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Abstract
Direct inversion of acoustic scattering problems is nonlinear. One way to treat
the inverse scattering problem is based on the reversion of the Born–Neumann
series solution of the Lippmann–Schwinger equation. An important issue for
this approach is the radius of convergence of the Born–Neumann series for the
forward problem. However, this issue can be tackled by employing a renor-
malization technique to transform the Lippmann–Schwinger equation from a
Fredholm to a Volterra integral form. The Born series of a Volterra integral
equation converges absolutely and uniformly in the entire complex plane. We
present a further study of this new mathematical framework. A Volterra
inverse scattering series (VISS) using both reflection and transmission data is
derived and tested for several acoustic velocity models. For large velocity
contrast, series summation techniques (e.g., Cesàro summation, Euler trans-
form, etc) are employed to improve the rate of convergence of VISS. It is
shown that the VISS method with summation techniques can provide a rela-
tively good estimation of the velocity profile. The method is fully data-driven
in the respect that no prior information of the model is required. Besides, no
internal multiple removal is needed. This one dimensional VISS approach is
useful for inverse scattering and serves as an important step for studying more
complicated and realistic inversions.
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1. Introduction

Scattering plays a significant role in studying the properties of matter and has enormous
applications for both practical and theoretical areas, such as quantum physics, geophysics,
medical imaging, nondestructive testing, etc The forward scattering problem involves con-
structing the scattered field for given targets. The inverse scattering problem determines one
or more properties of the target from the measurement of the scattered field. Inverse acoustic
scattering has undergone a long study and the methods developed are extensive. The principal
state of the art inverse methods can be divided into two categories: (1) the linearized
approximation inversion (e.g., Cohen and Bleistein 1977, Bleistein 1984, Clayton and
Stolt 1981, Amundsen et al 2005) , which usually uses the Born approximation or Rytov
approximation of the Lippmann–Schwinger equation to develop a forward equation relating
the measured data to the scattering potential. The limitation of the method is that it entails the
small-contrast assumption which means the reference and actual medium should be close. (2)
model matching methods (e.g., Tarantola 1984, Colton and Monk 1989, Colton and
Kress 1998, Pratt 1999, Sirgue and Pratt 2004, Virieux and Operto 2009, Guitton and
Alkhalifah 2013), which define a misfit function and try to minimize it to acquire the best-
fitting model. One shortcoming of this method is its huge computational cost, which often
requires solving the forward problems in an inverse sense. It also requires accurate starting
models and regularization techniques.

Based on the early work of Jost and Kohn (1952), Moses (1956), Razavy (1975) and
Prosser (1969), Weglein and co-workers developed a general approach, called the inverse
scattering series method (Weglein et al 1997, 2000, Weglein and F 2001, Weglein et al 2003,
Shaw 2005, Zhang and Weglein 2009). The method uses the Born–Neumann series solution
of the acoustic Lippmann–Schwinger equation and a related expansion of the potential in
‘orders of the data’. Each term of the potential is determined in terms of the scattering data
and a reference Greenʼs function. Inverse scattering series methods are direct nonlinear
inversion methods that do not require prior information of the potential. The major question
when considering a series solution is the radius of convergence. Prosser
(1969, 1976, 1980, 1982) showed that the convergence of the full inverse scattering series
based on the Fredholm integral equation is very weak. The scattering interaction should be
sufficiently small to allow the convergence of the Born–Neumann series of the acoustic
Lippmann–Schwinger equation. To deal with this issue, Weglein and co-workers introduced
the idea of subseries, which are associated with specific inversion tasks. The specific sub-
series, which are isolated from the whole inverse scattering series, converge.

Sams and Kouri (1969) showed that Lippmann–Schwinger equation can be transformed
to a Volterra equation based on a renormalization technique. It has also been shown that the
Born–Neumann series solution of the Volterra integral equation converges absolutely, irre-
spective of the magnitude of the coupling strength of the interaction. It is due to the property
that the Volterra kernel is triangular. It has been proved in Kouri and Vijay (2003) that the
‘Fredholm determinant’ (Newton 1982) of the Volterra integral equation is equal to one, and
the Born–Neumann expansion, which is identical with the Fredholm solution, possesses the
most robust convergence properties. In that paper, the Volterra inverse scattering series was
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derived for using both reflection and transmission data. However, only the first order of the
VISS was examined for a simple square velocity model. In this paper, we undertake a further
study and test of this approach, especially the effects of high order terms. The benefits of
formulating acoustic scattering in terms of VISS appear substantial. The Greenʼs function for
the Volterra-based Lippmann–Schwinger equation is real and triangular. It allows efficient
numerical implementation, which yields results in reasonable times. In addition, VISS is the
method that deals with full data. The real data contains both primaries and multiples. Many
inverse scattering methods process only the primaries (Shaw 2005, Amundsen et al 2005),
which require the recorded data to undergo a pre-processing step to attenuate all multiples.
However, we stress here that our method does not require the data to go through a multiple
attenuating procedure. Finally, our method is a single comprehensive inversion method, and
no task-oriented subseries needs to be separated.

