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The post-Newtonian approximation is a method for solving
Einstein’s field equations for physical systems in which motions
are slow compared to the speed of light and where gravitational
fields are weak. Yet it has proven to be remarkably effective in
describing certain strong-field, fast-motion systems, including bin-
ary pulsars containing dense neutron stars and binary black hole
systems inspiraling toward a final merger. The reasons for this
effectiveness are largely unknown. When carried to high orders in
the post-Newtonian sequence, predictions for the gravitational-
wave signal from inspiraling compact binaries will play a key role
in gravitational-wave detection by laser-interferometric observa-
tories.

general relativity ∣ gravitational radiation

The first detection of gravitational radiation, anticipated to
occur during this decade, will undoubtedly be a triumph of

experimental physics. It will initiate a new kind of astronomy.
But it will also shine a spotlight on the theory of general relativity
itself. Gravitational radiation is a crucial prediction of Einstein’s
theory; indeed it is a natural prediction, given that the theory is
built on a foundation of Lorentz invariance, which carries with it
the concept of a limiting speed for interactions.

On the other hand, general relativity is a notoriously compli-
cated, nonlinear, tensorial theory of the gravitational field.
Almost no physically useful exact solutions of the theory are
known, and those that are known are endowed with such high
degrees of symmetry that their realm of validity is limited. To
be sure, two of these solutions, due to Schwarzschild and Kerr,
have proven to be of enormous importance, describing as they do
the spacetime of isolated black holes, now widely accepted as
being ubiquitous throughout the universe. Part of the Schwarzs-
child solution also describes the exterior geometry of any static
spherical star or planet. Another extremely useful, albeit special
solution is the Friedman–Robertson–Walker metric of the stan-
dard model of homogeneous and isotropic big-bang cosmology.

But by its very nature, gravitational radiation involves space-
times that are highly nonsymmetrical and highly dynamical. No
exact solution of Einstein’s equations is known that describes the
emission and propagation of gravitational waves from a source,
and the reaction of the source to the emission of those waves.

As a result, most of our understanding of gravitational radia-
tion has come from approximations to Einstein’s equations. One
class of approximations assumes that the gravitational fields in
and around the source are suitably weak (the fields of the pro-
pagating waves weaken progressively as they leave the source),
and that the motions within the source are suitably slow com-
pared to the speed of light. This class includes schemes known
as post-Newtonian theory, which will be the main subject of this
paper, and a related scheme known as post-Minkowki theory.
The underlying idea is to treat spacetime as being that of flat
Minkowski spacetime as the zeroth approximation, and to modify
it by successive corrections.

Another class of approximations takes a known exact solu-
tion of Einstein’s equations, such as the black hole solutions

of Schwarzschild or Kerr, and introduces small perturbations
of those spacetimes, induced, for example, by a small particle
orbiting the hole. In cosmology, perturbations of the Friedman–
Robertson–Walker solution permit treatment of the growth of
large-scale structure in the universe and fluctuations in the cos-
mic background radiation.

A rather different approach to solving Einstein’s equations is
“numerical relativity,” which endeavors to formulate and solve
the exact equations to a precision limited only by available
computer resources for highly dynamical, highly asymmetrical
situations using accurate and robust numerical computations. In
recent years, numerical relativity has significantly enhanced our
understanding of colliding black holes and neutron stars and the
associated emission of gravitational radiation.

Just as exact solutions of Einstein’s equations have limited
realms of validity, so too do approximation schemes. Specifically,
the post-Newtonian (PN) approximation is formally limited to
weak gravitational fields and slow motions. Yet recent experience
has shown that the post-Newtonian approximation is “unreason-
ably effective” in describing physical systems whose characteris-
tics either lie outside the technical realm of validity of the
approximation or push up against the boundary of that realm.

The use of the term “unreasonably effective,” and indeed the
title of this paper, have been shamelessly appropriated from a
famous 1960 paper by Eugene Wigner, entitled “On the unrea-
sonable effectiveness of mathematics in the physical sciences”
(1). In that paper, Wigner states “the enormous usefulness of
mathematics in the natural sciences is something bordering on
the mysterious and … there is no rational explanation for it.”
Einstein presented similar ideas in an address to the Prussian
Academy of Sciences in 1921.

While the considerations of Einstein and Wigner deal with
deep questions of the nature of knowledge of the physical world
and how it is acquired and assembled, the topic of this paper is
much more narrow. Our purpose will be to illustrate the various
ways in which the post-Newtonian approximation has proven its
extraordinary effectiveness in gravitational physics. Nevertheless
it is no less mysterious: We have no good understanding of why
this approximation to general relativity should be so effective.

Because most of these applications of post-Newtonian theory
involve the motions of gravitating bodies in their mutual gravita-
tional fields and the emission of gravitational radiation, we
will begin with a history of the “problem of motion,” one of the
central challenges in the development of general relativity. The
problem has at times been contentious. We will then describe
briefly the nature and structure of the post-Newtonian approxi-
mation, and will review some of the recent developments in the
subject, particularly those involving going to very high orders in
the approximation. We will describe the usefulness of the PN
approximation for characterizing alternative theories of gravity
and as a tool in experimental gravitation. Then we show how
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the PN approximation effectively and accurately accounts for the
observed behavior of binary pulsar systems, despite the presence
of strong gravitational fields in the interiors of the orbiting neu-
tron stars. Finally, we will describe how the PN approximation,
when carried to high enough orders, effectively describes the mo-
tion of and gravitational radiation from inspiralling binary black
hole systems, well into the strong-field region, and how its pre-
dictions merge smoothly with those from numerical relativity.
We will conclude by returning to the mystery of this effectiveness.

