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ON THE STABILITY OF APPROXIMATION OPERATORS 
IN PROBLEMS OF STRUCTURAL DYNAMICS 

ROBERT E. NICKELL 

Bell Telephone Laboratories, Inc., Whippany, New Jersey 

Abstract-Three direct integration schemes for the matrix equations of motion of structural dynamics-the 
Newmark generalized acceleration operator, the Wilson averaging variant of the linear acceleration operator 
and an averaging method based on a variational principle derived by Gurtin-are investigated for stability and 
approximation viscosity. Using established techniques developed by J. von Neumann and Lax and Richtmyer, 
the latter two approximation operators are found to be unconditionally stable. In addition, the constant average 
acceleration version of the Newmark method is found to be unconditionally stable and to possess no attenuation 
due to approximation viscosity. Truncation error due to the low-pass filtering characteristics of spatially dis- 
cretized systems is highly damped by the Wilson averaging and Gurtin averaging operators; all three operators 
exhibit error in the period of the response which is a function of time step size. 

1. INTRODUCTION 

As THE tools of analysis become more versatile, dynamic design requirements will be 
treated in much the same manner as static requirements-using dynamic failure data, 
accumulative damage concepts and safety margins. A particular analytical tool which has 
been used extensively in static stress analysis and which offers tangible promise for evaluat- 
ing the dynamic response of structures is the finite element method, a direct variational 
procedure based on Ritz spatial approximation [l, 21. 

The success of finite element methods when applied to the forced dynamic response 
of structures has, for the most part, been more apparent than real. Most of the step- 
forward integration schemes in use today had their origins in forced response calculations 
for modally decomposed systems where the primary emphasis was on the lowest natural 
modes of the structure. As a result, stability problems were of minor concern ; in general, 
these integration schemes are conditionally stable for a step size small compared to the 
natural period of a one-degree-of-freedom system. In recent years, however, direct integra- 
tion of the equations of motion has become the more popular approach [3,4]. In this 
case, all of the natural modes implicitly influence the integration procedure at each time 
step, greatly complicating considerations of convergence and stability. Practitioners of the 
art who are able to judiciously select time step size in order to achieve the elusive objectives 
of solution stability and reasonable computation time are scarce. Occasional spurious 
results often defy careful post-computation analysis. 

It would seem clear, then, that, if finite element techniques are to achieve the same 
goals in dynamic stress analysis that have been achieved in static stress analysis, an im- 
proved rationale for treating the temporal variation should be sought. 
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2. PRELIMINARIES. THE APPROXIMATION OPERATOR 

In order to discuss the finite element method in this context, it is appropriate to recall 
some useful definitions and notations. For the most part, the treatment outlined here 
follows closely that developed by O’Brien et al. [5j, who discuss the stability analysis 
originated by J. von Neumann, and the classical work of Lax and Richtmyer [6]. The 
difference between these two approaches allegedly concerns the source of error in the 
approximate solution and the tendency for these errors to grow without bound as the 
solution is continued. 

There are three distinct solutions to the initial-boundary-value problem : (1) the exact 
solution of the governing partial differential equation ; (2) the exact solution to the approxi- 
mate equations obtained through spatial and temporal discretization ; and (3) the numerical 
solution of the approximate equations, considering finite-precision arithmetic. Truncation 
error is the measure of the difference between the first two solutions and round-off error 
is the measure of the last solutions. The methods developed by von Neumann and those 
used by Lax and Richtmyer are equally applicable to both types of error, however, since 
both are eventually concerned with the spectral decomposition of the approximation opera- 
tor. It would seem that the source of the error, whether it be from initial or boundary data 
that the discretized system cannot describe or from finite-precision arithmetic by the com- 
puter, is not as important as the spectral character of the approximation operator. 

