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Learning objectives
Understand when to use a one sample -test
Understand the null hypothesis for a one sample -test
Understand how to calculate the test statistic
Know how to conduct the test in R
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Topics for today
Recording 1: Introduce the three types of -test:

Recording 2: One-sample t-test example

Recording 3: Inferential tests for the one-sample t-test

Recording 4: Assumptions and e�ect size.
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Purpose
-tests (generally) concern testing the di�erence between two means.

Another way to state this is that the scores of two groups being tested are from the sample underlying population
distribution.

One-sample -tests compare the mean in a sample to a known mean .

Independent -tests compare the means of two independent samples.

Paired sample -tests compare the mean from a single sample at two points in time (repeated measurements)

We will look in more detail at these tests over the next three weeks.

But let's start by thinking a little bit about the logic -tests.
For the next few slides, have a bit of paper and a pen handy.
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Write down whether you think these means (two lines)
are di�erent. Write either:

Yes
No
It depends

Are these means di�erent?
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Write down whether you think these means (two lines)
are di�erent. Write either:

Yes
No
It depends

What about these?
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Di�erences in means
OK, now please write down:

1. Why you wrote the answers you did?
2. If you wrote, "It depends", why can we not tell whether they are di�erent or not?
3. What else might we want to know in order to know whether not the group means could be thought of as coming from the

same distribution?
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All the information
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All the information
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t-statistic
Recall when talking about hypothesis testing:

We calculate a test statistic that represents our question.
We compare our sample value to the sampling distribution under the null

Here the test statistic is a -statistic.t
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t-statistic

where
 = sample estimated standard deviation of 

 = sample size
The numerator = a di�erence is means
The denominator = a estimate of variability
 = a standardized di�erence in means.

t =
x̄ − μ

s
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s x
N
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Time for a break
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Welcome Back!
Now we have introduced the general principle of -tests, we will consider the one-sample test in more detailt
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Data Requirements: One-sample t-test
A continuous variable.

Remember we are calculating means.

A known mean that we wish to compare our sample to.

A sample of data from which we calculate the sample mean.
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Example
Suppose I want to know whether the retirement age of Professors at my University is the same as the national average.

The national average age of retirement for Prof's 65.

So I look at the age of the last 40 Prof's that have retired at Edinburgh and compare against this value.
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Data
## # A tibble: 40 × 2
##    ID       Age
##    <chr>  <dbl>
##  1 Prof1     76
##  2 Prof2     66
##  3 Prof3     58
##  4 Prof4     68
##  5 Prof5     79
##  6 Prof6     74
##  7 Prof7     75
##  8 Prof8     50
##  9 Prof9     69
## 10 Prof10    70
## # … with 30 more rows
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Hypotheses
We are comparing a single sample mean  to a known mean 

Note this is identical to saying:

x̄ μ

H0 : μ = x̄

H0 : μ − x̄ = 0
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Alternative Hypotheses
Two-tailed:

One-tailed:

H0 : μ = x̄

H1 : μ ≠ x̄

H0 : μ = x̄

H1 : μ < x̄

H1 : μ > x̄

18 / 47



Hypotheses
Let's assume a priori we have no idea of the ages the Prof's retired.

So I specify a two-tailed hypothesis with  = 0.05.

So I am simply asking, does my mean di�er from the known mean.

α
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Calculation

Steps to calculate :
Calculate the sample mean (  ).
Calculate the sample standard deviation (  ).
Check I know my N.
Calculate the standard error of the mean (  ).

Use all this to calculate t.

t =
x̄ − μ

s

√N
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Calculation
dat %>%
  summarise(
    PopMean = 65,
    Mean = mean(Age),
    SD = sd(Age),
    N = n()
  ) %>%
  mutate(
    SE = SD/sqrt(N)
  )

## # A tibble: 1 × 5
##   PopMean  Mean    SD     N    SE
##     <dbl> <dbl> <dbl> <int> <dbl>
## 1      65  66.3  10.0    40  1.58
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Calculation
## # A tibble: 1 × 5
##   PopMean  Mean    SD     N    SE
##     <dbl> <dbl> <dbl> <int> <dbl>
## 1      65  66.3  10.0    40  1.58

So in our example 

t = = = = 0.821
x̄ − μ

s

√N

66.3 − 65
10.01

√40

1.3

1.583

t = 0.821
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Time for a break
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Welcome Back!
Now we have calculated our test statistic, it is time to conduct an inferential test
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Is our test significant?
The sampling distribution for -statistics is a -distribution.

The -distribution is a continuous probability distribution very similar to the normal distribution.

Key parameter = degrees of freedom (df)
df are a function of N.
As N increases (and thus as df increases), the -distribution approaches a normal distribution.

For a one sample -test, we compare our test statistic to a -distribution with N-1 df.
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Is our test significant?
So we have all the pieces we need:

Degrees of freedom = N-1 = 40-1 = 39
We have our t-statistic (0.821)
Hypothesis to test (two-tailed)

 level (0.05).

