, as a whole, of a curve of known form and
 size. Let n' be a multiplier such that the position of the extremity of a curve calculated

 d2
 * It is sometimes convenient to write (x) for - log (x).  fo vlo (!)

 3 %f6
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 FiOUNI )AIONS OF THrEOlRETICATL STAT.ISTICS.

 from nn' observations will be determined with the same accuracy as the position, as a
 whole, of a curve of known form and size, can be determined from a sample of n observa-
 tions when n is large. Then

 P 4 2 log (p!) -1.

 2--- log (p!)-- ? ..- Up22 + P'
 but, when p is large,

 d2 2
 p?1 log (p!) -t . .....-.l-() .P + log (P - - + 2 ... ;p ~ ~ '\3p 3p/

 and
 d2 2 22 log (p i) + = 3 );

 therefore

 el/ 2 p3(_2 p 8 ) 3 3 p + - "

 - = 3Jp-p+2

 For large values of p the probable error of the determiination of the end-point may be
 found approximately by multiplying the probable error of location by

 (p-?) -3/-.

 As p grows smaller, n' diminishes until it reaches unity, when p-- 1. For values of
 p less than 1 it would appear that the end-point had a smaller probable error than tle
 probable error of location, but, as a matter of fact, for these values location is determined

 by the end-point, and as we see from the vanishing of o^, whether or not p and a
 are known, when p - 1, the weight of the determination from this point onwards increases
 more rapidly than n, as the sample increases. (See Section 10.)

 The above method illustrates how it is possible to calculate the variance of any
 function of the population. pa rameters as estimated from large samples by comparirng
 this variance with th that of the sae function estimated by the methiod of mloments, we
 may find the efficiency of that method for any proposed function. Thle above examnina-
 tion, in which the determinations of the locus, the scale, and the forim of the curve are

 treated separately, will serve as a general criterion of the application of the method of
 moments to curves of Type III. Special combinations of the parameters will, however,
 be of interest in special cases. It may be noted here that by virtue of equation (2) the
 function of rm -1-- a (p - I) is the same, whether determined by moments or by the method
 of the optimum :

 , + Ca (p-L+ 1) = n + ? ( + 1).

 The efficiency of the method of moments in deter this function is therefore 100
 per cent. 'rhat this function is the abscissa of the mean does not imply 100 per cent.
 efficiency of location, for the centre of location of these curves is not the mean (see p. 340).

 337
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 1MR. R. A. FISHER ON THE MATHEM[ATICALT

 9. LOCATION AND SCALING OF FREQUENCY CURVES IN GENERAL.

 The general problem of the location and scaling of curves may now be treated more
 generally. This is the problem which presents itself with respect to error curves of
 assumed form, when to find the best value of the quantity mleasured we must locate the
 curve as accurately as possible, and to find the probable error of the result of this process
 we must, as accurately as possible, estimate its scale.

 The form of the curve may be specified by a fun ction (,, s-uch that

 3;, --'D 1

 d j' c c~ ) de, when e = -.

 In this expression < specifies the form of the curve, which is unaltered by variations
 of a an(I m.

 When a sample of n observations has been taken, the likelihood of any combination
 of values of a and m is

 L -( C- lfog aC+S (I),
 whence

 aL =
 am (dl dAm a

 since

 a8 a
 also

 ?L 1: Q /- ,,
 8a t (at

 since

 at _ t.
 aa a

 Differentiating a second time,
 a2L 1 ,
 -- -- -b _(p ) ,

 therefore

 (rhi -e 't,a

 This expression enables us to compare the accuracy of error curves of different form,

 when the location is performed in each case by the method which yields the minimum
 error.

 Example -The curve
 d

 d(/' -
 7r 1 +- ?

 referred to in Section 5 has an infinite standard deviation, but it is not on that accolunt

 an error curve of zero accuracy, for

 ,-log ( +)," = _ +2 )2 I~~/ - (1? ii$ ')2

 338
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 FOUNI)ATIONS OFt' THEO)RETICAI, STATISTlICS 339

 Now

 hence

 --i. ct < CT; (f" = -} and c-~ = ?

 The quantity,
 X 81

 a2 2a2t

 which is the factor by which n is multiplied in calculatiing the weight of the estimate
 made from rn mleasurements, may be called the intrinsic accuracy of an error curve. In
 the above example we see that errors distributed so that

 d a d
 ,2 X2

 have the samle intrinsic accuracy as errors distributed according to the normal curve

 df -- 2-e2x (Ix

 provided
 2 ) 2

 Fig. 1 illustrates two such curves of equal intrinsic accuracy.
 Returning now to the general problem. in which

 L J= C- log +S (),
 we have

 c L s (+ ) s (fF)
 C(:1 a ct a 0,

 and

 a:L = 8 (2 '+r ?" ) ' C =1 S (+"- ).

 The latter expression will. directly give the accuracy witi which a is determined only if

 m c -c-0 Qm da

 and we can always arrange thiat this shall be so by subtracting from E the quantity

 ")!

 Thus in a Type III. curve where, referred to the end of the range,

 9-1 1,
 b,v =--1, (/)" = - 1
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 340 MIR. . A. FISITER ON THIlE MATHEMATICAL

 instead of

 ,p = p log c-$
 we must write

 j = log t+P- - +~ - 1;
 then

 _,+ p-/l ' ?f+p_
 hence

 _2L = (120_1

 '' ( ' $+P-1 +p-1_
 of which the mean value is

 (- +2p- -p-: --) = - ,
 hence

 22
 2n

 2n

 For one particular point of origin, therefore, the variations of the abscissa are
 uincorrelated with those of a; this point may be termed the centre of location.

 Example :--To determine the centre of location of the curve of Type IV.,

 df e-v tall- (L + :-
 r + ?2

 Here

 =-v tan-l r + 2 log T g,
 -2

 9' = - (v+,+ 2 ) I +t~ ,

 g" = r+ + 2 2 +2 (v--r +2) 1 + 2;
 from these we find

 i'+4 +?r2 r++ 1 ,r+2 r+
 (f =- -2 2

 qr+4 +ir

 r}+ 4 +IJ
 so that

 e4 ?

