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a b s t r a c t

The computational fluid dynamic (CFD) toolbox OpenFOAM is used to assess the applicability of
Reynolds-averaged Navier–Stokes (RANS) solvers to the simulation of oscillating wave surge converters
(OWSC) in significant waves. Simulation of these flap type devices requires the solution of the equations
of motion and the representation of the OWSC's motion in a moving mesh. A new way to simulate the
sea floor inside a section of the moving mesh with a moving dissipation zone is presented. To assess the
accuracy of the new solver, experiments are conducted in regular and irregular wave traces for a full
three dimensional model. Results for acceleration and flow features are presented for numerical and
experimental data. It is found that the new numerical model reproduces experimental results within the
bounds of experimental accuracy.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The oscillating wave surge converter (OWSC) consists of a
bottom hinged floating flap as shown in Fig. 1. The waves act on
the flap and force it to move back and forth. This motion can be
used to generate electricity, for example using an hydraulic power
take off system. This type of system is typically installed in shallow
water where the horizontal fluid motion is larger than in the deep
sea. Further details of this design have been detailed in Folley et al.
(2007) and Renzi et al. (2014).

While using numerical simulations of ships in a seaway is by
now common engineering practice, the simulation of an OWSC is
not straightforward.

Qian et al. (2005) presented results for the interaction of a wave
driven rotating vane and a shoreline. Simulations were performed
using the interface-capturing Cartesian cut cell flow solver AMA-
ZON-SC, without considering viscous effects and for a two
dimensional case.

Schmitt et al. (2012a) compared pressure distributions derived
from various numerical tools with experimental data for a fixed
OWSC in waves. Results of fully viscous CFD simulations obtained
with OpenFOAM showed very good agreement with experimental
data. The paper also highlights the issues encountered when
applying linearised potential codes like WAMIT to the case of
an OWSC.

Renzi and Dias (2012) developed a semi-analytical linearised
potential solution method and successfully applied it to explain

resonance effects encountered during experiments in small
amplitude waves.

Mahmood and Huynh (2011) presented two dimensional simu-
lations of a bottom hinged vane in oscillating single phase flow.

Bhinder et al. (2012) employed the Flow3d CFD code to obtain
drag coefficients for an OWSC, oscillating in translational modes
only. The body consisted of a cube and was not excited by waves
but forced to oscillate. This work highlights the importance of
viscosity for these types of devices, they estimated performance
reductions of almost 60% when comparing non-viscous and
viscous solutions.

Rafiee et al. (2013) employed a smoothed particle hydrody-
namics (SPH) method to simulate two and three dimensional cases
of an OWSC. Viscosity was modelled by a k–ϵ turbulence model
and results were compared to experimental data. No quantitative
error estimates were given but agreement for flap rotation and
pressure at various locations seems to compare well. It should be
noted that the cases presented extreme events, that is over-
topping waves, are investigated. The wave maker consisted of a
moving piston. Results highlight the need of performing three
dimensional simulations and thus the importance of the flow
around the sides for the motion of the flap.

Schmitt et al. (2012b) reviewed the numerical simulation
demands of the wave power industry and compared the applica-
tion of fully viscous CFD solvers to experimental tank tests.
Simulation results were shown for cases run in OpenFOAM using
a mesh distortion method to accommodate the flap motion and
compared well to experimental data. The paper also gives exam-
ples of useful applications of CFD tools in the design of an OWSC,
while a comparison of run times and cost estimates highlights the
necessity of experimental tank testing as a tool in the wave power
industry.
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Recently Palm et al. (2013) presented simulations of a moored
wave energy converter. While the fluid forces and motions were
solved in OpenFOAM, mooring loads were calculated in a coupled
structural code.

Research on OWSCs has thus mainly been based on experi-
mental, model scale tank testing. In tank tests large areas of
separation and vortices of the order of magnitude of the flap
width can be observed. During a wave cycle these large flow
features move around the flap's side and interact with newly
created vortices. While RANS CFD methods with wall functions
have successfully been applied to turbulent flows, it is not clear
whether the aforementioned flow effects and their effect on the
flap's motion can be captured with these models. Small design
changes to the flap could well affect the separation point, dissipa-
tion and other viscous effects. Before numerical tools can be used
for shape optimisation or similar research, validation against
experimental results is required.

