
ONE-DIMENSIONAL RANDOM WALKS

1. SIMPLE RANDOM WALK

Definition 1. A random walk on the integers Z with step distribution F and initial state x ∈ Z
is a sequence Sn of random variables whose increments are independent, identically distributed
random variables ξi with common distribution F , that is,

(1) Sn = x +
n
∑

i=1

ξi .

The definition extends in an obvious way to random walks on the d−dimensional integer lat-
ticeZd : the increments are then random d−vectors. Simple random walk onZd is the particular
case where the step distribution is the uniform distribution on the 2d nearest neighbors of the
origin; in one dimension, this is the Rademacher- 1

2 distribution, the distribution that puts mass
1/2 at each of the two values ±1. The moves of a simple random walk in 1D are determined by
independent fair coin tosses: For each Head, jump one to the right; for each Tail, jump one to
the left.

1.1. Gambler’s Ruin. Simple random walk describes (among other things) the fluctuations in a
speculator’s wealth when he/she is fully invested in a risky asset whose value jumps by either
±1 in each time period. Although this seems far too simple a model to be of any practical value,
when the unit of time is small (e.g., seconds) it isn’t so bad, at least over periods on the order of
days or weeks, and in fact it is commonly used as the basis of the so-called tree models for valuing
options.

Gambler’s Ruin Problem: Suppose I start with x dollars. What is the probability that my fortune
will grow to A dollars before I go broke? More precisely, if

(2) T = T[0,A] :=min{n : Sn = 0 or A}

then what is Px {ST = A}?1 Before we try to answer this, we need to verify that T <∞ with prob-
ability 1. To see that this is so, observe that if at any time during the course of the game there is
a run of A consecutive Heads, then the game must end, because my fortune will have increased
by at least A dollars. But if I toss a fair coin forever, a run of A consecutive Heads will certainly
occur. (Why?)

Difference Equations: To solve the gambler’s ruin problem, we’ll set up and solve a difference
equation for the quantity of interest

(3) u (x ) := Px {ST = A}.

First, if I start with A dollars then I have already reached my goal, so u (A) = 1; similarly, u (0) = 0.
Now consider what happens on the very first play, if 0< x < A: either I toss a Head, in which case

1Here and throughout the course, the superscript x denotes the initial state of the process Sn . When there is no
superscript, the initial state is x = 0. Thus, P = P0.
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2 ONE-DIMENSIONAL RANDOM WALKS

my fortune increases by 1, or I toss a tail, in which case it decreases by 1. At this point, it is like
starting the game from scratch, but with initial fortune either x + 1 or x − 1. Hence, u satisfies
the difference equation

(4) u (x ) =
1

2
u (x +1)+

1

2
u (x −1) ∀ 1≤ x ≤ A −1

and the boundary conditions

u (A) = 1;(5)

u (0) = 0.

How do we solve this? The most direct approach is to translate the difference equation into a
relation between the successive differences u (x +1)−u (x ) and u (x )−u (x −1):

(6)
1

2
(u (x +1)−u (x )) =

1

2
(u (x )−u (x −1)).

This equation says that the successive differences in the function u are all the same, and it is easy
to see (exercise!) that the only functions with this property are linear functions u (x ) = Bx +C .
Conversely, any linear function solves (4). To determine the coefficients B ,C , use the boundary
conditions: these imply C = 0 and B = 1/A . This proves

Proposition 1. Px {ST = A}= x/A.

Remark 1. We will see later in the course that first-passage problems for Markov chains and
continuous-time Markov processes are, in much the same way, related to boundary value prob-
lems for other difference and differential operators. This is the basis for what has become known
as probabilistic potential theory. The connection is also of practical importance, because it leads
to the possibility of simulating the solutions to boundary value problems by running random
walks and Markov chains on computers.

Remark 2. In solving the difference equation (4) , we used it to obtain a relation (6) between suc-
cessive differences of the unknown function u . This doesn’t always work. However, in general, if
a difference equation is of order m , then it relates u (x ) to the last m values u (x−1), . . . , u (x−m ).
Thus, it relates the vector

U (x ) := (u (x ), u (x −1), . . . , u (x −m +1)) to the vector

U (x −1) := (u (x −1), u (x −2), . . . , u (x −m )).

If the difference equation is linear, as is usually the case in Markov chain problems, then this
relation can be formulated as a matrix equation MU (x − 1) =U (x ). This can then be solved by
matrix multiplication. Following is a simple example where this point of view is helpful.

Expected Duration of the Game: Now that we know the probabilities of winning and losing, it
would be nice to know how long the game will take. This isn’t a well-posed problem, because the
duration T of the game is random, but we can at least calculate E x T . Once again, we will use
difference equations: Set

(7) v (x ) := E x T ;

then v (0) = v (A) = 0 and, by reasoning similar to that used above,

(8) v (x ) = 1+
1

2
v (x −1)+

1

2
v (x +1) ∀ 1≤ x ≤ A −1.
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The new feature is the additional term 1 on the right — this makes the equation inhomogeneous.
To solve this, we’ll convert the equation to a matrix equation. Set d (x ) = v (x )− v (x − 1); then
after multiplication by 2 the equation (8) becomes

�

d (x +1)
−2

�

=
�

1 1
0 1

��

d (x )
−2

�

,

and so
�

d (m )
−2

�

=
�

1 1
0 1

�m−1�
d (1)
−2

�

Exercise 1. Check that
�

1 1
0 1

�m

=
�

1 m
0 1

�

Given Exercise 1, we can now conclude that d (m ) = d (1)−2(m −1). Since by definition d (m ) =
v (m )−v (m −1) and v (0) = 0, it follows that d (1) = v (1) and

v (m ) =
m
∑

k=1

d k =m v (1)−2
m−1
∑

j=1

j =m v (1)−m (m −1).

The value v (1) = A −1 is now forced by the second boundary condition v (A) = 0. This proves

Proposition 2. E x T =m (A −m ).

Exercise 2. Consider the p−q random walk on the integers, that is, the random walk whose step
distribution is P{ξ1 = +1} = p and P{ξ1 = −1} = q where p + q = 1. Solve the gambler’s ruin
problem for p −q random walk by setting up and solving a difference equation. (Reformulate
the difference equation as a matrix equation, and use this to represent the solution as a matrix
multiplication. To get a simple formula for the matrix product, diagonalize the matrix.)

1.2. Recurrence of Simple Random Walk. The formula for the ruin probability (Proposition 1)
has an interesting qualititative consequence. Suppose we start a simple random walk at some
integer x . By Proposition 1, the probability that we reach 0 before hitting A is 1−x/A, and so the
probability that we will eventually reach state 0 is at least 1−x/A. But this is true for every value
of A > x ; sending A→∞ shows that

(9) Px {reach 0 eventually}= 1.

Clearly, if Sn is a random walk that starts at x , then for any integer y the process Sn + y is a
random walk that starts at x + y ; hence, hitting probabilities are invariant under translations.
Similarly, they are invariant under reflection of the integer lattice through 0 (that is, changing
x to −x ), because reversing the roles of Heads and Tails doesn’t change the probability of any
event. Therefore, (9) implies that for any two integers x , y ,

(10) Px {reach y eventually}= 1.

Define
νy = ν (y ) =min{n : Sn = y }

to be the first passage time to state y . We have just shown that, regardless of the initial point,
νy <∞with probability one. Now of course νy is random, but since the coin tosses after time νy

are unaffected by the course of the random walk up to time νy , it seems clear, intuitively, that the
random walk “restarts” at its first visit to y . The next definition abstracts the essential property
of the random time νy that justifies this.
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Definition 2. A stopping time for the random walk Sn is a nonnegative integer-valued random
variable τ such that for every integer n ≥ 0 the indicator function of the event {τ= n} is a (mea-
surable)2 function of S1,S2, . . . ,Sn .

Proposition 3. (Strong Markov Property) If τ is a stopping time for a random walk {Sn}n≥0, then
the post-τ sequence {Sτ+j }j≥0 is also a random walk, with the same step distribution, started at
Sτ, and is independent of the random path {S j }j≤τ.

Proof. Exercise. Hint: What you must show is that for any two sequences {ωj } and {ω∗j } of ±1,
and for all positive integers k , m ,

Px ({ξj =ωj ∀ j ≤ k }∩ {τ= k }∩ {ξk+j =ω∗j ∀ j ≤m })

= Px ({ξj =ωj ∀ j ≤ k ; }∩ {ν (y ) = k })Py {ξj =ω∗j ∀ j ≤m }.

�

The first-passsage times νy are clearly stopping times. Consequently, by Proposition 3, the
post-νy process is just an independent simple random walk started at y . But (10) (with the roles
of x , y reversed) implies that this random walk must eventually visit x . When this happens, the
random walk restarts again, so it will go back to y , and so on. Thus, by an easy induction argu-
ment (see Corollary 14 below):

Theorem 4. With probability one, simple random walk visits every state y infinitely often.