In the remainder of this work, the discussion will be limited to the displacement for- 
mulation of the finite element method as applied to the linear initial-boundary-value 
problem of structural dynamics ; i.e. the nodal point displacements, velocities and accelera- 
tions at time t, are defined in a Hilbert space H and the nodal point values at time t,+ 1 
are related to those at t, through a linear transformation. This linear transformation, 
generally a function of the time step size, At = t,+l - t,, and the stiffness and inertial 
properties of the structure, will be referred to as the approximation operator. (In [6] this 
operator is denoted the amplification matrix.) It should be noted that the proper formula- 
tion of this problem requires only the one-step transformation described above ; however, 
the linearity of the operator implies that equivalent (in terms of spectral representation) 
multi-level formulas can be deduced. 

To be more precise, let u(t) be the vector in H representing the nodal point displacements, 
velocities and accelerations. Through some procedure, such as applying a restricted first 
variation to Hamilton’s principle or through the Gurtin variational principle [7], the 
matrix equation 

J&u@,+ I) = F+Xiu(t,) (2.1) 

is found. The matrices X0 and X1 and the vector F are, in general, functions of At and the 
physical parameters of the structure. If the matrix X1 can be written in triangular form, 
the formula (2.1) is defined to be explicit ; otherwise, the formula is implicit. The approxima- 
tion operator is, of course, 

d = X;‘X(, (2.2) 

assuming that the inverse of the matrix X1 exists. Then, 

W,+ 1) = G + &WA, (2.3) 
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where 
G = X;‘F. 

If the approximation operator is consistent,? then 

(2.4) 

Ai- { At 
l im u(t, + 1) -G - mu 

provides a consistent approximation to the time derivatives of u(t). The Lax Equivalence 
Theorem then states that a consistent approximation operator for a properly posed 
initial-boundary-value problem is convergent if and only if the approximation operator 
is stable. Convergence in this sense is defined to be convergence in the norm of H. Stability 
is defined in the usual way ; i.e. the approximation operator is uniformly bounded. The 
question is thus resolved to be whether or not, for a given time step size At, the approxima- 
tion operator has bounded spectral radius. 

In the sections to follow, a number of popular approximation operators are investi- 
gated in light of the Lax Equivalence Theorem. It should be pointed out at this time that at 
least two approximation operators-the standard central difference formula and the 
Houbolt backward difference operator [8]-have been investigated for stability by using 
the von Neumann procedure to estimate the spectral radius. The Houbolt operator was 
found to be unconditionally stable [9] while the central difference operator is condi- 
tionally stable [lo] ; i.e. for a time step size larger than 471 times the shortest natural period 
of the structure, the procedure is unstable. These results had been anticipated in earlier 
work [ll]. 

3. THE NEWMARK GENERALIZED ACCELERATION METHOD 

A method for directly integrating the equations of motion of a structural system which 
has been widely used is the Newmark generalized acceleration method [12]. The nodal 
point displacements and velocities are approximated by the expressions 

and 

u(t, + 1) = u(t,) + Ati(t.) + (+ - B)(At)‘%) + B(At)‘% + 1) (3.1) 

u(t,+r) = ti(t,)+(l - r)Azii(t,)+rAtii(t,+i) (3.2) 

where fi and y are the dimensionless parameters of generalized acceleration and ii(t) indi- 
cates the nodal point accelerations. 

Chan et al. [3], have discussed the special case fi = A, y = i, which coincides with a 
procedure developed by Fox and Goodwin [13]. The constant average acceleration 
(/I = $, y = *) and the linear acceleration (/I = 6, y = i_) methods are also special cases. 

For a one-degree-of-freedom system, stability can be investigated by using the Lax- 
Richtmyer approach. For the case where y = f, the nontrivial eigenvalues of the approxima- 
tion operator are 

1 
1 +(B- 1/2)5fi[52(B-t)+5-12/413 

1,2 = 
1+1/2+K 

9 (3.3) 

t The term consistent, in this sense, can be interpreted to mean that the difference between a power series 
expansion of the time derivatives of u(t) and the approximation operator contains only quantities that vanish 
as At + 0. 
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where v = CAtjM and 5 = (At)*~~~; K, C and M are the stiffness, damping and mass of 
the system. 