Many floating bodies on a fluid surface can readily be simulated
with a mesh distortion method. However, a typical OWSC rotates
7401 during normal operating conditions and up to 7801 in
extreme conditions. Mesh distortion methods usually fail due to
highly distorted cells between the bottom and the flap. Remeshing
is a possible but very expensive option. In this work we present an
algorithm that avoids these issues. The flap moves within a
cylindrical mesh zone without distorting any cells. The coupling
with the surrounding static mesh is implemented using an
efficient arbitrary mesh interface (AMI). The bottom of the tank
is simply taken into account by setting a dissipation parameter.

Simulation results are compared to tank tests performed in
Queen's University Belfast and show very good agreement.

2. Numerical model

The fluid solver employed in this numerical study is the
interDyMFOAM solver from the OpenFOAM toolbox. The method
is based on the volume of fluid algorithm for incompressible flows.
A more detailed description can be found in Rusche (2002) and
Berberović et al. (2009). The two main extensions to the code are
libraries for the equations of motion and mesh motion algorithm.
These will be presented in more detail in the following sections.
The wavemaker used is based on the method presented in Choi
and Yoon (2009). As a turbulence model the standard SST model
was used.

This section gives an overview of the interFOAM solver class as
provided by the OpenFOAM community and extensions developed
for the simulation of WECs. More information on general CFD
methods can be found in Versteeg and Malalasekera (2007) and
Ferziger and Peric (2002). Detailed explanations of OpenFOAM are
given in Weller et al. (1998) and the algorithms are used for two
phase flow in Berberović et al. (2009), Rusche (2002) and de
Medina (2008).

The mass conversation and Navier–Stokes equation are given as

∇U¼ 0
∂ðρUÞ
∂t

þ∇ðρUUÞ ¼ �∇pþ∇Tþρfb ð1Þ

where the viscous stress tensor is T¼ 2μS�2μð∇UÞI=3 with the
mean rate of strain tensor S¼ 0:5½∇Uþð∇UÞT� and the body forces fb.

In the volume of fluid method only one effective flow velocity
exists. The different fluids are identified by a variable γ which is
bounded between 0 and 1. A value of 0.5 would thus mean the cell
is filled with equal volume parts of both fluids. Intensive proper-
ties of the flow like the density ρ are evaluated depending on the
species variable γ and the value of each species ρb and ρf:

ρ¼ γρf þð1�γÞρb ð2Þ

The transport equation for γ is:

∂γ
∂t

þ∇ðUγÞ ¼ 0 ð3Þ

The interface between the two fluids requires special treatment
to maintain a sharp interface, numerical diffusion would otherwise
‘mix’ the two fluids over the whole domain. In OpenFOAM the
interface compression treatment is derived from the two-fluid
Eulerian model for two fluids denoted with the subscript l and g as
given by (Berberović et al., 2009)

∂γ
∂t

þ∇ðUlγÞ ¼ 0

∂ð1�γÞ
∂t

þ∇ðUgð1�γÞÞ ¼ 0 ð4Þ

This equation can be rearranged to an evolution equation for γ,
with Ur ¼Ul�Ug being the relative or compression velocity:

∂γ
∂t

þ∇ðUγÞþ∇½Urγð1�γÞ� ¼ 0 ð5Þ

The new transport equation for γ now contains a term which is
zero inside a single species but sharpens the interface between
two fluids. This formulation removes the need of specialised
convection schemes as used in other codes.

With nf as the face unit normal flux depending on the gradient
of the species ∇γ

nf ¼
ð∇γÞf

j ð∇γÞf þδn j
Sf ð6Þ

the relative velocity at cell faces is evaluated with ϕ being the face
volume flux:

Ur;f ¼ nfmin Cγ
jϕj
jSf j

;max
jϕj
jSf j

� �� �
ð7Þ

where δn is a factor to account for non-uniform grids, Cγ is a user
defined variable to control the magnitude of the surface compres-
sion when the velocities of both phases are of the same magni-
tude. In the present study Cγ of one was used, which yields
conservative compression. The face volume fluxes are evaluated
as a conservative flux from the velocity pressure coupling algo-
rithm and not as usual from cell centre to face interpolation.