 The centre of location, therefore, at the distance fro+ the mode,

 rvt-

 ) "~+4'
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 FOUNDATIONS OF THEORETICAL STATISTICS. 341

 :Exmnple :-Determine the intrinsic acculracy of an error curve of Type IV. and tle
 efficiency of the method of moments in location and scaling.-
 Since

 777 _ 1 r r+2r +4

 r-+4 +v2

 2 ~2 v2
 2 a r+4 +v

 8rh + l r +- 2 r -- 4 n ,-+lr+2r+4

 and the intrinsic accuracy of the curve is

 1 r+1r+2 i2r+4
 a ----_- 2

 a r+4 +v2
 but

 2 -a(2 .a2+ v2
 ~ n --r2

 therefore the efficiency of tte method of moments in location is

 - 1 (r+ 2 +2)
 ^r27^ 24-^ V(3)

 r-+l ,+2r+4(r24-2) a( /

 When v= 0, we have for curves of Type VII. an efficiency of location

 6
 ,1

 + 1 r +2

 The efficiency of location of these curves vanishes at r = 1, at which value the standard
 deviation becomes infinite. Although values down to --1 give admissible frequency
 curves, the conventional limit at which curves are reckoned as heterotypic is at r = 7.
 For this value the efficiency is

 49 121+ v
 132 49+v2 '

 which varies from 91*'67 per cent. for the symmetrical Type VII. curve, to 37*12 per
 cent. when v ->- o and the curve to Type V.

 Turning to the question of scaling, we find

 ~f~"- 1 = ?( r-+2r +4+v) 2 2
 r+4 +v2

 whence

 (- = r+4
 anld

 2 a2 a r+4
 ct - -- : 2 '

 n 2r+l

 3 B VOL. CCXXII.-A.
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 342 MR. R. A. FISHER ON THE MATHEMATICAL

 the intrinsic accuracy of scaling is therefore independent of i,. Now for thlese curves

 3r--1 8'? 2 2 = 2 ' 3 - +6 - 2 4'1 r-2r-3\ r+v/2
 so that

 /32-1 _r3 r-2 + 2 (r2+ 10r-12)
 4 r-2 r-3 (r2+2)

 and

 2 a2 r3 -2 + 2 lv(r2+10r-12)
 a, n'- 2 r- 3 (r2 + 2)

 The efficiency of the method of moments for scaling is thus

 r-2 r-3 r+4 (+ v2 ) (4
 r+1 {ri3r--+2 v2(.2+l Or-12)}'

 when v- =O, we have for curves of Type VII. an efficiency of scaling

 L2

 1r +1

 The efficiency of the miethod of mnomlents iii scaling these curves vanishes at r - 3,
 where ,2 becomes infinite; for r - 7, the efficiency of scaling is

 55 49+v

 2 ' 1715+107v:'

 varying in value from 78-57 per cent. for the symmetrical Type VII. curve, to 25*70
 per cent. when v -> oo and the curve to Type V.

 10. THE EFFICIENCY OF THE METHOD OF MOMENTS IN FITTING THE PEARSONIAN

 CURVES.

 The Pearsonian group of skew curves are obtained as solutions of the equation

 1 dy _ -(x-r) .
 y dx a + bx + cx2 '

 algebraically these fall into two main classes,

 df (i+2 ( li-) dx
 and

 ( -" X) 2e -vtanlr df 2: e a dx,
 a/

 according as the roots of the quadratic expression in (5) are real or imaginary.
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 FOUNDATIONS OF THEORETICAL STATISTICS.

 The first of these forms may be rewritten

 ?i(i a2 r+2 dfj 1-2 ) a dx,

 r being negative, showing its affinity with the second class.
 In order that thlese expressions may represent frequency curves, it is necessary that

 the integral over the whole range of the curve should be finite; this restriction acts in
 two ways:-

 (1) When the curve terminates at a finite value of x, say x = a., the power to which
 a2--x is raised must be greater than - 1.

 (2) When the curve extends to infinity, the ordinate, when x is large, must diminish

 more rapidly than -;
 x

 Tn Fig. 2 is shown a conspectus of all possible frequency curves of the Pearsonian type;
 A
 A.

 _.. Y= O0

 . . . .... HeHerotypic Limit r 7

 . ..- .- .--. LimitoF( diagram r3

 C

 B. Showing region of validity of second moment.
 Fig. 2. Conspectus of Pearsonian system of frequency curves.

 3 :B 2

 343
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 MR. R. A. FISHER ON THE MATHEMATICAL

 the lines AC and AC' represent the limits along which the area between the curve and
 a vertical ordinate tends to infinity, and on which il,, or mn,, takes the value -- 1 ; the
 line CC' represents bhe limit at which unbounded curves enclose an i:nfinite area with
 the horizontal axis; at this limit r - -1.

 The symmetrical curves of Type II.
 2' \ r4~-2

 d I z (~t -) ?

 extend from the point N, representing the normal curve, at which r is infinite, through

 the point P at which r --4, and the curve is a parabola, to the point B (r - -2),
 where the curve takes the form of a rectangle ; from this point the curves are U-shaped,
 and at A, when the arms of U are hyperbolic, we have the limiting curve of this type,
 which is the discontinuous distribution of equal or unequal dichotomy ('r - 0).

 Tr-le unsymmetrical curves of Type I. are divided by PEARSON into three classes
 according as the terminal ordinate is infinite at neither end, at one end (J curves)j or
 at both ends (U curves); the dividing lines are C'BD and CBD', along which one of
 the terminal ordinates are finite (mn,, or , -- 0) ; at the point B, as we have seen, both
 terminal ordinates are finite.

 The same line of division divides the curves of Type III.,

 dcf oc xPe- dx,

 at the point E (p = 0), representing a simple exponential curve ; the J curves of Type II I.
 extend to F (p -1), at which point the integral ceases to converge. In curves of
 Type III., r is infinite ; v is also infinite, but one of the quantities mi, and mn2 is finite,
 or zero (= p); as p tends to infinity we approach the normal curve

 df c e-"2 dx.

 Type VI., like Type III., consists of curves bounded only at one end; here r is
 positive, and both mn and in, are finite or zero. For the J curves of Type VI. both
 in, and mn, are negative, but for the remainder of these curves they are of opposite sign,
 the negative index being the greater by at least unity in order that the representative
 point may fall above CC' (r -1).

 Type V. is here represented by a parabola separating the regions of Types IV. and VI.;
 the typical equation of this type of curve is

 - , t .3 1

 dYf oc x2 e d x.

 As r tends to infinity the curve tends to the normal form; the integral does not

 become divergent until ~rk 1, or r -1. On curves of Type V., then, r is finite
 or zero, but , is infinite.

 344
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 FOUNDATIONS OF THEORETICAL STATISTICS.

 In Type IV.

 -7 f c1 + a^Y1'?" vxtan-1T cr-l1^2 eI a;
 we have written v, not as previously for the difference between ml and m, for these
 quantities are now complex, and their difference is a pure imaginary, but for the differ-

 ence divided by /--1; , is then real and finite throughout Type IV., and it vanishes
 along the line NS, representing the symmetrical curves of Type VII.

 2 9\+2
 dfo1+( 2) 2

 from r = to or = -1..