In order for the solution to be oscillatory for the case of zero damping, 

p 2 b. (3.4) 

This same result can be obtained by taking the limit of (3.3) as the time step grows large 
and insisting that the absolute value of the eigenvalues be bounded from above by unity. 

Similar results can be obtained for a multi-degree-of-freedom system by using the von 
Neumann method with equation (17) of [3] : 

~~]+~[~+B(A~)‘[Xl](yr.+,)j = (At)‘(s(F(t,+,)f+(1_28)(F~t,))+8(Fft,-,))f 

+2Wl-W2(~- ~~[~I]~~(~~)~ 

[~l-$-LCl+PkW2[Rl 1 W-A}. (3.5) 

To investigate stability for an undamped system, the error in the numerical solution at 
time t = t, = nAt is assumed to be given by 

{.$t,)) = e”“‘(d), (3.6) 

where fd) is a vector of arbitrary nodal point errors. Defining the characteristic value 

J_ = eadr (3.7) 

and noting that the error must satisfy the homogeneous form of equation (3.9, then 

where 

([W - ‘[a - Y[Il) (4 = 0, (3.8) 

(n - 1)2 

’ = - jI(AQ2[n2 + (l/j3 in’ 
(3.9) 

But (3.8) can be recognized as the characteristic equation for the natural frequencies of the 
finite element system. Then, since all these frequencies are real and positive (or zero for 
rigid body modes) for the finite element formulation, the eigenvalues of the appro~mation 
operator can be determined, in pairs, as functions of the time step size At and each of the 
system natural frequencies : 

a 
1 +(j?-&~~(At)~ IL- i[(j?-&~~(At)~+ o’(At)‘]+ 

1.2 = 1 + j?02(A# 
(3.10) 

The condition that the spectral radius be bounded dictates that the Newmark method 
is unconditionally stable provided that B 2 $, as before. This result was obtained by a 
different procedure in [12] for a one-degree-of-freedom system. 

The eigenvalues of the approximation operator can be written in polar form for /I = 4 as 

(3.11) 
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where 

R= 1,8=tan- 
l( I-$A#)~ 

(3.12) 

which shows that there is no artificial or inherent damping in the approximation operator. 
In an effort to verify the results obtained in this and subsequent sections, the various 

approximation operators under consideration were used to solve a simple one-degree-of- 
freedom problem-that of a linear oscillator subjected to a step force in time. The exact 
solution is 

u(t) = $[I -cos fit], (3.13) 

where u is the displacement, F0 is the applied force, Q is the natural frequency for a unit 
mass and the initial conditions have been chosen to be quiescent. 

A comparison between the exact solution and the constant average acceleration 
approximation operator is shown in Figs. l-3 for time step sizes At = 0.2, 0.5 and 1-O. 
The agreement between maximum and minimum values generated by the numerical 
solution and the exact solution verify the lack of damping in this operator ; there is an error 
in the vibratory period, however, as indicated by (3.12b). 
solution to the difference equation is 

u(tJ = ARneine + BRnebine 

- EXACT SOLUTION 

To illustrate this, the exact 

(3.14) 

- NEWMARK METHOD. AtzO.2. p= 114. Yal/2 
(CONSTANT AVERAGE ACCELERATION) 

TIME. . ..t 

FIG. 1. Comparison of Newmark operator (/I = $) to exact solution for At = 0.2. 
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- EXACT SOLUTION 

NEWMARK METHOD,At*O.5, B=1/4, Y=112 
(CONSTANT AVERAGE ACCELERATION) 

5. IO. IS. 

TIME. . ..t 

FIG. 2. Comparison of Newmark operator (@ = a) to exact solution for At = 0.5. 

_ EXACT SOLUTION 

@-+a NEWMARK METHOD. At*l.O,,9*1/4,Y=lf2 
(CONSTANT AVERAGE ACCELERATION) 

a, I”. 