1.3. First-Passage Time Distribution. We now know that simple random walk on the integers
is recurrent, and in particular that if started in initial state S0 = 0 will reach the level m , for any
integer m , in finite (but random) time. Let τ(m ) be the first passage time, that is,

(11) τ(m ) :=min{n ≥ 0 : Sn =m },

and write τ = τ(1). What can we say about the distribution of τ(m )? Suppose m ≥ 1; then
to reach m , the random walk must first reach +1, so τ(m ) ≥ τ. At this time, the random walk
restarts (Proposition 3). The additional time needed to reach m has the same distribution as
τ(m −1), and is independent of τ. Consequently, τ(m ) is the sum of m independent copies of τ.

To get at the distribution of the first passage time τ we’ll look at its probability generating
function

(12) F (z ) := E z τ =
∞
∑

n=1

z n P{τ= n}.

This is defined for all real values of z less than 1 in absolute value. By elementary rules governing
independence and generating functions, the probability generating function of τ(m ) is F (z )m ,
so if we can find F (z ) then we’ll have a handle on the distributions of all the first passage times.

The strategy is to condition on the first step of the random walk to obtain a functional equation
for F . There are two possibilities for the first step: either S1 =+1, in which case τ= 1, or S1 =−1.
On the event that S1 = −1, the random walk must first return to 0 before it can reach the level
+1. But the amount of time it takes to reach 0 starting from −1 has the same distribution as τ;
and upon reaching 0, the amount of additional time to reach+1 again has the same distribution

2Any reasonable function is measurable. Nonmeasurable functions exist only if you believe in the Axiom of Choice.
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as τ, and is conditionally indepedent of the time taken to get from −1 to 0 (by Proposition 3).
Therefore,

(13) F (z ) =
z

2
+

z

2
E z τ

′+τ′′ ,

where τ′,τ′′ are independent random variables each with the same distribution as τ. Because
the probability generating function of a sum of independent random variables is the product of
their p.g.f.s, it follows that

(14) F (z ) = (z + z F (z )2)/2.

This is a quadratic equation in the unknown F (z ): the solution is F (z ) = (1±
p

1− z 2)/z . But
which is it: ±? For this, observe that F (z )must take values between 0 and 1 when 0< z < 1. It is a
routine calculus exercise to show that only one of the two possibilities has this property, and so

(15) F (z ) =
1−

p

1− z 2

z

Consequences: First, F is continuous at z = 1, but not differentiable at z = 1; therefore, Eτ=∞.
(If a nonnegative random variable has finite expectation, then its probability generating function
is differentiable at z = 1, and the derivative is the expectation.) Second, the explicit formula (15)
allows us to write an explicit expression for the discrete density of τ. According to Newton’s
binomial formula,

(16)
p

1− z 2 =
∞
∑

n=0

�

1/2

n

�

(−z 2)n ,

and so, after a small bit of unpleasant algebra, we obtain

(17) P{τ= 2n −1}= (−1)n−1
�

1/2

n

�

.

Exercise 3. Verify that P{τ= 2n −1}= 22n−1(2n −1)−1
�2n−1

n

�

. This implies that

(18) P{τ= 2n −1}= P{S2n−1 = 1}/(2n −1).

Exercise 4. Show that P{τ= 2n −1} ∼C/n 3/2 for some constant C , and identify C .

Remark 3. Exercise 4 asserts that the density of τ obeys a power law with exponent 3/2.

Exercise 5. (a) Show that the generating function F (z ) given by equation (15) satisfies the rela-
tion

(19) 1− F (z )∼
p

2
p

1− z as z → 1− .

(b) The random variable τ(m ) = min{n : Sn = m } is the sum of m independent copies of τ =
τ(1), and so its probability generating function is the nth power of F (z ). Use this fact and the
result of part (a) to show that for every real number λ> 0,

(20) lim
m→∞

E exp{−λτ(m )/m 2}= e−
p

2λ

Remark 4. The function ϕ(λ) = exp{−
p

2λ} is the Laplace transform of a probability density
called the one-sided stable law of exponent 1/2. You will hear more about this density in con-
nection with Brownian motion later in the course. The result of exercise 2b, together with the
continuity theorem for Laplace transforms, implies that the rescaled random variables τ(m )/m 2

converge in distribution to the one-sided stable law of exponent 1/2.
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FIGURE 1. The Reflection Principle

1.4. Reflection Principle and First-Passage Distributions. There is another approach to find-
ing the distribution of the first passage time τ(m ) that does not use generating functions. This
is based on the Reflection Principle, according to which a simple random walk path reflected in
the line y =m is still a simple random walk path. Here is a precise formulation: Let Sn be a sim-
ple random walk started at S0 = 0, and let τ(m ) be the first time that it reaches the state m ≥ 1.
Define a new path S∗n by

S∗n =Sn if n ≤τ(m );(21)

S∗n = 2m −Sn if n ≥τ(m ).

See Figure 1.4 for an example.

Proposition 5. (Reflection Principle) The sequence {S∗n}n≥0 is a simple random walk started at 0.

Proof. Exercise. HINT: The path S∗n is what you get if you reverse the roles of Heads and Tails after
reaching m . �

Now consider the event τ(m )≤ n . On this event, Sn and S∗n are on opposite sides of m , unless
they are both at m , and they correspond under reflection. Moreover, both processes are simple
random walks, so for any k ≥ 0,

P{S∗n =m +k }= P{Sn =m +k }.

If k ≥ 0, the event Sn =m +k is impossible unless τ(m )≤ n , so

{Sn =m +k }= {Sn =m +k andτ(m )≤ n}.

Hence,

P{Sn =m +k }= P{Sn =m +k andτ(m )≤ n}
= P{S∗n =m +k andτ(m )≤ n}
= P{Sn =m −k andτ(m )≤ n},



ONE-DIMENSIONAL RANDOM WALKS 7

and so

P{τ(m )≤ n}=
∞
∑

k=−∞
P{Sn =m +k andτ(m )≤ n}= P{Sn =m }+2P{Sn >m }.

Exercise 6. Use this identity to derive the formula in exercise 3 for the density of τ(1). Derive a
similar formula for P{τ(m ) = 2n −1}.

1.5. Skip-Free Random Walk and Lagrange Inversion. There is a third approach (and also a
fourth — see section 2.4 below) to determining the distribution of the first-passage time τ(1).
Having already seen two derivations of the basic formula (18) you may already be inclined to be-
lieve that it is true, in which case you should feel free to skip this section. However, the approach
developed here has the advantage that it works for a much larger class of random walks, called
skip-free, or sometimes right-continuous random walks. A skip-free random walk is one whose
step distribution puts no mass on integers ≥ 2. Equivalently,

ξn = 1−Yn

where Y1, Y2, . . . are independent, identically distributed with common distribution

qk := P{Yn = k } for k = 0, 1, 2, . . .

Let Q(w ) =
∑

k≥0 qk w k be the generating function of Yn , and let τ be the first passage time to the

level 1 by the random walk Sn =
∑n

j=1ξj .

Exercise 7. Show that the probability generating function F (z ) := E z τ satisfies the functional
equation

(22) F (z ) = zQ(F (z )).

NOTE: The random variable τ need not be finite with probability one. If this is the case, then
interpret E z τ to mean E z τ1{τ<∞}, equivalently,

E z τ :=
∞
∑

n=1

z n P{τ= n}.

Exercise 8. Let x1,x2, . . . ,xn be a sequence of integers ≤ 1 with sum 1. Show there is a unique
cyclic permutation π of the integers 1, 2, . . . , n such that

(23)
k
∑

j=1

xπ(j ) ≤ 0 ∀ k = 1, 2, . . . , n −1.

HINT: The trick is to guess where the cycle should begin. Try drawing a picture.

Exercise 9. Use the result of Exercise 8 to prove that

(24) P{τ= n}= n−1P{Sn = 1}.

Exercise 10. The Lagrange Inversion Formula states that if F (z ) =
∑∞

n=1 a n z n is a power series
with no constant term that satisfies the functional equation (22) then

na n = (n −1)th coefficient of the power series Q(w )n

Show that when Q(w ) is a probability generating function, this is equivalent to the result of Ex-
ercise 9.
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2. THE WALD IDENTITIES

2.1. Stopping times. Recall (Definition 2) that a stopping time for a random walk Sn is a non-
negative integer-valued random variable such that for every n = 0, 1, 2, . . . the event that τ = n
depends only on the values S1,S2, . . . ,Sn , or, equivalently, on the values ξ1,ξ2, . . . ,ξn . In general,
first-passage times, or first times that some event of interest occurs, are stopping times. A non-
random time n is trivially a stopping time. On the other hand, the last time that (say) a random
walk visits the state 0 is not a stopping time.

Lemma 6. If τ and ν are stopping times for a random walk Sn then so are τ∧ν and τ+ν .

Lemma 7. If τ is a stopping time for a random walk Sn then for each nonnegative integer n the
event {τ≥ n} depends only on ξ1,ξ2, . . . ,ξn−1.

Exercise 11. Supply the proofs.

Consequently, if τ is a stopping time, then for every nonnegative integer n the random vari-
ableτ∧n is also a stopping time. Hence, every stopping time is the increasing limit of a sequence
of bounded stopping times.

