
On the Role of Norm Constraints in Portfolio Selection

Jun-ya Gotoh1 jgoto@indsys.chuo-u.ac.jp
Department of Industrial and Systems Engineering
Chuo University
2-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

Akiko Takeda takeda@ae.keio.ac.jp
Department of Administration Engineering
Keio University
3-14-1 Hiyoshi, Kohoku, Yokohama, Kangawa 223-8522, Japan

Abstract

Several optimization approaches for portfolio selection have been proposed in order to al-
leviate the estimation error in the optimal portfolio. Among them are the norm-constrained
variance minimization and the robust portfolio models. In this paper, we examine the role of
the norm constraint in portfolio optimization from several directions. First, it is shown that
the norm constraint can be regarded as a robust constraint associated with the return vector.
Second, the reformulations of the robust counterparts of the value-at-risk (VaR) and condi-
tional value-at-risk (CVaR) minimizations contain norm terms and are shown to be highly
related to the ν-support vector machine (ν-SVM), a powerful statistical learning method.
For the norm-constrained VaR and CVaR minimizations, a nonparametric theoretical val-
idation is posed on the basis of the generalization error bound for the ν-SVM. Third, the
norm-constrained approaches are applied to the tracking portfolio problem. Computational
experiments reveal that the norm-constrained minimization with a parameter tuning strat-
egy improves on the traditional norm-unconstrained models in terms of the out-of-sample
tracking error.

Keywords: portfolio optimization; norm constraint; robust portfolio; tracking portfolio;
CVaR (conditional value-at-risk)

1 Introduction

Since the seminal work of Markowitz, portfolio selection has been intensively studied in the fields
of operations research and management science. Mathematically, it is a problem of determining
a (normalized) weight vector π so that the distribution of the resulting random portfolio return
R(π) := R⊤π, where each component of R represents the random rate of return of each asset,
would have a preferable shape.

Ideally, an optimal portfolio π∗ is a solution to a constrained optimization whose objective
function is represented by a functional on the random return R(π). However, since no one
knows the true distribution of the asset return R, what we can do in practice is to optimize its
empirical counterpart which is estimated on the basis of the observed historical returns, in place
of the ideal function.

Obviously, this framework can be validated by the law of large numbers. That is, if the num-
ber of observations goes to infinity, the solution π̄ approaches π∗. This validation is, however,
still dubious because in practice, a relatively small number of historical returns are available
whereas a relatively large number of portfolio weights are to be estimated. For example, Konno
and Yamazaki (1991) apply a mean-risk portfolio model to a practical case in which the number
of assets is greater than that of historical observations. From a statistical viewpoint, this may
cause overfitting, resulting in a large estimation error of the “optimal” portfolio π̄.
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In fact, many researchers have pointed out that the mean-variance model using the sample
mean vector and the sample covariance matrix results in poor out-of-sample performance because
of the estimation error in the sample mean and (co)variance (see DeMiguel, Garlappi and Uppal
2009, and references can be found therein).

To improve the out-of-sample performance of the obtained portfolio, several researchers
have recently proposed to estimate the covariance matrix for the minimum variance model by
modifying the sample variance estimate. For example, Ledoit and Wolf (2003) suggest to use
shrinkage estimates of the sample covariance matrix. Jagannathan and Ma (2003) show that
imposing the short-sale constraint, π ≥ 0, which is usually imposed in practice, is equivalent
to a shrinkage estimation of the covariance matrix. In fact, imposing the short-sale constraint
may be why the mean-risk model of Konno and Yamazaki (1991) performs well even when the
number of assets is greater than that of the historical data.

DeMiguel et al. (2009) additionally impose a norm constraint on the portfolio for the variance
minimization criterion by extending the idea of parameter shrinkage. They reveal that the
problem formulation with the 2-norm (Euclidean norm) constraint contains the equally weighted
portfolio, i.e., πj = 1/n, as a special case while that with the 1-norm constraint contains the
minimum variance model having the short-sale constraint. Brodie et al. (2009) study 1-norm-
constrained minimizations of squared tracking errors. All of the above studies incorporate
the shrinkage technique in the sample covariance matrix so as to improve the out-of-sample
performance of the minimum variance model.

As for the return estimate, many researchers agree that the impact of the estimation error
associated with the sample mean is much worse than that of the (co)variance or other parameters.
For example, the following statement in Jagannathan and Ma (2003) declares the uselessness of
the sample mean estimate:

The estimation error in the sample mean is so large nothing much is lost in ignoring
the mean altogether when no further information about the population mean is
available (pp. 1652-1653).

Indeed, this statement motivates DeMiguel et al. (2009) not to incorporate the return compo-
nents in their objective function or constraints.

On the other hand, an optimization approach called the robust portfolio has been intensively
studied in the last decade. It seeks a good portfolio in the sense that it is feasible even when
parameters in the optimization problem take on the least favorable values among a set of prede-
termined candidates (the so-called uncertainty set). One possible critique about robust portfolio
models is that many of them do not say how to specify the uncertainty set. Certain robust ap-
proaches take into account the worst-case estimation error in a direct manner. For example,
Goldfarb and Iyengar (2003) nicely combine the multi-factor model and the uncertainty set in
the robust portfolio, where the uncertainty set is given as a confidence interval (region) of the
parameters of the factor model. Besides, very early robust models such as Soyster (1973) and
Ben-Tal and Nemirovski (2000) assume a nonparametric structure, whereas the factor model
approach employs a parametric assumption for constructing the uncertainty set. Except for the
factor model-based models, it is unclear how robust portfolios should specify the uncertainty set
in practice.

The above approaches – the shrinkage estimation-based minimum variance model and the
robust portfolio – seek to alleviate the deterioration in out-of-sample performance associated with
the estimation error of each optimization criterion by simultaneously considering the estimation
of parameters and the selection of a portfolio. In this paper, we study the connection between
these approaches by examining the role of the norm constraint not only in variance minimization
but also in an extended context. In particular, special attention is paid to the norm-constrained
versions of value-at-risk (VaR) and conditional value-at-risk (CVaR) minimizations.
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VaR has been used in risk management for capturing large losses that may occur with a small
probability. Although it is popular, there has been controversy as to its theoretical properties as
a risk measure. For example, Cont, Deguest and Scandolo (2007) show that it is robust against
outliers. On the other hand, it has been shown to violate subadditivity (Artzner et al. 1999),
and therefore, it is now considered undesirable as a risk measure.

On the other hand, CVaR has nice theoretical properties such as coherence (Artzner et al.
1999) and consistency with the risk-averse behavior of investors (e.g., Ogryczak and Ruszczýnski
2002), and it is increasingly being used in practice. CVaR is also much more attractive than
VaR from an optimization viewpoint because it often leads to a tractable associated optimization
problem (Rockafellar and Uryasev 2002). Moreover, the authors have pointed out in Gotoh and
Takeda (2005) and Takeda (2009) that the ν-support vector machine (ν-SVM), an optimization-
based statistical learning model developed by Schölkopf et al. (2000), has almost the same struc-
ture as the CVaR minimization. This fact motivated us to exploit theoretical results developed
for ν-SVMs in the context of portfolio selection.