A wave-maker based on the work presented by Choi and Yoon
(2009) was implemented by adding a source term to the momen-
tum equation. In the current implementation the source term is
defined as the product of density ρ, the scalar field defining the
wave-maker region r and the analytical solution of the wave
velocity Uana at each cell centre yielding the adapted impulse
equation:

∂ðρUÞ
∂t

þ∇ðρUUÞ ¼ �∇pþ∇TþρfbþrρUana ð8Þ

The beach is modelled in a similar way by implementing a
dissipative source term s � ρ � U in the impulse equation (1). The

Fig. 1. Artists impression of an OWSC (Aquamarine Power Ltd.).
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dissipation parameter s can then be set to model the beach and
has no effect where set to zero. Tests by Schmitt and Elsaesser
(2015) have shown that a beach extending over approximately one
wavelength and with a value s increasing from 0 to 5 effectively
removes any reflections. Such a beach was used in all simulations.
The parameter s is also used to take into account the sea floor in
the rotating mesh, as will be explained in detail later.

The computational domain consists of two mesh regions, a
cylindrical moving mesh surrounding the flap and a static mesh
representing the remaining tank geometry, Fig. 2. The boundary
conditions used are standard conditions for fixed or moving walls for
all outer walls and the flap, that is zeroGradient for pressure and zero
flux conditions for velocity. Only the patch describing the top of the
domain was set to a fixed pressure and velocity to pressureInletOu-
tletVelocity type, which applies a zero-gradient for outflow, while for
inflow the velocity is set as the normal component of the internal-cell
value. The two domains are coupled via two cylindrical patches, using
arbitrary mesh interface (AMI) patches.

The most important term is the convection term in the Navier
Stokes equation, the linearLimited discretisation scheme was used
for all simulations.

2.1. Equations of motion

Under the assumption that the fluid solver gives correct results
for the hydrodynamic forces FHydro on a body, other outer force
components like gravity and damping forces can be added to
obtain the total outer forces on the body F.

The instantaneous acceleration a can then easily be obtained by
dividing the force F by the mass m:

a¼ F
m

ð9Þ

F and m stand for generalised forces (including moments) and
masses (inertia). Integration of acceleration in time yields velocity,
integration of velocity yields the bodies' new position.

In dense fluids the hydrodynamic force changes during one
time-step, this effect can be considered as an added mass. Not
considering this added mass leads to wrong values for the accel-
eration, see Bertram (2001). It is possible to use iterative methods to
move the body and evaluate the forces within each time step until
the value for a converges and the new equilibrium position is found.
This implicit method will always yield the correct position for each
time step and is unconditionally stable. It could also be expected to
be less dependent on the size of the time step.

Interestingly, few people seem to be aware of the physical
meaning of this effect, although they do notice that iterative
procedures to fulfil Eq. (9) need under-relaxation (Hadẑić et al.,
2005).

In this work, the forces on the body are averaged over several
time-steps, thus avoiding inner iterations while implicitly taking
into account the effect of added mass.

The algorithm used in all simulations of moving flaps in this
work is explained in detail in the following section, the coordinate
reference system and main variables are shown in Fig. 3.

� The total hydrodynamic torque around the hinge M
!

Hydro;n is
evaluated as a vector for the current time-step n by integrating
pressure and viscous shear forces over the patch describing the
flap surface.

� The mass moment M
!

mass is evaluated as follows:

M
!

mass ¼m CoG
��!

n� x!Hinge

� �
� g!

� �
ð10Þ

where CoG
��!

n is the position of the centre of gravity at time-step
n and xHinge is the hinge position.

� The total torque for the current time step MTotal;n around the
hinge is then evaluated as the sum of all components around
the hinge axis vector of unit length a!:

MTotal;n ¼ M
!

massþM
!

Hydro;n

� �
� a! ð11Þ

� MTotal;n is then saved for future time-steps and smoothed by
averaging over the total moments of up to four preceding time
steps:

MSmoothed ¼
P4

k ¼ 0 MTotal;n�kwk

Nw
ð12Þ

with Nw being the number of weights wk larger than zero. In all
simulations presented in this work three weights with a value
of 1 were used.

� The new rotational velocity _ϕnþ1 can now be obtained as

_ϕnþ1 ¼ _ϕnþ
MSmoothedδt

IHinge
ð13Þ

with the current time step δt and the flaps inertia around the
hinge IHinge.

Fig. 2. Example of a computational domain. The cylindrical patch describing the
rotating submesh (blue) can be seen, inside is the flap (red). The boundary of the
fixed outer mesh is shown in white. (For interpretation of the references to colour
in this figure caption, the reader is referred to the web version of this paper.)