 The Pearsonian system of frequency curves has hitherto been represented by the
 diagram (13, p. 66), in which the co-ordinates are /3 and 2,. This is an unsymmetrical
 diagram which, since /3l is necessarily positive, places the symmetrical curves on a
 boundary, whereas they are the central types from which the unsymmetrical curves
 diverge on either hand; further, neither of the limiting conditions of these curves can
 be shown on the /3 diagram; the limit of the U curves is left obscure,* and the other
 limits are either projected to infinity, or, what is still more troublesome, the line at
 infinity cuts across the diagram, as occurs along the line r 3, for there /, becomes
 infinite. This diagram thus excludes all curves of Types VII., IV., V., and VI., for which
 < 3.

 In the a3 diagram the condition r = constant yields a system of concurrent straight
 lines. The basis of the representation in fig. 2 lies in making these lines parallel and

 horizontal, so that the ordinate is a function of r only. We have chosen r == y-- -,
 y

 and have represented the limiting types by the simplest geometrical forms, straight lines
 and parabolas, by taking

 4 e 9 92^ + v2 ( + _x +-2 2).
 y (Xz2_y)

 It might have been thought that use could have been made of the criterion,

 Ai (02+3)2 I--
 4 (482-3/31)(2/2-3A,-6) ( 4?

 by which PEARSON distinguishes these curves; but this criterion is only valid in the
 region treated by PEARSON. For when r = 0, K2 = 1, and we should have to place
 a variety of curves of Types VII., TV., V., and VI., all in Type V. in order to adhere to
 the criterion.

 This diagram gives, I believe, the simplest possible conspectus of the whole of the
 Pearsonian system of curves; the inclusion of the curves beyond r = 3 becomes neces-

 * The true limit is the line 2 = PI + 1, along which the curves degenerate into simiple dichotomies.

 345.
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 MR. ER. A. FISHER ON THE MATHEMATICAL

 sary as soon as we take a view unrestricted by the method of moments ; of the so-called
 heterotypic curves between r = 3 and r = 7 it should be noticed that they not
 only fall into the ordinary Pearsonian types, but have finite values for the nmoment
 coefficients /3, and 32; they differ from those in which r exceeds 7, merely in the fact
 that the value of f32, calculated from the fotrth moment of a sample, has an infinite probable

 error. It is therefore evident that this is not the right method to treat the sample, but
 this does not constitute, as it has been called, " the failure of Type IV.," b-ut merely
 the failure of the method of moments to make a valid estimate of the form of these

 curves. As we shall see in more detail, the method of moments, when its efficiency is

 tested, fails equally in other parts of the (diaoram.
 In expression (3) we have found that the efficiency of the method of nmoments for

 location of a curve of Type IV. is
 _--2

 E= 2 r-"--L (r?+4 v2)

 _1 r2t2r+4 (r_ 2)

 whence if we substitute for r and , in terms of the co-ordinates of our diagram, we obtain

 a general formula for the efficiency of t:he method of moments in locating Pearsonian
 curves, which is applicable within the boundary of the zero contour (fig. 3). lThis may

 0 D

 Fig. 3. Region of validity of the first moment (the mean) applied in the location of
 Pearsonian curves showing contours of efficiency.

 be called the region of validity of the first moiment; it is bounded at the base by the
 line r - 1, so that the first monient is valid far beyond the heterotvpic limit ; its other

 boundary, however, represents those curves which make a finite angle with the axis at
 the end of their range (m1, or n, -- 1); all J curves (m,, or n2, < 0) are thus excluded.
 This boundaryhas a double point at P, which thus forms the apex of the region of validity.

 346
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 FOUNIATIONS OF THEORETICAL STATISTICS.

 I:n fig. 3 are shllown the contours along which thle efficiency is 20, 40, 60, and 80 per cent.
 For high efficiencies these contours tend to the system of ellipses,

 8x2+6y2 = 1-E.

 In a similar manner, we have obtained in expression (4) the efficiency of the
 second moment in fitting Pearsonian curves. The region of validity in this case is
 shown in fig. 4; this region is bounded by the lines r = 3, r = --4, and by the limits

 _ .. A_ ' o_ . -- - I

 Fig. 4. Region of validity of the second nmoment (standard deviation) applied in scaling of
 Pearsonian curves, showing contours of efficiency.

 (mI, or n2, = -1) on which r2 +-v2 vanishes. This statistic is therefore valid for certain
 J curves, though the maximum efficiency amnong the J curves is about 30 per cent.
 As before, the contours are centred about the normal curve (N) and for high efficiencies
 tend to the system of concentric circles,

 12x+ 12y2 = I-E,

 showing that the region of high efficiency is somewhat more restricted for the second
 moment, as compared to the first.

 The lower boundary to the efficiencies of these statistics is due merely to their probable
 errors becoming infinite, a weakness of the method of moments wlich has been partially
 recognised by the exclusion of the so-called heterotypic curves (r < 7). The stringency
 of the upper boundary is much more unexpected; the probable errors of the moments do
 not here become infinite; only the ratio of the probable errors of the moments to the
 probable error of the corresponding optimum statistics is great and tends to infinity as
 the size of the sample is increased.
 That this failure as regards location occurs when the curve makes a finite angle with

 the axis may be seen by considering the occurrence of observations near the terminus
 of the curve.

 Let

 idf = k.x dx

 347
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 348 MR. R. A. FISHER ON THE MATHEMIATICAL

 in the neighbourhlood of the terminus, then the chance of ani observation falling within
 a distance x of the terminus is

 ./ = ]ic-- _ t_ rLd S l
 a+ 1

 and the chalce of n observations all failing to fall in this region is

 (1 -f)n

 or, when m is great, aiddf correspondingly small,

 Equating this to any finite probability, eC', we have

 k'xa+l a
 n

 o:r, in other words, if we use the extremle observation as a mleans of locatinlg the terminns,

 the error, x, is proportional to
 1, a

 when oa < 1, this quantity diminishes more rapidly tLhan ,-- and coiisequently for large
 samples it is much mrore accurate to locate the curve by the extremle observation than
 by the mean.
 Since it might be doubted whlether such a sim.ple method could really be more accurate

 than the process of finding the actual mean, we will take as example the location of
 the curve (B) in the form of a rectangle,

 7 dx a 0a alf =-, m - - < x < m- '+*
 a 2 2

 and
 clf= 0,

 outside these limits.

 This is one of the simplest types of distribution, and we may readily obtain examples
 of it from matheml atical tables. The mean of the distribution is ,m, and the standard

 deviation C, the error m,--m, of the mean obtained from n observations, when n is
 V 12

 reasonably large, is therefore distributed according to the formula

 -/ (7mar2 1 . 6n , dx.
 -e a dx.

 a C 7r

 The difference of the extreme observation fro;mt the end of the range is distributed
 according to the formula

 y6 -E
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 FOUNDATIONS OF THEORETICAL STATISTICS.

 if - is the difference at one end of the range and 7 the difference at the other end, the
 joint distribution (since, when n is considerable, these two quantities may be regarded
 as independent) is

 2

 2 en a de d,

 Now if we take the mean of the extreme observations of the sample, our error is

 for which we write x; writing aso y for + we have the oint distribution of x ad y

 for which we write x ; writing also y for S + ^, we have the joint distribution of z and y,

 n2 n, ^ -2 e ad dx y.