2.2. Wald Identities: Statements. In the following statements, assume that Sn is a one-dimensional
random walk with initial value S0 = 0.

First Wald Identity . Assume that the random variables ξj have finite first moment, and let µ =
Eξ1. Then for any stopping time τwith finite expectation,

(25) ESτ =µEτ.

Second Wald Identity . Assume that the random variables ξj have finite second moment, and let
µ= Eξ1 andσ2 = E (ξ1−µ)2. Then for any stopping time τwith finite expectation,

(26) E (Sτ−mτ)2 =σ2Eτ.

Third Wald Identity . Assume that the moment generating function ϕ(θ ) = E e θξ1 of the random
variables ξj is finite at the argument θ . Then for any bounded stopping time τ,

(27) E

�

exp{θSτ}
ϕ(θ )τ

�

= 1.

The hypothesis on the stopping time τ is stronger in the Third Wald Identity than in the first
two. Later we will see an example where equation (27) fails even though Eτ<∞. When Eτ=∞,
the Wald identities can fail in a big way:

Example 1. Let Sn be simple random walk on Z and let τ be the first time that the random walk
visits the state 1. Then

1= ESτ 6=µEτ= 0×∞.

2.3. Proofs of Wald identities 1 and 3. When you study martingales later you will learn that all
three Wald identities are special cases of a general theorem about martingales, Doob’s Optional
Sampling Formula. But it’s instructive to see direct proofs. Everyone should know:

Lemma 8. For any nonnegative integer-valued random variable Y ,

E Y =
∞
∑

n=1

P{Y ≥ n}
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Proof of the First Wald Identity. The essential idea is clearest in the special case whereτ is bounded,
say τ≤M for some integer M . In this case, Sτ can be decomposed as a finite sum

Sτ =
M
∑

n=0

Sn 1{τ= n}=
M
∑

n=1

ξn 1{τ≥ n}.

Since the sum is finite, there is no obstacle to moving the expectation operator E inside the sum,
and so

ESτ =
∑

n=1

Eξn 1{τ≥ n}

But the event {τ≥ n} depends only on the first n−1 increments (Lemma 7), so it is independent
of ξn . Consequently,

Eξn 1{τ≥ n}=µP{τ≥ n},
and so

ESτ =µ
M
∑

n=1

P{τ≥ n}=µEτ.

When τ is not bounded, the analogous decomposition of Sτ leaves us with an infinite sum,
and passing expectations through infinite sums must be done with some care. Here it is possible
to use either the DCT (dominated convergence theorem) or the Fubini-Tonelli theorem to justify
the interchange. Let’s try DCT: Since |ξn | and 1{τ≥ n} are independent,

∞
∑

n=1

E |ξn |1{τ≥ n}=
∞
∑

n=1

E |ξ1|P{τ≥ n}= E |ξ1|Eτ<∞.

Hence, by DCT,

ESτ = E
∞
∑

n=1

ξn 1{τ≥ n}

=
∞
∑

n=1

Eξn 1{τ≥ n}

=
∞
∑

n=1

µP{τ≥ n}

=µEτ.

�

Proof of the Third Wald Identity. The key to this is that the expectation of a product is the product
of the expectations, provided that the factors in the product are independent. Fix indices 0≤ k <
m . The event {τ= k } depends only on the random variables ξ1,ξ2, . . . ,ξk , and so is independent
of the random variable ξm . Similarly, the product e θSk 1{τ = k } is independent of

∑n
m=k+1ξm .

Consequently, by the product rule, for any n ≥ k ,

E exp{θSn}1{τ= k }= E exp{θSk }exp{θ (Sn −Sk )}1{τ= k }(28)

= E exp{θ (Sn −Sk )}E exp{θSk }1{τ= k }

=ϕ(θ )n−k E e θSk 1{τ= k }.

Here 1F denotes the indicator random variable for the event F , that is, the random variable that
takes the value 1 on F and 0 on F c .
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Suppose now that τ is a bounded stopping time, that is, that there is a nonrandom integer
n <∞ such that τ≤ n . Then by equation (28),

E

�

exp{θSτ}
ϕ(θ )τ

�

=
n
∑

k=0

E

�

exp{θSτ}
ϕ(θ )τ

�

1{τ= k }

=
n
∑

k=0

E

�

exp{θSk }
ϕ(θ )k

�

1{τ= k }

=
n
∑

k=0

E

�

exp{θSk }
ϕ(θ )k

��

exp{θSn −Sk }
ϕ(θ )n−k

�

1{τ= k }

=
n
∑

k=0

E

�

exp{θSn}
ϕ(θ )n

�

1{τ= k }

= E

�

exp{θSn}
ϕ(θ )n

�

= 1.

2.4. Gambler’s Ruin, Revisited. Consider once again the simple random walk on Z with initial
point S0 = x , and let T = T[0,A] be the first exit time from the interval [1, A − 1]. To use the Wald
identities, we must subtract x . We also need to know a priori that E T <∞, but this follows by
essentially the same argument that we used earlier to show that T <∞. (Exercise: Fill in the gap.)
The first Wald identity implies that

E x (ST −x ) =µE T = 0.

Now the random variable ST takes only two values, 0 and A, with probabilities u (x ) and 1−u (x )
respectively. Hence,

(A −x )u (x )+ (−x )(1−u (x )) = 0 =⇒
u (x ) = x/A.

Next, apply the second Wald identity, usingσ2 = Eξ2
1 = 1:

E (ST −x )2 =σ2E T = E T.

Since we know the distribution of ST , by the first Wald identity, we can use it to compute the left
side. The result:

(A −x )2
x

A
+x 2 A −x

A
= x (A −x ) = E T.

2.5. First-Passage Time Distribution. Let Sn be simple random walk with initial state S0 = 0,
and let τ = τ(1) be the first passage time to the level 1. Earlier we derived explicit formulas
for the distribution and probability generating function of τ using the Reflection Principle and
algebra. Here we’ll see that the probability generating function can also be obtained by using the
third Wald identity. For this, we need the moment generating function of ξ1:

ϕ(θ ) = E e θξ1 = coshθ .
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Set s = 1/ϕ(θ ); then by solving a quadratic equation (exercise) you find that for θ > 0,

e−θ =
1−

p

1−4s 2

2s
.

Now let’s use the third Wald identity. Since this only applies directly to bounded stopping
times, we’ll use it on τ∧n and then hope for the best in letting n→∞. The identity gives

E

�

exp{θSτ∧n}
ϕ(θ )τ∧n

�

= 1.

We will argue below that if θ > 0 then it is permissible to take n →∞ in this identity. Suppose
for the moment that it is; then since Sτ ≡ 1, the limiting form of the identity will read, after the
substitution s = 1/ϕ(θ ),

e θ E sτ = 1.

Using the formula for e−θ obtained above, we conclude that

(29) E sτ =
1−

p

1−4s 2

2s

To justify letting n→∞ above, we use the dominated convergence theorem. First, sinceτ<∞
(at least with probability one),

lim
n→∞

exp{θSτ∧n}
ϕ(θ )τ∧n =

exp{θSτ}
ϕ(θ )τ

.

Hence, by the DCT, it will follow that interchange of limit and expectation is allowable provided
the integrands are dominated by an integrable random variable. For this, examine the numerator
and the denominator separately. Since θ > 0, the random variable e θSτ∧n cannot be larger than
e θ , because on the one hand, Sτ = 1, and on the other, if τ> n then Sn ≤ 0 and so e Sτ∧n ≤ 1. The
denominator is even easier: since ϕ(θ ) = coshθ ≥ 1, it is always the case that ϕ(θ )τ∧n ≥ 1. Thus,

exp{θSτ∧n}
ϕ(θ )τ∧n ≤ e θ ,

and so the integrands are uniformly bounded.

Exercise 12. A probability distribution F = {px }x∈Z on the integers is said to have a geometric
right tail if for some values of α> 0 and 0<% < 1,

(30) px =α%x for all x ≥ 1.

Let Sn =
∑n

j=1ξj be a random walk whose step distribution F has a geometric right tail (30). For
each x ≥ 0, define

τx =τ(x ) =min{n : Sn > x }
=∞ if Sn ≤ x ∀ n .

(A) Show that the conditional distribution of Sτ(x ) − x , given that τ(x ) < ∞, is the geometric
distribution with parameter %.

(B) Suppose that Eξj =µ> 0. Calculate Eτ(x ).
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Exercise 13. Let {Sn}n≥0 be simple random walk started at S0 = 0. Fix −A < 0 < B and let T =
T[−A,B ] be the first time that the random walk visits either −A or +B . Use the third Wald identity
to evaluate the generating functions

ψ+(s ) := E s T 1{ST =+B} and

ψ−(s ) := E s T 1{ST =−A}.

Use your formulas to deduce as much as you can about the distribution of T . HINT: For each
0< s < 1 there are two solutions θ ∈R of the equation coshθ = 1/s . Use the third Wald identity
for each of these: this gives two equations in two unknowns.