We also consider the index tracking (mimicking) portfolio problem. We conducted numeri-
cal experiments demonstrating the norm-constrained tracking portfolio’s out-of-sample perfor-
mance. Specifically, we examined how the parameters used for describing the norm constraint
and the CVaR objective can be tuned. We present results showing that our approach involving
parameter tuning outperforms the absolute-error minimization model, a standard approach for
the tracking portfolio, and performs better than the norm-constrained variant.

Our study makes the following contributions:

• We show that the norm-constrained portfolio optimization can be considered to be a robust
portfolio optimization formulation with an adequate parameter uncertainty. Although the
connection between the norm term and robust formulation has been recently discussed, e.g.,
in Xu, Caramanis and Mannor (2008), we shall focus on the implications in the financial
optimization context. In particular, in combination with VaR or CVaR minimization, the
norm-constrained formulation can be naturally interpreted as a robust counterpart of the
standard VaR or CVaR minimization. In this sense, the norm-constrained portfolio takes
into account the worst-case return in an implicit manner even though it does not explicitly
include the return estimate.

• By modifying the generalization theory for ν-SVMs, known as the generalization er-
ror bound (Schölkopf et al. 2000), we provide a theoretical underpinning to the norm-
constrained VaR or CVaR minimization. In light of these theoretical results, we can
expect that the norm constraint plays a role in improving the out-of-sample performance,
similarly to the norm-constrained minimum variance portfolio in DeMiguel et al. (2009). It
is worth noting that although the bounds are not tight, the numerical experiments indicate
that this model’s out-of-sample performance is good. Also, in connection with the robust
optimization for the norm constraint, this result also provides a theoretical validation for
its robust counterpart.

• In contrast with the traditional models that simply minimize the empirical deviations
from a target variable, we propose a novel approach to tracking portfolio construction
by incorporating the norm constraint and CVaR-based deviation. Numerical experiments
indicate the norm-constrained CVaR deviation model as well as the norm-constrained
absolute-deviation minimization have better out-of-sample performance than the norm-
unconstrained counterparts. In particular, using historical observations to tune the pa-
rameters of the norm-constrained CVaR deviation model enhances the tracking perfor-
mance. Moreover, this indicates the possibility that specifying the uncertainty set in a
robust portfolio on the basis of historical observations works effectively.
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The structure of the paper is as follows. The next section describes a proposition that relates
the norm constraint for the portfolio selection (DeMiguel et al. 2009) and an uncertainty set for
robust portfolios. In Section 3, we consider norm-constrained VaR and CVaR minimizations,
providing a natural connection between the norm-constrained VaR and CVaR minimizations
and their robust counterparts. Also, the norm-constrained VaR and CVaR minimizations are
theoretically validated by exploiting the generalization error bound for ν-SVM (Takeda 2009). In
Section 4, we apply the results developed in Section 3 to a tracking portfolio problem. Section
5 is devoted to the numerical experiments in which a norm-constrained tracking portfolio is
examined, and it is shown that adequate parameter tuning leads to better out-of-sample tracking
performance. We conclude the paper with some remarks and provide proofs of the theorems in
the Appendix.

2 Robust Optimization View on the Norm Constraint

2.1 Relation of Norms in the Norm-Constraint and the Uncertainty Set

As pointed out in the Introduction, portfolio selection shares features with parameter estimation
in statistics. Inspired by the regularization of the regression parameter as in the ridge regression
or the lasso (see, e.g., Hastie, Tibshirani and Friedman 2001), DeMiguel et al. (2009) impose
the norm constraint on the minimum variance portfolio optimization which uses the sample
covariance matrix Σ of n assets, as follows:

min π⊤Σπ

s.t. e⊤
n π = 1

∥π∥ ≤ C

(1)

where ∥ · ∥ is a norm in IRn, en := (1, ..., 1)⊤ ∈ IRn, and C > 0 is a constant. Here, the first
constraint e⊤

n π = 1 implies that each component of π represents the investment ratio for each
asset.

In DeMiguel et al. (2009), it is shown that when the 2-norm, ∥π∥2 :=
√

π⊤π, is employed
as ∥π∥ and C = 1/

√
n, the solution to (1) is equivalent to the equally weighted portfolio, i.e.,

πj = 1/n. On the other hand, when the 1-norm, ∥π∥1 :=
∑n

j=1 |πj |, is employed and C = 1,
the solution is equivalent to the short-sale-constrained minimum variance portfolio. In addition,
they show that if the norm term is replaced with ∥π∥A :=

√
π⊤Aπ, with A being the covariance

matrix induced from the single factor model, the resulting portfolio is equivalent to the shrinkage
estimate of the covariance matrix proposed by Ledoit and Wolf (2003).

Note that the above properties associated with ∥π∥2 and ∥π∥1 hold independently of the
variance in the objective of (1) and hold on the basis of only on a basic constraint of the form
e⊤

n π = 1. Thus, we first present a robust modeling from the viewpoint of the norm constraint,
which is independent of the objective or the other constraint.

Proposition 1 The norm constraint with a norm ∥π∥ is equivalent to a robust inequality in
the following sense:

∥π∥ ≤ C ⇔ (r − r0)⊤π ≥ −s, for all r ∈ U := {r : ∥r − r0∥∗ ≤
s

C
}

where s > 0 is a constant, r0 is a nominal vector of r, and ∥ · ∥∗ represents the dual norm of
∥ · ∥, i.e., ∥r∥∗ := sup{r⊤π : ∥π∥ ≤ 1}.
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Proof. By definition, the following relation holds for two mutually dual norms:

∥π∥ ≤ C ⇔ r⊤π ≤ 1, for all r ∈ U := {r : ∥r∥∗ ≤ 1
C
}.

The desired result is obtained by substituting −(r − r0)/s for r. 2

If the vector r is regarded as the return of the investable assets, this proposition indicates
that the norm constraint can be interpreted as a robust return constraint such that the portfolio
return r⊤π is no less than r⊤

0 π− s, where r0 can be considered as the nominal portfolio return,
which is possibly the sample mean µ :=

∑T
t=1 Rt/T of the observed historical return vectors

R1, ...,RT .
The nominal return vector r0 and the positive scalar s are introduced so that we can interpret

the constraint in a standard robust representation (Ben-Tal and Nemirovski 2000), and they do
not appear in the norm constraint. In order to consider the relation in a more direct manner,
we can give the parameters specific values. For example, let us consider the case of r0 = 0 and
s′ = s/C, in which the equivalence is rewritten as

∥π∥ ≤ C ⇔ r⊤π ≥ −Cs′, for all r ∈ U := {r : ∥r∥∗ ≤ s′}.

On the other hand, let us consider imposing the sample return constraint on the norm-
constrained feasible region as follows:

e⊤
n π = 1, µ⊤π = ρ, ∥π∥ ≤ C,

where ρ is a constant. From the above observation, this can be rewritten as

e⊤
n π = 1, µ⊤π = ρ, r⊤π ≥ ρ − Cs′ for all r ∈ U := {r : ∥r − µ∥∗ ≤ s′}.

If one employs these as the constraints of (1), the resulting formulation represents the mean-
variance model with an additional robust return constraint.