Although the Born–Neumann series for a Volterra integral equation converges abso-
lutely, the rate of convergence depends on the spatial part of the velocity potential and the
square of the wavenumber. Also, although the choice of reference medium is arbitrary, it is
better if it is close enough to the actual medium. However, it is still conventional to choose
the reference velocity to be a homogeneous one, whose Greenʼs function is known analyti-
cally. This often leads to a velocity potential, which describes the difference between the
actual and reference medium that is too strong. Consequently, the Born–Neumann series will
converge slowly. Besides, we also find that the assumption that the velocity potential can be
expressed as a sum of orders of the data results in problems of convergence when the velocity
potential increases. Instead of spending huge effort to evaluate high orders, convergence
acceleration techniques can improve the rate of convergence of the inverse scattering series.
These techniques can be used with advantage in certain cases to convert a slowly convergent
series into a more rapidly converging one. Sometimes these techniques can also transform
divergent series into convergent ones. In this paper, we study the impact of Cesàro summation
(Evans 1970) and Euler transform methods (Kline 1983) on the convergence of our VISS (a
brief introduction to these techniques is given in appendix A).

The paper is organized as follows: first, we give a brief review of the renormalization of
the Lippmann–Schwinger equation for acoustic scattering. This is used as the mathematical
framework to derive a Volterra Born–Neumann series for forward scattering. The VISS with
both reflection and transmission data is derived based on the Born–Neumann series and the
expansion of the velocity potential in orders of data assumption. We next analyze the result of
the VISS for a single square velocity potential. Then we show numerically how the VISS
method performs for several velocity models.

2. Volterra inverse scattering method

Consider a 1-D constant-density acoustic medium, where the velocity changes with depth,
=c c z( ). The Helmholtz equation for the pressure wave ωP z( , ) in the space-frequency

domain is

ω∂
∂

+ =
⎡
⎣⎢

⎤
⎦⎥z c z

P
( )

0. (1)
2

2

2

2

The spatially varying velocity c(z) can be expressed in terms of a reference velocity c0 and a
velocity potential V(z)
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= −[ ]
c z c

V z
1

( )

1
1 ( ) . (2)

2
0
2

Then the Helmholtz equation can be rewritten as

∂
∂

+ =
⎡
⎣⎢

⎤
⎦⎥z

k P k VP, (3)
2

2
2 2

where ω=k c0 is the wavenumber. As is usual in the Lippmann–Schwinger scattering
theory, the velocity potential is assumed to have compact support, which means the potential
tends to zero sufficiently rapidly as → ± ∞z .

∫= + ′ ′ ′ ′+

−∞

∞
+ +( ) ( ) ( ) ( )P z P k z z G z z V z P z( ) , d , , (4)k k k0 0

where = [ ]( )P k z kz, exp i0 is the solution of the wave equation in the homogeneous medium:

∂
∂

+ =
⎡
⎣⎢

⎤
⎦⎥z

k P 0, (5)
2

2
2

0

and +G k0 is the causal free Greenʼs function multiplied by k2

= −+ − ′G
ki

2
e . (6)k

k z z
0

i

The pressure wave above the interaction can be represented as

= ++ −( )P z P k z R( ) , e , (7)k k
kz

0
i

where Rk is the scattering reflection amplitude

∫= −
−∞

∞
+R

k
z V z P z

i

2
d e ( ) ( ), (8)k

kz
k

i

When the receiver is located after the range of the interaction (z large enough that V(z) tends
to zero), we get the transmission amplitude

∫= −
−∞

∞
− +T

k
z V z P z1

i

2
d e ( ) ( ). (9)k

kz
k

i

We eliminate the − ′z z argument in the causal Greenʼs function in equation (6) to transform
the Lippmann–Schwinger equation to a Volterra equation. This can be done by dividing the
integration of equation (4) over ′z into segments from −∞ to z and from z to ∞