 For a given value of x the values of y range from 2 x to oo, whence, integrating with
 respect to y, we find the distribution of x to be

 df =- e a dx,

 the double exponential curve shown in fig. 5.

 12-

 4

 3 -

 -25 -20 -15 -10 -5 5 10 15 20 25

 Fig.A. Double exponential frequency curve, showing distribution of 25 deviations.

 The two error curves are thus of a radically different form, and strictly no value for
 the efficiency can be calculated; if, however, we consider the ratio of the two standard
 deviations, then

 . _ .a2 6
 2 T " 2 ' ,12n 2

 when nt is large, a quantity which diminishes indefinitely as the sample is increased.
 VOL. CcXX::.---A.
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 MR. R. A. FISHER ON THE MATHEMATICAL

 .For example, we h.ave taken from VEGA (14) sets of digits from the table of Natural

 Logarithms to 48 places of decimals. The last block of four digits was taken from the
 logarithms of 100 consecutive numbers from 101 to 200, giving a sample of 100 numbers
 distributed evenly over a limited range. It is sufficient to take the three first digits
 to the nearest integer; then each number has an equal chance of all values between 0
 and 1000. The true mean of the population is 500, and the standard deviation 289.
 The standard error of the mean of a sample of 100 is therefore 28*9.

 Twenty-five such samples were taken, using the last five blocks of digits, for the
 logarithms of numbers from 101 to 600, and the mean determined merined ely from the highest
 and lowest number occurring, the following values were obtained:-

 1st hundred. 2nd hundred. 3rd hundred. 4th hundred. 5th hundred.

 Digits. .i

 45-48 24 978 + 1-0 39 980 + 9.5 1 999 0 16 983 - 05 18 994 -I-6-0

 41-44 35-5 993 --14-0 3 960 -18 5 6 997 +1-5 1 978 -10-5 4 979 -.-8-5

 37-40 9 988 -1-5 11 999 + 5-0 31 984 +7-5 4 978- 90 2 986 -6.0

 33-36 7 995 ,- 1-0 13 997 + 5 0 4 998 +10- 0 994 - 30 3 981 --8-0

 29-32 1 988 - 55 3 988 - 4-5 4 992 --2 0 1 996 - 1'5 21 977 --10

 It will be seen that these errors rarely exceed one-half of the standard error of the
 mean of the sample. The actual mean square error of these 25 values is 6 86, while the
 calculated value, v/50, is 7 . 07. It will therefore be seen that, with samples of only 100,

 there is no exaggeration in placing the efficiency of the method of moments as low as
 6 per cent. in comparison with the more accurate method, which in this case happens
 to be far less laborious.

 Such a value for the efficiency of the mean in this case is, however, purely conven-
 tional, since the curve of distribution is outside the region of its valid application, and
 the two curves of sampling do not tend to assume the same form. It is, however,
 convenient to have an estimate of the effectiveness of statistics for small samples, and
 in such cases we should prefer to treat the curve of distribttion of the statistic as an
 error curve, and to judge the effectiveness of the statistic by the intrinsic accuracy of
 the curve as defined in Section 9. Thus the intrinsic accuracy of the curve of distri-
 bution of the mean of all the observations is

 1 2n?

 a2

 350
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 FOUNDATIONS OF THEORETICAL STATISTICS. 351

 while that of the mean of the extreme values is

 4n2
 2 ?

 so yielding a ratio 3/n. It is probable that this quantity may prove a suitable substitute
 for the efficiency of a statistic for curves beyond its region of validity.

 To determine the efficiency of the moment coefficients /i and 32 in determining the
 form of a Pearsonian curve, we must in general apply the method of Section 8 to the
 calculation of the simultaneous distribution of the four parameters of those curves when

 estimated by the method of maximum likelihood. Expressing the curve by the formula
 appropriate to Type IV., we are led to the determinant

 r -1lr+2r+4 r+lr+2v r 1 r+2 r+l1

 a2 (+2+v2) a2(r+42+v2) a (r22 2) a (2 2) a2 (rS44Jy a (r-2 2~+. )
 r+1 r+2v r+l (2r+4+v2) r+1 v r+2+v2 2 2 C - 2 7 I 1-_ 11 I
 -a2(r4 +4v2) a2(r+4 2) a(+2 v2) a (r+ 22 + v2)

 r+lr+2 r+l v + o a2 a2
 - (r2 a - 22 v2) log F ar log

 r+l v r+2+v2 32 o a 32
 -' 2 a) afr2+ a log F log F a(rt2 +Y 2) a (r+ 2' v2) av r

 as the Hessian of -L, when

 Io
 F =e-2 eVO sinr 0 d0.

 The ratios of the minors of this determinant to the value of the determinant give

 the standard deviations and correlations of the optimum values of the four parameters
 obtained from a number of large samples.

 In discussing the efficiency of the method of moments in respect of the form of the
 curve, it is doubtful if it be possible to isolate in a unique and natural manner, as we
 have done in respect of location and scaling, a series of parameters which shall successively
 represent different aspects of the process of curve fitting. Thus we might find the
 efficiencies with which r and v are determined by the method of moments, or those of
 the parametric functions corresponding to 31 and 32, or we might use- m and ma as
 independent parameters of form; but in all these cases we should be employing an
 arbitrary pair of measures to indicate the relative magnitude of corresponding contour
 ellipses of the two frequency surfaces.

