
Computational Models– Lecture 5

One More PDAs Example

Equivalence of PDAs and CFLs

Nondeterminism adds power to PDAs
(not in book)

Closure Properties of CFLs

Algorithmic Aspects of PDAs and CFLs

DFAs and PDAs: Perspectives

Sipser’s book, 2.2 & 2.3
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Mid-term exam on Friday,
April 13.

Material is first five lectures (i.e. up to and including
today, and Chomsky normal form from lecture 4).

Closed books (no auxiliary material).

10 multiple choice (“closed, American”) questions.

Duration 1:40 hrs.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.2



Another PDA Example

A palindrome is a string w satisfying w = wR.

“Madam I’m Adam”

“Dennis and Edna sinned”

“Red rum, sir, is murder”

“Able was I ere I saw Elba”

“In girum imus nocte et consumimur igni” (Latin: "we go
into the circle by night, we are consumed by fire”.)

“νιψoν ανoµηµατα µη µoναν oψιν”

Palindromes also appear in nature. For example as
DNA restriction sites – short genomic strings over
{A,C, T,G}, being cut by (naturally occurring) restriction
enzymes.
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Another PDA Example

On input x, the PDA start pushing x into stack.

At some point, PDA guesses that the mid point of x was
reached.

Pops and compares to input, letter by letter.

This PDA accepts palindromes of even length over the
alphabet.

Again, non-determinism seems necessary.
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Non-Deterministm Adds Power: Proof

Theorem: Let M be a PDA that accepts

L = {xnyn|n ≥ 0} ∪ {
xny2n | n ≥ 0

}
.

Then M is non-deterministic.
Proof: a Suppose, by way of contradiction, that M is
deterministic.

Create two copies of this PDA, denoted M1 and M2.

Two states in M1 and M2 are called “cousins” if they are
copies of the same state in the original PDA.

a
(prf modified from www.cs.may.ie/∼jpower/Courses/parsing/node38.html)
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Non-Deterministm Adds Power (cont.)

We now modify these PDA copies to make them into
one PDA, M0, over the alphabet {x, y, z}.

States of the new M0 are those of M1 union M2.

Start state of the new M0 is the start state of M1.

The accepting states of the new M0 are the accepting
states of M2.
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Non-Deterministm Adds Power (cont.)

Modifications:
Erase all x transitions of M2.
Replace every existing y transition of M2 by a new z
transition.
At this point M2 got only z transition (so x and y
inputs lead immediately to rejection).
Erase all x transitions out of accept states of M1.
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Non-Deterministm Adds Power (cont.)

The surgery is almost done, but if we don’t connect the
two halves of its brain, the patient will not function
coherently.

Replace every existing y transition leading out of accept
states of M1 by a new z transition, and redirect it to its
“cousin” in M2.

Surgery over. Patient (a deterministic PDA) still alive.
Let us now diagnose what, if anything, it can do.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.8



Non-Deterministm Adds Power (cont.)

What language M0 recognizes?

Certainly if M0 accepts a string, it must be of the form
(x ∪ y)∗z∗.
But surely not all strings of that form are accepted by
M0.

For example, the (x ∪ y)∗ prefix must be accepted by
the original M .

Otherwise there will be no switch to M2, and no
acceptance by M0. (think why is L(M0) �= ∅? Would this
also be true for non deterministic M?)

So the prefix of an accepted string is either of the form
xnyn or xny2n.

And the whole string is of the form xnynzi or xny2nzj .
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Non-Deterministm Adds Power (cont.)

What can we say about the zi part? First, i must be
greater than 0 for a transition to take place.

By construction, M2 on zi imitates the actions of M on
yi from the same starting point.

This means that if M0 accepts xnynzi then M accepts
xnyn+i.

Which is possible if either i = n, so M0 accepts xnynzn,
n > 0,

or M0 accepts xny2nzj , so M accepts xny2n+j.

But L contains no strings of this last form!
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Conclusion of Proof

We just showed that the PDA M0 accepts the language
{xnynzn|n ≥ 1}. Contradiction. ♣
Contradiction? What contradiction?
What the $%&# does this contradict?

It contradics the fact that by the so called uvxyz
pumping lemma, the language {xnynzn|n ≥ 1} is not
context free, so is not accepted by a PDA.