∫ ∫= − ′ ′ ′ − ′ ′ ′+

−∞

− ′ +
∞

′− +( ) ( ) ( ) ( )P z
k

z V z P z
k

z V z P z( ) e
i

2
d e

i

2
d e . (10)( ) ( )

k
kz

z
k z z

k
z

k z z
k

i i i

One then adds and subtracts ∫ ′− ′ ′ ′
∞ − +( ) ( ) ( )k z V z P zi 2 d e

z

k z z
k

i ( ) , and after simple manipula-

tion, obtains

∫
∫

= − ′ ′ ′

− ′ − ′ ′

+

−∞

∞
− ′ +

∞
′− − ′− +⎡⎣ ⎤⎦

( ) ( )

( ) ( )

P z
k

z V z P z

ik
z V z P z

( ) e
i

2
d e

2
d e e . (11)

( )

( ) ( )

k
kz k z z

k

z

k z z k z z
k

i i

i i
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Combining equations (9) and (11), we can obtain

∫
∫

= + ′ ′ ′ ′

= + ′ ′ − ′ ′

͠+

−∞

∞
+

∞
+⎡⎣ ⎤⎦

( ) ( ) ( )

( ) ( ) ( )

P z T z G z z V z P z

T k z k z z V z P z

( ) e d ,

e d sin , (12)

k k
kz

k k

k
kz

z
k

i
0

i

where the new Greenʼs function is given by

η′ = ′ − ′ −͠ ⎡⎣ ⎤⎦( ) ( ) ( )G z z k k z z z z, sin , (13)k0

and η z( ) is the Heaviside function (η =z( ) 0 for <z 0, η =z( ) 1 for ⩾z 0).
Equation (12) is an inhomogeneous Volterra integral equation of the second kind, and it

is identical to the original Lippmann–Schwinger equation (one physical explanation of the
renormalization is given in appendix B). Since Tk is constant for a given frequency, we can try
a solution of the following form to solve equation (12):

= ∼+P z P z T( ) ( ) . (14)k k k

Substituting equation (14) into the renormalized Lippmann–Schwinger equation (12), we
obtain

∫= + ′ ′ ′ ′͠∼ ∼
−∞

∞

( ) ( ) ( )P z P z G z z V z P z( ) d , (15)k k k0 0

Iterating equation (15), we can get the Born–Neumann series for
∼
Pk (Taylor 2012)

∑
= + + + ⋯

=

͠ ͠ ͠

͠

∼

=

∞

( )
P P G VP G VG VP

G V P . (16)

k k k k

n
k

n

0 0 0 0 0 0

0
0 0

In the above equation, we employ an abstract notation, where the coordinates and integral
operator are suppressed.

Because of the triangular nature of
∼
G k0 , the Born–Neumann series of equation (12)

converges absolutely and uniformly on any compact set of z and for non-compactly supported
V, provided V decays faster than −z 2 for large z (Newton 1982, Kouri and Vijay 2003).

2.1. The Volterra inverse scattering series for reflection and transmission data

Substituting equation (16) into equation (8), we obtain

∫ ∑= ′ ͠′
−∞

∞
′

=

∞

( )( )i

k

R

T
z V z G V P

2
d e . (17)k

k

kz

n

k

ni

0
0 0

To solve the above equation, we replace
k

R

T

2i k

k
in equation (17) by ϵ

k

R

T

2i k

k
, where ϵ is an ‘ordering

parameter’, which ultimately is set equal to one. Furthermore, we also assume that we can
express V as a power series in orders of the data (The convergence of this power series of V is
different from the convergence of the Born–Neumann series of Pk, and is not considered in
detail here):

∑ϵ=
=

∞

V V . (18)
j

j
j

1
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Plugging the above equation into equation (17), we obtain:

∫ ∑ ∑ ∑ϵ ϵ ϵ= ′ ͠
−∞

∞
′

=

∞

=

∞

′=

∞
′

′

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟k

R

T
z V G V P

2i
d e . (19)k

k

kz

j

j
j

n
k

j

j
j

n

i

1 0
0

1
0

Collecting coefficients of each power of ϵ yields:

ε =( )V k
k

R

T
: 2

2i
, (20)k

k

1
1

∫ ∫ε = − ′ ″ ′ ″͠′+ ″( ) ( ) ( )V k z z V z G V z: 2 d d e , (21)( )k z z
k

2
2

i
1 0 1

∫ ∫
∫ ∫
∫ ∫ ∫

ε = − ′ ″ ′ ″

− ′ ′ ″

− ′ ″ ′ ″

͠

͠

͠ ͠

″

‴ ‴

′+ ″

′+ ″

′+ ‴

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

V k z z V z G V z

z z V z G V z

z z z V z G V z G V z

: 2 d d e

d d e

d d d e , (22)