 For the symmetrical series of curves, the Types II. and VII., the two systems of
 3 c 2
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 352 MR . . . FISHER ON THE MATHEMATICAL

 ellipses are coaxial, the deviations of r and v being uncorrelated ; in the case of Type VII.
 we put v 0, in the determinant given above, which then becomes

 r +r- r+ 2 1 2
 r+4 r--t 2

 2r+ 1
 0 0 2 2

 r ?4 ? 2

 and falls in the two factors

 r[ I =+1 r rf (t \ r+lr+2 F ( \ + T _' 2F L2r+4 l 22 / \2/J -22 2r+4 2/ ::-22
 so that

 2- 2r 23+ 2

 r?+2 F (- 2r1-2 T+ r+4
 and

 2 4 r + l+22

 . -+. ( 2 -7 -2 I-4 4

 The corresponding expressions for the method of moments are

 _3 __2-_22(2r+ ?10) 2 _- (Xr'+ Jo)
 % - 8' --rI -3r9--5

 and

 2 2 r 12 - 3 (r- r+18)
 y^ 3 q-5 -7

 Since for moderately large values of r, we have, approximately,

 r+2 F (2 -2 r+ J r+4 2 -3 (L- 5 =-l-

 and

 r+1 r+2 2 ---2 r+l 1+4 6--.2;
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 POUNDATIONS OF THI-EORETICAL STATISTICS.

 we have, approximately, for the efficiency of v,

 (r+2+,('r + 2 + ... ) r-rl-3 r-5
 (r12++ 10) r2 r-22

 or, when r is great,

 and for the efficiency of r,,

 28'8
 -I _ ,

 (r+22 +1...) rTi2 r-
 (r2_r+18)rr - lor-3

 or, when r is great,
 53'3

 The following table gives the values of the transcendental quantities required, and
 the efficiency of the method of moments in estimating the value of v and r from samples
 drawn from Type VII. distribution.

 --..32 --2

 r. r ( v 2 Efficiency 1 r +2 Efficiency
 2-21 .of x - 1 of r,.

 -2r+1 r+ 4.

 5 5 31271 0
 6 5-31736 0-2572
 7 5-32060 0-4338 5-9473 0
 8 5-32296 0-5569 5-9574 0-1687
 9 5-32472 0-6449 5-9649 0-3130
 10 5-32607 0-7097 5-9706 0-4403
 11 5-32713 0-7586 5-9750 0-5207
 12 5-32797 0*7963 5-9787 0-5935
 13 5-32866 0-8259 5*9810 0-6519
 14 5-32919 0-8497 5-9839 0-6990
 15 5-9853 0-7376
 16 5-9870 0-7694
 17 5-9883 0-7959
 18 5-9895 0-8182

 It will be seen that we do not attain to 80 per cent. efficiency in estimating the form

 of the curve until r is about 17-2, which corresponds to /32- 342. Even for sym-
 metrical curves higher values of /2 imply that the method of moments makes use of
 less than four-fifths of the information supplied by the sample.

 353
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 354 MR. R. A. FISHER ON THE MATHEMATICAL

 On the other side of the normal point, among the Type II. curves, very similar formulae
 apply. The fundamental Hessian is

 -1 r--2 r-1
 -

 ro,4 r 2-2

 0 -

 9 - 2 2

 I r-2(I--22Ir - r'-
 ? -- 2 2

 where r is written for the positive quantity, - r, whence

 2 ~ 2 2--23

 r-2 ( ) -2 r---1 r--4
 and

 - -2

 ?2 ___i_a 4 --i-2

 -- r-'2 2 ( 2 )}-2--4
 Now since

 r-2 = -4 4

 ( 2 2 ) 2
 it follows that

 r-23 F 2 -2rIr-4 = F (r-4)-2r r3,

 which is the same function of r-4 as

 ri+2 F ()-2r+ r+4
 is of r.

 In a similar manner

 2 - 22{ (f -2 --1-4
 - F ii 2 2 --

 -- - -h-4 m- 232}---2r-1 =, ~l__ r- T ... . ?Q -- 2 r2r+l ,

 1-2 1-2 r- I

 which is +he same function of r-3 as

 r+l r+2 1 -F - -2r+lr+4
 CI ( 2 / \J

 is of r.
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 FOUNDATIONS OF THEORETICAL STATISTICS.

 In all these functions and those of the following table, r must be substituted as a
 positive quantity, although it must not be forgotten that r changes sign as we pass from
 Type VII. to Type II., and we have hitherto adhered to the convention that r is to
 be taken positive for Type VII. and negative for Type II.

 2.E.e .3,......... ..---2 --, _ /2 .
 r.' -~ 2i 1-- 1 k ) Efficiency r 4.( - Efficiency

 of v, . 2/ of r,.
 2-2r - r - 4.

 - 2r - r - 4.

 2 4 0 4 0
 3 4'93480 0. 0576 5'1595 0.0431
 4 5'15947 0*2056 5.5648 0.1445
 5 5523966 0-3590 5.7410 0*2613
 6 5.27578 0-4865 5.8305 0.3708
 7 5.29472 0.5857 5.8813 0.4653
 8 5.30576 0.6615 5.9126 0.5441
 9 5.31271 0.7198 5.9331 0-6090
 10 5.31736 0.7650 5.9473 0.6624
 11 5.32060 0.8005 5.9574 0.7063
 12 5.32296 0 8287 5.9649 0.7427
 13 5.32472 0-8516 5.9706 0.7731
 14 5.32607 0.8702 5.9750 07986
 15 5.9787 0.8202

 In both cases the region of validity is bounded by the rectangle, at the point B
 (fig. 2, p. 343). Efficiency of 80 per cent. is reached when r is about 14-1 (/32 2 65).
 Thus for symmetrical curves of the Pearsonian type we may say that the method of
 moments has an efficiency of 80 per cent. or more, when /, lies between 2 65 and 3 42.
 The limits within which the values of the parameters obtained by moments cannot be
 greatly improved are thus much narrower than has been imagined.

 11. THE REASON FOR THE EFFICIENCY OF THE METHOD OF MOMENTS IN A SMALL

 REGION SURROUNDING THE NORMAL CURVE.

 We have seen that the method of moments applied in fitting Pearsonian curves has
 an efficiency exceeding 80 per cent. only in the restricted region for which 32 lies between
 the limits 2 65 and 3-42, and as we have seen in Section 8, for which /3, does not exceed

 0.1. The contours of equal efficiency are nearly circular or elliptical within these
 limits, if the curves are represented as in fig. 2, p. 343, and are ultimately centred round
 the normal point, at which point the efficiencies of all parameters tend to 100 per cent.
 It was, of course, to be expected that the first two moments would have 100 per cent.
 efficiencies at this point, for they happen to be the optimum statistics for fitting
 the normal curve. That the moment coefficients /3 and /2 also tend to 100 per cent.
 efficiency in this region suggests that in the immediate neighbourhood of the normal

 355
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 MR. R. A. FISHER ON THE MATHEMATICAL

 curve the departures from normality specified by the Pearsonian formula agree with
 those of that system of curves for which the method of moments gives the solution of
 maximum likelihood.

 The system of curves for which the method of moments is the best method of fitting
 may easily be deduced, for if the frequency in the range dx be

 y (x, 01, 02, 03, 04) dx,
 then

 log y

 must involve x only as polynomials up to the fourth degree; consequently

 y -- a (x 4+pI-z3+PaX2+p3X + P)

 the convergence of the probability integral requiring that the coefficient of xl should be
 negative, and the five quantities a, p,, p2, P3, P.4 being connected by a single relation,
 representing the fact that the total probability is unity.