Motion and Radiation in General Relativity: A History
At the most primitive level, the problem of motion in general
relativity is relatively straightforward and was an integral part
of the theory as proposed by Einstein*. A “test particle”—that
is, a particle whose mass is sufficiently small that its own contri-
bution to the curvature of spacetime can be ignored—moves on a
geodesic of the curved spacetime in which it finds itself. Under-
lying this concept is the “weak equivalence principle,” which
states that the acceleration of a suitably small body in an external
gravitational field is independent of its internal structure or com-
position, a principle verified by modern experiments to parts in
1013. Using the geodesic equation and an approximate solution
for the spacetime metric around the sun, Einstein was able in
1915 to obtain the relativistic contribution to the perihelion
advance of Mercury, in agreement with observations.

The first attempts to treat the motion of multiple bodies, each
with a finite mass, were made in the period 1916–17 by de Sitter,
Lorentz, and Droste (34). They derived the metric and equations
of motion for a system of N bodies, in what today would be called
the first post-Newtonian approximation of general relativity
(de Sitter’s equations turned out to contain some important
errors). In 1916, Einstein took the first crack at a study of grav-
itational radiation, deriving the energy emitted by a body such as
a rotating rod or dumbbell, held together by nongravitational
forces (5). He made some unjustified assumptions as well as a
trivial numerical error (later corrected by Eddington) (6), but
the underlying conclusion that dynamical systems would radiate
gravitational waves was correct.

The next significant advance in the problem of motion came
20 years later. In 1938, Einstein, Infeld, and Hoffman published
the now legendary “EIH” paper, a calculation of the N-body
equations of motion using only the vacuum field equations of
general relativity (7). They treated each body in the system as
a spherically symmetric object whose nearby vacuum exterior
geometry approximated that of the Schwarzschild metric of a sta-
tic spherical star. They then solved the vacuum field equations for
the metric between each body in the system in a weak-field, slow-
motion approximation. Then, using a primitive version of what
today would be called “matched asymptotic expansions” they
showed that, in order for the nearby metric of each body to match
smoothly to the interbody metric at each order in the expansion,
certain conditions on the motion of each body had to be met.
Together, these conditions turned out to be equivalent to the
Droste–Lorentz N-body equations of motion. Remarkably, the
internal structure of each body was irrelevant, apart from the
requirement that its nearby field be approximately spherically
symmetric.

Around the same time, there occurred an unusual detour in
the problem of motion. Using equations of motion based on de
Sitter’s paper, specialized to two bodies, Levi-Civita (8) showed
that the center of mass of a binary star system would suffer an
acceleration in the direction of the pericenter of the orbit, in
an amount proportional to the difference between the two
masses, and to the eccentricity of the orbit. Such an effect would
be a violation of the conservation of momentum for isolated sys-

tems caused by relativistic gravitational effects. Levi-Civita even
went so far as to suggest looking for this effect in selected nearby
close binary star systems. However, Eddington and Clark (9)
quickly pointed out that Levi-Civita had based his calculations
on de Sitter’s flawed work; when correct two-body equations
of motion were used, the effect vanished, and momentum con-
servation was upheld. Robertson confirmed this using the EIH
equations of motion (10). Ironically, the acceleration of the
center of mass of a binary system is today a subject of great
theoretical and astrophysical interest, albeit for a very different
reason. We will return to this subject later.

Roughly 20 more years would pass before another major attack
on the problem of motion. This period was the continuation of a
time of relative dormancy for the entire subject of general rela-
tivity that lasted from the 1920s until the 1960s. This dormancy
resulted in part from the lack of experimental or observational
relevance for the theory, in part from the perceived complexity
of the theory, and in part from the emergence of new fields of
physics such as nuclear and particle physics in the middle part
of the twentieth century.

But in the middle 1960s, when a revival of general relativity
was in its early phase, Fock in the USSR and Chandrasekhar
in the US independently developed and systematized the post-
Newtonian approximation in a form that laid the foundation
for modern post-Newtonian theory (11, 12). They developed a
full post-Newtonian hydrodynamics, with the ability to treat rea-
listic, self-gravitating bodies of fluid, such as stars and planets. In
the suitable limit of “point” particles, or bodies whose size is small
enough compared to the interbody separations that finite-size
effects such as spin and tidal interactions can be ignored, their
equations of motion could be shown to be equivalent to the EIH
and the Droste–Lorentz equations of motion. Chandrasekhar
and his students also began extending the theory to higher orders
in the post-Newtonian approximation.

An important byproduct of the Fock–Chandrasekhar work
was the discovery by Nordtvedt (13) that, in theories of gravity
alternative to general relativity, the motion of self-gravitating
bodies could depend on their internal structure, in contrast to
general relativity, where a body’s internal structure is irrelevant
to its motion (barring tidal or spin effects). As a result of this
“Nordtvedt effect,” the earth and the moon could fall toward
the sun with slightly different accelerations, because of the small
difference in their internal gravitational binding energy per unit
mass. Nordtvedt’s discovery led to an important new test of gen-
eral relativity using Lunar laser ranging, and to the development
by Nordtvedt and by Will of the parametrized post-Newtonian
(PPN) framework for treating alternative theories and experi-
mental tests. This will be the subject of a later section.