( )

( )

( )

k z z
k

k z z
k

k z z
k k

3
3

i
2 0 1

i
1 0 2

i
1 0 1 0 1

etc.
Note that the Greenʼs function of the VISS with R Tk k differs from the causal free Greenʼs

function of ISS. These matrix element expressions for each order are first evaluated in the k
domain

∫= = ⋯
−∞

∞

( )V k z V z j2 d e ( ), 1, 2, 3, . (23)j
kz

j
2i

The result can be transformed to the spatial domain by the inverse Fourier transform

∫π
= = ⋯

−∞

∞
− ( )V z k V k j( )

1
d e 2 , 1, 2, 3, (24)j

kz
j

2i

3. Analysis of analytical results for the Volterra inverse scattering series

In this section, we present the results of the VISS method for a single square barrier or well.
The expression for the single square barrier or well velocity potential is

η η= −V z V z a z( ) ( ) ( )0 , whereV0 is the velocity interaction amplitude, and a is its width, and
η z( ) is the Heaviside function. The reflection and transmission coefficients can be computed
analytically (Ferry 1995, McMurry 1994)

=
−

− − + − −

( )
( ) ( )( )

R
V ak V

V ak V V ak V

sin 1

2 sin 1 2i 1 cos 1
, (25)k

0 0

0 0 0 0

=
−

−

−

( )
T

V

V ak V
R

2 1 e

sin 1
. (26)k

ka

k
0

i

0 0

Using the Volterra inverse scattering series with R Tk k (equation (20) to equation (22)), we
obtain the VISS results for the first three orders for the square well or barrier
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η η=
−

− −V z
V

V
z z z z a( )

1
( ) ( ), (27 )1

0

0

1 2

η η

δ δ

= −
−

− −

+
−

− − + −[ ]

( )

( )

V z
V

V
z z z z

V

V
z z z z z z

b

( )
2 1

( ) ( )

4 1
( ) ( ) ( ) ,

(27 )
2

0
2

0
1 2

0
2

0
2 1 1 2

η η

δ δ

δ δ

=
−

− −

−
−

− − + −

+
−

− ′ − − ′ −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

[ ]

[ ]

V z
V

V
z z z z

V

V
z z z z z z

V

V
z z z z z z

c

( )
1

8 1
( ) ( )

1

16 1
( ) ( ) ( )

1

32 1
( ) ( ) ( ) ,

(27 )

3
0

0

3

1 2

0

0

3

2 1 1 2

0

0

3

2 1
2

2 1

where η z( ) is the Heaviside function and = − −( )z V1 1a
1 2 0 , = + −( )z V1 1a

2 2 0 . For a

barrier, < <V0 10 so that the first-order result has a higher barrier than the true one. For a
well, <V 00 and the first order result is shallower than the true well. Thus, although the first-
order result has the correct analytical form of a square well or barrier, it has an incorrect width
and height (or depth). The second order result contains two contributions: (1) the Heaviside
terms (similar to the first order), (2) the Dirac-δ function and its derivatives. As explained in
Weglein et al (2000), the Heaviside terms are corrections to the amplitude of the velocity
potential, and the Dirac-δ terms can be treated as terms in a Taylor expansion of the Heaviside
function. Thus, the Dirac-δ terms perform the task of correctly locating the reflectors (i.e. the
beginning and ending of the barrier or well). Higher order terms in the VISS will contribute
additional Heaviside and Dirac-δ functions and their derivatives which improve the quality of
the imaging.

For different values of V0, we compare the plots of the exact barrier or well, and the
Heaviside terms of the first three orders V z( )j obtained through the VISS with Rk / Tk data
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Figure 1. Comparison of the exact barrier (dash-dot line) with the first order (dashed
line), the sum of first two orders (dotted line), the sum of first three orders (solid line)
obtained through the VISS for square barrier test cases: (a) =V 0.50 , a = 1.0, (b)

= −V 30 , a = 0.5.



(figure 1). We observe that for a lower velocity potential case ( =V 0.50 ), the VISS shows
excellent convergence after summing the first three orders. Note that for =V 0.50 , one has

=c c21 0 and for = −V 30 , one has =c c 21 0 . Table 1 shows the amplitude error as a
function of the number of Vj terms included. Although the differences between the actual

velocity and the sum of first three orders increases for higher velocity contrast (case = −V 30 ),
the percent error is actually rather small. Furthermore, we can continue computing more terms
if we want to reach higher accuracy.