 Typically these curves are bimodal, and except in the neighbourhood of the normal
 point are of a very different character from the Pearsonian curves. Near this point,
 however, they may be shown to agree with the Pearsonian type; for let

 ;2 I3 2 4

 W ae-I 2a2+1 +0i4

 represent a curve of the quartic exponent, sufficiently near to the normal curve for the
 squares of k, and k, to be neglected, then

 d X / x27 X 7 *^\ log y = - 3k/ --4k,)
 x

 - (I - + ' 4ta2 2

 neglecting powers of kc and kJ. Since the only terms in the denominator constitute a
 quadratic in x, the curve satisfies the fundamental equation of the Pearsonian type of
 curves. In the neighbourhood of the normal point, therefore, the Pearsonian curves
 are equivalent to curves of the quartic exponent; it is to this that the efficiency of ^
 and 4,, in the neighbourhood of the normal curve, is to be ascribed.

 12. DISCONTINUOUS DISTRIBUTIONS.

 The applications hitherto made of the optimum statistics have been problems in
 which the data are ungrouped, or at least in which the grouping intervals are so small
 as not to distulrb the values of the derived statistics. By grouping, these continutous

 356
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 FOUNDATIONS OF THEORETICAL STATISTICS. 7

 distributions are reduced to discontinuous distributions, and in an exact discussion must
 be treated as such.

 If p, be the probability of an observation falling in the cell (s), ps being a function of
 thle required para'rmeters 0,, 0 ... ; and in a samnple of:l N, if 'n, are foundl to fall. into
 that cell, then

 S (logf) = S (n, log p).

 If now we write n, p=,N, we may conveniently put

 L S (n, log ,,

 where L differs by a constant only from the logarithm of the likelihood, with sign
 reversed, and therefore the method of the optimum will consist in finding the minimum
 value of L. The equations so found are of the form

 aL snI /. a_L = _s ( ). . (6)

 It is of interest to compare these formulae withl those obtained by making the Pearsonian
 x2 a minimum.
 For

 fls

 and therefore

 -1,2 Q 2\ =+x S ,

 so that on differentiating by do, the condition that x2 should be a minimum for variations
 of 0 is

 - $2 a : 0 . . . . . . . . . .

 Equation (7) has actually been used (12) to "improve" the values obtained by the
 method of moments, even in cases of normal distribution, and the POISSON series, where

 the method of moments gives a strictly sufficient solution. The discrepancy between
 these two methods arises from the fact that x2 is itself an approximation, applicable
 only when ., and ns are large, and the difference between them. of a lower order of
 magnitude. In such cases

 L = S(nslog) == S( x+log m, + = 8m f 2 -X-.. J
 \ m 12m 6M2 .

 and since

 S (x) 0,
 (VOL. CCXXTI-X---A. 3 D

 't`l 7
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 I MR. R. A. FISHER ON THE MTHEMIATICAL

 we have, when x is in all cases small compared to m,

 L = iS ( )

 as a first approximation. In those cases, therefore, when x2 is a valid measure of the
 departure of the sample from expectation, it is equal to 2L; in other cases the approxi-
 mation fails and L itself must be used.

 The failure of equation (7) in the general problem of finding the best values for the
 parameters may also be seen by considering cases of fine grouping, in which the majority
 of observations are separated into units. For the formula in equation (6) is equivalent to

 /sl a

 where the summation is taken over all the observations, while the formula of
 equation (7), since it involves n,", changes its value discontinuously, when one
 observation is gradually increased, at the point where it happens to coincide with a
 second observation.

 Logically it would seem to be a necessity that that population which is chosen in
 fitting a hypothetical population to data should also appear the best when tested for
 its goodness of fit. The method of the optimum secures this agreement, and at the
 same time provides an extension of the process of testing goodness of fit, to those cases
 for which the x2 test is invalid.

 The practical value of x2 lies in the fact that when the conditions are satisfied in
 order that it shall closely approximate to 2L, it is possible to give a general formula
 for its distribution, so that it is possible to calculate the probability, P, that in a random
 sample from the population considered, a worse fit should be obtained; in such cases
 x2 is distributed in a curve of the Pearsonian Type III.,

 df c x2 X)
 or

 n'- -3

 dfocL e-LdL,

 where n' is one more than the number of degrees of freedom in which the sample may
 differ from expectation (17).

 In other cases we are at present faced with the difficulty that the distribution L
 requires a special investigation. This distribution will in general be discontinuous (as
 is that of x2), but it is not impossible that mathematical research will reveal the existence

 of effective graduations for the most important groups of cases to which x2 cannot
 be applied.

 358
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 FOUNDATIONS OF THEORETICAL SlTATrISTICS.

 We shall conclude with a few illustrations of important types of discontinuous
 distribution.

 1. The Poisson Series.

 --)lt' | Art/I _______ . | e :! , 2 !',... x'

 involves only the single paramteter, and is of great importance in modern statistics.
 For the optimum value of nm,

 S a { (-im+x log ml = 0,
 whence

 or
 A -

 The most likely value of m is therefore found by taking the first moment of the series.
 Differentiating a second time,

 -1 n

 C a2 \ m2 m'
 so that

 0F= -- ? n

 as is well known.

 2. Grouped Normal Data.

 In the case of the normal curve of distribution it is evident that the second moment

 is a sufficient statistic for estimating the standard deviation ; in investigating a sufficient
 solution for grouped normal data, we are therefore in reality finding the optimum
 correction for grouping; the SHEPPARD correction having been proved only to satisfy
 the criterion of consistency.

 For grouped normal data we have
 _2

 Ps.= --- o e 212 dx,

 and the optimum values of m and. a are obtained from the equations,

 aL= f-s, 8 ,
 m \-s am/

 CL n= n, \ =
 3 D 2

 359
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 IMR. R. A. FISHER ON THE MATHEMATICAIL

 or, if we write,
 1_ - .

 C >2w

 we have the two conditions,

 "(~--?/ 1- 0

 and

 S { x, =0.

 As a simple examnple we shall take the case chosen by K. SMITH in her investigation of
 the variation of x2 in the neighbourhood of the moment solution (12).
 Three hundred errors in right ascension are grouped in nine classes, positive and

 negative errors being thrown together as shown in the following table:--

 0" 1 arc 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9

 Frequency . . 114 84 53 24 14 6 3 1 1

 The second moment, without correction, yields the value

 -- 2 2282542.

 Using SHEPPARD'S correction, we have

 ,-2 264214,

 while the value obtained by making x2 a minimum is

 c,, - 2 355860.