TIME. . ..t 

FIG. 3. Comparison of Newmark operator (8 = &) to exact solution for At = 1.0. 
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or, using (3.12a) and noting that 

u(t,) = ,‘cos(%)+Hsin($), (3.15) 

where the constants A’ and I?’ are determined from the initial conditions. The maxima and 
minima of equation (3.15) will occur for 

et, 
L\t = m=T m=0,1,2 ,.... (3.16) 

or at 

t = AtW) 
n -. 

6 
(3.17) 

Calculating 13 from (3.12b) for At = 1, the maximum which occurs at 3n in the exact solution 
is shifted to t A 10.15 in the exact difference solution while the minimum at 4x is shifted 
to t = 13.54. The numerical solution was not obtained at these points but these values 
are in essential agreement with the faired curve of Fig. 3. 

4. THE WILSON AVERAGING OPERATOR 

A modification of the linear acceleration method has been successfully applied to a 
large class of plane [ 143 and axisymmetric [ 151 wave propagation problems. The matrix 
equation of motion for the system is written at time t = t,, 1 ; then, the nodal point accelera- 
tions are assumed to vary linearly in the interval (t,, t,+ 1). This implies that the nodal 
point displacement vector is expanded as a cubic with coefficient vectors defined in terms 
of initial values (at t = t.) of the displacement, velocity, and acceleration and the unknown 
displacements at t,+ 1. Then 

or 

u(o) = B, + (z - t,)B, ++(z - tn)'Bz +&(T - t,)3B3 (4.1) 

U(T) = (r-rfJ3 
(At)3 ” 

(t 
“+’ 

(AQ3-(r--J3 Nt) 1 (At)3 ’ 

+ 
W)*(~ - 6,) -b - t,J3 At@ - t,JZ -(T - t,,J3 

(At)’ 1 [ 
ri(t ) +L 

n 2 At 1 a(t ) n 9 (4.2) 

where t, I z I tn+l. 
Taking appropriate time derivatives and evaluating the results at time r = t,+ 1 gives 

expressions for the nodal point velocities and accelerations 

3 
%+I) = -A$,+1 )-$WW->(rJ (4.3) 

6 
W.,) = @j&t”+1 

6 6. 
) - @pw - g@3 - WJ 
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If (4.4) is solved for u(t,+ r) and substituted into (4.3), the resulting expressions are identical 
to the Newmark operator with y = $ and j3 = &. Since the linear acceleration method can 
be shown to be conditionally stable, the operator was modified to reflect midpoint values at 

From (4.2) 

u(t,) = ~u(i,*,)+~o(t.)+~A~(t.)+~(A~)‘~(~”), (4.6) 

and 

(4.8) 

Equation (4.6) can be solved for u(t,+, ) and these nodal point displacements eliminated 
from (4.7) and (4.8). Then 

l&J = &I@,, -&I+,, - zit(t,) -+i(t.) 
and 

ti(t,) = 24(tm)- ($u@“) - $(t.) - 2ii(t,). 
(At)’ 

(4.9) 

(4.10) 

The stability of this approach can be investigated using the Lax-Richtmyer procedure. 
The characteristic equation for the case of zero damping is 

n3(l+~5)3-~2(1+gy)~(;+~gr)+~(l+~~)(2+~~+~~2)-(~+~$5+g52+~r3) = 0. 

(4.11) 

Following the steps outlined in [9], the spectral radius of the approximation operator can 
be shown to be bounded by unity, providing a sticient condition for stability. 

The moduli of the eigenvalues of the characteristic equation (4.11) are plotted in 
Fig. 4 vs. the time parameter c. These plots indicate the attenuation in the approximation 
operator but give no information about period error. The results of applying the Wilson 
averaging operator to the one-degree-of-freedom problem described in the previous 
section are shown in Figs. 57 (note that the solution increment size is one-half the time 
step size; this is due to finding the solution at the center of the interval and using these 
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FIG. 4. Eigenvalue moduli for Wilson averaging operator. 

values as initial conditions for the next step). The attenuation and period error are strong 
functions of the time step size as can be seen from these plots. 