2.2 Various Norms and Their Relation to Uncertainty Sets

As stated in Proposition 1, norm-constrained portfolio optimization can be regarded as a robust
portfolio selection with an uncertainty set where the dual norm is employed to describe the
uncertainty of the return parameter r. Table 1 summarizes the correspondence between the two
representations.

It is interesting that the 1-norm for the norm constraint corresponds to the classic robust
representation of Soyster (1973), which is known to result in too conservative a solution. Besides,
since the 1-norm constraint with C = 1 is equivalent to the short sale constraint, as mentioned
in DeMiguel et al. (2009), the short-sale constraint, π ≥ 0, is equivalent to a Soyster’s type
robust constraint of the form

(r − r0)⊤π ≥ −s, for all r ∈ U := {r : ∥r − r0∥∞ := max
j=1,...,n

{|rj − r0j |} ≤ s}.

On the other hand, the robust model with ellipsoidal uncertainty corresponds to the A-norm,
∥π∥A, including the 2-norm as a special case. Interestingly, as pointed out in DeMiguel et al.
(2009), the A-norm-constrained variance minimizing portfolio with the covariance matrix of the
single-factor model is equivalent to the minimum variance model (Ledoit and Wolf 2003) with a
shrinkage estimate using the single-factor covariance matrix for the covariance matrix estimation.
In that case, the uncertainty set can be regarded as an ellipsoidal uncertainty derived from an
elliptical distribution, which has a density function of the form p(r) := c′det[A]−1/2q((r −
r0)⊤A−1(r − r0)), where c′ > 0 is a constant and q is a function on IR. Also, the use of the D-
norm, |||r|||p, which is suggested by Bertsimas and Sim (2004) and Bertsimas, Pachamanova and
Sim (2004), in the robust portfolio is equivalent to that of its dual norm, max{∥π∥∞, ∥π∥1/p},
in the norm-constrained portfolio.
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Table 1: Correspondence between Norms in Norm-Constraints for Portfolio Selection and Un-
certainty Sets for Robust Portfolios

Norm in Norm Constraint Norm in Uncertainty Set

∥π∥1 (DeMiguel et al. 2009) ∥r∥∞ (Soyster 1973)

∥π∥A (DeMiguel et al. 2009) ∥r∥A−1 (Ben-Tal and Nemirovski 2000)

∥π∥2 (DeMiguel et al. 2009) ∥r∥2

∥π∥∞ ∥r∥1

max{∥π∥∞, ∥π∥1/p} |||r|||p (Bertsimas, Pachamanova and Sim 2004)

2.3 Relation to Robust Return Maximization

The norm constraint can also be derived from the robust return maximization

max
π

{
min

Rt,t=1,...,T

{
1
T

T∑
t=1

R⊤
t π : Rt ∈ U(Rt, δ), t = 1, ..., T

}
: e⊤

n π = 1, Aπ ≤ b

}

for an uncertainty set of the form

U(Rt, δ) = {r ∈ IRn : r = Rt − ∆r for some ∆r satisfying ∥∆r∥ ≤ δ} (2)

with a nominal return vector R and δ > 0. The uncertainty set U(Rt, δ) indicates that the
observed return vector Rt suffers from a possible perturbation of size δ. Note that, for each π,
the minimization in the objective can be simplified as follows:

min
{∥∆rt∥≤δ}t=1,...,T

{
1
T

T∑
t=1

(Rt − ∆rt)⊤π

}
=

1
T

T∑
t=1

R⊤
t π − max{∆r⊤π : ∥∆r∥ ≤ δ}.

The robust counterpart can then be rewritten into the following regularized return maximization
problem:

max
π

{
1
T

T∑
t=1

R⊤
t π − δ∥π∥∗ : e⊤

n π = 1, Aπ ≤ b

}
.

Considering that the dual norm term in the objective can be equivalently transformed into
a constraint with adequate parameter settings, this formulation shows that the norm-based
return uncertainty leads to a norm constraint. Thus, the norm constraint or regularization term
naturally appears in portfolio optimization when the uncertainty associated with the observed
returns is taken into account.

3 Norm-Constrained VaR and CVaR Minimization

In contrast to the previous section, here, we shall focus on empirical VaR and CVaR mini-
mizations in combination with the norm constraints and present a robust interpretation and a
nonparametric statistical validation.
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3.1 Empirical VaR and CVaR

Let f(π, R) denote a random portfolio loss associated with the random vector R. In the
following, we assume that R is independent of π, as in Rockafellar and Uryasev (2002). In
general, we can employ any cost function to be minimized as f . For example, a minus return
can be employed as a loss, i.e.,

f(π, R) = −R(π) = −R⊤π. (3)

For β ∈ (0, 1), the β-VaR, αβ(π), associated with a loss f(π, R) is the β-quantile of the
distribution of f , i.e.,

αβ(π) := min{α : Φ(α|π) ≥ β}

where Φ(·|π) is the distribution function of f . The parameter β is a user-defined parameter for
representing a confidence level, and it usually takes a fixed value close to 1, say, 0.95 or 0.99,
for capturing a large loss with a small probability.

On the other hand, β-CVaR associated with f(π, R) is defined by

ϕβ(π) := min
α

Fβ(π, α),

where β ∈ [0, 1) and Fβ is a convex function on IRn × IR, defined by

Fβ(π, α) := α +
1

1 − β
E[f(π, R) − α]+

where E[·] denotes the operator for the mathematical expectation and [x]+ := max{x, 0}. Ac-
cording to Rockafellar and Uryasev (2002), β-CVaR, ϕβ(π), can be approximately regarded as
the expected value of f greater than β-VaR, αβ , and therefore, one gets αβ(π) ≤ ϕβ(π), as in
Figure 1. In practice, similarly to VaR, β is usually fixed at a value close to one. ϕβ(π) and
Fβ(π, α) are convex functions when f is convex in π, whereas αβ(π) can be nonconvex even
when f is linear in π. The β-CVaR minimizing portfolio is given by the solution to

min{ ϕβ(π) : π ∈ Π } = min{ Fβ(π, α) : π ∈ Π, α ∈ IR }, (4)

which can be reformulated as a convex program when f is convex in π and Π is a convex set. In
addition, for an optimal solution (π∗, α∗) to (4), α∗ gives an approximate value of β-VaR, αβ(π∗),
as a by-product. More precisely, α∗ is equal to αβ(π∗) if the optimal α∗ is unique. Even if it is
not so, α∗ is located in a closed interval [αβ(π∗), α+

β (π∗)] where α+
β (π) := inf{α : Φ(α|π) > β}.

fr
e

q
u

e
n

c
y

0

probability : 

positive loss

Figure 1: Illustration of β-VaR, αβ , and β-CVaR, ϕβ associated with loss f

The empirical VaR and CVaR are similarly defined by employing an empirical distribution in
place of Φ. Let ΦT (·|π) denote the empirical distribution of the loss based on T observed return
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data R1, ...,RT which are supposed to be independently drawn from the (unknown) distribution
Φ, i.e., ΦT (α|π) := |{t ∈ {1, ..., T} : f(π, Rt) ≤ α}|/T . β-VaR, αβ(π), is then replaced with the
empirical version, αT

β (π), i.e.,

αT
β (π) := min{α : ΦT (α|π) ≥ β}.