 If the latter value were accepted we should have to conclude that SHEPPARD'S correc-
 tion, even when it is small, and applied to normal data, might be altogether of the
 wrong magnitude, and even in the wrong direction. In order to obtain the optimum

 value of r, we tabulate the values of - in the region under consideration; this miay

 be done without great labour if values of or be chosen suitable for the direct application
 of th.e table of the probability integral (13, Table II.). Wae thein have thle follow\ing
 values:-

 4()3 04 4 ( 16

 IA2L -0 261! I - 0 '260 ( I a" I 0 0'200- 6

 360
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 FOUNDATIONS OF THEORETICAL STATISTICS.

 By interpolation,
 - 0'441624

 = 2'26437.

 We may therefore summarise these results as follows:

 Uncorrected estimate of C ..... 2 28254

 SHEPPARD'S correction 0 . - 01833

 Correction for maximum likelihood . . .. . -001817

 " Correction " for minimum x2 . . . .. +007332

 Far from shaking our faith, therefore, in the adequacy of SHEPIPARD'S correction,
 when small, for normal data, this example provides a striking instance of its effective-
 ness, while the approximate nature of the x2 test renders it unsuitable for inproving a
 method which is already very accurate.
 It will be useful before leaving the subject of grouped normal data to calculate the

 actual loss of efficiency caused by grouping, and the additional loss due to the small
 discrepancy between moments with SHEPPARD'S correction and the optimum solution.

 To calculate the loss of efficiency involved in the process of grouping normal data, let

 ', - - f(e) e,
 a

 when ar is the group interval, then

 ? =f(eZ) f,'(f)+ " ; f/" (e) + V/(() + 7(4 (- + Ji9- 0 (f) + 3,6-- 24 1 920 322,560

 =f( 1' 1)+ -6-) - (34--6 ) + 322,5 ($6-l5e4+45"-215)+... , (-) 24 1-920 322,560

 whence

 log v = log f+ j- 1) '- C ( 4" - 2) -+ 4 . +6g i+ 0 6:1) .. lgV24 -28W 181-,440.

 and

 2 2 a. a 4 e 2____ - log ' = - -- (3+2) + - (5+12+) - * * ,2~ < ((2 70 +( 30,240 j

 of which the mean value is

 -- I. _ a2 a 4 6
 -r -1. 2 + 144 4320
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 362 MR. R. A. FISHER ON THE MATHEMATICAL

 neglecting the periodic terms; and consequently

 2 . C. b a
 2(1 n 12 2880)

 Now for the mtean of uingrouped data
 t - ) 2

 2

 so that the loss of efficiency due to grouping is nearly 12

 The further loss caused by using the mean of the groutped data is very small, for

 2 _ ^ t(2 5-i a 2)
 , = . 12/

 neglecting the periodic terms; the loss of efficiency by using V, therefore is only

 2880

 Similarly for the efficiency for scaling,
 2 4

 ylog ':- 3, (10o-3) -- (94+21-5) a, "12 360

 30,-24( - (26 "116 04+36-7)- i;i (5 ,8+31516+351-i 55 9) ...

 of which the mean value is

 2f ......2 83
 c2 6 40 270 129,600

 neglecting the periodic terms; and consequently

 2 as a _ . '' ' .= ' f . 0~2 a4
 a 21 6 360 10,800 J

 For ungrouped data
 2

 -- -2 (r2

 so that the loss of efficiency in scaling due to grouping is nearly -. 'ihis may be made

 as low as 1 per cent. by keeping a less than .
 The further loss of efficieney produced by using the groupe( second moment with

 SHEPPARD's correction is again very small, for

 2 4 v- 2r 4 / +
 egleting the peric

 neglecting the periodic terms,
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 FOUNDATIONS OF THEORETICAL. STArTIST.I CS.

 Whence it appears that the further loss of efficiency is only

 -a8

 10,800

 We may conclude, therefore, that the high agreement between the optimumtn value of
 and that obtained by SHEPPARD'S correction in the above example is characteristic

 of grouped normal data. The method of moments with SHEPPARD'S correction is highly
 efficient in treating such material, the gain in efficiency obtainable by increasing the
 likelihood to its maximum value is trifling, and far less than can usually be gained by
 using finer groups. The loss of efficiency involved in grouping may be kept below
 1 per cent. by making the group interval less than one-quarter of the standard deviation.

 Although for the normal curve the loss of efficiency due to moderate grouping is very
 small, such is not the case with curves making a finite angle with the axis, or having at
 an extreme a finite or infinitely great ordinate. In such cases even moderate grouping
 may result in throwing away the greater part of the information which the sample
 provides.

 3. Distribution of Observations in a Dilution Series.

 An important type of discontinuous distribution occurs in the application of the
 dilution. method to the estimation of the number of micro-organisms in a sample of
 water or of soil. The method here presented was originally developed in connection
 with Mr. CUTLER'S extensive counts of soil protozoa carried out in the protozoological
 laboratory at Rothamsted, and altllough the method is of very wide application, this
 particular investigation affords an admirable example of the statistical principles
 involved,

 In principle the method consists in making a series of dilutions of the soil sample,
 and determining the presence or absence of each type of protozoa in a cubic centimetre
 of the dilution, after incubation in a nutrient medium.

 The series in use proceeds by powers of 2, so that the frequency of protozoa in each
 dilution is one-half that in the last.

 The frequency at any stage of the process may then. be represented by

 n

 2X,

 when x indicates the number of dilutions.

 Under conditions of random sampling, the chance of any plate receiving 0, , 2, 3
 protozoa of a given species is given by the Poisson series

 2. 3.!5 "

 3-63
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 AMR. R. A. FISH FR ON THE MATHEMATIACAL

 and in consequence the proportion of sterile plates is

 p ' 5-\

 and of fertile plates

 In general we may consider a dilution series with dilution factor a so that

 1 ^n
 log p -

 and assume that s plates are poured from each dilution.
 The object of the method being to estimrate the number n from a record of the sterile

 and fertile plates, we have

 L ,1 (log p) +S, (log )

 when 8S stands for suimmation over t'he sterile plates, and 82 for summation over those
 which are fertile.

 Now
 ap S aq

 ;n- == - = aq_ -=p log p, a log n a log n

 so that the optimum value of n is obtained froni the equation,

 S= sig ( ) -s 2 log )) = 0.) alog /n ,

 Differentiating a second time,

 a2L ( 2i (lolog pi? logP a (lg' = (log p) -S2 'log p++ p log+ q }

 32L
 now the mean number of sterile plates is ps, and of fertile plates qs, so that the in ean

 value of -ig a (log n)

 - --- = S {p log p- log plog plog p)} -8S {'(log p)2 , < loogni j1

 the summation, 8, being extended over all the dilutions.
 It thus appears that each plate observed adds to the weight of the determination
 of log n a quantity

 w = P(log p)..
 q

 364
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 FOUNDATIONS OF THEORETICAL STATISTICS.