5. THE GURTIN VARIATIONAL METHOD 

Another method, which is based on Ritz approximation in both the space and time 
variables, has been developed for application to thermoelastic [16] and thermoviscoelastic 

- EXACT SOLUTION 

N WILSON AVERAGING OPERATOR.At=0.2(0.41 

TIME. . ..t 

FIG. 5. Comparison of Wilson averaging operator to exact solution for At = 0.2 (o-4). 
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_ EXACT SOLUTION 

- W,LSoN AVERAGING OPERATOR. Ai = 0.5tl.0) 

TIME. . ..t 

FIG. 6. Comparison of Wilson averaging operator to exact solution for A = 0.5 (1.0) 

- EXACT SOLUTION 

.30-e- WILSON AVERAGING OPERATOR,At = I.0 (2.01 

C 
I. _. 

TIME....1 

FIG. 7. Comparison of Wilson averaging operator to exact solution for At = I.0 (2.0). 



On the stability of approximation operators in problems of structural dynamics 311 

[17] wave propagation problems. Since the foundations of the method were first discussed 
by Gurtin in his now classical treatment of elastodynamics through operational variational 
principles [7], reference will be to the Gurtin method. 

For the problems of structural dynamics, the governing equations of motion are given 
in matrix form by 

[Ml {W> + [Cl {@,I + [Kl w> = {W)) 9 (5.1) 

where [Ml, [C] and [K] represent the mass, damping and stiffness matrices, respectively, 
and {u(t)}, {b(t)} and {ii(t)} denote the nodal point displacements, velocities, accelerations 
and forces, respectively. Taking the Laplace transform (5.1), solving for the transformed 
nodal point displacements, and inverting gives 

[M WI + g’*[Cl W> + g*[Kl WI 

= g*(m) + [M (40)) + aMI@( + t[cl(40)}, (5.2) 

where {u(O)) and (c(O)) are the initial nodal point displacements and velocities; the functions 

g(t) = t, g’(t) = 1 ; (5.3) 

and the convolution of two functions of time is defined by 

(f*g)(t) = 
I 
’ f(t - M) dz. (5.4) 

0 

Equation (5.2) is applicable to step-forward integration schemes provided that the time 
interval (0, t) is interpreted to be (t., t, + 1 ). Then, using a quadratic polynomial assumption 
for the displacement field in time (constant acceleration) similar to that described in [16], 
the equations of motion can be written 

[Ml +$I +d2[Kl 1 {4~)i 

F Kl] @k,>. (5.5) 

The stability of these equations may be investigated in a simple way by developing the 
approximation matrix for a one-degree-of-freedom system. Then, the non-trivial eigen- 
values for this operator (neglecting damping) are 

(5.6) 

These expressions indicate that the spectral radius for this approximation operator is 
unbounded for any nonzero value of At, implying unconditional instability. To verify this, 
the numerical and exact solutions for the one-degree-of-freedom system subjected to step 
load are shown in Fig. 8, indicating error growth which, if the numerical solution were 
continued, would become infinite. 
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- EXACT SOLUTION 

-GURTtN METHOD 

0 5. 10. 15. 20. 

TIME.... t 

Fm. 8. Comparison of unconditionally unstable operator to exact solution for At = 0.2. 

A slight alteration of this operator, which was introduced in [I 71, is similar to the Wilson 
averaging method in that the numerical solution is sought at middle of the time interval 

so that 

t, = zk+-~“.I) (5.7) 

1 
+&>I 1 (5.8) 

The stability of these equations can be investigated in two ways, as previously indicated. 
Using the Lax-Richtmyer procedure for a one-degree-of-freedom system, the non-trivial 
e~genval~es of the approximation operator are found to be 
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When the time step size is allowed to grow large, these eigenvalues become 1 = -i and 
- 1 ; this indicates that the spectral radius remains finite as the time step grows large, 
implying that the procedure is unconditionally stable. 