So our initial supposition that the language
{xnyn} ∪ {

xny2n
}

is accepted by a deterministic PDA,
does not hold.

While thinking about the proof, where would it fail if the
original M were non-deterministic?
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PDA Languages vs. CFLs

The set of Push-Down Automata Languages, LPDA, is the
collection of all languages that are accepted by some PDA:

LPDA = {L : ∃PDAM ∧ L(M) = L} .
Natural questions:

LCFG ⊆ LPDA ?

LPDA ⊆ LCFG ?
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Equivalence Theorem

Theorem: A language is context free if and only if some
pushdown automata accepts it.

This time (unlike the regular expression vs. regular lan-

guages theorem), the proofs of both the “if” part and the

“only if” part are non trivial.
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If Part

Theorem: If a language is context free, then some
pushdown automaton accepts it.

Let A be a context-free language.

By definition, A has a context-free grammar G
generating it.

On input w, the PDA P should figure out if there is a
derivation of w using G.

Question: How does P figure out which substitution to
make?

Answer: It guesses.
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CFL Implies PDA (cont.)

Where do we keep the intermediate string?

can’t put it all on the stack

only strings whose first letter is a variable are kept on
stack
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CFL Implies PDA

Will be more convenient to use grammar in Chomsky
normal form, due to compact derivation rules.

Informally, on input string w ∈ Σ∗:
P pushes start variable S on stack

keeps making substitutions

when popping a terminal, P checks equality with current
input string

rejects if not equal

when popping a variable, P pushes to top of stack a
right hand side of some rule corresponding to variable
(zero, one, or two symbols).

if EOI reached when stack is empty, accept.
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CFL Implies PDA (cont.)

Informal description:

push S$ on stack

if top of stack is variable A, non-deterministically select
rule and substitute.

if top of stack is terminal a, read next input and
compare. If they differ, reject.

if top of stack and input symbol are both $, enter accept
state. (Namely accepts only if input has all been read
and stack is empty!).
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CFL Implies PDA (cont.)

Need shorthand to push strings of length 2 onto stack. For
example, suppose

A→ BC

is a derivation of the CFG.
Then we add a “shorthand state”, qe, and the two transitions

(qe, C) ∈ δ(q�, A, ε), δ(qe, ε, ε) = {(q�, B)}
Notice that the second transition is deterministic (the first
one may or may not be). Also notice order: Push C first,
then B.
These intermediate states are different for different
derivations.
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CFL Implies PDA (cont.)

States of P are

start state qs
accept state qa
loop state q�
qe states, needed for shorthand of right hand sides of
rules
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Transition Function

Initialize stack
δ(qs, ε, ε) = {q�, S$}

Top of stack is variable (shorthand for two transitions)

δ(q�, ε, A) = {(q�, w)| where A→ w is a rule }
Top of stack is terminal

δ(q�, a, a) = {(q�, ε)}
End of Stack and End of Input

δ(q�, $, $) = {(qa, ε)}
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Example

S → AT |ε
A → AB|AA|a
B → b

T → TT |t
Transition rules for PDA: On black/white board.
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Only If Part

Theorem: If a PDA accepts a language, L, then L is
context-free.

For each pair of states p and q in P , we will have a
variable Apq in the grammar G.

This variable, Apq, generates all strings that take P from
p with an empty stack to q with empty stack.

Same string also takes p with any stack to q with same
stack!

Start variable is Aq0,qa (assuming a single accept state
qa).
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PDA Implies CFL

To make things easier, we slightly modify P

Has single accept state qa.

It empties stack before accepting.

Each transition either pushes a symbol on stack, or
pops a symbol from stack, but not both.
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PDA Implies CFL (2)

Modify P to make things easier

single accept state qa

ε,ε ε

ε,ε ε

empties stack before accepting

each transition pushes or pops, but not both.
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PDA Implies CFL (3)

Modify P to make things easier

single accept state qa
√

empties stack before accepting

ε,ε ε

ε,ε ε

ε,ε ε

ε,ε ε

εε,a

ε,ε ε
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PDA Implies CFL (4)

Modify P to make things easier

single accept state qa
√

empties stack before accepting
√

transition either pushes or pops, but not both
a,b c

a,b ε cε,ε
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Proof Idea

Suppose string x takes P from p with empty stack to q with
empty stack.