The errors in the depth (onset of the barrier or well and end of the barrier or well) are
symmetrical when the initial and final values of the velocity are equal and one uses R Tk k data.

In the case of a barrier, the height of the first term >( )A V V1 0 and thus c(z) are over-

estimated. The barrier width is smaller than the exact one, since the corrected term is for a P-
wave traveling faster than it should. In the case of a well, the height of the first term

<( )A V V1 0 and thus c(z) is under-estimated. It results in the predicted well width to be

wider. As mentioned above, the Dirac-δ function and its higher derivatives are associated with
a Taylor expansion of Heaviside functions which correct the error in the depth. This can be
demonstrated by using the expansion of the Heaviside function as a Taylor series. The Taylor
series for a Heaviside function η= −f z z z( ) ( )0 expanded about z0 can be written as:

∑η

η δ δ

= − =
−

!
∂

∂

= − + − − + ′ −
−

+ −

=

∞

=

⎡⎣ ⎤⎦



   





( )

( ) ( )( ) ( )
( )

( )

f z z z
z z

n

f z

z

z z z z z z z z
z z

O z z

( ) ( )
( )

2
. (28)

n

n n

n z z0
0

0 0

0 0 0 0 0
0 0

2

0 0

3

0

On the left hand side of the inverse series results, we write the correction between the
incorrectly-placed Heaviside and the correct Heaviside function as:

η η η η= − − − = − − − −[ [ ])C z V z z z z V z z z z( ) ( ) ( ) ( ) ( ) , (29)left 0 1 0 0 0 1

with =z 00 the exact depth. Its Taylor series around z1 is given by:

δ δ= − − − + ′ −
−

+ −
⎡
⎣⎢

⎤
⎦⎥( )( )C z V z z z z z z

z z
O z z( ) ( )( ) ( )

( )

2
. (30)left 0 1 1 0 1

1 0
2

0 0

3

From

= − − = + −( ) ( )z
a

V z
a

V
2

1 1 ,
2

1 1 , (31)1 0 2 0
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Table 1. Amplitude error in function of the number of Vj terms correction. Here, the

error percentage = ∣ ∑ − ∣=E V V V( )/i j

i
j1 0 0 .

V0 ( )A V1 ( )A V2 ( )A V3 E1 (%) E2 (%) E3 (%)

0.5 0.707 −0.25 0.044 41.4 8.6 0.2
−3.0 −1.500 −1.125 −0.422 50 12.5 1.57



we obtain

− =
− −

−
−z z

V

V
z z

1 1

2 1
( ). (32)1 0

0

0

2 1

Then we find an expression for the exact coefficients of the Taylor series correction in
δ −z z( )n

1 truncated at the second order:

δ

δ

= − −
− − −

−

+ ′ −
− − −

−
+ −

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
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C z V z z
z z V

V

z z
z z V

V
O z z

( ) ( )
2

1 1

1

( )
( )

8

1 1

1
( ) . (33)

left 0 1
2 1 0

0

1
2 1

2
0

0

2

2 1
3

In table 2, we list the δ −z z( )1 and δ′ −z z( )1 coefficients from first three orders and its
percentage error with respect to the exact values for these two velocity examples,.

From the analysis above, we find that the Dirac-δ function and its derivative terms
perform the task of depth correction. For low velocity contrast, the differences of the coef-
ficients between the exact Dirac-δ function and its derivative terms and the series result are
rather small, which means that we can obtain a reasonably accurate depth with only few
orders. The values of δ and δ′ coefficients for the correction of the right side will be the same
since the width error is symmetrical. Combining these analyses for a single square velocity
potential, we find that the Volterra inverse scattering series with R Tk k converges nicely to the
exact interaction. For low velocity contrast, the Volterra inverse series shows excellent
convergence with only a few terms. For high velocity contrast, we need higher order terms to
obtain the desired accuracy.

Numerical results for the Volterra inverse scattering series

In this section, we illustrate the performance of the present VISS method numerically by
applying it to two different types of velocity models: smooth interactions (Gaussian), and a
smooth, but more rapidly varying, interaction (smoothed barrier). The synthetic reflection and
transmission data of these velocity models are generated based on the Volterra forward
scattering algorithm introduced in Yao et al (2013).
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Table 2. Comparison of the values of δ −z z( )1 and δ′ −z z( )1 coefficients for
each case.