These eigenvalues can be written in terms of modulus and phase as 

where 

. 
A,,~ = R e*“‘, (5.10) 

and 

8 = tan-’ 
{ 

1% - &&SC2 -&I’ + &?~I’ 
1+7+& 1. 

(5.11) 

(5.12) 

Expressions (5.11) and (5.12) can be used to study the artificial damping present in the 
approximation operator, even in the absence of structural damping, and its effect on 
signal attenuation and dispersion. Consider the solution of the one-degree-of-freedom 
problem previously described. Let t = 0.4, K = M = 1, C = 0 ; then Lj = 0.16 and q = 0. 
As a result, 

R & 0.997 ; e A 0.202. (5.13) 

Since the modulus is supposed to be unity and the angle increment per time step is 

&At = 0.2, (5.14) 

the numerical solution appears to exhibit only slight attenuation and dispersion in each 
time step. The cumulative effects are more striking, however. After one hundred time steps 
the attenuation can be estimated from the relation 

Rloo G (0.997)‘O” = (1 -0.003)‘oo 

& 1-(100)(0XMI3) = 0.7, 
(5.15) 

indicating a substantial amount of cumulative artificial damping. Figure 9 can be used to 
visually verify (5.15). 

One possible way to circumvent the artificial damping is to introduce compensatory 
damping analogous to the derivation in [ 181. Returning to (5.1 l), the modulus can be unity 
only if 

3 = -A< or q = -3-t& (5.16) 

This implies that, in the absence of structural damping in a one-degree-of-freedom system, 
there should be damping equivalent to (choosing the smaller negative root) 

C = -&At)K. (5.17) 

The results of applying this damping to the test problem can be seen in Figs. 9-l 1; the 
numerical solutions with and without compensatory damping are compared to the exact 
solution. 
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:XACT SOLUTION 

;URTIN AVERAGING OPERATOR, 

;URTIN AVERAGING OPERATOR, 

At=O.4, C*O. 

Af=O.4, C;-l/30 

5. IO. IS 

TIME. . ..t 

FIG. 9. Comparison of Gurtin averaging operator (with and without compensatory damping) to exact 
solution for AI = 0.2 (0.4). 

_ EXACT SOLUTION 

- GURTIN AVERAGING OPERATOR, At-1.0, C’O. 

m GURTIN AVERAGING OPERATOR. At = 1.0, C’1112 

TIME .t 

FIG. IO. Comparison of Gurtin averaging operator (with and without compensatory damping) to exact 
solution for Ar = 0.5 (1.0). 
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- EXACT SOLUTION 

++i% GURTIN AVERAGING OPERATOR.At-2.0, C.0. 

S OURTIN AVERAGING OPERATOR,At=2.0,C=-116 

0. 5. IQ. IS. 20. 

TIHE....t 

FIG. 1 I. Comparison of Gurtin averaging operator (with and without compensatory damping) to exact 
solution for AC = I.0 (2.0). 

The stability of the Gurtin averaging operator can be investigate easily for multi- 
degree-of-freedom systems by using the von Neumann procedure. First, the governing 
equation (5.8) is written in an equivalent form which eliminates the velocities and intro- 
duces the displacements at time t,_ 1. Then 

+2 [Ml+~[C]-TlKj 
[ 1 {u(tJ} 

1 (aI- ,I>. (5.18) 

Following the same steps as those used in the stability calculations for the Wilson averag- 
ing operator, the characteristic equation for the error becomes 

where 

CM- WI - u*lxD f4 = 0, (5.19) 

12(L - 1)2 

CD2 = - (&)2(n + l)(A +$-) 
(5.20) 



316 ROBERT E. NICKELL 

Since w represents the natural frequencies of the system, eigenvalue pairs for the approxima- 
tion operator which correspond to these frequencies are found to be : 

;I 
1 - &(At)‘m2 f &i[36(At)2W2 -&At)4~4]f 

1.2 = 
1 +&At) 2 2 (5.21) 

w 

Note the agreement between (5.9) and (5.21). This result implies that the Gurtin averaging 
method is unconditionally stable, since the selection of an arbitrarily large time step size 
does not yield an unbounded spectral radius for the approximation operator. 