3. THE STRONG LAW OF LARGE NUMBERS AND RANDOM WALK

3.1. The SLLN and the Ergodic Theorem. Three of the most fundamental theorems concerning
one-dimensional random walks — the Strong Law of Large Numbers, the Recurrence Theorem,
and the Renewal Theorem — are all “first-moment” theorems, that is, they require only that the
step distribution have finite first moment. The most basic of these theorems is the Strong Law
of Large Numbers; we will see, later, that the others are consequences of the Strong Law. We will
also see that the SLLN is useful in other ways, in particular for doing certain calculations (see
Exercise 15 below for an example). Here is a precise statement:

Theorem 9. (SLLN) Let ξ1,ξ2, . . . be independent, identically distributed random variables with
finite first moment E |ξ1| <∞ and mean µ := Eξ1, and let Sn =

∑n
k=1ξk . Then with probability

one,

(31) lim
n→∞

Sn

n
=µ.

We’ll take this as known, even though we haven’t proved it. Here is an equivalent way to state it:
Fix ε > 0 small, and let L± be the lines through the origin of slopes µ± ε, respectively. Then with
probability one, the points (n ,Sn ) on the graph of the random walk eventually all fall between
the lines L+ and L−. See the figure below for a simulation of 2500 steps of the p−q random walk
with p = .6.

500 1000 1500 2000 2500

100

200

300

400

500

FIGURE 2. The Strong Law of Large Numbers

Corollary 10. If the step distribution of the random walk Sn has finite, nonzero meanµ, then with
probability one Sn →∞ if µ > 0, and with probability one Sn →−∞ if µ < 0. Therefore, random
walk with nonzero mean is transient: it makes at most finitely many visits to any state x ∈Z.
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Without the hypothesis of finite first moment, the SLLN may fail to hold. An instructive exam-
ple is provided by the Cauchy distribution: If the random variables ξi are i.i.d. with the standard
Cauchy density

p (x ) =
1

π(1+x 2)
then with probability one the sequence Sn/n not only fails to converge, but has the entire real
line R as its set of accumulation points.

Exercise 14. Prove this. HINT: First, show that for every n ≥ 1 the sample average Sn/n has
density p (x ). This is most easily done by using characteristic functions (Fourier transforms).

Exercise 15. Deduce the first Wald identity from the SLLN. HINT: String together infinitely many
independent copies of the random sequence

X1, X2, . . . , XT .

There is an important and useful generalization of the Strong Law of Large Numbers, called
the Ergodic Theorem, due to Birkhoff. Following is a special case tailored to applications in ran-
dom walk theory and the study of Markov chains. Let g : R∞ → R be a bounded (measurable)
function mapping infinite sequences to real numbers, and set

(32) Yn = g (Xn , Xn+1, Xn+2, . . . ).

(For example, Yn might be the indicator of the event that the random walk {Sm+n −Sn}m≥1 ever
visits the state 0. This is the particular case that will come into play in section 3.2 below.) The
random variables Y1, Y2, . . . , although not independent, are identically distributed; in fact, the
sequence Yn is stationary, that is, for every m ≥ 1,

(33) (Y1, Y2, . . . ) D= (Ym+1, Ym+2, . . . ).

(The notation
D=means that the two sides have the same joint distribution.)

Theorem 11. (Ergodic Theorem) Let Yn be defined by (32). If E |Y1|<∞ then with probability one

(34) lim
n→∞

1

n

n
∑

k=1

Yk = E Y1.

Remark 5. Any reasonable function g — in particular, any function that is a limit of functions
depending on only finitely many coordinates — is measurable. What we’ll need to know about
measurable functions is this: For any ε > 0 there exists a bounded function h that depends on
only finitely many coordinates such that

(35) E |g (X1, X2, . . . )−h(X1, X2, . . . )|< ε

The proof of Theorem 11 relies on ideas and techniques that won’t be needed elsewhere in the
course, so it is relegated to Appendix 5 below. However, the weak form of Theorem 11, which
states that the convergence (34) takes place in probability, can be deduced easily from the Weak
Law of Large Numbers and the Chebyshev-Markov inequality, as follows.

Proof of the Weak Ergodic Theorem. This will be accomplished in two steps: First, we’ll show that
the theorem is true for functions g that depend on only finitely many coordinates. This, it turns
out, is easy, given the SLLN. Then we’ll use an approximation argument to show that it holds in
general.
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Step 1: Suppose that g depends on only the first m coordinates, that is,

g (x1,x2, . . . ) = g (x ,x2, . . . ,xm ).

If we break the sequence ξ1,ξ2, . . . into blocks of m , and then apply g to each block, the resulting
random variables are independent. Hence, each of the m sequences

Y1, Ym+1, Y2m+1, . . .(36)

Y2, Ym+2, Y2m+2, . . .

· · ·
Ym , Ym+m , Y2m+m , . . .

consists of independent, identically distributed random variables. Consequently, the SLLN ap-
plies to each row separately: for each k = 1, 2, . . . , m , with probability one,

(37) lim
n→∞

1

n

n
∑

j=1

Yk+j m = E Y1.

If n is a multiple of m , say n =m n ′, then the sample average on the left side of (34) is just the
average of sample averages of the rows (36), and so (37) implies that the convergence (34) holds
when the limit is taken through the subsequence n = m n ′ of multiples of m . It then follows
routinely that the whole sequence converges. (Exercise: Fill in the details. You will need to know
that n−1Yn → 0 almost surely. This can be proved with the help of the Borel-Cantelli lemma,
using the hypothesis that E |Y1|<∞.) �

Step 2: Now let g be an arbitrary bounded measurable function of the sequence x1,x2, . . . . By
Remark 5 above, for each choice of 0 < ε = δ2 < 1, there is a function h depending only on
finitely many coordinates such that inequality (35) holds. Set

Un = h(Xn , Xn+1, . . . ).

The Chebyshev-Markov inequality inequality and inequality (35) imply that for each n = 1, 2, . . . ,

P

(

�

�

�

�

n−1
n
∑

k=1

Yk −n−1
n
∑

k=1

Uk

�

�

�

�

>δ

)

< ε/δ=δ.

The triangle inequality and inequality (35) imply that

|E Ym −EUm |< ε <δ.

Since h depends on only finitely many coordinates, the weak law applies to sample averages of
the sequence Uj , by Step 1; hence,

lim
n→∞

P

(

�

�

�

�

n−1
n
∑

k=1

Uk −EU1

�

�

�

�

>δ

)

= 0.

Combining the last three displayed inequalities yields

lim sup
n→∞

P

(

�

�

�

�

n−1
n
∑

k=1

Yk −E Y1

�

�

�

�

> 3δ

)

≤δ.

Since δ > 0 is arbitrary, it follows that the sample averages of the sequence Yj converge in prob-
ability to E Y1. �
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3.2. Recurrence/Transience. G. Polya proved, in about 1920, that simple random walk on Zd is
recurrent in dimensions d = 1, 2 and is transient in d ≥ 3. The analogous result for more general
random walks was proved 30 years later by K. L. Chung & W. Fuchs.

Definition 3. A random walk on Zd is said to be recurrent if P{Sn = S0 for some n ≥ 1} = 1, and
otherwise is said to be transient. Equivalently, a random walk is recurrent if P{no return to S0}=
0.

Theorem 12. Random walk with step distribution F is recurrent if d = 1 and F has mean 0, or
if d = 2 and F has mean zero and finite second moment. Random walk in dimension d ≥ 3 is
transient unless the step distribution F is supported by a two-dimensional subspace of Rd .

The hypothesis of finite second moment in dimension d = 2 is necessary: There are mean-
zero step distributions F on Z2 which generate transient random walks.

A number of different proofs of Theorem 12 are now known. The original proof of Polya for
simple random walk was based on Stirling’s Formula. Chung and Fuchs proved their more gen-
eral version using Fourier analysis (characteristic functions). An interesting probabilistic proof
was found by D. Ornstein ten years later. Yet another proof for the one-dimensional case is based
on a second important theorem about random walk discovered by Kesten, Spitzer, and Whitman
in the mid-1960s. This is the proof that appears below. Before getting to this, let’s look at some of
the ramifications of the theorem.

Corollary 13. Any one-dimensional random walk whose step distribution has mean zero will re-
visit its starting point infinitely many times.

Proof. According to the recurrence theorem, any such random walk will revisit its starting point
at least once. Assume without loss of generality that the starting point is S0 = 0. Let T ≥ 1 be
the first time that this happens. Then T is a stopping time, so by the strong Markov property
(Proposition 3), the post-T process ST+1,ST+2, . . . is again a random walk with the same step
distribution. Hence, the recurrence theorem applies to this random walk, making it certain that
it will revisit the origin at least once. Thus, the original random walk will return to the origin at
least twice. Now use induction: If the random walk is certain to return at least m times, then
the strong Markov property and the recurrence theorem ensure that it will return at least m + 1
times. �

It is not necessarily the case that a recurrent random walk on Z will visit every integer, for
the trivial reason that it may not be possible to reach certain states. For instance, if the step
distribution puts mass 1/2 on each of the two values ±2 (so that the resulting random walk is
just 2× a simple random walk) then the only states that can be reached from the starting state
S0 = 0 are the even integers.