On the other hand, the empirical β-CVaR is defined by

ϕT
β (π) := min

α
F T

β (π, α),

where

F T
β (π, α) := α +

1
(1 − β)T

T∑
t=1

[f(π, Rt) − α]+.

The norm-constrained minimizations of the empirical VaR and CVaR are written as follows:

min αT
β (π)

s.t. e⊤
n π = 1, Aπ ≤ b

∥π∥ ≤ C,

min ϕT
β (π)

s.t. e⊤
n π = 1, Aπ ≤ b

∥π∥ ≤ C,

(5)

where the constraints except for e⊤
n π = 1 and the norm constraint are assumed to be represented

by a system of linear inequalities of the form Aπ ≤ b, for simplicity, where A ∈ IRm×n, b ∈ IRm.
When the loss function takes the form of (3), the empirical β-VaR and β-CVaR minimizations
with sample returns R1, ...,RT can be formulated as follows:

min α

s.t. e⊤
T z ≤ ⌊(1 − β)T ⌋

−R⊤
t π − Mzt ≤ α, zt ∈ {0, 1}, t = 1, ..., T

e⊤
n π = 1, Aπ ≤ b, ∥π∥ ≤ C,

(6)

where M is a sufficiently large number;

min α + 1
(1−β)T e⊤

T y

s.t. yt ≥ −R⊤
t π − α, t = 1, ..., T ; y ≥ 0

e⊤
n π = 1, Aπ ≤ b, ∥π∥ ≤ C.

(7)

If the Euclidean norm ∥π∥2 is used as ∥π∥, the VaR minimization (6) becomes a quadratically
constrained 0-1 mixed integer program, which can be solved via a state-of-the-art solver such as
ILOG CPLEX12 as long as the size of the problem is not huge and has so good a structure that
the sophisticated branch-and-cut algorithm works. However, it is still hard to solve (6) within a
practical time period even if T or n is around one hundred. In such case, it is reasonable to use
linearly representable norms, such as ∥π∥1, ∥π∥∞ and D-norm, in place of ∥π∥2 when the VaR
minimization (6) is applied.

On the other hand, the CVaR minimization (7) is a quadratically constrained linear program,
and it can be efficiently solved via an interior point algorithm even when the problem is large.
Therefore, the Euclidean norm or A-norm can be used when CVaR minimization is applied.
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3.2 Interpretation through robust VaR and CVaR minimizations

We have seen that the norm constraint can be considered to be a robust return inequality. Here,
we show that the use of norm constraints in the combination with VaR or CVaR minimization
can be validated. As in Section 2.3, let us suppose that the observed return suffers from a return
uncertainty of the form in (2). The robust counterparts of the VaR and CVaR minimizations
can then be respectively formulated as

min α

s.t. e⊤
T z ≤ ⌊(1 − β)T ⌋, zt ∈ {0, 1}, t = 1, ..., T

−(Rt − ∆rt)⊤π − Mzt ≤ α for all ∥∆rt∥ ≤ δ, t = 1, ..., T

e⊤
n π = 1, Aπ ≤ b

(8)

and

min α + 1
(1−β)T e⊤

T y

s.t. yt ≥ −(Rt − ∆rt)⊤π − α for all ∥∆rt∥ ≤ δ, t = 1, ..., T

y ≥ 0, e⊤
n π = 1, Aπ ≤ b.

(9)

Proposition 2 The robust counterparts (8) and (9) of the empirical VaR and CVaR minimiza-
tion can be reformulated as

min α + δ∥π∥∗

s.t. e⊤
T z ≤ ⌊(1 − β)T ⌋

−R⊤
t π − M ′zt ≤ α, zt ∈ {0, 1}, t = 1, ..., T

e⊤
n π = 1, Aπ ≤ b

(10)

and

min α + 1
(1−β)T e⊤

T y + δ∥π∥∗

s.t. yt ≥ −R⊤
t π − α, t = 1, ..., T ; y ≥ 0

e⊤
n π = 1, Aπ ≤ b

(11)

where ∥π∥∗ denotes the dual norm of ∥π∥, and M ′ is a sufficiently large number.

Proof. Since both of the formulations (10) and (11) can be proved in a similar manner, we shall
give only the proof for the VaR minimization. In (8), each inequality of the second constraint
can be rewritten as −R⊤

t π + δ∥π∥∗ − Mzt ≤ α. We arrive at the regularized version (10) by
replacing the term α − ∥π∥∗ with α′ and replacing the big constant M by another M ′ so that
the logical condition can be represented by a 0-1 variable. 2

This proposition shows that the robust VaR and CVaR minimizations in which the observed
returns suffer from some error turn out to be the regularized empirical VaR and CVaR mini-
mizations (10) and (11), respectively, or equivalently, the norm-constrained versions (6) and (7)
if the parameters δ and C are set in an adequate manner. Note that this property is based on
the positive homogeneity of the two risk measures.

Also, we should note that the formulation (11) have the same structure as the one-class ν-
SVM except for the additional constraints e⊤

n π = 1, Aπ ≤ b. Especially, the dual norm term in
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(11) corresponds to the regularization term of the ν-SVM. Therefore, this proposition indicates
the relation between a statistical learning technique and robust portfolio approach. Since it
is empirically known that the regularization term improves the out-of-sample performance of
models estimated by simply minimizing the empirical loss function, we expect that the robust
portfolio obtained by (11) improves the norm-unconstrained CVaR model in a probabilistic sense
as will be shown in the next subsection.

3.3 Generalization Error Bounds with Empirical VaR and CVaR

In this subsection, we provide another validation for the norm-constrained VaR and CVaR
minimizations by employing a nonparametric statistical theory known as the generalization
error bound.

By modifying the generalization error bound for ν-SVM (Schölkopf et al. 2000) and using the
expression of the empirical β-VaR, αT

β (π), or β-CVaR, ϕT
β (π), we can obtain upper and lower

bounds on the probability that the loss f is greater than a threshold θ under the assumption of
a nonparametric distribution.

Theorem 1 Let L := {R 7→ R⊤π : ∥π∥2 ≤ C, ∥R∥2 ≤ BR} with constants C and BR. Let
θ be a threshold for the portfolio loss f . T sample return data, R1, ...,RT , are independently
drawn from an unknown probability distribution whose support is contained in {R : ∥R∥2 ≤ BR}.
Then, for any f(π, ·) ∈ L and π satisfying αT

β (π) < θ, the probability of the loss f(π, R) being
greater than θ, P{f(π, R) > θ}, is bounded above as

P{f(π, R) > θ} ≤ (1 − β) +

√√√√ 2
T

{
4c2(C2 + 1)(B2

R + θ2) log2(2T )
(αT

β (π) − θ)2
+ ln

2
δe

}
(12)

with probability at least 1 − δ, and C > 0 is a constant. On the other hand, for π satisfying
αT

β (π) > θ, the probability is bounded below as

P{f(π, R) > θ} ≥ (1 − β) −

√√√√ 2
T

{
4c2(C2 + 1)(B2

R + θ2) log2(2T )
(αT

β (π) − θ)2
+ ln

2
δe

}
(13)

with probability at least 1 − δ.