Fig. 3. Schematic drawing of flap, coordinate reference system and main variables.
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� Similarly the change in rotation angle ϕ can be obtained as

δϕ¼ ð _ϕnþ1þ _ϕnÞδt
2

ð14Þ

� The position of the centre of gravity is then updated to the new
position, employing Rodrigues' formula (Mebius, 2007):

CoG
��!

n ¼ x!Hinge;CoG cos ðϕÞ

þ a!� x!Hinge;CoG

� �
sin ðϕÞ

þ a!� x!Hinge;CoG

� �
1� cos ðϕÞ	 


a! ð15Þ

with a! as the directional unit vector of the flaps hinge axis and
x!Hinge;CoG the vector from the position of the centre of gravity
at the start of the simulation CoG

��!
0 to the hinge position x!Hinge.

The reason for evaluating the new position of the centre of
gravity from the initial position at the start of the simulation,
and not from the preceding time-step, is to avoid accumulation
of numerical errors.

The algorithm described above was implemented in Open-
FOAM as a new body motion solver. The method can be called
from any mesh motion solver.

2.2. Mesh motion

To adapt the changing computational domain when simulating
moving bodies, different algorithms are available. Mesh distortion
methods preserve the mesh topology but depending on the motion
of the body can result in collapsing or distorted cells. It is also
possible to re-mesh all or only parts of the domain to maintain mesh
quality but re-meshing is often computationally expensive. In this
work, the flap is moved with a cylindrical subset of the mesh. The
interface to the static domain is modelled with a sliding interface
(Farrell and Maddison, 2011). The representation of the sea floor,
which is usually close to the hinge and thus inside the moving
domain, is achieved by setting a dissipation parameter in all cells
below a defined z-coordinate. The dissipation parameter acts as a
negative source term in the impulse equation and reduces the flow
velocity. With this new method the mesh quality around the flap is
preserved without performing expensive re-meshing even when
simulating arbitrary angles of rotation, while enabling the simulation
of flaps rotating around a hinge close to the sea floor. The mesh
motion method was implemented in the OpenFOAM framework. The
actual mesh motion method requires specification of the hinge
positions, the moving mesh zone, the height of the sea floor to
adapt the dissipation parameter and the body motion solver. In this
work the body motion solver described above is used exclusively but
other body motion solvers can be used to perform forced oscillation
tests for example.

Fig. 4 shows two instances during a wave cycle. The flap shape
is shownwith a longitudinal slice of the tank to illustrate the mesh
motion. The sea floor is represented by high dissipation values and
can be seen to change inside the moving cylinder while it rotates.
This means that the mesh resolution around the bottom must be
sufficiently high and the value for the dissipation variable must be
set to a high enough value.

Simulations were run for two different mesh refinement levels
in the rotating cylinder. Refinement levels close to the flap and in
the outer, static mesh are identical, while the rest of the moving
cylinder was refined once more, that is all edges were split into
half. Fig. 5 shows the rotation angle over time for the coarse and
fine meshes. The simulation with the fine mesh shows about 11

larger rotation amplitudes of the flap. The shape and frequency of
the rotation traces agree well.

Results of simulations for different values of the dissipation
value under the floor level are shown in Fig. 6. The maximum
rotation angle for the case with a dissipation coefficient of zero,
that is without taking into account the sea floor inside the rotating
cylinder, is about 10% or 31 less than for the two cases run with
values of 50 or 100. A phase-shift can also be observed. The flap
reaches its maximum rotation angle earlier when the floor is not
considered, this difference increases over the wave period T
displayed. No difference between the two later cases can be
observed, all future cases were run with a value of 50.

The accuracy of the solution is affected in two ways by the
choice of time step. The solution of the flow field and the solution of
the equation of motion of the moving flap are both time step
dependent. Only the solution of the flow field is physically related
to the Courant number. The accuracy of the solution of the equation
of motion can thus not be deemed sufficient for all cases, only
because the flow field is solved correctly. For example, a configura-
tion in which the flow velocities are low but the accelerations of the
flap high, the time step might be too large for the motion solver. It
seems though, that in general the high velocities around the top of
the flap and quickly moving fluid interfaces constrain the time-step
more than the equations of motion. Fig. 7 shows the rotation angle
over time for simulations performed with different Courant num-
bers. Results show very little variation for Courant numbers smaller
than 0.3. In all following simulations a Courant number of
0.2 was used.

3. Experimental setup

The following section describes the experiments performed in
the wave tank at Queen's University Belfast to create data specifi-
cally for the comparison with numerical results.

The wave tank at Queen's University's hydraulic laboratory is
4.58 mwide and 20 m long. An Edinburgh Design Ltd. wave-maker
with 6 paddles is installed at one end. The bottom is made of two
horizontal sections connected by sloped concrete slaps which
allow experimental testing 150 mm and 356 mm above the lowest
floor level at the wave-maker. A beach consisting of wire meshes is
located at the opposite end. An over-view of the bathymetry and
the flap location in the experiments described can be seen in Fig. 8.

The flap measures 0.1 m�0.65 m�0.341 m in x, y and z
directions.

Water-levels in the tank are defined with reference to the
deepest point in the tank, at the wave-maker.

The flap model consists of three units, the fixed support
structure, the hinge and the flap, Fig. 9.

The support structure is made of a 15 mm thick, stainless steel
base plate, measuring 1 by 1.4 m, which is fixed to the bottom of the
tank by screws. The hinge is held in three bearing blocks. To
accommodate an electric drive above water, which was not utilised
in the physical experiments shown here, a platform with three
cylindrical legs is mounted beside the flap.

The flap itself is made of a foam centre piece, sandwiched by
two PVC plates on the front and back face. Three metal fittings
connect the flap to the hinge, enabling changes of the flap even
without draining the tank.

A 3 axis accelerometer from Kistler, Type 8395A010ATT00 was
attached onto the top of the flap. The sensor has a range of 710 g.
Only the y and z channels were used. With the sensor attached to
the top of the flap one channel gives radial arad, the other
tangential accelerations atan.

It should be noted that accelerations in different directions are
measured in slightly different positions inside the sensor. An offset
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of 4 mm is irrelevant when the complete radius of gyration, that is
the distance from hinge to sensor position, is 324.5 mm. To simplify
post-processing only this one value was used and it was assumed
that the sensor positions are directly above the centre of the hinge.

Mass and inertia datawere extracted from 3D CADmodels as follows:

Hinge height 0:476 m
Height of CoG 0:53075 m

Mass 10:77 kg
Inertia 10:77 kg m2

The wave-probes are standard resistance wave gauges, accord-
ing to Masterton and Swan (2008) and can also be assumed to be
accurate within 70.5 mm.

The accuracy of the accelerometer was not independently
assessed. The calibration certificate states a transverse sensitivity
of 3% for all three channels. The largest uncertainty is understood
to stem from the dynamic bearing friction. Although not directly
determined, the value can be assumed to be slightly less than the
static bearing friction, which was derived as follows:

� The flap was left in an upright position (without water in the
tank) within the range of about 11.

� From the weight and the position of the centre of gravity
relative to the hinge it can be calculated that the (static)
bearing friction is about 0.01 Nm.

According to numerical results the total hinge moment amplitude
in the monochromatic seas is about 1 Nm. The expected error due
to bearing friction losses is thus only about 1%.

In the wave series tests simulating the random waves the
moment amplitude obtained from numerical simulations is mostly
around 0.4 Nm. However at t ¼ 14 s it drops to less than 0.2 Nm.
Thus the bearing friction could be a significant part of the total
measured value in the physical experiment.

4. Results

First simulations were run for 20 s in monochromatic seas with a
period of 2.0625 s and an amplitude of 0.038 m. This equates
approximately a wave of 13 s period and 1.5 m wave height at 40th
scale, taking into account the clocking rate of the wave maker. The
Ursell number as defined by Fenton (1998) is 3.4 at the wavemaker
position. For 20 s simulated time 21 h on 32cores were required. The
mesh consists of 950 000 cells. Fig. 10A shows the surface elevation
1 m from the centreline of the tank beside the hinge position.

Numerical results show the start up phase from still water. The
second wave crest (5 s) is slightly higher than the preceding, after
that the surface elevation settles into a regular pattern with almost
constant wave amplitude. While the crest has a smooth sinusoidal
shape all troughs indicate some perturbation.

Experimental data shows some slight noise before the first
crest. The second crest is the highest in the wave trace, similar to
the numerical results. The experimental data shows a distinct drop
in the third trough which is not replicated in the numerical data,
all following waves have a flat crest. The troughs are always
deeper and the crests lower compared to the numerical data. It
seems as if a reflected or radiated wave superimposes the original
incoming wave. The zero crossing periods match very well.