Definition 4. If {pk }k∈Z is a non-trivial probability distribution on the integers, define its period
to be the greatest common divisor d of the set {k ∈Z : pk > 0}.

Corollary 14. Let Sn be a mean-zero random walk on the integers whose step distribution {pk }k∈Z
has period d . Assume that the starting state is S0 = 0. Then with probability one, the random walk
will visit every integer multiple of d infinitely often.

Proof. Say that an integer x is accessible from 0 if there is a positive-probability path from 0 to
x , that is, if there are integers k1, k2, . . . , kr such that p (k i ) > 0 for every i , and positive integers
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m1, m2, . . . , mr such that

(38) m1k1+m2k2+ · · ·+mr kr = x .

Let A be the set of states accessible from 0. The key to the corollary is this: If d is the period
of the distribution {pk }k∈Z, thenA = dZ, that is, the accessible states are precisely the integer
multiples of d . It is clear thatA ⊂ dZ, because if d is the period of the step distribution then all
steps of the random walk are multiples of d . The reverse inclusion follows from a basic result of
elementary number theory, according to which (in our terminology) either±d ∈A . This implies
that dZ⊂A , by the following argument:

Suppose (for definiteness) that −d ∈ A , that is, there is a positive-probability path γ to −d .
Then for every integer k ≥ 1 there is a positive-probability path to −k d , to wit, γ repeated k
times. Next, because the step distribution has mean zero, there must be a positive integer in its
support, and this must be a multiple of d . Thus, there is some m ≥ 1 such that m d ∈A . But it
then follows that d ∈A : take a positive-probability path to m d , then attach (m −1) copies of γ.
Finally, if d ∈A then every positive integer multiple of d is also inA .

By Corollary 13, the random walk will revisit the origin infinitely often. Let 0 < T1 < T2 < · · ·
be the times of these visits. Fix x ∈ A , and let Fn be the event that the random walk visits x at
some time between Tn−1 and Tn . Since each Tn is a stopping time, the events Fn are mutually
independent, by the strong Markov property, and all have the same probability (say) p = P(Fn ).
This probability p cannot be zero, because if it were then there would be no positive probability
path to x . Consequently, p > 0, and therefore infinitely many of the events Fn must occur (the
indicators 1Fn are i.i.d. Bernoulli-p ). �

3.3. The Kesten-Spitzer-Whitman Theorem.

Theorem 15. Let Sn be a random walk on Zd . For each n = 0, 1, 2, . . . define Rn to be the number
of distinct sites visited by the random walk in its first n steps, that is,

(39) Rn := cardinality{S0,S1, . . . ,Sn}.

Then

(40)
Rn

n
−→ P{no return to S0} a .s .

Proof. To calculate Rn , run through the first n+1 states S j of the random walk and for each count
+1 if S j is not revisited by time n , that is,

Rn =
n
∑

j=0

1{S j not revisited before time n}.

The event that S j is not revisited by time n contains the event that S j is never revisited at all;
consequently,

Rn ≥
n
∑

j=0

1{S j never revisited}=
n
∑

j=0

1{S j 6=Sn+j for any n ≥ 1}.

The sum on the right is of the type covered by the Ergodic Theorem 11, because the event that
S j is never revisited coincides with the event that the random walk Sn+j −S j with increments
ξj+1,ξj+2, . . . never revisits 0. Therefore, with probability one,

(41) lim inf Rn/n ≥ P0{Sk 6= 0 for all k ≥ 1}.
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To bound Rn above, consider again the event that S j is not revisited by time n . Fix M ≥ 1. If
j ≤ n −M , then this event is contained in the event that S j is not revisited in the next M steps.
Thus,

Rn ≤
n−M
∑

j=0

1{S j 6=S j+i for any 1≤ i ≤M }+M .

The sum on the right is once again of the type covered by the Ergodic Theorem (in fact, the
summands in this case depend on only finitely many coordinates of the random walk). Fix M ,
divide by n , and let n→∞: then the Ergodic Theorem 11 implies that

lim sup
n→∞

Rn/n ≤ P0{Sk 6= 0 for all 1≤ k ≤M }.

This holds for every finite M ≥ 1; since the events on the right decrease with M , their prob-
abilities decrease to a limit. By the dominated convergence theorem (alternatively, the lower
continuity property of probability measures), the limit is the probability of the intersection. The
intersection is the event that 0 is never revisited at all; thus,

(42) lim sup
n→∞

Rn/n ≤ P0{Sk 6= 0 for all k ≥ 1}.

Putting (42) with (41) gives (40). �

Exercise 16. Use the Kesten-Spitzer-Whitman theorem to calculate P{no return to 0} for p −q
nearest-neighbor random walk on Zwhen p >q .

3.4. Proof of the Recurrence Theorem in d = 1. Assume that Sn is a random walk with mean
µ= 0. By the strong law of large numbers, for any ε > 0 the sample averages Sn/n will eventually
stay between ±ε, and so for all sufficiently large n the set of points visited by the random walk
up to time n will lie entirely in the interval [−nε, nε]. Therefore, with probability one,

(43) lim sup
n→∞

Rn/n ≤ 2ε.

Since ε > 0 can be chosen arbitrarily small, it follows that Rn/n → 0 almost surely. The Kesten-
Spitzer-Whitman Theorem now implies that

(44) P{no return to S0}= 0.

�

3.5. The Ratio Limit Theorem.

Theorem 16. Let Sn be a recurrent random walk on the integers with aperiodic step distribution.
Assume that the step distribution has finite first moment, so that ES1 = 0. Let Tn be the time of the
nth return to 0. Then for all y , z ∈Z, with probability one (under P = P0),

(45) lim
n→∞

∑n
k=1 1{Sk = y }

∑n
k=1 1{Sk = z }

= 1.

In addition, for any x 6= 0,

(46) E
T1
∑

k=1

1{Sn = x }= 1.

Thus, the long run frequency of visits to y is the same as the long run frequency of visits to z ,
and the expected number of visits to x before the first return to 0 is 1.
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Exercise 17. With z = 0, prove that the ratios on the left side of (45) converge almost surely to a
non-random limit m (y ), and that m (x ) is the expectation in equation (46). HINT: By the strong
Markov property, the counts

Tn+1−1
∑

k=Tn

1{Sk = y }

are independent and identically distributed.

Exercise 18. Prove that the limiting constants m (y ) satisfy the system of linear equations

m (y ) =
∑

x

m (x )p (y −x )

where p (z ) = P{ξi = z } is the step distribution of the random walk.

Exercise 19. Prove that for some positive number α,

m (x ) =αx for all x ∈Z.

HINT: Begin by showing that m (2) =m (1)2, using the spatial homogeneity of the random walk.

Exercise 20. Show that if a geometric sequence m (x ) =αx satisfies the sytem of linear equations
in Exercise 18 then α= 1. This proves equation (46). HINT: Use Jensen’s inequality.

4. LADDER VARIABLES FOR 1D RANDOM WALKS

4.1. Queueing and Inventory Models. In the simplest of queueing systems, the so-called G /G /1
queue, jobs arrive at a single processor where they wait in a queue, in order of arrival, to be
served. Jobs arrive one at a time, and the times A1, A2, . . . between successive arrivals are inde-
pendent, identically distributed positive random variables. (Thus, the random times A1, A1 +
A2, . . . at which jobs arrive constitute a renewal process; more on these later in the course.) The
processor times required for the jobs are random variables V1, V2, . . . ; these are also independent
and identically distributed, and independent of the interarrival times An . Of natural interest
(among other things) is the waiting time Wn for job n (that is, the amount of time it spends in the
queue before the processor begins work on it). This can be described inductively as follows:

(47) Wn+1 = (Wn −An+1+Vn )+

where the subscript + indicates positive part. (Explanation: Job n spends Wn +Vn time units in
the system after it arrives, but job n +1 doesn’t arrive until An+1 time units after job n .)

The same model can be used to describe certain inventory systems. Imagine a warehouse
with unlimited capacity that stores a particular commodity. At each time n = 1, 2, . . . , a random
amount Vn is added to the current inventory Wn . Simultaneously, a request is made for An+1

units of the commodity; this request is immediately filled from the available inventory Wn +Vn

unless the request exceeds inventory, in which case only Wn+Vn is sent. The new inventory Wn+1

is then given by (47).