6. CONCLUSIONS 

The stability of three widely used temporal approximation operators-the Newmark 
generalized acceleration method, the Wilson averaging method and the Gurtin averaging 
method-has been investigated. These three methods and two other procedures which 
have previously been examined-the central difference method [lo] and the Houbolt 
method [9]+onstitute the bulk of the algorithms being used today for the computation 
of structural dynamic response. Four of these methods are found to be unconditionally 
stable for all values of time step size : (1) the Houbolt backward difference formula ; (2) the 
constant average acceleration version of the Newmark method; (3) the Wilson averaging 
method ; and (4) the Gurtin averaging method. An added feature of the constant average 
acceleration method is that this operator contains no artificial attenuation, although some 
vibratory period error in the numerical solution occurs. Approximation operators (3) and 
(4) above contain both artificial attenuation and period error which are functions of the 
time step size and the natural structural frequencies of the system. A procedure to eliminate 
the artificial attenuation of the Gurtin averaging method by introducing negative damping, 
at least on single-degree-of-freedom systems, has been detailed. 

Finally, it should be noted that, for modally uncoupled forced response calculations, 
there is little to choose between the various procedures ; an explicit form, such as the central 
difference formula, whose stability can be controlled by an appropriate choice of time step 
size, is probably more economical and as accurate as any of the implicit formulas given 
here. When direct integration of the equations of motion is called for, however, a con- 
servative estimate of the highest natural structural frequency of the system under study is 
required in order to assure the stability of the numerical solution ; in this case, the time step 
limitation for a conditionally stable integration scheme may be prohibitive. A more reason- 
able procedure might be to use an unconditionally stable implicit scheme, such as one of 
the four mentioned previously, recognizing that artificial damping may distort the higher 
frequency components of the response (over-damping these modes in many instances). 
A proper understanding of the effects of artificial damping from the approximation operator 
should enable such results to be interpreted meaningfully. 

REFERENCES 

[l] R. COURANT, Variational methods for the solution of problems of equilibrium and vibrations. Bull. Am. 
math. Sot. 49, l-23 (1943). 

[2] L. V. KANTOROVICH and V. I. KRYLOV, Approximate Methods of Higher Analysis. Noordhoff (1958). 
[3] S. P. CHAN, H. L. Cox and W. A. BENFIELD, Transient analysis of forced vibrations of complex structural- 

mechanical systems. JI R. aeronaut. Sot. 66,457460 (1962). 



On the stability of approximation operators in problems of structural dynamics 317 

[4] R. J. Snvzre~, Drastic II, Samso TR-68-226, Aerospace Corporation (1968). 
[5l G. G. O’BRIEN, M. A. HYMAN and S. KAPLAN. A study of the numerical solution of partial differential 