V0 a Exact V2

Error
(%) +V V2 3

Error
(%)

δ −z z( )1

0.5 1 0.0732 0.0884 20.77 0.0728 0.55
−3 0.5 0.75 0.5625 25 0.7473 3.12

δ′ −z z( )1

0.5 1 −0.0054 — — −0.0055 1.85
−3 0.5 0.0938 — — 0.1055 12.47



3.1. Application of the VISS to the Gaussian velocity interaction

We report results of our VISS for several different amplitudes V0 of the following Gaussian
velocity interaction

= −
−

V z V( ) e . (34)
z a

b0

( )2

2

Figure 2 shows the numerical VISS results of the first six orders for the Gaussian velocity
potential with an amplitude parameter =V 0.60 . The exact interaction and cumulative sums of
the first six orders are displayed in figure 3. For this model, VISS converges rapidly to the true
velocity potential. The mis-estimation of the velocity has been corrected after summing six
terms. More terms in the VISS for this model are not necessary. Table 3 shows the

corresponding L2-distance5 for =V 0.60 of the cumulative sums of the first six orders and the
Cesàro summation starting from the first partial sum relative to the exact Gaussian velocity
contrast. We find that the summation techniques are not required, and in fact they do not
improve the convergence for this rapidly convergent case.

Figure 4 shows the results of the VISS for the Gaussian velocity potential with an

amplitude parameter = −V 20 , and the corresponding L2-distance is given in table 4.
figure 4(a) is the comparison of the exact velocity potential and the first order of VISS. For
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Figure 2. The first six orders of VISS with R Tk k for the Gaussian interaction with
= = =V a b0.6, 2, 1 20 : (a) first order; (b) second order; (c) third order; (d) fourth

order; (e) fifth order; (f) sixth order.

5 The L2-distance between two function f(x) and g(x) is ∫∥ − ∥ = −f g f x g x dx( ) ( )
a

b

2
2



this large amplitude velocity potential case, the difference between the exact and the first
order approximation is relatively large. And we observe that the VISS gives a good correction
of the Gaussian amplitude after summing six orders (figure 4(b)). However, the higher orders
have large oscillations which make it difficult to get a satisfactory result on either side of the
maximum of the exact velocity potential after just summing the first few orders of the original
series. figure 4(c) shows the sixth order Cesàroʼs summation of the VISS. For this high
velocity contrast, the Cesàro summation gives a better solution by reducing the oscillation. On
the other hand, the Cesàro summation causes error in the amplitude. figure 4(d) shows the
Cesàroʼs summation with a different starting partial sum. We observe that for this case, the
Cesàroʼs summation starting with high order partial sums gives a better result. figure 4(e)
gives the result of the Euler transform of the VISS up to six orders. Compared with Cesàroʼs
summation, the Euler transform does not provide any advantage in improving the rate of
convergence for this Gaussian well case. The study of these two velocity potential models
highlights the need for a method to improve convergence at high contrast. The Cesàro
summation and Euler transform methods are helpful for this smooth interaction case.
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Figure 3. The exact Gaussian interaction (dashed) with = = =V a b0.6, 2, 1 20

compared with: (a) first order; (b) sum of first two orders; (c) sum of first three orders;
(d) sum of first four orders; (e) sum of first five orders; (f) sum of first six orders.

Table 3. The L2-distance in terms of Vj terms correction for the Gaussian interaction
of =V 0.30 .

Orders
included V1 ∑ = V

j j1

2 ∑ = V
j j1

3 ∑ = V
j j1

4 ∑ = V
j j1

5 ∑ = V
j j1

6

VISS 0.167 22 0.053 55 0.019 5 0.008 07 0.003 38 0.001 34
Cesàro 0.167 22 0.081 12 0.050 88 0.037 90 0.030 47 0.025 46
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Figure 4. The exact Gaussian interaction with amplitude = −V 20 (dashed line)
compared with (a) first order; (b) the sum of the first six orders; (c) C6

1 Cesàro

summation; (d) C6
4 Cesàro summation; (e) the Euler transform up to six orders.

Figure 5. Comparison of the exact model 1 (dashed line) and the result of VISS with
R Tk k data: (a) first order of VISS; (b) sum of the first six orders; (c) C6

1 Cesàro

summation; (d) C6
4 Cesàro summation; (e) the Euler transform.

Table 4. The L2-distance of the results for the Gaussian interaction of = −V 20 .