First move that touches the stack must be a push, last must
be a pop.
In between, two possibilities:

Stack is empty only at start and finish, but not in middle.

Stack was also empty at some point in between.
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Proof Idea (2)

Suppose string x takes P from p with empty stack to q with
empty stack.
First move that touches the stack must be a push, last must
be a pop.
In between, two possibilities:

Stack is empty only at start and finish, but not in middle.
Simulate by: Apq → aArsb, where a, b are first and last
symbols in x (shorter x will be taken care of too), r
follows p, and s precedes q.

Stack was also empty at some point in between.
Simulate by: Apq → AprArq, r is intermediate state
where P has empty stack.
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Details of Simulating Grammar

Given PDA P = (Q,Σ,Γ, δ, q0, {qa}), construct grammar G.
Variables are {Apq | p, q ∈ Q}.

Start variable is Aq0qa.
Rules:

For p, q, r, s ∈ Q, t ∈ Γ, and a, b ∈ Σ, if (r, t) ∈ δ(p, a, ε)
and (q, ε) ∈ δ(s, b, t),
add rule Apq → aArsb .

for every p, q, r ∈ Q, add rule Apq → AprArq .

for each p ∈ Q, add rule App → ε .
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Overall Structure

Should now prove

Claim: Apq generates x if and only if x brings P from p with
empty stack to q with empty stack.
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Only If Part

Theorem: If a PDA accepts a language, L, then L is
context-free.

Proof: After constructing the grammar G , should prove it
generates exactly the same language accepted by the PDA.
This is done by induction on the length of any computation
of P on any input string x.
The induction argument is a bit lengthy and tedious, and
we’ll skip it.

Diehards are welcome to consult pp. 106–114 in Sipser’s
book, and/or slides from fall 2003/4.
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CFL Closure Properties

We saw that Context-Free Languages are closed under
union, concatenation, and star?

It is time we resolve closure with respect to
complementation and intersection.
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CFL Closure Properties

Are the context free languages context free languages
closed under intersection?

Suggested approach: Can we intersect two context free
languages langauges to get 0n1n2n?
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CFL Closure Properties

Are the context free languages closed under
intersection?

S1 → A1B1 S2 → A2B2

A1 → 0A11|01 A2 → 0A2|ε
B1 → 2B1|ε B2 → 1B22|12

L1 = 0n1n2∗ L2 = 0∗1n2n

L1 ∩ L2 = 0n1n2n

L1 is a context free language, L2 is a context free
language, but L1 ∩ L2 is not a context free languages
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CFL Closure Properties

The fact that CFLs are not closed under intersection but are

closed under union implies they are not closed under com-

plementation, as L1 ∩ L2 = L1 ∪ L2.
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CFL Closure Properties

Can we give a simple, specific example, where L is not CFL
but L is?

Take L = {ww | w ∈ {0, 1}∗}.

For any y ∈ L, either
y’s length is odd.
y’s length is even, 2	, and there is an i ≥ 1 such that
yi �= y�+i.

PDA non-deterministically tries to verify one of the
options. Employs stack for “matching locations”.
Accepts only on a successful branch (voluntary home
assignment: fill in the details!).
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CFL Closure Properties

Are the context free languages context free languages
closed under intersection with a regular language?

That is, if L1 is context free languages, and L2 is
regular, must L1 ∩ L2 be context free languages?

Run PDA L1 and DFA L2 “in parallel” (just like the
intersection of two regular languages).

Formal details omitted (but you should be able to figure
them out).
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CFL Closure Properties: Example

Is L = {(0 + 1 + 2)∗ : # of 0’s = # of 1’s = # of 2’s } context
free?
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CFL Closure Properties

L � {(0 ∪ 1 ∪ 2)∗ : # 0’s = # 1’s = # 2’s }
Is L context free?

L ∩ 00∗11∗22∗ ={0n1n2n : n > 0} which is not context
free.
Context free languages intersected with a regular
languages are context free.
00∗11∗22∗ is regular.
So L is not a context free language!
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Algorithmic Questions Regarding DFAs

Given a regular expression, R, find the smallest DFA
(minimum number of states) that accepts L(R).