Corollary 1 Suppose the same assumption as in Theorem 1. Then, for any f(π, ·) ∈ L and π
satisfying ϕT

β (π) < θ, one has

P{f(π, R) > θ} ≤ (1 − β) +

√√√√ 2
T

{
4c2(C2 + 1)(B2

R + θ2) log2(2T )
(ϕT

β (π) − θ)2
+ ln

2
δe

}
(14)

with probability at least 1 − δ.

See the Appendix for the proof of Theorem 1. Corollary 1 is easily obtained from Theorem 1
since αT

β (π) ≤ ϕT
β (π) holds for any π and, thus, we have (αT

β (π) − θ)2 ≥ (ϕT
β (π) − θ)2 as long

as ϕT
β (π) < θ.
These propositions reveal that the unknown loss probability P{f(π, R) > θ} can be bounded

above or below by some quantity involving the empirical β-VaR, αT
β (π), and β-CVaR, ϕT

β (π).
In the above inequalities (12), (13) and (14), the 2-norm ∥ · ∥2 can be replaced with any norm
∥ · ∥ in IRn by multiplying a constant, due to the equivalence of any two norms in a vector space
of finite dimension.
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Someone who is used to the assumption of the unbounded support distribution such as in the
normal distribution may wonder if the bounded support assumption is too restrictive. However,
the support of the asset return is bounded because the total amount of money or credit in the
world market is bounded. Needless to say, the boundedness assumption does not exclude the
fat-tail property of the return distribution. Instead, the above theorem takes into consideration
the tail part (edge of the support) of the distribution in a nonparametric manner.

The main goal of the propositions is not to calculate the tight bound, but to examine what
kind of parameters are included in the bound and how they contribute to the unknown loss
probability, which will give us a clue about how to make the probability smaller.

First of all, we should note that the right-hand sides of (12), (13) and (14) decrease as αT
β (π)

and ϕT
β (π) decrease, which implies that minimizing the empirical VaR, αT

β (π), and CVaR,
ϕT

β (π), for fixed β reduces the bounds of the probability. Since these bounds hold only when
the norm of the portfolio is bounded above by a constant C, the solutions to the optimization
problems (5) should make the loss probability smaller. In addition, the upper and lower bounds
decrease as C decreases. However, decreasing C restricts the feasibility of π, and this can lead
to an increase in αT

β (π) and ϕT
β (π). Thus, there is a trade-off between the value of C and the

empirical risk measures. In order to reconcile the effects of C and π in minimizing the bounds,
the parameter C should be tuned when the norm-constrained problems (5) are solved.

Next, let us examine the other parameters. The bounds decrease as T decreases, which is
consistent with the law of large numbers. Also, the right-hand sides increase as BR increases.
Although BR is uncontrollable because of its nature, knowing the accurate value of BR does not
alter the effect of π in minimizing the bounds, which is unlike the case of C. Therefore, it is
unnecessary to pay attention to the size of BR. In this sense, we can apply (5) to any set of
finite samples independently drawn from a possibly unbounded distribution.

As for β, we cannot figure out the shape of the right-hand sides as functions of β because
their second terms include unknown parameters. In keeping with the spirit of the upper and
lower bounds minimization, the parameter β should also be tuned as C should be.

From the above observations, we can expect that solving (5) in combination with tuning
C and β leads to a lower loss probability. One possible criticism of this expectation is that
the bounds are not tight, and hence, the minimization may not be effective in decreasing the
loss probability. However, the numerical experiments given in Section 5 show that the norm-
constrained portfolio model motivated by bound minimization achieves a better out-of-sample
performance than the other models.

Remark 1 The above argument is similar to the previous work by the authors (Gotoh and
Takeda 2008), in which two fractional programming formulations are posed:

min
αT

β (π) − θ

∥π∥
s.t. e⊤

n π = 1, Aπ ≤ b,

min
ϕT

β (π) − θ

∥π∥
s.t. e⊤

n π = 1, Aπ ≤ b.

(15)

In Gotoh and Takeda (2008), the authors describe a two-step framework to solving (15) because
the fractional problems may be intractable when θ is small. The norm-constrained problems (5)
are much easier to solve than they are in the fractional programming formulation, and, thus, it
is easier to conduct a cross-validation for the parameter tuning. Of course, there is a possibility
that ignoring the difficult case would limit the potential gain in performance. However, the
ease of implementing the parameter tuning is a strong motivation for us to introduce the norm
constraint into practice.
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4 Application to Tracking Portfolio

In this section, we extend the norm-constrained VaR and CVaR minimizations (6) and (7) to
tracking (or mimicking) a portfolio.

Let I be the random return of a target asset (such as a stock price index) to be mimicked, and
let us suppose that n assets are available to replicate the target. Then, it is typical that a portfolio
π ∈ IRn is determined so that a proper deviation would be minimized. For example, Gilli and
Këllezi (2002) applies the criterion of minimizing the mean absolute deviation E[|I −R(π)|] by
minimizing the sample mean of the empirical absolute errors:

min{ 1
T

T∑
t=1

|It − R⊤
t π| : e⊤

n π = 1, Aπ ≤ b}, (16)

where Rt := (Rt,1, ..., Rt,n)⊤, t = 1, ..., T , are observed historical return vectors of the n assets,
and It, t = 1, ..., T , are observed index return. Note that (16) can be reformulated as a linear
program.

Remark 2 The framework of the tracking portfolio reminds us of the well-known linear regres-
sion analysis, where a linear model

y = a1x1 + · · · + adxd (17)

is estimated from a given set of observed data {(y1, x11, ..., x1d), ..., (ym, xm1, ..., xmd)} by mini-
mizing the sum of the in-sample squared error:

∑m
i=1{yi − (a1xi1 + · · · + adxid)}2. In fact, the

data formats required in those two models are in the same style as shown in Figure 2.
The mean absolute deviation minimizing regression has been also analyzed in, e.g., Arthanari

and Dodge (1981). Moreover, the ridge regression and the lasso respectively minimize the regu-
larization terms ∥π∥2 and ∥π∥1 in addition to the sum of squared errors. As already mentioned,
this idea has been applied to portfolios by DeMiguel et al. (2009) and Brodie et al. (2009).

Interestingly, the use of the regularization term (or, equivalently, the norm constraint) in the
regression has been shown to select the important variables (assets) and to enable the obtained
model to avoid overfitting (see, e.g., Hastie, Tibshirani and Friedman 2001).

asset

idx. 1 · · · n

1 I1 R11 · · · R1n

date
..
.

..

.
..
.

..

.

T IT RT1 · · · RTn

portfolio π1 · · · πn

attribute

obj. 1 · · · d

1 y1 x11 · · · x1d

case
..
.

..

.
..
.

..

.

m ym xm1 · · · xmd

coefficients a1 · · · ad

Figure 2: Typical data formats for index tracking (left) and supervised statistical model (right)

In the following, we devise new norm-constrained tracking portfolio models by modifying the
empirical β-VaR, αT

β (π), and β-CVaR, ϕT
β (π). The tracking error is a random loss defined by

f(π, I, R) = |I − R(π)|. (18)

The empirical β-VaR, αT
β (π), is then defined as the β-quantile of the empirical distribution ΦT

of the tracking error where ΦT (α) := |{t : |It − R⊤
t π| ≤ α}|/T and the empirical β-CVaR,

ϕT
β (π), is similarly defined:

ϕT
β (π) = min

α
{α +

1
(1 − β)T

T∑
t=1

[|It − R⊤
t π| − α]+}.