The queueing process Wn has an equivalent description in terms of the random walk Sn with
increments ξj = Vj − A j+1. Observe that the process Wn makes exactly the same jumps as Sn

except when these would take it below 0. Thus, Wn = Sn until the first time T−1 that Sn < 0, at
which time the queueing process is reset to 0. Thus,

Wn =Sn for n < T−1 ;

=Sn −ST−1
for n = T−1 .
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FIGURE 3. Queueing Process and Associated Random Walk

After time T−1 , the processes W and S make the same jumps until the next time that W would fall
below 0 — equivalently, the next time that S falls below ST−1

— at which time W is again reset to
0. Thus, by induction,

Wn =Sn for n < T−1 ;(48)

=Sn −ST−1
for T−1 ≤ n < T−2 ;

=Sn −ST−2
for T−2 ≤ n < T−3 ;

· · · .

where T−1 , T−2 , . . . are the successive times at which the random walk Sn achieves new lows. These
are called the (strong) descending ladder times for the random walk. (The weak descending lad-
der times are the successive times at which the random walk achieves a new low or equals the
previous low.) The relation between the queueing process and the random walk can be written
in the equivalent, but more compact form

(49) Wn =Sn −min
k≤n

Sk

The first formula (48) has the advantage, though, that it explicitly shows the times when the
queue is empty (that is, when the waiting time is 0): these are precisely the descending ladder
times T−k . See the figure above for an illustration.

4.2. The Duality Principle. The Duality Principle for random walks on Z is just the simple ob-
servation that the joint distribution of the first n increments (ξ1,ξ2, . . . ,ξn ) is the same as that
of the time-reversal (ξn ,ξn−1, . . . ,ξ1). Stated this way, the Duality Principle is obvious, and the
proof is a two-liner (exercise). Nevertheless, duality leads to some of the deepest and unexpected
results in the theory.

The effect of reversing the increments ξi on the random walk can be described geometrically
as follows: Plot the path {(k ,Sk )}k≤n of the random walk; then look at it while hanging upside
down from the ceiling, re-setting the coordinate axes at the (old) endpoint (n ,Sn ). See the figure
above for an example. Formally, the time-reversal replaces the path

(0,S1,S2, . . . ,Sn ) by

(0,Sn −Sn−1,Sn −Sn−2, . . . ,Sn −0),

and so the duality principle implies that these two paths have the same probability.
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FIGURE 4. Random Walk Path and Dual Path.

Now recall the relation (49) between the queueing process Wn and the random walk Sn : the
value of Wn is the amount by which Sn exceeds the minimum of the path {Sk }k≤n up to time n .
But this amount is the same as the maximum of the dual path! (Exercise: Prove this.) Thus:

Proposition 17. For each n ≥ 1, the random variables Wn and M n :=maxm≤n Sm have the same
distribution. Consequently, if the step distribution of the random walk Sn has negative mean µ
then the waiting-time random variables Wn converge in distribution as n→∞ to

(50) M∞ :=max
n≥0

Sn .

Proof. You have already proved that Wn has the same distribution as M n . Now suppose that the
random walk has negative drift µ; then by the SLLN, Sn → −∞ and so M∞ is well-defined and
finite. Clearly, the random variables M n converge monotonically to M∞. Hence, the random
variables Wn converge in distribution to M∞. �

Remark 6. If the random walk Sn has positive or zero drift µ, then by the SLLN (in the first case)
or the recurrence theorem (in the second), the maxima M n diverge to infinity. Thus, in these
cases the queueing system has no steady state: the waiting time distributions travel off to∞ as
time progresses. For an instructive if not entirely pleasant example, visit the Division of Motor
Vehicles late in the afternoon.

4.3. Duality and Ladder Variables. The ladder variables are the times and heights at which
record highs and lows are achieved. The ascending ladder variables are those associated with
record highs; the descending ladder variables are those associated with record lows. For defi-
niteness, we will work with strong ascending and weak descending ladder variables. The ladder
indices (times) are defined as follows:

T+ = T+1 :=min{n ≥ 1 : Sn > 0};
T− = T−1 :=min{n ≥ 1 : Sn ≤ 0};

T+k+1 :=min{n ≥ 1 : Sn+T+k
>ST+k

};

T−k+1 :=min{n ≥ 1 : Sn+T−k
≤ST−k

}.

These may take the value+∞: for instance, if the random walk has positive drift then it converges
to ∞, and so there will be only finitely many record lows. If a ladder index T−k = +∞, then all
subsequent ladder indices T−k+l must also be +∞. The ladder heights are the random variables

S+k :=ST+k
and S−k :=ST−k

.
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These are defined only on the events T±k <∞. The first ascending and descending ladder heights
will be denoted by S+ =S+1 and S− =S−1 .

Since the ladder indices are not necessarily finite with probability 1, they are not stopping
times (see Definition 2). However, they are extended stopping times, in the following sense:

Definition 5. An extended stopping time is a random variable τ taking values in the setN∪{∞} of
extended nonnegative integers such that for any finite integer n the indicator of the event τ= n
is a function only of S1,S2, . . . ,Sn .

Proposition 18. (Extended Strong Markov Property) If τ is an extended stopping time for the ran-
dom walk Sn , then on the event τ <∞ the post-τ process {Sn+τ −Sτ}n≥0 is a random walk with
the same step distribution, and is independent of the path of the original random walk up to time
τ. In particular, for any m , l ∈N, and any choice of states yi and z j ,

Px {Sk = yk ∀ k ≤m ; τ=m ; and Sn+m −Sm = z n ∀ 0≤ n ≤ l }=

Px {Sk = yk ∀ k ≤m ; τ=m }P0{Sk = z k ∀ k ≤ l }.

Proof. Same as for Proposition 3. �

Corollary 19.

P{T+k <∞}= P{T+ <∞}k and(51)

P{T−k <∞}= P{T− <∞}k .

Proof. This is an easy consequence of the Extended Strong Markov Property. �

Recall that when the random walk has negative drift µ< 0, the path attains a finite maximum
M∞ := maxn≥0 Sn . This maximum must be first reached at a ladder time T+k , for some k ≥ 0
(with the convention T+0 = 0); and in order that no higher level is reached, it must be the case
that T+k+1 =∞. Therefore, the distribution of the maximum M∞ can be obtained by summing
over all possibilities k for the ladder index at which the max is attained:

(52) P{M∞ = x }=
∞
∑

k=0

P{T+k <∞ and S+k = x }P{T+ =∞}.

This leads to an explicit representation of the generating function in terms of the generating
function of the first ladder height S+1 ; just multiply both sides by βx , sum over x ≥ 0, and switch
the order of summation on the right. The extended strong Markov property implies that the k th
term in the outer sum on the right side is just the k th power of the first term, so the sum on
the right is a geometric series with ratio EβS+1 . (NOTE: Here and in the following EβS− means
EβS− = EβS−1{T− <∞}.) The end result:

Proposition 20.

(53) EβM∞ = P{T+ =∞}/(1−EβS+1 )

The Duality Principle has important implications for the distributions of the ladder variables,
because reversing the order of the increments in a random walk has the effect of switching max-
ima and minima (look again at the figure above for illustration). The following four duality rela-
tions distill the role of time reversal in the study of the ladder variables.
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Proposition 21. (Duality Relations) For all integers x , n ≥ 1 and y ≥ 0,

P{Sn =−y and T+ > n}= P{Sn =−y and min
1≤m≤n

Sm =−y };(54)

P{Sn =+x and T− > n}= P{Sn =+x and max
1≤m<n

Sm <+x };(55)

P{Sn =+x and T+ = n}= P{Sn =+x and min
1≤m≤n

Sm ≥ x }; and(56)

P{Sn =−y and T− = n}= P{Sn =−y and max
1≤m≤n

Sm <−y }.(57)

Proof. Exercise. HINT: It may help to look again at the figure above depicting a random walk path
and its dual, or to sketch your own. �

Corollary 22. For all positive integers n,

(58) P{T+ > n}=
∞
∑

k=1

P{T−k = n} and P{T− > n}=
∞
∑

k=1

P{T+k = n}.

Consequently,

E T+ = 1/P{T− =∞} and(59)

E T− = 1/P{T+ =∞}.(60)

Proof. Summing the relation (54) over all y ≥ 0 shows that P{T+ > n} coincides with the prob-
ability that the random walk attains its minimum value at time n . But the latter happens if and
only if n is a descending ladder index. This proves the first equality; the second is similar. To
evaluate E T+, sum the probabilities in (58) and add 1 (see Lemma 8). This shows that E T+ is the
sum of a geometric series with ratio P{T− <∞}:

E T+ = 1+
∞
∑

k=1

P{T−k <∞}=
∞
∑

k=0

P{T− <∞}k .

�

4.4. Step Distributions with Finite Support. There is an analytic procedure, the so-called Wiener-
Hopf factorization technique, that directly relates the joint distribution of the first ladder index
and ladder height (T+,S+1 ) to the characteristic function of the step distribution. In the special
case where the step distribution of the random walk has finite support, Wiener-Hopf factoriza-
tion is transparent and elementary, because the probability generating function of a step dis-
tribution with finite support is (essentially) a polynomial. We’ll consider only this case — see
FELLER vol. 2 or SPITZER for the general case.. Here is what we need to know about polynomials:

Proposition 23. Every polynomial p (x ) of degree n has exactly n complex rootsζ1,ζ2, . . . ,ζn (listed
according to multiplicity), and

(61) p (x ) =C
n
∏

i=1

(x −ζi )

where C is the (nonzero) coefficient of x n in p (x ).
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For definiteness, assume throughout this section that the distribution F = {px }−L≤x≤M is con-
centrated on the integers −L,−L + 1, . . . ,+M where L, M ≥ 1, that the distribution is aperiodic,
and that p−L > 0 and pM > 0. Let

(62) Q(β ) :=
M
∑

x=−L

pxβ
x

be the probability generating function of F , and let µ=Q ′(1) be its mean. Observe that β LQ(β )
is a polynomial of exact degree M + L, with nonvanishing constant term p−L . The generating
function Q itself is a rational function, that is, it is the quotient of two polynomials β LQ(β ) and
β L .