The next important period in the history of the problem of
motion was 1974–79, initiated by the 1974 discovery of the binary
pulsar PSR 1913+16 by Hulse and Taylor (14). Around the
same time there occurred the first serious attempt to calculate
the head-on collision of two black holes using purely numerical
solutions of Einstein’s equations, by Smarr and collaborators
(15), building on the pioneering work by Hahn and Lind-
quist (16).

The binary pulsar consists of two neutron stars, one an active
pulsar detectable by radio telescopes, the other very likely an old,
inactive pulsar. Each neutron star has a mass of around 1.4 solar
masses. The orbit of the system was seen immediately to be quite
relativistic, with an orbital period of only eight hours, and a mean
orbital speed of 200 km∕s, some four times faster than Mercury
in its orbit. Within weeks of its discovery, numerous authors
pointed out that PSR 1913+16 would be an important new test-
ing ground for general relativity. In particular, it could provide for
the first time a test of the effects of the emission of gravitational
radiation on the orbit of the system.

*This history will by necessity be personal and selective. For a detailed technical and
historical review of the problem of motion, see Damour (2).
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However, the discovery revealed an ugly truth about the “pro-
blem of motion.” As Ehlers et al. pointed out in an influential
1976 paper (17), the general relativistic problem of motion
and radiation was full of holes large enough to drive trucks
through. They pointed out that most treatments of the problem
used “delta functions” as a way to approximate the bodies in the
system as point masses. As a consequence, the “self-field,” the
gravitational field of the body evaluated at its own location, be-
comes infinite. While this is not a major issue in Newtonian grav-
ity or classical electrodynamics, the nonlinear nature of general
relativity requires that this infinite self-field contribute to gravity.
In the past, such infinities had been simply swept under the rug.
Similarly, because gravitational energy itself produces gravity it
thus acts as a source throughout spacetime. This means that,
when calculating radiative fields, integrals for the multipole mo-
ments of the source that are so useful in treating radiation begin
to diverge. These divergent integrals had also been routinely
swept under the rug. Ehlers et al. further pointed out that the
true boundary condition for any problem involving radiation
by an isolated system should be one of “no incoming radiation”
from the past. Connecting this boundary condition with the rou-
tine use of retarded solutions of wave equations was not a trivial
matter in general relativity. Finally they pointed out that there
was no evidence that the post-Newtonian approximation, so
central to the problem of motion, was a convergent or even
asymptotic sequence. Nor had the approximation been carried
out to high enough order to make credible error estimates.

During this time, some authors even argued that the “quadru-
pole formula” for the gravitational energy emitted by a system
(see below), while correct for a rotating dumbell as calculated
by Einstein, was actually wrong for a binary system moving under
its own gravity. The discovery in 1979 that the rate of decay of
the orbit of the binary pulsar was in agreement with the standard
quadrupole formula made some of these arguments moot. Yet
the question raised by Ehlers et al. was still relevant: Is the quad-
rupole formula for binary systems an actual prediction of general
relativity?

Motivated by the Ehlers et al. critique, numerous workers
began to address the holes in the problem of motion, and by the
late 1990s most of the criticisms had been answered, particularly
those related to divergences. The one question that remains open
is the nature of the post-Newtonian sequence; we still do not
know if it converges, diverges or is asymptotic. Despite this, it
has proven to be remarkably effective.

The final important development in this history of the problem
of motion was the proposal to build large-scale laser interfero-
metric gravitational-wave observatories, both on the ground and
in space (18–20). It was quickly realized that, in order to maxi-
mize the likelihood of detecting the leading candidate source of
gravitational waves—the final inspiral and merger of binary sys-
tems of neutron stars or black holes—extremely accurate theore-
tical predictions of the gravitational waveform signal would be
needed. This meant that calculations of the equations of motion
and gravitational waves from binary systems would have to be
carried out to many orders beyond the simple post-Newtonian
approximation. The completion of this ambitious program by
many groups worldwide has led to the discovery of the unreason-
able effectiveness of post-Newtonian theory in the extreme realm
of the merger of compact astronomical bodies.

The Post-Newtonian Approximation
The post-Newtonian approximation is based on the assumption
that gravitational fields inside and around bodies are weak and
that characteristic motions of matter are slow compared to the
speed of light. This means that one can characterize the system
in question by a small parameter ϵ, where

ϵ ∼ ðv∕cÞ2 ∼GM∕rc2 ∼ p∕ρc2; [1]

where v,M and r denote the characteristic velocity, mass, and size
or separation within the system; p and ρ are the characteristic
pressure and density within the bodies; G and c are Newton’s
gravitational constant and the speed of light, respectively.