12



It is noteworthy that β-CVaR contains the absolute deviation as a special case, i.e., the absolute-
deviation is equal to ϕT

0 . The tracking portfolio model using the norm-constrained VaR deviation
is formulated as follows:

min
α,π,w,x,z

α

s.t. e⊤
T z ≤ ⌊(1 − β)T ⌋

w + x − Mz ≤ αeT

wt − xt = It − R⊤
t π, t = 1, ..., T

w ≥ 0, x ≥ 0, z ∈ {0, 1}T

e⊤
n π = 1, Aπ ≤ b, ∥π∥ ≤ C,

(19)

where M is a sufficiently large number. Similarly, the tracking portfolio using the norm-
constrained CVaR deviation is represented by the following convex optimization:

min
α,π,w,x,y

α + 1
(1−β)T e⊤

T y

s.t. y ≥ w + x − αeT

y ≥ 0, w ≥ 0, x ≥ 0

wt − xt = It − R⊤
t π, t = 1, ..., T

e⊤
n π = 1, Aπ ≤ b, ∥π∥ ≤ C.

(20)

As mentioned before, the use of the 2-norm ∥π∥2 in (19) is not recommended, while that in
(20) is worth applying because (20) is still a convex optimization problem. Taking into account
the computational tractability and the coherence as a risk measure, we only examined the norm-
constrained CVaR minimization (20) with ∥π∥2 in the computational experiment described in
the next section.

Remark 3 As described in Gotoh and Takeda (2005) and Takeda (2009), the β-CVaR mini-
mization is equivalent to ν-SVMs. From this viewpoint, the above model (20) can be considered
to be an application of ν-support vector regression (ν-SVR) to index tracking. One difference
between these two frameworks can be found in the additional constraints imposed on the associ-
ated optimizations. In fact, the portfolio problem always has a constraint of the form e⊤

n π = 1
by definition, while the regression problem has usually no constraint on the parameters a1, ..., ad

of (17).

Remark 4 The formulation (20) is seemingly just a norm-constrained version of the CVaR
minimization model in which the absolute deviation is employed as f . As in the case of the
norm constraint, the parameter β in (20) plays a different role from that in the standard CVaR
model. While β in the standard model is fixed by the user before the optimization so that he/she
can look at a predetermined level of risk, the β in (20) is tuned at the time of optimization. In
the numerical experiment in the next section, we provide a way of tuning β as well as C based
on historical data.

Similarly to what was done in the previous section, nonparametric bounds of the tracking
error probability can be obtained from the empirical β-VaR and β-CVaR of the tracking error
(18) by modifying Theorem 1 and Corollary 1.
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Theorem 2 Let θ be the threshold for the portfolio loss. Suppose that the random return vector
(I, R) has a bounded support in the sense that (I,−R) lie in a ball of radius BR centered at
the origin, and that T return data, (I1, R1), ..., (IT ,RT ), are independently drawn from (I, R).
Then, for any feasible portfolio π satisfying αT

β (π) < θ and ∥π∥2 ≤ C, the probability of the
tracking error being greater than θ, P{|I − R(π)| > θ}, is bounded above as

P{|I − R(π)| > θ} ≤ (1 − β) + 2

√√√√ 2
T

{
4c2(C2 + 1)(BR + θ)2 log2(2T )

(αT
β (π) − θ)2

+ ln
2
δe

}
(21)

with probability at least 1 − δ, where C > 0 is a constant. On the other hand, for π satisfying
αT

β (π) > θ and ∥π∥2 ≤ C, the probability is bounded below as

P{|I − R(π)| > θ} ≥ (1 − β) − 2

√√√√ 2
T

{
4c2(C2 + 1)(BR + θ)2 log2(2T )

(αT
β (π) − θ)2

+ ln
2
δe

}
(22)

with probability at least 1 − δ.

Corollary 2 Suppose the same assumption as in Theorem 2. Then, for π satisfying ϕT
β (π) < θ

and ∥π∥2 ≤ C, one has

P{|I − R(π)| > θ} ≤ (1 − β) + 2

√√√√ 2
T

{
4c2(C2 + 1)(BR + θ)2 log2(2T )

(ϕT
β (π) − θ)2

+ ln
2
δe

}
. (23)

with probability at least 1 − δ.

See the Appendix for the proofs.

5 Numerical Experiments

We conducted numerical experiments to examine how our tracking portfolio approach works.
In consideration of the computational efficiency, we only solved the norm-constrained CVaR

model (20) with 2-norm. For comparison, the norm-constrained versions of absolute error min-
imization (16) and the norm-unconstrained versions of the two criteria were also solved.

5.1 Results with Randomly Generated Normal Distributed Data

An experiment was conducted on a randomly generated data set in order to examine how well the
norm-constrained CVaR deviation model with parameter tuning decreased the loss probability,
P{|I − R(π)| > θ}, in comparison with the standard models. We randomly generated 200-
dimensional vectors Rt, t = 1, . . . , 1000, which followed a normal distribution N(µ,Σ), where
µj and σj were independently drawn from uniform distributions on (0, 10), and the correlation
between Ri and Rj for any i ̸= j was 0.5. Associated with the generated variables, we defined
the target as It = e⊤

200Rt/200, t = 1, ..., 1000. The first 500 returns It and Rt, t = 1, . . . , 500,
were used for constructing tracking portfolios of sizes up to 200, while the latter 500 were used
for evaluating the out-of-sample loss. Although a bounded distribution is supposed in Theorem
2 and Corollary 2, our method is still applicable to this situation because 1) BR can be regarded
so large that the generated data are inside the ball of radius BR; 2) BR does not appear in our
computation.

As for the norm-constrained CVaR model (20), the parameters β and C should be tuned
by using the first 500 data. In this experiment, they were determined so that the in-sample
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Figure 3: Probability of loss being greater than θ for randomly generated data set (n = 200,
T = 500).

“CVaR+2norm” denotes the 2-norm-constrained CVaR model while “CVaR,” and “AbsDev” denote the CVaR
and the absolute deviation models without norm constraint, respectively. The best parameters chosen in
“CVaR+2norm” are β = 0.9 and C = 1/

√
200 + 0.02 = 0.09.

mean squared error (MSE) was minimized over 25 pairs of (β, C)s with β = 0.5, 0.6, ..., 0.9 and
C = 1/

√
n + 0.02, 1/

√
n + 0.04, ..., 1/

√
n + 0.10 for n = 200. We also tuned β for the CVaR

minimization model without the norm constraint similarly to the norm-constrained one.
Figure 3 shows the percentage of the realized losses f being greater than θ, i.e., |{t ∈

{501, ..., 1000} : f(π, Rt) > θ}|/500. It is worth noting that this percentage can be considered
as an estimate of the probability P{f(π, R) > θ}, which is bounded above or below in Theorem
2 and Corollary 2. From this figure, we see that the norm-constrained CVaR minimization
dominates the other two models in this sense. Although Theorems 1 and 2 and Corollaries 1
and 2 seem to provide loose bounds for P{f(π,R) > θ}, we see that the principle of minimizing
such bounds works effectively for the randomly generated data.