So now all we need is the critical value from the associated -distribution in order to make our decision.
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## # A tibble: 1 × 2
##   LowerCrit UpperCrit
##       <dbl>     <dbl>
## 1     -2.02      2.02

Is our test significant?
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Is our test significant?
So our critical value is 2.02

Our t-statistic (0.821) is closer to 0 than this.
So we fail to reject the null hypothesis.

t(39)=0.821, p > .05, two-tailed.
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## # A tibble: 1 × 1
##   Exactp
##    <dbl>
## 1   0.42

Exact p-values
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In R
t.test(dat$Age, mu=65, alternative="two.sided")

## 
##     One Sample t-test
## 
## data:  dat$Age
## t = 0.82152, df = 39, p-value = 0.4163
## alternative hypothesis: true mean is not equal to 65
## 95 percent confidence interval:
##  63.09922 69.50078
## sample estimates:
## mean of x 
##      66.3
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Write up
A one-sample t-test was conducted in order to determine if a statistically significant (  =.05) mean di�erence existed between the
average retirement age of Professors, and the age at retirement of a sample of 40 psychology Professors. The sample scored
higher (Mean=66.3, SD=10.01) than the population (Mean = 65), however the di�erence was not statistically significant
(t(39)=0.821, p > .05, two-tailed).

α
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Time for a break
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Welcome Back!
Every inferential set comes with a set of assumptions. These need to be checked in order to make sure results are valid. So let's

look at -test assumptions, as well as calculating e�ect size measurest
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Assumption checks summary

Description One-Sample t-
test

Independent Sample t-
test

Paired Sample t-test

Normality Continuous variable (and di�erence) is normally
distributed.

Yes
(Population)

Yes (Both groups/
Di�erence)

Yes (Both groups/
Di�erence)

Tests: Descriptive Statistics; Shapiro-Wilks Test; QQ-plot

Independence Observations are sampled independently. Yes Yes (within and across
groups)

Yes (within groups)

Tests: None. Design issue.

Homogeneity of
variance

Population level standard deviation is the same in
both groups.

NA Yes Yes

Tests: F-test

Matched Pairs in
data

For paired sample, each observation must have
matched pair.

NA NA Yes

Tests: None. Data structure issue.
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Assumptions
As noted above, we have some requirements of the data:

DV is continuous.

But we also have some additional model assumptions for the test to be valid.

1. The data are normally distributed.
2. The data are an independent random sample.

(2) we can not directly test.

(1) we can look at descriptive statistics, QQplots, histograms and a Shapiro-Wilks Test.
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Assumption checks: Normality
Descriptive statistics:

Skew: No strict cuts for skew.
Skew < |1| generally not problematic
|1| < skew > |2| slight concern
Skew > |2| investigate impact
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Skew
library(moments)
dat %>%
  summarise(
    skew = round(skewness(Age),2)
  )

## # A tibble: 1 × 1
##    skew
##   <dbl>
## 1 -0.66

Skew is low.
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dat %>%
  ggplot(., aes(x=Age)) +
  geom_histogram(bins = 20)

Our histogram looks "lumpy", but we have relatively low
N for looking at these plots.

Histograms
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Assumption checks: Normality
QQ-plots:

Plots the sorted quantiles of one data set (distribution) against sorted quantiles of data set (distribution).
Quantile = the percent of points falling below a given value.
For a normality check, we can compare our own data to data drawn from a normal distribution
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dat %>%
  ggplot(., aes(sample = Age)) +
  stat_qq() +
  stat_qq_line()

This looks a little concerning.
We have some deviation in the lower le� corner.
This is showing we have more lower values for age than
would be expected.

QQ-plots
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Assumption checks: Normality
Shapiro-Wilks test:

Checks properties of the observed data against properties we would expected from normally distributed data.
Statistical test of normality.

: data = a normal distribution.
-value  = reject the null, data are not normal.

Sensitive to N as all p-values will be.
In very large N, normality should also be checked with QQ-plots alongside statistical test.

H0

p < α
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Shapiro-Wilks R
shapiro.test(dat$Age)

## 
##     Shapiro-Wilk normality test
## 
## data:  dat$Age
## W = 0.95122, p-value = 0.08354

Fail to reject the null,  > .05

Taken collectively, it looks like our assumption of normality is met.

p
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E�ect Size: Cohen's D
Cohen's-D is the standardized di�erence in means.

Having a standardized metric is useful for comparisons across studies.
It is also useful for thinking about power calculations (more in a couple of weeks)

The basic form of  is the same across the di�erent -tests:D t

D =
Differece

V ariation

43 / 47



Interpreting Cohen's D
There are a number of guides for interpreting Cohen's D.

These are not set in stone, and are intended as heuristics.

Perhaps the most common "cut-o�s" for -scores:

~ 0.2 = small e�ect
~ 0.5 = moderate e�ect
~ 0.8 = large e�ect

D
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Cohen's D: One-sample t
One-sample t-test:

 = population mean

 = sample mean
 = sample standard deviation

D =
x̄ − μ

s

μ

x̄
s
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Cohen's D in R
library(effsize)
cohen.d(dat$Age, NA, mu=65, conf.level = .95)

## 
## Cohen's d (single sample)
## 
## d estimate: 0.1298935 (negligible)
## Reference mu: 65
## 95 percent confidence interval:
##      lower      upper 
## -0.5104117  0.7701986
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Summary
Today we have covered:

Basic structure of the one-sample t-test
Calculations
Interpretation
Assumption checks
E�ect size measures
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