One then incorporates this approximation into methods
for solving Einstein’s equations. Those equations, Gμν ¼
8πðG∕c4ÞTμν, are elegant and deceptively simple, showing how
geometry (in the form of the Einstein tensor Gμν, which is a func-
tion of spacetime curvature) is generated by matter (in the form
of the material energy-momentum tensor Tμν). However, this
is not the most useful form for actual calculations. For post-
Newtonian calculations, a far more useful form is the set of
so-called “relaxed” Einstein equations:

□hαβ ¼ −16πðG∕c4Þταβ; [2]

where □≡ −∂2∕∂ðctÞ2 þ ∇2 is the flat-spacetime wave operator,
hαβ is a “gravitational tensor potential” related to the deviation of
the spacetime metric gαβ from its flat-spacetime Minkowski form
ηαβ by the formula hαβ ≡ ηαβ − ð−gÞ1∕2gαβ, where g is the determi-
nant of gαβ, and where a particular coordinate system has been
specified by the de Donder or harmonic gauge condition
∂hαβ∕∂xβ ¼ 0 (summation on repeated indices is assumed, with
x0 ¼ ct). Because we assume that gravity is weak everywhere,
the field hαβ is “small.” This form of Einstein’s equations bears
a striking similarity to Maxwell’s equations for the vector poten-
tial Aα in Lorentz gauge: □Aα ¼ −4πJα, ∂Aα∕∂xα ¼ 0. The key
difference is that the source on the right hand side of Eq. 2 is
given by the “effective” energy-momentum pseudotensor,

ταβ ¼ ð−gÞTαβ þ ð16πÞ−1Λαβ; [3]

where Λαβ is the nonlinear “field” contribution given by terms
quadratic (and higher) in hαβ and its derivatives (see ref. 21,
equations 20.20, 20.21 for formulae). In general relativity, the
gravitational field itself is a source of gravity, a reflection of
the nonlinearity of Einstein’s equations, and in contrast to the
linearity of Maxwell’s equations.

Eq. 2 is an exact restatement of Einstein’s equations and
depends only on the assumption that spacetime can be covered
by harmonic coordinates. It is called “relaxed” because it can be
solved formally as a functional of source variables without speci-
fying the motion of the source, in the form

hαβðt;xÞ ¼ 4G
c4

Z
C

ταβðt − jx − x0j∕c;x0Þ
jx − x0j d3x0; [4]

where the integration is over the past flat-spacetime null cone C
of the field point ðt;xÞ. The motion of the source is then deter-
mined either by the equation ∂ταβ∕∂xβ ¼ 0 (which follows from
the harmonic gauge condition), or from the usual covariant equa-
tion of motion ∇βTαβ ¼ 0, where ∇β denotes a covariant deriva-
tive. This formal solution can then be iterated in a weak-field
(jjhαβjj ≪ 1) approximation. One begins by substituting hαβ0 ¼ 0
into the source ταβ in Eq. 4, and solving for the first iterate
hαβ1 , and then repeating the procedure sufficiently many times
to achieve a solution of the desired accuracy. This procedure
is often called post-Minkowski theory. If one further imposes
the slow motion (v ≪ c) assumption, one obtains post-Newtonian
theory. For example, to obtain the equations of motion at first
post-Newtonian (1PN) order, two iterations are needed (i.e.,
hαβ2 must be calculated). To obtain the leading gravitational wave-
form and energy flux far from a binary system, two iterations are
needed, while to obtain the leading contributions to gravitational
radiation damping of the source, three iterations are necessary
(see ref. 22 for a discussion).

However, because the source ταβ contains hαβ itself, it is not
confined to a compact region but extends over all spacetime.
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As a result, as emphasized by Ehlers et al. (17), there is a danger
that the integrals involved in various expansions of the solutions
for hαβ will diverge or be ill-defined. Numerous approaches were
developed to handle this difficulty. The “post-Minkowski” meth-
od of Blanchet, Damour, and Iyer solves Einstein’s equations by
two different techniques, one in the near zone (within one grav-
itational wavelength of the source) and one in the far zone, and
uses the method of singular asymptotic matching to join the solu-
tions in an overlap region. The method provides a natural “reg-
ularization” technique to control potentially divergent integrals
(see ref. 23 for a thorough review of this method). The “Direct
Integration of the Relaxed Einstein Equations” (DIRE) ap-
proach of Will, Wiseman, and Pati (see ref. 24) retains Eq. 4
as the global solution but splits the integration into one over
the near zone and another over the far zone and uses different
integration variables to carry out the explicit integrals over the
two zones. In the DIRE method, all integrals are finite and
convergent.

The problem of “delta-functions” was handled in a variety of
ways. One was to import from quantum field theory a set of
powerful techniques called “dimensional regularization,” that,
subject to some benign assumptions about analyticity, could be
used to control the potential infinities order by order in the
PN expansion. Another adapted the EIH matching method to
higher-order PN calculations. A third approach treated each body
as a real, nearly spherical fluid ball and sorted contributions
depending on how they scaled with the size of the ball. In every
case where different methods made a prediction about the equa-
tions of motion or the gravitational-wave signal, they were in
complete agreement.