[f4 

VI 

VI 

[91 
[lOI 

[I II 

[I21 

[I31 

1141 

[I51 

[I61 

[I71 

[I81 

equations. J. Math. Phys. 29.223-251 (1951). 
P. D. LAX and R. D. RICHTMYER, Survey of the stability of finite difference equations. Commons pure appl. 
hfarh. 9.267-293 (1956). 
M. E. GURTIN. Variational principles for linear elastodynamics. Archs ration. Mech. Analysis 16. 3450 
(1964). 
J. C. Houao~r, A recurrence matrix solution for the dynamic response of elastic aircraft. J. aeronaut. Sci. 
17, 540-550 (1950). 
D. E. JOHNSON. A proof of the stabdity of the Houbolt method. AIAA Jnl4, 145&1451 (1966). 
J. W. Lacy, P. T. Hsu and E. W. MACK, Stability of a finite-difference method for solving matrix equations. 
AIAA J&3,2172-2173 (1965). 
S. LEVY and W. D. KROLL, Errors introduced by finite space and time increments in dynamic response 
computation. J. Rex natn. Bur. Stand. 51, 57-68 (1953). 
N. M. NEWMARK, A method of computation for structural dynamics. Proc. Am. Sot. cit. Engrs 85, EM3, 
67-94 (1959). 
L. Fox and E. T. GOODWIN, Some new methods for the numerical integration of ordinary differential 
equations. Proc. Camb. Phil. Sot. math. phys. Sci. 45,373-388 (1949). 
E. L. WILSON, A Computer Program for the Dynamic Stress Analysis of Underground Structures, Report 
No. 68-l, Univ. of Calif.. Berkeley (1968). 
E. L. WILSON. Elastic Dynamic Response of Axisymmetric Structures, Report No. 69-2, Univ. of Calif., 
Berkeley (1969). 
R. E. NICK~LL and J. L. SACKMAN, Approximate solutions in linear, coupled thermoelasticity. J. appl. mech. 
35, 255-266 (1968). 
E. B. BECKER and R. E. NICKELL, Stress wave propagation using the extended Ritz method. Proc. 10th 
ASMEIAIAA Structures, Structural Dynamics and Materials Conference (1969). 
J. GRANT and V. K. GABRIELSON, Newmark’s Numerical Integration Scheme with y and fl Equal to Zero, 
Report No. SCL-DC-69-32, Sandia Laboratories (1969). 

APPENDIX 

For the Newmark generalized acceleration method : 
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where q = CAt/M and 5 = [(At)‘K]/M. The quantities K, C and M are the stiffness, 
damping and mass of a one-degree-of-freedom system. 

For the Wilson averaging operator : 
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and 
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For the original Gurtin operator : 
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For the Gurtin averaging operator : 
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A6mpam--C Uenbm onpeAeneHm ~CTO~~YHBOCTH w npw6nwmeHHoii BRJKOCTH, mxeAyIoTcK TPH Heno- 

CpeACTBeHHbIe CXeMbI HHTerpHpOBaHHlI MaTpHYHbIX ypOBHe&iEiii AHHaMUKW CO0p)olteHKi-i. 

A HMeHHO: 0606IUeHHbIii OIIepaTOp yCKOpeHUJI HbIOMapKa, BapEIaHT yCpeAHeHHn JIHHeihiOrO OIlepaTOpa 

yCKOF@eHHR BwnbcoHa H MeTOA yCpeAHetUiSI, OCHOBaHHbI& Ha BapEIaUiiOHHOM IIpHHUliIIe, IIpeAJ-IOZUeHHbIM 

rlOpTEiHOM. nCIIOJlb3ySI MeTOAbl PeIIIeHHX, ITpQJJIOXCeHHbIe ti. @OH HeWarioM W hXTMe45pOM OKa3bI- 

BaeTCII, YTO IIOCJIeAHHe ABa lIpH6JI&f~eHHbIe OIIepaTOpbI HeyCJIOBHO CTa60AbHbI. B AO6aBJIeHHH HaXOAHTCII 

TaKlKe, YTO MOASi~HKaUUR IIOCTORHHOrO yCKOpeHHR AJISI MeTOAa HbSOMapKa HeyClIOBHO CTa6UnbHa H He 

3aTyXaeT BCJIeACTBHe rIpH6mixeHHOfi BR3KOCTH. nOrpeUIHOCTb OT6paCbIBaHWI BCJIeACTBHe XapaKTepHCTKK 

n,,OlT,‘CKaHHff HH3KHX YaCTOT AJIK IIpOCTpaHCTBeHHO AHCK&,eTHbIX CBCTeM OKa3UBaCTCII BbICOKO AeMO&i- 

pOBaHHaK OIIepaTOpaMEi yCl.EAHeHHR ~~JhCOHa H rWpTHIia. &e TpH OIIepaTOpbI AaIOT IIOrpeJlIHOCTb B 

IIepHOA AetiCTBHK peaKUHK B BAAe CKOYK006pa3Hofi +yHKUHH BpeMeHH. 