Lemma 24. If β is a (possibly complex) root of the equation Q(β ) = 1, then

EβST+ = 1 if |β |> 1 and(63)

EβST− = 1 if |β |< 1.(64)

More generally, if β is a root of the equation Q(β ) = 1/t for some 0< t ≤ 1, then

E t T+βST+ = 1 if |β |> 1 and(65)

E t T−βST− = 1 if |β |< 1.(66)

Proof. The third Wald identity holds not only for real but also complex arguments of the (mo-
ment) generating function. (Re-read the proof — nowhere did we do anything that required real
values of the arguments.) Thus, for each n = 1, 2, . . . ,

EβST±∧n /Q(β )T
±∧n = 1.

To deduce (63) and (64), use the dominated convergence theorem. For definiteness, consider the
ascending ladder variables, and use the abbreviation T = T+. First, the factor t T∧n = 1/Q(β )T∧n

is bounded above by 1. Second, because |β |> 1, and because Sn∧T can’t be larger than +M , the
integrands βST are bounded in absolute value by |β |M . Now if the mean of the step distribution
is ≥ 0, then T <∞ (why?), and so ST∧n →ST ; but if the mean of the step distribution is < 0, then
by SLLN the random walk drifts to −∞, and so on the event T =∞,

βST∧n −→ 0.

Therefore, the dominated convergence theorem allows passage to the limit in the expectation,
yielding EβST = 1. �

There is one root (possibly a double root) of the equation Q(β ) = 1 that isn’t covered by
Lemma 24, to wit, β = 1. That there are no other roots on the unit circle follows from the aperi-
odicity of the step distribution. In fact:

Lemma 25. If the step distribution F is aperiodic, then for all β > 0 and all θ ∈R−Z,

(67) |Q(βe 2πiθ )| ≤Q(β ) and Q(βe 2πiθ ) 6=Q(β )

Proof. Inequality clearly holds, by the triangle inequality, since the coefficients of all terms of Q
are nonnegative. Now since all terms of the sum Q(β ) are nonnegative, the only way that equality
Q(βe 2πiθ ) =Q(β ) can hold is if e 2πi kθ = 1 for every k such that pk > 0. Since pM > 0, the only
possibilities are βk := β exp{2πi k/M }, where k is an integer between 0 and M −1. But for βk to
satisfy Q(βk ) =Q(β ) it would have to be the case that x k/M ∈Z for every x in the support of the
step distribution. Since this distribution is aperiodic, the only possibility is k = 0. �
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Lemma 26. The generating function Q(β ) is strictly convex for β ∈ (0,∞). It attains its minimum
value uniquely at the pointβ∗ where Q(β∗) = 0. For every value of t < 1/Q(β∗), the equation Q(β ) =
1/t has two simple roots in the interval (0,∞), one on each side of β∗. The equation Q(β ) =Q(β∗)
has a double root at β =β∗ and no other root β ∈ (0,∞).

Proof. Exercise. This is an excellent opportunity to review what you know about probability gen-
erating functions and moment generating functions. Note while you’re at it that the family of
probability distributions

qβx := pxβ
x /Q(β ) for β ∈ (0,∞)

is an exponential family, with natural parameter logβ . �

Now the payoff.

Proposition 27. (A) If µ < 0, then the equation Q(β ) = 1 has M roots β0,β1, . . .βM−1 outside the
unit circle, one root α0 = 1 on the unit circle, and L− 1 roots α1,α2, . . . ,αL−1 inside the unit circle.
(B) If µ= 0 then the equation Q(β ) = 1 has L−1 roots α1,α2, . . . ,αL−1 inside the unit circle, M −1
roots β1,β2, . . . ,βM−1 outside the unit circle, and a double root α0 = β0 = 1. (C) In both cases, the
ladder heights S+ :=ST+ and S− :=ST− have probability generating functions

EβS+ = 1+C+

M
∏

i=1

(β −βi ) and(68)

EβS− = 1+C−

L−1
∏

i=0

(β −αi ).(69)

The normalizing constants are

(70) C− = p−L and C+ = (−1)M−1
�M−1
∏

i=1

βi

Proof. I’ll prove this only for the case µ< 0, as the case µ= 0 is quite similar, and only in the case
where the roots of Q(β ) = 1 are all simple. (See Remark 8 below for a discussion of the case where
there are multiple roots.) The key is that the generating functionψ+(β ) := EβS+ is a polynomial
of degree M , because S+ cannot be larger than M . Similarly, ψ−(β ) := EβS− is a polynomial of
degree L in β−1. Consequently, the equation ψ+(β ) = 1 has exactly M roots, and the equation
ψ−(β ) = 1 has L roots. Now Lemma 24 implies that every root of Q(β ) = 1 outside the unit circle
is a root of ψ+(β ) = 1. Hence, the equation Q(β ) = 1 can have no more than M roots outside
the unit circle. Similarly, every root of Q(β ) = 1 inside the unit circle is a root of ψ−(β ) = 1,
and because T− <∞ with probability one, α0 = 1 is also a root. Hence, the equation Q(β ) = 1
can have no more than L − 1 roots inside the circle. But Q(β ) = 1 has M + L roots in total, and
(by Lemma 25) only one, α0 = 1, on the unit circle. Therefore, there must be precisely M roots
outside and L−1 roots inside. These exhaust the roots ofψ+(β ) = 1 andψ−(β ) = 1, so equations
(68)–(69) must hold for some choice of the constants C±. The constant C+ is easily computed
using the fact that the polynomial EβS+ has constant term 0. To see that C− = p−L , observe that
the only way that S− =−L can occur is if the very first step is to−L; consequently, the coefficient
of β−L in the generating function must be p−L . �
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Remark 7. Another way to get the normalizing constant C+ in the case µ< 0 is to observe that at
β = 1 the generating function EβS+ takes the value P{T+ <∞}. This implies that

(71) C+ = P{T+ =∞}
� M
∏

i=1

(1−βi ).

Combining this with the formula for C+ in the statement of the proposition leads to the following
interesting formula for P{T+ =∞}:

(72) P{T+ =∞}= (−1)
M
∏

i=1

(1−1/βi )

Remark 8. The proposition remains true even when there are multiple roots. One way to prove
this is to let βi (t ) and αi (t ) be the roots of Q(β ) = 1/t for 0 < t ≤ 1. Using some elementary
complex analysis (e.g., the argument principle) one can show that the roots αi (t ) and βi (t ) are
continuous functions of t . Furthermore, the equation Q(β ) = 1/t can have multiple roots for at
most finitely many values of t , because multiple roots can only occur at pointsβ whereQ ′(β ) = 0,
and there are at most M + L − 1 such points. Therefore, at all but finitely many t < 1 the same
argument as in the proof of the proposition shows that

E t T+βS+ = 1+C+(t )
M
∏

i=1

(β −βi (t )) and(73)

E t T−βS− = 1+C−(t )
L−1
∏

i=0

(β −αi (t )).(74)

where

(75) C−(t ) = p−Lt and C+(t ) = (−1)M−1
�M−1
∏

i=1

βi (t ).

But both sides of equations (73) and (74) are continuous in t , so the formulas must remain true
even at those t where the equation Q(β ) = 1/t has a multiple root. The equations (73) and (74)
are interesting in their own right, as they yield simple formulas for the probability generating
functions of T+ and T−, by setting β = 1.

Exercise 21. Use the formula (73) to give yet another derivation of equation (15). (This will be
either the fifth or sixth derivation, depending on how you count.)

Corollary 28. Assume thatµ< 0, and thatβi andαj are the roots ofQ(β ) = 1, as in Proposition 27.
Then for any integers 1≤m ≤M and 0≤ l ≤ L,

P{S+ =+m }=C+eM−m (β1,β2, . . . ,βM ) and(76)

P{S− =−l }=C−eL−l (α0,α1, . . . ,αL−1)(77)

where ek (x1,x2, . . . ,xn ) is the k th elementary symmetric polynomial:

ek (x1,x2, . . . ,xn ) =
∑

A⊂[n ]
|A |=k

∏

i∈A

x i .

Proof. The distributions of S+ and S− are gotten by reading off the coefficients in their probability
generating functions. �
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Corollary 29. Assume thatµ< 0, and thatβi andαj are the roots ofQ(β ) = 1. Then the probability
generating function of the maximum M∞ =maxn≥0 Sn is

(78) EβM∞ =−
P{T+ =∞}

C+
∏M

i=1(β −βi )
.

Consequently, for each x = 0, 1, 2, . . . ,

(79) P{M∞ = x }=
M
∑

i=1

C i /β
x
i where C i = (−1)M−1 P{T+ =∞}

C+βi
∏

j 6=i (βj −βi )
.