Among the results of these approaches are formulae for the
equations of motion and gravitational waveform of binary systems
of compact objects, carried out to high orders in a PN expansion.
Here we shall only state a few formulae for the purpose of illus-
tration. For example, the relative two-body equation of motion
has the form

dv
dt

¼ Gm
r2

�
−n̂þ 1

c2
A1PN þ 1

c4
A2PN þ 1

c5
A2.5PN

þ 1

c6
A3PN þ 1

c7
A3.5PN þ…

�
; [5]

where m ¼ m1 þm2 is the total mass, r ¼ jx1 − x2j, v ¼ v1 − v2,
and n̂ ¼ ðx1 − x2Þ∕r. The notation AnPN indicates that the term
is OðϵnÞ relative to the leading Newtonian term −n̂. Explicit
and unambiguous formulae for nonspinning bodies through
3.5PN order have been calculated by various authors, and a num-
ber of spin-orbit and spin-spin contributions have been obtained
(see ref. 23 for a review). Here we quote only the first PN correc-
tion and the leading radiation-reaction term at 2.5PN order:

A1PN ¼
�
ð4þ 2ηÞGm

r
− ð1þ 3ηÞv2 þ 3

2
η_r2

�
n̂þ ð4 − 2ηÞ_rv; [6]

A2.5PN ¼ −
8

15
η
Gm
r

��
9v2 þ 17

Gm
r

�
_r n̂

−
�
3v2 þ 9

Gm
r

�
v
�
; [7]

where η ¼ m1m2∕ðm1 þm2Þ2 and _r ¼ dr∕dt. These terms are
sufficient to analyze the orbit and evolution of binary pulsars.
For example, the 1PN terms are responsible for the periastron
advance of an eccentric orbit, given by dω∕dt ¼ 6πf bGm∕
½ac2ð1 − e2Þ�, where a and e are the semimajor axis and eccentri-
city, respectively, of the orbit, and f b is the orbital frequency, gi-
ven to the needed order by Kepler’s third law 2πf b ¼ ðGm∕a3Þ1∕2.

Another product is a formula for the gravitational field far
from the system, whose spatial components hij (often called
the gravitational “waveform”) are sufficient to determine the
signal detected by a laser interferometer, written schematically
in the form

hijðt;xÞ ¼ 2Gm
Rc4

�
Qij þ 1

c
Qij

0.5PN þ 1

c2
Qij

1PN þ 1

c3
Qij

1.5PN

þ 1

c4
Qij

2PN þ 1

c5
Qij

2.5PN þ…

�
; [8]

where R is the distance from the source, and the variables are to
be evaluated at retarded time t − R∕c. The leading term is the
so-called quadrupole formula, given explicitly by

hijðt;xÞ ¼ 2G
Rc4

Ïijðt − R∕cÞ; [9]

where Iij is the quadrupole moment of the source, and overdots
denote time derivatives. For a binary system this leads to Qij ¼
2ηðvivj −Gmn̂in̂j∕rÞ. For binary systems, explicit formulae for
the waveform through 3.5PN order have been derived (see ref. 23
for a full review).

Given the gravitational waveform, one can compute the rate at
which energy is carried off by the radiation. The lowest-order
quadrupole formula leads to the gravitational-wave energy flux

_E ¼ 8

15
η2

G2m4

r4c5
ð12v2 − 11_r2Þ: [10]

This has been extended to 3.5PN order beyond the quadrupole
formula (23). Formulae for fluxes of angular and linear momen-
tum can also be derived. The 2.5PN radiation-reaction terms in
the equation of motion (Eq. 5) result in a decrease of the orbital
energy at a rate that precisely balances the energy flux (Eq. 10)
determined from the waveform. Averaged over one orbit, this re-
sults in a rate of increase of the binary’s orbital frequency given by

df b
dt

¼ 192π

5
f 2b

�
2πGMf b

c3

�
5∕3

FðeÞ;

FðeÞ ¼ ð1 − e2Þ−7∕2
�
1þ 73

24
e2 þ 37

96
e4
�
; [11]

where M is the so-called “chirp” mass, given by M ¼ η3∕5m.
Notice that by making precise measurements of the phase ΦðtÞ ¼
2π∫ tf ðt0Þdt0 of either the orbit or the gravitational waves (for
which f ¼ 2f b for the dominant component) as a function of
the frequency, one in effect measures the “chirp” mass of the
system.

The Parametrized Post-Newtonian Framework and Tests of
General Relativity
The post-Newtonian approximation has been remarkably effec-
tive as a tool for interpreting experimental tests of general rela-
tivity. This is because, in a broad class of alternative metric
theories of gravity, it turns out that only the values of a set of
numerical coefficients in the post-Newtonian expression for the
spacetime metric vary from theory to theory. Thus one can en-
compass a wide range of alternative theories by simply introdu-
cing arbitrary parameters in place of the numerical coefficients.
This idea dates back to Eddington in 1922, but the “parametrized
post-Newtonian (PPN) framework” was fully developed by
Nordtvedt and by Will in the period 1968–72 (25–27). The frame-
work contains 10 PPN parameters: γ, related to the amount of
spatial curvature generated by mass; β, related to the degree
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of nonlinearity in the gravitational field; ξ, α1, α2, and α3, which
determine whether the theory predicts that local gravitational
experiments could yield results that depend on the location or
velocity of the reference frame; and ζ1, ζ2, ζ3, and ζ4, which de-
scribe whether the theory has appropriate momentum conserva-
tion laws. In general relativity, γ ¼ 1, β ¼ 1, and the remaining
parameters all vanish. For a complete exposition of the PPN
framework see ref. 28.