5.2 Results for Actual Market Data

To examine the practical effect of the norm constraint, we conducted an experiment on monthly
and weekly return data of stocks listed in the Nikkei 225 index at the end of October 2009. The
monthly data set consisted of returns of 182 companies over 270 consecutive months (22.5 years)
starting from May 1987 to October 2009, whereas the weekly data set consisted of returns of
182 companies over 1178 consecutive weeks (about 22.5 years) starting from April 12, 1987 to
November 1, 2009. The targets to be mimicked were the monthly and weekly returns of the
Nikkei 225 index, respectively. The universe consisting of n assets was randomly chosen from
182 assets.

Using the data for the last T = 120 (10 years) consecutive periods from the monthly data set
or those for the last T = 150 (almost 3 years) consecutive periods from the weekly data set, we
obtained a portfolio π̄t by using the historical data Rt, ...,Rt+T−1 and evaluated the test error,
It+T − R⊤

t+T π̄t, for a new data point (It+T , Rt+T ). By iteratively repeating this evaluation,
T = 150 and T = 1028 rolling horizon evaluations were performed for the monthly and weekly
data sets, respectively. The mean squared error (MSE) of the form 1

T

∑T
t=1(It+T − R⊤

t+T π̄t)2

was employed as a measure of out-of-sample performance.
In the norm-constrained CVaR deviation model (20), the parameters β and C were system-

atically tuned as follows. Using the first 5
6T -period data set, we found a pair of β and C that

gave the best prediction in terms of MSE for the remaining 1
6T -period data set. For each data

set, the best β was found from among 0.1 to 0.9 in steps of 0.2 while the best C was found from
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Figure 4: Out-of-sample MSE (left), out-of-sample correlation coefficient (right) of the monthly
data set for when the short-sale constraint, π ≥ 0, is imposed

among five candidates 1/
√

n + k · (1 − 1/
√

n)/10
√

n, k = 1, ..., 5, where the range of parameter
C was determined from a preliminary experiment so that the selection of C would not be mean-
ingless. C and β for the norm-constrained deviation models and the norm-unconstrained CVaR
model were tuned in the same manner.

Figures 4 to 7 show the out-of-sample MSE and the out-of-sample correlation coefficient
between the obtained portfolio return and the index return. In addition to Figures 4 and 6
showing a situation where short-sales are not allowed, Figures 5 and 7 show the situation where
short-sales are allowed.

From these figures, it is easy to see that when short-sales are allowed and n is greater than
T , the norm-unconstrained models give poor results in the out-of-sample evaluation where they
achieve zero in-sample MSEs. Comparing the cases with and without the short-sale constraint,
we see that the short-sale constraint prevents the optimization models from overfitting, which
is consistent with the existing research and experience of practitioners.

What is interesting is that even when the short-sale constraint is imposed, two of the norm-
constrained models outperform the norm-unconstrained ones in the out-of-sample evaluation.
In order to see the significance of this result, Table 2 lists the p-values of a Wilcoxon signed rank
sum test in which the advantage of the norm-constrained models over the norm-unconstrained
ones is tested under the null hypothesis that the out-of-sample absolute deviation of the former is
no less than that of the latter. For the monthly data, except the absolute deviation criterion for
four ns, the p-values are less than 0.1; this indicates the norm-constrained version has a smaller
absolute deviation than the norm-unconstrained at more than 90% significance; for the weekly
data, except for n = 20, the advantage is supported at more than 99% significance. This result
encourages us to use the norm constraint (or its variation) and to tune the involved parameters
using historical data for improving the out-of-sample performance even when the short sale
constraint is already imposed. We shall omit the table for the case in which short-sales are
allowed since the advantage of the norm-constraint is much more evident.

Also, we see from Figures 4 to 7 that the CVaR-based norm-constrained criterion achieves
smaller out-of-sample MSEs than the absolute deviation model especially for relatively large n.
Considering that the absolute deviation is a special case of CVaR, this indicates that the tuning
of β works.
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Figure 5: Out-of-sample MSE (left), out-of-sample correlation coefficient (right) of the monthly
data set for when the short-sale constraint is not imposed

Figure 6: Out-of-sample MSE (left), out-of-sample correlation coefficient (right) of the weekly
data set for when the short-sale constraint is imposed

Figure 7: Out-of-sample MSE (left), out-of-sample correlation coefficient (right) of the weekly
data set for when the short-sale constraint is not imposed
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Table 2: p-values of the Wilcoxon signed rank sum test on the role of norm constraint in the
two models

(a) monthly data (b) weekly data
CVaR AbsDev CVaR AbsDev

20 0.05158 0.15660 0.04301 0.03125
40 0.00084 0.00030 0.00023 0.00115
60 0.00012 0.00783 0.00001 0.00001
80 0.00209 0.02042 0.00000 0.00025

n 100 0.02986 0.20290 0.00002 0.00022
120 0.07997 0.03749 0.00000 0.00005
140 0.01780 0.21530 0.00000 0.00000
160 0.00142 0.13210 0.00000 0.00000
180 0.00115 0.00833 0.00000 0.00002

Each column shows p-values of the null hypothesis that each criterion with the norm-constraint has a larger

deviation than without norm-constraint. “CVaR” indicates results on the CVaR models; “AbsDev” does on the

absolute deviation models.

6 Concluding Remarks

As pointed out in DeMiguel et al. (2009), the norm constraint has something to do with basic
notions used in the traditional portfolio optimizations such as the short-sale constraint, the 1/n
portfolio, and shrinkage techniques for the covariance matrix.

In this paper, we explored the role of the norm constraint in portfolio selection from various
perspectives. For one thing, the norm constraint can be rewritten as a robust inequality by using
the dual norm in describing the uncertainty set. In addition to such interpretations along the
line of robust optimization, the norm constraint in the CVaR or VaR minimization has much
to do with the regularization term of the ν-SVMs, and the theory of ν-SVMs can be employed
in the context of the portfolio optimization. From these viewpoints, the norm constraint fits in
with VaR and CVaR.

The numerical experiments showed that the norm-constrained models with some parameter
tuning can alleviate the overfitting and improve on the norm-unconstrained approaches even
when the short-sale constraint is already imposed. Especially, compared with the use of the
standard deviations, accurately estimating CVaR requires a large number, T , of scenarios, and
thus, incorporating a norm constraint can be a quick remedy to the fragility of the CVaR
minimization. We expect that the norm constraint will improve the out-of-sample performance
for a wide class of risk minimizations.

In addition, the parameter tuning based on historical data improves the out-of-sample per-
formance. Although we chose in the experiments the parameters that achieved the best MSEs,
the MSE criterion can be replaced with another one. For example, we can employ the empirical
loss probability in place of MSE in order to seek smaller loss probability. The reason why we did
not employ the criterion is that the threshold parameter θ should be determined in an arbitrary
manner and that comparing the probabilities often results in situations where some tie-breaking
rule is needed. We can expect that another criterion results in better out-of-sample performance.
Besides, considering the relation between the norm constraint and the robust constraint, such
a tuning technique can be used to tune the uncertainty set for nonparametric robust portfolio
models.