Proof. The first assertion is a direct consequence of Proposition 20 and equation (68). The sec-
ond follows from the first by partial fraction decomposition. (NOTE: I was never any good at
partial fraction decomposition, so my formula for the constants C i is possibly wrong.) The idea
is this: If the generating function in (78) is rewritten in the form

EβM∞ =
M
∑

i=1

C i

(1− β
βi
)

(as the partial fraction method guarantees that it can) then the coefficients can be recovered by
expanding each term on the right as a geometric series. �

The formula (79) can be quite useful numerically, especially for large x , because by Lemma 25,
when µ < 0 one root (designate it β1) is positive, and has smaller absolute value than any of the
other roots β2,β3, . . . ,βM . Thus, when x is large, the contribution of the i = 1 term in the sum is
large relative to those of the remaining terms i ≥ 2, and so

(80) P{M∞ = x } ∼C1/β
x
1 as x →∞.

5. APPENDIX: STRONG LAWS AND MAXIMAL INEQUALITIES

The proof of the weak ergodic theorem in section 3 above used the Chebyshev-Markov in-
equality to reduce the problem to proving the theorem for functions depending on only finitely
many coordinates. This is an instance of a general strategy that works in many convergence
problems: (A) First, prove the convergence theorem for a restricted, simpler class of functions
or random variables. (B) Then use a suitable inequality to deduce the convergence for a larger
class of functions by approximation. For most strong convergence theorems, the appropriate in-
equality for step (B) is a maximal inequality. Following is a maximal inequality (due, in essence,
to N. Wiener) for stationary sequences. As in section 3, let

Yn = g (Xn , Xn+1, . . . )

where g is a measurable function and X1, X2, . . . are independent, identically distributed random
variables. Denote by SY

n ;m and AY
n ;m the partial sums and sample averages:

SY
n ;m =

n
∑

k=1

Yk+m and AY
n ;m =SY

n ;m/n ,

and use the abbreviations AY
n = AY

n ;0 and SY
n =SY

n ;0.
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Maximal Inequality . Assume that g is nonnegative, and that µ= E Y1 <∞. Then for any α>µ,

(81) P

¨

sup
n≥1

AY
n >α

«

≤
µ

α
.

Proof of the Maximal Inequality. This is optional reading; the ideas involved won’t be needed
again in this course. However, the argument is elementary and also quite interesting. Fix L ≥ 1,
and define events

Bm = Bm ,L =
�

max
1≤n≤L

AY
n ;m >α

�

.

For each α > 0 and each L the events B0, B1, . . . all have the same probability P(Bm ) = P(Bm ,L),
because the sequence of random variables Y1, Y2, . . . is stationary. Furthermore, by the monotone
convergence theorem,

lim
L→∞

P(Bm ,L) = P

¨

sup
n≥1

AY
n ;0 >α

«

.

Hence, to prove the theorem it suffices to show that P(Bm ,L)≤µ/α for every L = 1, 2, . . . .

The trick is to partition the set of positive integers m into two disjoint subsets, which I will call
purple and white, depending on the realization of the stationary process Yj . The partition is done
as follows. First, color an integer m ≥ 1 red if the event Bm occurs, and white otherwise. Now
grab a can of purple paint, and march forward through the positive integers starting at m = 1.
If m = 1 is white, leave it white and move to m = 2. On the other hand, if m = 1 is red, you can
find n ≤ L (for definiteness, take the smallest such n) so that the average of the first n terms Yj

exceeds α. Paint all of the integers 1, 2, . . . , n purple, and move to m = n + 1. If m is white, leave
it white and move to m +1. Otherwise, select an integer n ≥ 1 so that the average of the n terms
Yj beginning at j = m exceeds α; paint the integers from m to m + n − 1 purple and move on
to m +n . Continue in this fashion indefinitely. At the end of your march, all red integers — and
some white ones — will have been painted purple. No purple interval will have length ≥ L, but
purple intervals may abut. By construction, in every purple interval, the average of the terms Yj

will exceed α. Equivalently, the sum of the terms Yj in every purple interval will exceed α times
the length of the interval.

The last is the key point, because by hypothesis the expectation of each term Yj is only µ.
Denote byP the purple integers and byR the red integers. Then for any K , sinceR ⊂P ,

µ= K −1E
K
∑

k=1

Yj ≥ K −1E
∑

k≤K ; k∈P
Yj ≥ K −1αE |R ∩ [1, K − L]|.

NowR is the set of integers m ≥ 1 for which the event Bm ,L occurs; consequently, its expected
cardinality is just the sum of the probabilities P(Bm ,L). Thus,

K −1E |R ∩ [1, K − L]|= K −1
K−L
∑

m=1

P(Bm );

since all of the events Bm have the same probability, it follows by letting K →∞ that

P(B1)≤µ/α.

�

I’ll give two applications of the Maximal Inequality. First, I’ll prove the SLLN, and then I’ll
show how to deduce the Ergodic Theorem (Theorem 11) from the SLLN.
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Proof of the SLLN. First, consider the case where the random variables X i have finite second mo-
ment. Without loss of generality, assume that E X i = 0, and let σ2 = E Y 2

i . For convenience, drop
the superscript X from AX

n and SX
n . Then by the Cauchy-Schwartz inequality,

E |An | ≤
p

E A2
n =σ/

p
n −→ 0 as n→∞.

Fix δ > 0 small, and choose K ≥ 1 large enough that E |AK | < δ. For any n ≥ K , the sample
average An is nearly (but not quite) the average of the sample averages AK ;m from m = 1, 2, . . . , n ;
the error comes about at the boundaries. Precisely:

An −
1

n

n
∑

m=1

AK ;m =
1

n K

K−1
∑

j=1

(K − j )X j −
1

n K

n+K−1
∑

j=n+1

(j −n )X j :=Vn ;K

Lemma 30. If E |X1|<∞ then limn→∞Vn ;K = 0 almost surely.

Proof. Exercise. HINT: Use the easy half of the Borel-Cantelli Lemma. �

It follows that the lim sup and lim inf of the sample averages An are the same as the lim sup
and lim inf of the averages of the averages:

lim sup
n→∞

An = lim sup
n→∞

n−1
n
∑

m=1

AK ;m and lim inf
n→∞

An = lim inf
n→∞

n−1
n
∑

m=1

AK ;m .

But the Maximal Inequality guarantees that these limsups and liminfs must be close to zero with
high probability: in particular, if δ= ε2 and E |AK |<δ, then

P{sup
n

n−1
n
∑

m=1

|AK ;m |> ε}<δ/ε = ε.

Therefore,

P{lim sup
n→∞

An > ε}< ε and P{lim inf
n→∞

An <−ε}< ε.

Since ε > 0 is arbitrary, it follows that the limsup and liminf must equal 0 with probability one.
This proves the SLLN under the assumption that the random variables X i have finite second
moment.

Now consider the general case, where E |X i | <∞. Assume that E X i = 0. Then for any δ > 0
there exist i.i.d. bounded random variables Yi such that E |X i − Yi | < δ. (This follows from the
dominated convergence theorem: Truncate X i at±m and let m →∞.) Without loss of generality,
the random variables Yi can be chosen so that E Yi = 0. (Why?) Since the random variables Yi are
bounded, they have finite variance, and so

lim
n→∞

AY
n = E Y1 = 0 almost surely.

But the Maximal Inequality guarantees that the differences AX
n −AY

n must all remain near zero,
except with small probability. In particular, if δ= ε2, then

P{sup
n≥1
|AX

n −AY
n |> ε}< ε.

It follows that the lim sup and lim inf of the sequence AX
n must lie in the interval [−ε,ε] with

probability at least 1− ε. Since ε > 0 is arbitrary, this implies that the liminf and limsup must be
0 almost surely. �
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Proof of Theorem 11. Let Yn = g (Xn , Xn+1, . . . ) for a measurable function g such that E |Yn | <∞.
As in the proof of the weak ergodic theorem in section 3, there exists a function h depending on
only finitely many coordinates so that inequality (35) holds, with ε =δ2 < 1. Thus, if

Un = h(Xn , Xn+1, . . . ),

then E |Y1−U1|< ε. Without loss of generality, the function h can be chosen so that EUn = E Yn

(for the same reason as in the proof of the SLLN). The Maximal Inequality (applied to sample
averages of the differences |Yj −Uj |) implies that

P{sup
n≥1

n−1
n
∑

k=1

|Yj −Uj |>δ}< ε/δ=δ.

But we have already seen (see Step 1 of the proof of the weak ergodic theorem) that the sample
averages of the random variables Uj converge to the expectation EU1 = E Y1 almost surely, and
so the liminf and limsup of these sample averages are both E Y1. Thus,

P{| lim sup
n→∞

AY
n −E Y1| ≥δ}<δ and P{| lim inf

n→∞
AY

n −E Y1| ≥δ}<δ.

Since δ > 0 is arbitrary, it follows that the limsup and liminf both equal E Y1 with probability
one. �


