One Variable Data Table

Show the Possible Outcomes as you Vary a Single Data Cell

Structure of a One Variable Data Table

Structure of One Variable Data Table

These are the variables you wish to test. In this example they are the Units Sold. Each value in the column will be run through the cell containing our Units Sold (B6) to see what the corresponding Profit would be. B6 is our **Column Input Cell** because our variables are in a column and they will be substituted into cell B6.

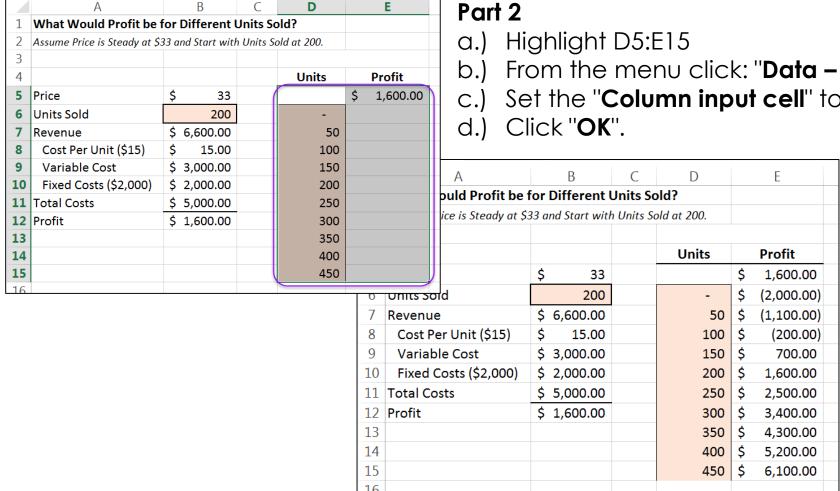
	А		В	С	D	E
1	What Would Profit be 1	or	Different I	Jnits Sol	d?	
2	Assume Price is Steady at \$3	33				
3						
4					Units	Profit
5	Price	\$	33.00			\$ 1,600.00
6	Units Sold	\$	200.00		-	
7	Revenue	\$	6,600.00		50	
8	Cost Per Unit (\$15)	\$	15.00		100	
9	Variable Cost	\$	3,000.00		150	
10	Fixed Costs (\$2,000)	\$	2,000.00		200	
11	Total Costs	\$	5,000.00		250	
12	Profit	\$	1,600.00		300	
13					350	
14					400	
15					450	
16						

This is the formula (or a link to the formula) that returns the results you are after. In this example it is the **Profit** formula in B12 so we would type: =B12

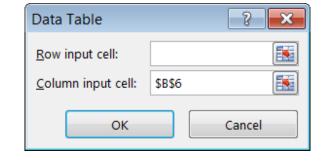
blank	Formula to Test	More Formulas to Test (Optional)
las)		
— ñ —		
- <u>6</u> -	Results	Optional
Variables (Values or Formulas)	Output	Results
alue —	-	Output
>		
able		
/arië		

Exercise 1: One Variable Data Table – Units Vary

Find Profits for Various <u>Units Sold</u>


	А		В	С	D	Е
1	What Would Profit be 1	or	Different	Units Sold?		
2	Assume Price is Steady at \$3).				
3						
4					Units	Profit
5	Price	\$	33			=B12
6	Units Sold		200		-	
7	Revenue	\$	6,600.00	=B5*B6	50	
8	Cost Per Unit (\$15)	\$	15.00		100	
9	Variable Cost	\$	3,000.00	=B6*B8	150	
10	Fixed Costs (\$2,000)	\$	2,000.00		200	
11	Total Costs	\$	5,000.00	=B9+B10	250	
12	Profit	\$	1,600.00	=B7-B11	300	
13					350	
14					400	
15					450	
4.0						

Part 1


Fill out the Spreadsheet as shown.

Exercise 1: One Variable Data Table – Vary Units

Find Profits for Various <u>Units Sold</u>

- From the menu click: "Data What If Analysis Data Table".
- Set the "Column input cell" to B6 (Units Sold) and click "OK".

You should get the profits shown to the left. It tells you what your profits would be for each value of Units.

Student Exercise: Show Profit for Various Profits

Show what the Profits would be if you <u>Vary Price</u>

		-			
	А	В	C	D	E
1	What Would Profit be t				
2	Assume Units Sold is Steady	at 500 and star	t with a F	Price of \$15.	
3					
4				Price	Profit
5	Price	\$ 15			\$ (2,000.00)
6	Units Sold	500		15	\$ (2,000.00)
7	Revenue	\$ 7,500.00		16	\$ (1,500.00)
8	Cost Per Unit (\$15)	\$ 15.00		17	\$ (1,000.00)
9	Variable Cost	\$ 7,500.00		18	\$ (500.00)
10	Fixed Costs (\$2,000)	\$ 2,000.00		19	\$ -
11	Total Costs	\$ 9,500.00		20	\$ 500.00
12	Profit	\$ (2,000.00)		21	\$ 1,000.00
13				22	\$ 1,500.00
14				23	\$ 2,000.00
15				24	\$ 2,500.00
1.0					

Exercise 2: One Variable, Two Formulas

Show Future Value for Various Monthly Deposits

	А	В	С	D		Е	F				
1	Retirement Planning: FV(Rate/12, Months, Deposits)										
2											
3					No	Investing	Investin	g			
4	Monthly Deposit	10			\$	3,600.00	\$6,940.	49			
5	Years Until Retirement	30		100	\$	36,000	\$ 69,4	05			
6	Expected Monthly Avg Rate	4%		125	\$	45,000	\$ 86,7	56			
7				150	\$	54,000	\$ 104,1	07			
8				175	\$	63,000	\$ 121,4	59			
9				200	\$	72,000	\$ 138,8	10			
10				225	\$	81,000	\$ 156,1	51			
11				250	\$	90,000	\$ 173,5	12			
12				275	\$	99,000	\$ 190,8	54			
13				300	\$	108,000	\$ 208,2	15			
14				325	\$	117,000	\$ 225,5	56			
15				350	\$	126,000	\$ 242,9	17			