To illustrate the use of these PPN parameters in experimental
tests, we cite the deflection of light by the sun, an experiment that
made Einstein an international celebrity when the sensational
news of the Eddington–Crommelin eclipse measurements was
relayed in November 1919 to a war-weary world. For a light ray
that passes a distance d from the sun, the deflection is given by

Δθ ¼
�
1þ γ

2

�
4GM
dc2

; [12]

where M is the mass of the sun. The “1∕2” part of the coefficient
can be derived by considering the Newtonian deflection of a par-
ticle passing by the sun, in the limit where the particle’s velocity
approaches c; this was first calculated independently by Henry
Cavendish and Johann von Soldner around 1800 (see, e.g.,
ref. 29). The second “γ∕2” part comes from the bending of
“straight” lines near the sun relative to lines far from the sun,
as a consequence of the curvature of space. A related effect called
the Shapiro time delay, an excess delay in travel time for light
signals passing by the sun, also depends on the coefficient
ð1þ γÞ∕2.

Measurements using visible light, made during solar eclipses,
began with the 1919 measurements of Eddington and his collea-
gues but never reached better than 10% precision, largely
because of the logistical difficulties inherent in such measure-
ments. High precision measurements were achieved using radio
waves beginning in the late 1960s, culminating in the use of Very
Long Baseline Radio Interferometry (VLBI). A 2004 analysis of
VLBI data on 541 quasars and compact radio galaxies distributed
over the entire sky verified general relativity at the 0.02% level
(30). Shapiro time delay measurements began also in the late
1960s, by bouncing radar signals off Venus and Mercury or by
tracking interplanetary spacecraft; the most recent test used
tracking data from the Cassini spacecraft while it was en route
to Saturn, yielding a result at the 0.001% level (31). For a com-
prehensive review of the current status of experimental tests of
GR, see ref. 32.

Other experimental bounds on the PPN parameters came from
measurements of the perihelion shift of Mercury, searches for the
“Nordtvedt effect” in the earth–moon orbit using Lunar laser
ranging, and a variety of geophysical and astronomical observa-
tions. All bounds were consistent with the predictions of general
relativity, as summarized in Table 1.

Binary Pulsars and the Strong Equivalence Principle
Binary pulsars, such as the famous Hulse–Taylor system PSR 1913
+16 (14), illustrate the unreasonable effectiveness of the post-
Newtonian approximation.

Through precise timing of the pulsar “clock,” the orbital para-
meters of the system can be measured with exquisite precision.
These include nonrelativistic “Keplerian” parameters, such as
the orbital eccentricity e, and the orbital period Pb, as well as
a set of relativistic, or “post-Keplerian” parameters. The latter
parameters include the mean rate of advance of periastron
(dω∕dt), the analogue of Mercury’s perihelion shift; the effect
of special relativistic time-dilation and the gravitational redshift
on the observed phase or arrival time of pulses, resulting from
the pulsar’s orbital motion and the gravitational potential of its
companion (represented by a parameter γ0); the rate of decrease
of the orbital period (dPb∕dt), taken to be the result of gravita-

tional radiation damping (apart from a small correction due to
galactic differential rotation); and two parameters related to
the Shapiro time delay of the pulsar signal as it passes by the com-
panion. According to general relativity, the post-Keplerian effects
depend only on e and Pb, which are known, and on the two stellar
masses, which are unknown a priori. By combining the observa-
tions of PSR 1913+16 with the general relativity predictions
for the first three post-Keplerian parameters, one obtains both a
measurement of the two masses and a test of the theory, because
the system is overdetermined. The results are

m1 ¼ 1.4414� 0.0002M⊙; m2 ¼ 1.3867� 0.0002M⊙; [13]

_PGR
b ∕ _POBS

b ¼ 1.0013� 0.0021: [14]

The concordance among the three constraints on the two masses
is shown in Fig. 1 (33). The accuracy in measuring the relativistic
damping of the orbital period is now limited by uncertainties in
our knowledge of the relative acceleration between the solar
system and the binary system as a result of galactic differential
rotation. In the recently discovered “double pulsar” J 0737-3039,
all five post-Keplerian parameters are measured, together with
the mass ratio m1∕m2 derived directly from the ability to observe

Table 1. Current limits on the PPN parameters

Parameter Limit Remarks

γ − 1 2.3 × 10−5 Cassini spacecraft tracking
4 × 10−4 VLBI radio deflection

β − 1 3 × 10−3 perihelion of Mercury
2.3 × 10−4 no Nordtvedt effect

ξ 10−3 no anomalous Earth tides
α1 10−4 no anomalies in lunar, binary-pulsar orbits
α2 4 × 10−7 alignment of sun and ecliptic
α3 2 × 10−20 no pulsar “self” accelerations
ζ1 2 × 10−2 combined PPN bounds
ζ2 4 × 10−5 no binary “self”-accelerations
ζ3 10−8 no Lunar “self”-acceleration
ζ4 - not independent

Fig. 1. Concordance between observations and the post-Newtonian predic-
tions of general relativity for the binary pulsar PSR 1913+16. Inset shows the
full m1-m2 plane and the intersection region “a.” The width of each band
reflects the error in measuring each parameter.
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the motion of both pulsars. All six constraints on the masses
overlap one another on the m1-m2 plane, again consistently with
general relativity.

However, there is something potentially wrong here. All the
post-Keplerian effects discussed above are calculated using
post-Newtonian theory. Yet the neutron stars that compose these
systems have very strong internal gravity. This gravitational bind-
ing energy reduces the total mass of each body by 10 to 20%
compared to the total rest mass of its constituent particles. By
contrast, the orbital energy is only 10−6 of the mass-energy of
the system. Because general relativity is a nonlinear theory, surely
there is some mixing between the strong internal gravity and the
weak interbody gravity. So how can post-Newtonian theory
possibly give valid predictions for such systems?

The reason is a remarkable property of general relativity called
the Strong Equivalence Principle (SEP). A consequence of this
principle is that the internal structure of a body is “effaced,”
so that the orbital motion and gravitational radiation emitted
by a system of well separated bodies depend only on the total
mass of each body and not on its internal structure, apart from
standard tidal and spin-coupling effects. In other words, the
motion of a normal star or a neutron star or a black hole depends
on the body’s total mass and not on the strength of its internal
gravitational fields. This behavior was already implicit in the work
of Einstein, Infeld, and Hoffman, where only the exterior nearby
field of each body was needed, and has been verified theoreti-
cally to at least second post-Newtonian order by more modern
methods.

By contrast, in alternative theories of gravity, SEP is not valid
in general, and internal-structure effects can lead to significantly
different behavior, such as the Nordtvedt effect, a possible differ-
ence in acceleration of the earth compared to the moon in the
solar gravitational field, or such as the emission of dipole grav-
itational radiation from systems of bodies with dissimilar internal
structure. The close agreement of binary-pulsar data with the
predictions of general relativity constitutes a kind of “null” test
of the effacement of strong-field effects in that theory. It also
constitutes a verification of the unreasonable effectiveness of
post-Newtonian theory in this class of strong-gravity systems.

Gravitational Waves and Inspiralling Compact Binaries
Possibly the most remarkable example of the unreasonable effec-
tiveness of post-Newtonian theory is that of the inspiral and
merger of binary systems of compact objects such as neutron stars
and black holes. The decay of the orbit of a compact binary sys-
tem through gravitational-wave emission will ultimately bring the
two bodies together in a final and catastrophic inspiral, followed
by a merger and the likely formation of a terminal black hole.
This process will emit a characteristic gravitational-wave signal
with rising frequency and amplitude (often called a “chirp”) that
should be detectable by the worldwide network of ground-based
laser-interferometric observatories that is expected to be once
again operational following major upgrades, by 2015 (18, 19).
In the low-frequency end of the gravitational-wave spectrum,
the merger of supermassive black holes in the centers of galaxies
will be detectable from cosmological distances by the proposed
space-based interferometer LISA, currently being planned for
a launch after 2020 (20), and by next-generation arrays of radio
telescopes doing pulsar timing (34).

The most effective technique for detecting potential binary
inspiral gravitational-wave signals embedded in the noisy output
of these interferometers is the method ofmatched filtering, where-
by a theoretically generated gravitational-wave signal appropriate
for a given source is cross correlated against the output of the
detector. Because the noise is a random process, such a cross-
correlation will yield a positive signature if there is a signal that
precisely matches the template over the hundreds to thousands of
cycles of signal that are expected to lie within the detectable band,

even if the signal is formally weaker than the noise. With a bank
of template waveforms that depend on the source parameters
such as the two masses, spins, sky location, orbital eccentricity,
etc., it will be possible both to detect signals and to measure
the properties of the source (35). To be most effective, this meth-
od requires very accurate theoretical templates. For the inspiral
part of the signal, these templates have been calculated by many
groups using post-Newtonian theory, with equations of motion
(Eq. 5) and gravitational waveforms (Eq. 8) calculated to
3.5PN order beyond the leading terms (23).

Eventually, however, the inspiral will reach the state where the
orbital velocities are high and the gravitational fields are strong,
so that the post-Newtonian approximation is no longer valid.
Given our lack of knowledge of the convergence properties of the
approximation, it is not known a priori where this should occur.

Meanwhile, it has become increasingly clear that the signal
from the final few inspiral orbits, from the merger of the two
bodies, and even from the final vibrations of the newly formed
black hole will make important contributions to the detectability
of the waves by the interferometers. Luckily, many years after its
primitive beginnings in the 1970s, numerical relativity finally
reached a stage, following critical breakthroughs in 2005 (36),
where researchers could reliably and robustly simulate that final
part of the inspiral process.

It therefore came as a complete surprise, when gravitational
waveforms from post-Newtonian theory were compared with
numerical relativity waveforms for those final orbits, to discover
that the agreement was unreasonably good. The amplitudes and
phases of the waves calculated by the two methods agreed
remarkably well cycle by cycle over many cycles, and this was in
a regime where Gm∕rc2 ∼ 0.2 and v∕c ∼ 0.4, where one had no
right to expect the post-Newtonian approximation to be valid,
even with many high-order correction terms in the PN formulae
(37–39).

This unreasonable agreement was crucial, because it permitted
the development of techniques for “stitching together” post-
Newtonian and numerical relativity waveforms to obtain tem-
plates that are accurate and valid over the entire inspiral and
merger process. Selecting the best stitching method involves tak-
ing into account the noise characteristics of the interferometers
whose data is to be analyzed, and to find stitchings that optimize
all the data analysis protocols, such as false alarm thresholds,
detection confidence criteria, and so on, that are part and parcel
of all signal detection strategies. Because the post-Newtonian
waveforms are analytic expansions, they can be resummed using
such tricks as Padé approximants to suggest alternative ways to
match numerical results. This ongoing work involves a unique
collaboration among post-Newtonian theorists, numerical relati-
vists, and interferometer data analysts (see, e.g., ref. 40), but it
would have been moot had not post-Newtonian theory been so
effective in overlapping with numerical relativity in the strong-
gravity high-speed regime.