Model V1 ∑ = V
j j1

6
C6

1 C6
4 Euler

Gaussian = −V 20 0.653 77 0.148 17 0.117 36 0.053 98 0.099 59



3.2. Application of VISS to the smoothed barrier interaction

To further test our methodʼs sensitivity to sharper changes in the velocity potential, we
evaluate it with two smoothed barrier interaction models. figure 5 shows the comparison for
the exact interaction model 1 to the first order of VISS, to the sum of the first six orders of
VISS, and to the C6

1 and C6
4 Cesàro summations and Euler transform of VISS up to six order.

table 5 gives the corresponding L2-distance. Similar to the Gaussian velocity potential, the
result of just summing the original series suffers from large oscillations. The Cesàro sum-
mation starting from the first partial sum gives a smoother result but has a small error
compared to the exact amplitude of the interaction. The Cesàro summation starting from the
fourth partial sums offers a reasonable balance between smoothing and amplitude correction
for this case. For this case the Euler transform of VISS gives a relatively better solution for
both amplitude and oscillations.

Figure 6 compares results of the interaction model 2 with a maximum contrast of −1, to
the first order of the VISS, to the sum of first six orders of VISS, and to the C6

1, to the C6
4

Cesàro summations and to the Euler transform up to six orders. Here the first order amplitude
is in less good agreement with the exact value of −1. Large oscillations appear in the direct
summing of the VISS. Similar to other cases, we observe that the Cesàro summation method
and Euler transform improve this case (see table 5).

4. Discussion

We tested our Volterra inverse scattering series for reflection and transmission data on several
1D velocity potentials. We want to stress that the data we use here is the so-called ‘full data’.
We do not need to go through a pre-processing step to remove internal multiples of the
recorded data. Also, the inversion method we presented is a single comprehensive task. In
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Figure 6. Comparison of the exact model 2 (dashed line) and the result of VISS with
R Tk k data: (a) first order of VISS; (b) sum of the first six orders; (c) C6

1 Cesàro

summation; (d) C6
4 Cesàro summation; (e) the Euler transform.



other words, no task-oriented subseries were separated. Furthermore, we do not assume that
the actual medium differs from the reference medium only at locations of rapid change.
Indeed, our method provides good performance for a smooth-varying velocity potential. The
VISS proved to improve the convergence of inverse acoustic scattering problem thanks to the
absolute convergence property of its Volterra kernel. The series acceleration technique is not
necessary for low velocity contrasts where the original VISS already converges very rapidly.
However, we do not get satisfactory results with just a few orders when the interaction is
relatively strong and presents sharp variations. These are the consequences of the slower rate
of convergence of Born–Neumann series and the poorer convergence of the ‘order of data’
assumption for the velocity potential. It is useful to employ series acceleration techniques for
improving the convergence of the VISS for slowly convergent cases. The Cesàro summation
method improvement of the VISS result is straightforward, especially starting with high order
partial sums. The Euler transform method can give a better result for barrier velocity potential
cases, where the original series is an alternating series. Besides, these techniques are also
useful to reduce the Gibbs oscillations due to the truncating of the range of integration over
wavenumber. In Lesage et al (2013) and Yao et al (2013), we also derived the VISS with only
the reflection data. We found that the VISS with both reflection and transmission data shows
better convergence than just using reflection data only. Hence, if possible, recording both
reflection and transmission data simultaneously can increase the quality of inversion.

5. Conclusion and future work

This paper contains a brief review of the Volterra inverse scattering series using both
reflection and transmission data for a one dimensional acoustic medium. As stated by
Weglein (2013), the inverse scattering series is a direct nonlinear inversion method, and it
requires no prior information of the target. Results for a few velocity models showed that the
potential can be estimated by using the Volterra inverse scattering series (VISS). Although the
models used in the numerical tests are simple, the results are encouraging. For low-velocity
contrast, the direct summation of VISS gives a velocity estimation with high precision. The
series acceleration techniques, (e.g, Cesàro summation and Euler transform) show the ability
to improve the rate of convergence for high-velocity contrast. Besides, they also demonstrated
their capability in reducing Gibbs oscillations. In the present study, we have restricted our
attention to 1D acoustic scattering. In the future, we will extend our method to higher
dimensions as well as to elastic wave scattering cases.

Acknowledgments

We thank Total and PGS for their support and the authorization to publish this work. Partial
support of this research under R A Welch Foundation Grant E-0608 is gratefully acknowl-
edged. The author D J K is indebted to and thanks A B Weglein for introducing him to
inverse scattering based on the Born–Neumann expansion.