Fig. 10B shows the tangential and radial acceleration compo-
nent in the accelerometers frame of reference. Numerical rotation
data was used to obtain the acceleration components equivalent to
the raw experimental results. The skill value as defined by Dias
et al. (2009) is a suitable metric to compare the accuracy of
numerical models. A value of one would indicate perfect agree-
ment or identical signals. Comparison of numerical and experi-
mental traces yield the following:

0:9801 surface elevation
0:9635 radial acceleration
0:9871 tangential acceleration

Fig. 4. Visualisation of the flap, water surface and the dissipation parameter representing the sea floor.

Fig. 5. Influence of mesh resolution around the sea-floor on flap rotation over one
wave period T.

Fig. 6. Influence of dissipation parameter settings on flap rotation over one wave
period T.
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The relatively low skill value for the radial acceleration is mainly
due to the high frequency noise of the experimental signal, which is
not present in the numerical data and obviously not a real feature of
the flap motion.

The radial acceleration caused by the flap motion acts against
gravity. When the flap moves, radial acceleration drops from the
starting level of 9:81 m=s2 and after settling oscillates with a small
amplitude of about 0:5 m=s2 over each wave cycles around an
average of 7:5 m=s2.

The tangential acceleration shows much larger amplitudes of
up to 7 m=s2. The crests show very good agreement in shape and
amplitude between numerical and experimental data. Some dif-
ferences can be observed in the shape of the troughs. While the
crests are round, the troughs show a little dip when reaching the
highest negative acceleration, the signal than flattens out before
rising again. The flat part is much more pronounced in the
numerical data, the amplitudes of negative acceleration agree very
well between numerical and physical data.

As a second test case a series of waves of similar but varying
amplitude and frequency were calibrated in the physical tank,
results are shown in Fig. 11. The plot shows results in the same
way as previously in Fig. 11.

The skill values are as follows:

0:9671 surface elevation
0:8806 radial acceleration
0:9613 tangential acceleration

and overall less than in the monochromatic case. Again radial
acceleration yields lowest skill values of all three traces.

The wave trace consists of three waves of about 0.03 m height,
followed by waves of significantly smaller amplitudes and periods,
at 15 s a larger wave of about 0.03 m height and about 2 s period
ends the trace. The surface elevation of the numerical and experi-
mental data match well, the skill value is 0.9671. Only the smaller

Fig. 7. Influence of Courant number on flap rotation over one wave period T.

Fig. 8. Sketch of tank bathymetry, water level and flap position. Measurements
are in mm.

Fig. 9. Schematic of flap and support structure.

Fig. 10. Surface elevation measured 1 m from the centre-line of the tank beside the
hinge position (A) and radial (top) and tangential (bottom) acceleration compo-
nents (B) for experimental and numerical tests in monochromatic waves.

Fig. 11. Surface elevation measured 1 m from the centre-line of the tank beside the
hinge position (A) and radial (top) and tangential (bottom) acceleration compo-
nents (B) for experimental and numerical tests for irregular waves.
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amplitude waves around 10 s show some difference, there and at
the very beginning and end of the trace high frequency oscillations
can be seen on the experimental data. Acceleration data compares
very well over all. At around 11 s the numerical data shows higher
accelerations. As some friction had been observed in the bearings
during the experiments, it seems reasonable to assume that these
will be more dominant when exciting forces are smaller, that is the
case with smaller wave heights, when these discrepancies occur. As
in the monochromatic cases high frequency noise can be observed
on the experimental acceleration signals, reducing the skill value
especially for the radial acceleration.

5. Conclusions

A new way of simulating OWSC's in a mesh based RANS CFD
code was presented and the solver tested against two experi-
mental benchmark tank tests. The following conclusions can be
drawn:

� The numerical methods presented in Section 2 enable the
simulation of an OWSC in normal operating conditions.

� The method of using a cylindrical mesh rotating around the
hinge point enables efficient simulation of a moving flap.

� Modelling the bed with a spatially fixed dissipation zone
represents the sea floor well.

� Solution of the equations of motion using three weights for
smoothing is stable even in significant waves.

� Differences between numerical and experimental data are
believed to be caused primarily by differences in exciting
waves, i.e. reflections and other perturbations.

� Further errors are believed to stem from the friction of the
bearings used in the experiments.
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