Another example of the unreasonable effectiveness of post-
Newtonian theory relates to the “kick” given to a black hole
formed from the merger of two compact objects. In contrast
to the erroneous 1937 claim by Levi-Civita, this is a real effect.
If a system emits gravitational waves anisotropically, then the
waves carry linear momentum away in addition to energy and
angular momentum, and, by virtue of the overall conservation
of momentum, the source must recoil in the opposite direction.
It turns out that the gravitational-wave recoil imparted to a final
black hole could have important astrophysical consequences,
especially for the mergers of supermassive black holes, possibly
ejecting the black hole from the host galaxy, or displacing it
sufficiently from the center to cause interactions with surround-
ing gas or stars, thus generating an electromagnetic counterpart
signal (41).
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Using formulae for the radiated momentum flux valid to
2PN order, Blanchet et al. (42) calculated the kick imparted
to a black hole from the merger of two nonspinning black holes
as a function of their mass difference (for equal masses, the effect
vanishes by symmetry). The resulting kick velocity turned out to
be in remarkable agreement with kicks determined subsequently
using numerical relativity, but only up to the point where the two
black holes were about to merge. The agreement was surprising,
because the dominant contribution to the recoil comes from a
regime where the post-Newtonian approximation should have
failed.

The numerical simulations also showed that, following the
merger, there was a small “antikick,” reducing the final recoil
velocity by around 30% (43). Le Tiec et al. (44) then used a hybrid
calculation that combined formulae for the metric surrounding
two closely spaced black holes accurate to 2PN order as initial
data, combined with the method of black hole perturbation
theory, to study whether the antikick was produced by the linear
momentum radiated during the ringdown phase of the vibrating
final black hole. The analysis found that the combination of the
2PN inspiral kick plus the ringdown kick was in agreement with
the kicks obtained by numerical relativity (Fig. 2).

A final instance of the effectiveness of post-Newtonian theory
came from analyses of the initial configurations used in numerical
relativity to study compact binary inspiral. Because gravitational
radiation tends to circularize binary orbits over time, it is natural
to assume that at late times, the inspiralling binary is in a “qua-
sicircular” orbit—that is, an orbit that is circular, apart from the
slow shrinkage due to gravitational-wave damping. Using numer-
ical relativity it was possible to solve the so-called initial value
equations of Einstein’s theory for such quasicircular orbits for
a variety of systems, including double black holes, double neutron
stars, or mixed systems, with and without spin. These solutions
yielded a set of accurate values for the orbital energy E and an-
gular momentum J as a function of the orbital angular velocity Ω.
In Newtonian gravity (which would apply to widely separated bin-
aries), these variables would be given by E ¼ −ηmðGmΩÞ2∕3∕2
and J ¼ Gηm2ðGmΩÞ−1∕3. But the systems in these simula-
tions were highly relativistic, corresponding to Gm∕rc2 ∼ 0.1
and v∕c ∼ 0.3. Using post-Newtonian expressions for EðΩÞ and
JðΩÞ valid to 3PN order, it was found that the agreement between
the PN and numerical results was remarkably good, at the level of
several percent in most cases (45, 46). In fact it was suggested that
some of the systematic differences between the PN and the
numerical results could be explained if the numerical initial con-
figurations actually corresponded to slightly eccentric orbits
(46–48). This would change the relation between E, J and Ω.
Because one is in a highly relativistic regime, it is not obvious
in solving Einstein’s initial value equations numerically how to
choose the initial separation and initial angular velocity so as
to guarantee a circular orbit initially. Subsequently it was discov-
ered that the numerical evolution of such initial orbits forward in
time did indeed display small amounts of eccentricity. Numerical
methods were then developed to fine-tune the initial configura-
tions to ensure the desired amount of initial eccentricity.

In a related development, Favata recently pointed out the
remarkable effectiveness of the PN approximation for determin-
ing the final stable circular orbit of two black holes (49).

Concluding Remarks
Wigner remarked that the effectiveness of mathematics in the
natural sciences was mysterious. The unreasonable effectiveness
of the post-Newtonian approximation in gravitational physics
is no less mysterious. There is no obvious reason to expect PN
theory to account so well for the late stage of inspiral and merger
of two black holes. The SEP of general relativity undoubtedly
plays a role, by making the internal structure of the bodies irre-
levant until they begin to distort one another tidally. But it does
not explain why PN waveforms should agree so well with numer-
ical waveforms when the orbital velocities are almost half the
speed of light or why recoil velocities calculated using PN meth-
ods should agree so well with those from numerical methods.
Our colleague Robert V. Wagoner once speculated during the
1970s that, because the gravitational redshift effect makes pro-
cesses near black holes appear slower and “weaker” from the
point of view of external observers, the PN approximation should
somehow work better than expected, even under such extreme
conditions. Because of the redshift effect, “strong” gravity is
not as strong as one might think. But nobody has been able to
translate Wagoner’s musing into anything quantitative or predic-
tive. And yet the unreasonable effectiveness of post-Newtonian
theory will likely be an important factor in the anticipated first
detection of gravitational waves.
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