Inverse Problems 30 (2014) 075006 J Yao et al

14

Table 5. The L2-distance results for smoothed barrier interaction.

Model V1 ∑ = V
j j1

6
C6

1 C6
4 Euler

Model 1 0.435 99 0.167 42 0.071 09 0.082 76 0.077 17
Model 2 0.514 02 0.249 14 0.096 39 0.010 123 0.098 68



Appendix A. Brief review of series summation techniques

In this appendix, we give a few more details regarding the series acceleration techniques we
employed in the paper. One method is the Cesàro method of summation. The Nth partial sum
of the VISS can be represented as

∫

∑

∑
π

=

=

=

= −∞

∞
−( )

S z V z

kV k e

( ) ( )

1
d 2 . (A.1)

n
j

n

j

j

n

j
ikz

1

1

2

The series of equation (A.1) has a problem of convergence when the velocity potential is
relatively strong. This difficulty may be partially resolved by using the Cesàro summation
method which defines the derived series as the limit of the sequence of arithmetic means of
the sequences of partial sums of the series. That is

∑= =
→∞ →∞

=

C z C z
N

S z( ) lim ( ) lim
1

( ). (A.2)
N

N
N

n

N

n
1

The sequence of arithmetic means converges to the same value as the sequence of partial
sums if the latter converges and may still converge even if the series diverges. The Nth Cesàro
sum of the VISS may be written as

∫π
=

−∞

∞
−C z kD e( )

1
d , (A.3)N N

ikz2

where the kernel DN is given by

∑= + −
=

( ) ( ) ( )D k z
N

N j V k,
1

1 2 . (A.4)N
j

N

j
1

If the series is Cesàro sumable, it can be easily verified that the arithmetic mean of the partial
sums of the series with different starting terms will converge to the same value

∑
α

α= =
+ −

=α

α
→∞ →∞

=

C z C z
N

S z( ) lim ( ) lim
1

1
( ); 1, 2, 3 ,... (A.5)

N
N

N
n

N

n

Another technique is the Euler transform. The Euler transform of the Volterra inverse
scattering series ∑ =

∞
V

j j1
can be represented as

∑ ∑ Δ
=

=

∞

=

∞

V
V

2
, (A.6)

j
j

j

j

j
1 1

1

where

∑Δ Δ Δ= = + = ⩾
=

+

⎛
⎝⎜

⎞
⎠⎟V V V V V V

n

j
V n, , , 2. (A.7)n

j

n

j
1

1 1
2

1 2 1 1
0

1

These two summation methods can be used with advantage for the Volterra inverse scattering
series due to sequences of alternating higher order terms as well as in non-convergent cases.
They can also decrease the Gibbs phenomenon that arises for example in the case of sharp
velocity changes.
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Appendix B. The physical meaning of renormalization of Lippmann–Schwinger
equation

Here, we provide a physical explanation for the renormalization of the Lippmann–Schwinger
equation. The Volterra Greenʼs function (13) can be considered as a combination of the free
causal and anti-causal Greenʼs function

η′ = + ′ −͠ + −( )( ) ( )G z z G G z z, , (B.1)k k k0 0 0

where −G k0 is the free anti-causal Greenʼs function multiplied by k2.
Plugging equation (B.1) into the renormalized Lippmann–Schwinger equation (12), we

obtain

∫= + ′ ++
∞

+ − +( )P z T z G G VP( ) e d , (B.2)k k
kz

z
k k k

i
0 0

Comparing with the original Lippmann–Schwinger equation (4), it means that the incident
wave propagating in the interaction above z is identical with the transmitted wave migrated to
depth z. In a particular case, considering the pressure wave at depth z0, which is above the
interaction, the original Lippmann–Schwinger equation is

∫= + ′+
∞

+ +P z P z G VP( ) d , (B.3)k
z

k k0 0 0
0

and the renormalized Lippmann–Schwinger equation is

∫ ∫= + ′ + ′+
∞

− +
∞

+ +P z T z G VP z G VP( ) e d d . (B.4)k k
kz

z
k k

z
k k0

i
0 0

0

0 0

Then we have

∫= + ′
∞

− +P T z G VPe d . (B.5)k
kz

z
k k0

i
0

0

0

It means that the incident pressure wave P0 can be represented by the transmitted pressure

wave T ek
kzi 0 migrated with the anti-causal Greenʼs function −G k0 .
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