Initial Idea: Use the algorithm describe in class to
transform R into an NFA. Then transform this NFA
into a DFA, M .

That’s very nice, but how do we know M is minimal?

It need not be!
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Algorithmic Questions for DFAs (2)

Given a regular expression, R, find the smallest DFA that
accepts L(R) (minimum number of states).

We can enumerate all DFAs that are strictly smaller
than M .

For each such Mi, test if L(Mi) = L(M) (we saw an
algorithm for this).

Take the smallest such Mi.

Algorithm is very inefficient. If smallest M has n states,
algorithm will take time that is exponential in n.

More efficient algorithm is known, using the
Myhill-Nerode theorem.
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Algorithmic Questions Regarding CFGs

Given a CFG, G, and a string w, does G generate w?

Initial Idea: Design an algorithm that tries all derivations.

Problem: If G does not generate w, we’ll never stop.
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Algorithmic Questions for CFGs (2)

Lemma: If G is in Chomsky normal form, |w| = n, and w is
generated by G, then w has a derivation of length 2n− 1 or
less.

We won’t prove this (go ahead — try it at home!).

Algorithm’s idea:

First, convert G to Chomsky normal form.

Now need only consider a finite number of derivations –
those of length 2n− 1 or less.
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Algorithmic Questions for CFGs (3)

Theorem: There is an algorithm (that halts on every inputs)
A, that on inputs G and w, decides if G generates w.
On input 〈G,w〉, where G is a grammar and w a string,

1. Convert G to Chomsky normal form.

2. List all derivations with 2n− 1 steps, were n = |w|.
3. If any generates w, accept, otherwise reject. ♣
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Algorithmic Questions for CFGs (4)

Theorem: There is an algorithm (that halts on every inputs)
A, that on inputs G and w, decides if G generates w.

Remarks:

Related to problem of compiling prog. languages.

Would you want to use this algorithm at work?

Every theorem about CFLs is also about PDAs.
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Emptiness of CFGs

Given a CFG, G, is L(G) = ∅?

In other words, is there any string w, such that G generate
w?

Theorem: There is an algorithm that solves this problem
(and always halts).

Possible approaches for a proof:
Bad Idea: We know how to test whether w ∈ L(G) for any
string w, so just try it for each w. (criticize this...)
Better Idea: Can the start variable generate a string of
terminals?
Even Better Idea: Can a particular variable generate a
string of terminals?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.46



CFG Emptiness (2)

Algorithm: On input G (a CFG),

1. Mark all terminal symbols in G.

2. Repeat until no new variables become marked.

3. Mark any A where A→ U1U2 . . . Uk and all Ui have
already been marked.

4. If start symbol marked, accept, else reject. ♣
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CFGs “Fullness”

Given a CFG, G, is L(G) = Σ∗?

We just saw an algorithm to determine, given a CFG, G, if
L(G) = ∅
L(G) = Σ∗ iff L(G) = ∅. Why not modify the algorithm so it
determines emptiness of the complement?

Unfortunately, CFGs are not closed under complement.

Fact: There is no algorithm to solve this problem.

We are not prepared to prove this remarkable fact (yet).
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When Are Two CFGs equivalent?

Given two CFGs, G,H, is L(G) = L(H)?

Hey, we did this already for equivalence of DFAs!

We constructed C from A and B:

L(C) =
(
L(A) ∩ L(B)

)
∪

(
L(A) ∩ L(B)

)
.

and tested whether L(C) is empty.

Stop! Danger! Abyss ahead!
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When Are Two CFGs equivalent?

This approach was fine for DFAs, but not for CFLs!

The class of context-free languages is not closed under
complementation or intersection.

Fact: There is no algorithm to solve this problem.

We are not prepared to prove this remarkable fact (yet).
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A Short Summary

Regular Languages ≡ Finite Automata.

Context Free Languages ≡ Push Down Automata.

Closure properties of regular languages and of CFLs.

Most algorithmic problems for finite automata are
solvable.

Some algorithmic problems for finite automata are not
solvable.

Pumping lemmata for both classes of languages.

There are additional languages out there.
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The View Over The Horizon

context free

regular

decidable

enumerable

Happy passover (& kosher for legumes eaters)!
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