We compared the CVaR models with the absolute deviation models (16) because the CVaR
was defined with the loss function of the form (18). If the squared loss (I −R(π))2 is employed
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as the loss function, the modified CVaR model can be compared with the squared deviation
model. We expect from the numerical results that the modified CVaR model also shows better
results than the squared deviation model.

A Proof of Theorem

On the Generalization Error Bounds The generalization error bounds have been investi-
gated for the two-class classification problem in which a given data set with binary labels is used
for constructing a function h that indicates which class an input data point belongs to. In this
section, we will provide an analysis for the generalization performance of a regression function
by exploiting the bounds already obtained for the classification case (Bartlett 1998, Williamson,
Smola and Schölkopf 2001).

Consider the classification problem of learning a classifier h(R) whose decision function
sign(h(R)) maps R to −1 or 1 on the basis of training samples {(R1, s1), . . . , (RT , sT )} where
Rt ∈ IRn, st ∈ {±1} for t ∈ 1, . . . , T . A typical example of such a problem is medical diagnosis.
Suppose that R denotes a vector of characteristics of a tumor and I denotes whether the tumor
R is “benign”(st = 1) or “malignant”(st = −1). What we want to do is to infer if a new patient’s
tumor is benign or not on the basis of the past data of patients, {(R1, s1), . . . , (RT , sT )} which
will be called the training samples.

We assume that the training samples are independently drawn from an unknown probability
distribution on IRn × {±1}. The goal of the classification task is to obtain a classifier h that
minimizes the generalization error (or the risk):

R[h] := P{Ih(R) < 0} = P{sign(h(R)) ̸= I}

which corresponds to the misclassification rate for unseen test samples.
We show an upper bound for R[h] by referring to Bartlett (1998) and Williamson, Smola and

Schölkopf (2001). Let V denote the ball of radius B̄ in IRn, i.e., V = {R ∈ IRn : ∥R∥2 ≤ B̄},
let F be a class of real-valued functions on V defined by

F = {R 7→ R⊤π : ∥π∥2 ≤ 1, R ∈ V }. (24)

It is shown in Bartlett (1998) that there is a constant c such that with probability at least 1− δ,
a classifier h(R) = R⊤π ∈ F has a test error R[h] such that

P[Ih(R) < 0] ≤ 1
T
|{ i : Iih(Ri) < γ }| +

√
2
T

(
4c2B̄2

γ2
log2(2T ) − 1 + log

(
2
δ

))
, (25)

for any γ > 0.
Theorem 1 gives a generalization performance of a regression function f(π, R) that belongs

to L := {R 7→ R⊤π : ∥π∥2 ≤ C, ∥R∥2 ≤ BR}. In order to fit the loss of the regression to that of
the classification, we introduce a threshold constant θ beyond which the loss is considered to be
misclassified. We therefore aim to provide a bound on the probability that a randomly drawn
test sample R will have the generalization error greater than θ, i.e., P{f(π,R) > θ}.

Proof of Theorem 1. The statement is proved by modifying the inequality (25) of the gen-
eralization error for classification. To make a regression problem to fit to the setting of (25),
we consider a bound on the probability P{f(π, R) > θ} for test samples R generated from the
same distribution as the training samples. We rewrite θ − f(π, R) as R̃

⊤
π̃, where

π̃ =

 1

π

 , R̃ =

 θ

−R

 .
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Note that the function R̃
⊤
π̃/∥π̃∥2 is a member of F with B̄ =

√
B2

R + θ2.

When αT
β (π) < θ, we regard (θ − αT

β (π))/∥π̃∥2 as γ in (25), i.e., the threshold for training
error. Then we get (12), that is,

P{θ − f(π, R) < 0} ≤ (1 − β) +

√√√√ 2
T

(
4c2(C2 + 1)(B2

R + θ2)
(αT

β (π) − θ)2
log2(2T ) − 1 + log

(
2
δ

))
,

since ∥π̃∥2 ≤
√

C2 + 1 and

1
T
|{ i : θ − f(π, Ri) < θ − αT

β (π)}| = 1 − β+(π) ≤ 1 − β.

Here β+(π) is an upper bound of β provided in Rockafellar and Uryasev (2002) as

β+(π) = ΦT (αT
β (π) |π) =

1
T
|{t : f(π, Rt) ≤ αT

β (π)}|,

where ΦT (·|π) is the empirical distribution of the loss f(π, R).
For the case that αT

β (π) > θ, (θ − αT
β (π))/∥π̃∥2 cannot be taken for γ because γ should be

positive. To resolve this issue, we prepare a classifier −θ + f(π, R) whose decisions are opposed
to those of θ − f(π, R). Applying (25) to the function (−θ + f(π, R))/∥π̃∥2 = −R̃

⊤
π̃/∥π̃∥2,

we get

P{−θ + f(π, R) < 0} = 1 − P{θ − f(π, R) < 0}

≤ 1
T
|{ i : −θ + f(π, Ri) < −θ + αT

β (π) }|

+

√√√√ 2
T

(
4c2(C2 + 1)(B2

R + θ2)
(αT

β (π) − θ)2
log2(2T ) − 1 + log

(
2
δ

))
,

where (αT
β (π)− θ)/∥π̃∥2 > 0 corresponds to γ in (25). Then we get (13) by using a lower bound

of β proved in Rockafellar and Uryasev (2002):

β−(π) := Φ(αT
β (π)− |π) =

1
T
|{t : f(π, Rt) < αT

β (π)}|

to

1 − 1
T
|{ i : f(π, Ri) < αT

β (π) }| = 1 − β−(π) ≥ 1 − β.

2

Proofs of Theorem 2 and Corollary 2. We consider the distribution of f(π, I,R) =
|I − R⊤π| and find a bound on the probability of the loss f(π, I, R) being greater than θ,
P{f(π, I, R) > θ}. Here note that

P{|I − R⊤π| > θ} = P{θ − I + R⊤π < 0} + P{θ + I − R⊤π < 0}.

The function θ − I + R⊤π and θ + I −R⊤π are described as R̃
(1)⊤

π̃ and R̃
(2)⊤

π̃, respectively,
by using

π̃ =

 1

π

 , R̃
(1)

=

 θ − I

R

 , R̃
(2)

=

 θ + I

−R

 .
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Since R̃
(1)⊤

π̃/∥π̃∥2 and R̃
(2)⊤

π̃/∥π̃∥2 are functions of F , the generalization analysis of (25) is
applicable to P{θ − I + R⊤π < 0} and P{θ + I − R⊤π < 0}.

Let αT
β (π) be the β-VaR for the distribution |It −R⊤

t π|, t = 1, . . . , T . When αT
β (π) < θ, we

use the threshold (θ − αT
β (π))/∥π̃∥2 for evaluating the training errors of R̃

(i)⊤
π̃/∥π̃∥2, i = 1, 2.

By noticing that ∥π̃∥2 ≤
√

C2 + 1 and ∥R̃(i)∥2 ≤ BR + θ, (21) follows. Moreover, we can prove
(22) and (23) similarly to the proofs of Theorem 1 and Corollary 1. 2
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