 We give below a table of the values of p, and of w, for the dilution series log p - 2-x
 from x =- -4 to x = 11.

 x. p. w. S (w) (per cent.).

 --4 0.00000014167 0-000036 0-002
 -3 0-0003354626 0-021477 0-906
 -2 0-01831564 0-298518 13-485
 --1 0-1353353 0-626071 39-865
 0 0-3678794 0-581977 64-388
 1 0-6065306 0-385355 80-625
 2 0-7788009 0-220051 89-897
 3 0-8824969 0-117350 94-842
 4 0-9394110 0-060565 97-394
 5 0-9692333 0-030764 98-690
 6 0-9844965 0-015503 99-343
 7 0-9922179 0-007782 99-671
 8 0-9961014 0-003899 99-836
 9 0-9980488 0-001951 99-918
 10 0-9990239 0-000976 99-959
 11 ' 09995119 0-000488 99-979

 Remainder ........ 0-000488

 Total. . ..... . .. 2-373251

 For the same dilution constant the total S (w) is nearly independent of the particular
 2

 series chosen. Its average value being , or in this case 2 373138. The fourth
 6 log a'

 column shows the total weight attained at any stage, expressed as a percentage of that
 obtained from an infinite series of dilutions. It will be seen that a set of eight dilutions
 comprise all but about 2 per cent. of the weight. With a loss of efficiency of only 2 to
 2, per cent., therefore, the number of dilutions which give information as to a particular

 species may be confined to eight. To this number must be added a number depending
 on the range which it is desired to explore. Thus to explore a range from 100 to 100,000
 per gramme (about 10 octaves) we should require 10 more dilutions, making 18 in all,
 while to explore a range of a millionfold, or about 20 octaves, 28 dilutions would be
 needed.

 In practice it would be exceedingly laborious to calculate the optimum value of n for
 each series observed (of which 38 are made daily). On the advice of the statistical
 department, therefore, Mr. CUTLER adopted the plan of counting the total number oJ
 sterile plates, and taking the value of n which on the average would give that number,

 When a sufficient number of dilutions are made, log n is diminished by - log a for each

 additional sterile plate, and even near the ends of the series the appropriate values ol
 n may easily be tabulated. Since this method of estimation is of wide application
 and appears at first sight to be a very rough one, it is important to calculate its efficiency
 VOL. CCXXII.-A. 3 E
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 For any dilution the variance in the number of sterile plates is

 spq,

 and as the several dilutions represent independent samples, the total variance is

 sS (pq),
 hence

 2 = log a)2S (pq)

 Now S (pq) has an average value log 2 therefore taking a = 2,

 (log a) = '480453,
 and.

 S (pq)= 1

 being very nearly constant and within a small fraction of unity; whence the efficiency
 of the method of counting the sterile plates is

 6 l2 = 87'71 per cent., 7r log 2

 a remarkably high efficiency, considering the simplicity of the method, the efficiency
 being independent of the dilution ratio.

 13. SUMMARY.

 During the rapid development of practical statistics in the past few decades, the
 theoretical foundations of the subject have been involved in great obscurity. Adequate
 distinction has seldom been drawn between the sample recorded and the hypothetical
 population from which it is regarded as drawn. This obscurity is centred in the so-called
 "6 inverse " methods.

 On the bases that the purpose of the statistical reduction of data is to obtain statistics
 which shall contain as much as possible, ideally the whole, of the relevant information
 contained in the sample, and that the function of Theoretical Statistics is to show how
 such adequate statistics may be calculated, and how much and of what kind is the
 information contained in them, an attempt is made to formulate distinctly the types
 of problems which arise in statistical practice.

 Of these, problems of Specification are found to be dominated by considerations which
 may change rapidly during the progress of Statistical Science. In problems of Distri-
 bution relatively little progress has hitherto been made, these problems still affording
 a field for valuable enquiry by highly trained mathematicians. The principal purpose
 of this paper is to put forward a general solution of problems of Estimation.
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 FOUNDATIONS OF THEORETICAL STATISTICS.

 Of the criteria used in problems of Estimation only the criterion of Consistency has
 hitherto been widely applied; in Section 5 are given examples of the adequate and
 inadequate application of this criterion. The criterion of Efficiency is shown to be a
 special but important case of the criterion of Sufficiency, which latter requires that the
 whole of the relevant information supplied by a sample shall be contained in the statistics
 calculated.

 In order to make clear the nature of the general method of satisfying the criterion
 of Sufficiency, which is here put forward, it has been thought necessary to reconsider
 BAYES' problem in the light of the more recent criticisms to which the idea of " inverse
 probability" has been exposed. The conclusion is drawn that two radically distinct
 concepts, both of importance in influencing our judgment, have been confused under
 the single name of probability. It is proposed to use the term likelihood to designate
 the state of our information with respect to the parameters of hypothetical populations,
 and it is shown that the quantitative measure of likelihood does not obey the mathe-
 matical laws of probability.

 A proof is given in Section 7 that the criterion of Sufficiency is satisfied by that set
 of values for the parameters of which the likelihood is a maximum, and that the same
 function may be used to calculate the efficiency of any other statistics, or, in other
 words, the percentage of the total available information which is made use of by such
 statistics.

 This quantitative treatment of the information supplied by a sample is illustrated by
 an investigation of the efficiency of the method of moments in fitting the Pearsonian
 curves of Type III.

 Section 9 treats of the location and scaling of Error Curves in general, and contains
 definitions and illustrations of the intrinsic accuracy, and of the centre of location of such
 curves.

 In Section 10 the efficiency of the method of moments in fitting the general Pearsonian
 curves is tested and discussed. High efficiency is only found in the neighbourhood of
 the normal point. The two causes of failure of the method of moments in locating these
 curves are discussed and illustrated. The special cause is discovered for the high
 efficiency of the third and fourth moments in the neighbourhood of the normal point.

 It is to be understood that the low efficiency of the moments of a sample in estimating
 the form of these curves does not at all diminish the value of the notation of moments as

 a means of the comparative specification of the form of such curves as have finite moment
 coefficients.

 Section 12 illustrates the application of the method of maximum likelihood to dis-
 continuous distributions. The POIssoN series is shown to be sufficiently fitted by the
 mean. In the case of grouped normal data, the SHEPPARD correction of the crude
 moments is shown to have a very high efficiency, as compared to recent attempts to
 improve such fits by making x2 a minimum; the reason being that x2 is an expression
 only approximate to a true value derivable from likelihood. As a final illustration of
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 MR. R. A. FISHER ON THE MAMAHEATICAL FOUNDATIONS, ETC.

 the scope of the new process, the theory of the estimation of micro-organisms by the
 dilution method is investigated.

 Finally it is a pleasure to thank Miss W. A. MACKENZIE, for her valuable assistance
 in the preparation of the diagrams.
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