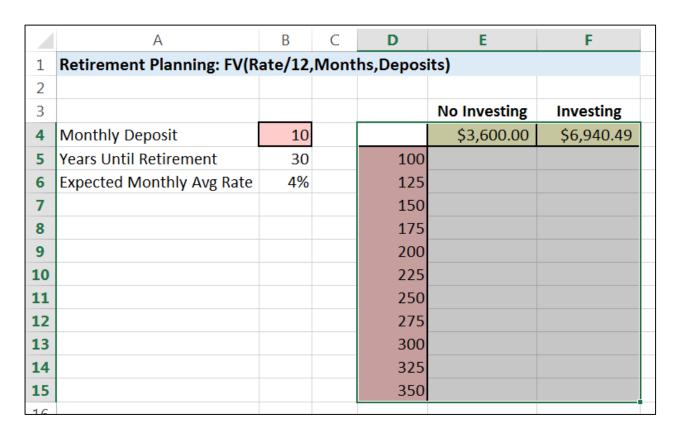
Determine how much money you would have in 30 years by depositing a specific monthly amount.

Show one column if you simply hid it under your mattress (12*30*Monthly deposit)

And another column if you invested it at 4%. =FV(Rate,Periods,Pmt Amount)

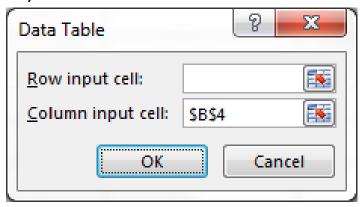
Exercise 2: One Variable, Two Formulas

Show Future Value for Various Monthly Deposits


	А	В	С	D	Е	F					
1	Retirement Planning: FV(Rate/12, Months, Deposits)										
2											
3					No Investing	Investing					
4	Monthly Deposit	10			=B5*12*B4	=-FV(B6/12,B5*12,B4)					
5	Years Until Retirement	30		100							
6	Expected Monthly Avg Rate	4%		125							
7				150							
8				175							
9				200							
10				225							
11				250							
12				275							
13				300							
14				325							
15				350							

Part 1

Type the formulas shown in E4 and F4.


Exercise 2: One Variable, Two Formulas

Show Future Value for Various Monthly Deposits

Part 2

- a.) Highlight D4:F15
- b.) From the menu click:Data What If Analysis Data Table...
- c.) Set the Column Input Cell to **B4**.
- d.) Click "OK".

You should get the results shown on the first slide of this exercise.

Two Variable Data Table

Show the Possible Outcomes as you Vary Two Data Cells

Structure of a Two Variable Data Table

Formula Whose Results You wish to Display

This corner of the structure must contain either the formula whose results you wish to display or a link to the cell containing the formula whose results you wish to display. For example, it might be a formula that returns *Profit* for given *Prices* and *Units Sold*.

Column Variable List

This is a list of the different values you wish to substitute into a cell that the formula in the right corner references. For example, if the cell in the right corner returns *Profit*, this row might contain *Units Sold*. Column variables should be values as formulas can produce incorrect results if they reference the same celled used to produce your results.

Row Variable List

This is a list of the different values you wish to substitute into a cell that the formula in the right corner references. For example, if the cell in the right corner returns *profit*, this row might contain *Unit Price*. Row variables should be values as formulas can produce incorrect results if they reference the same celled used to produce your results.

	Formula to Evaluate	Row	/ Va	riables (v	alues or Fo	ormulas)	
	σ						
	olumn Variables (Values or Formulas)			Res	ults		
	mn /			Out	put		
	Column (Values o		Tab	lts genera le will ap	•		
+							_

usc Marshall

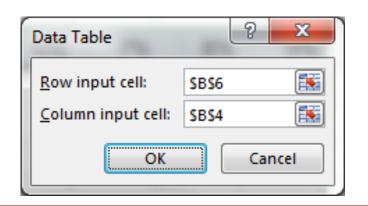
Exercise: Two Variable Data Table

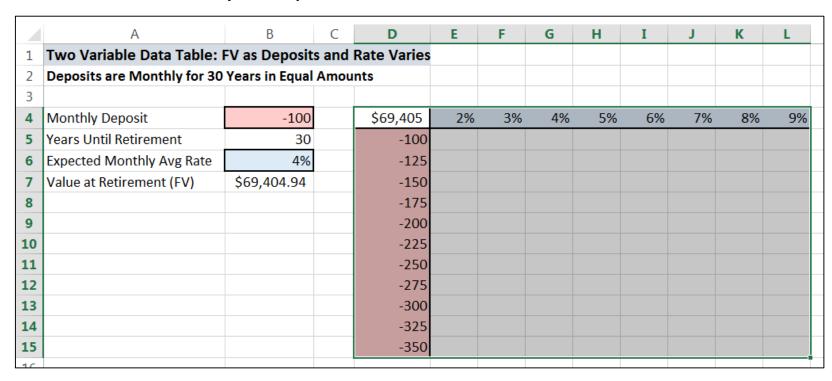
Show Future Value for Various Monthly Deposits and Various Rates

	А	В С	D	Е	F	G	Н	I	J	K	L
1	Two Variable Data Table:	FV as Deposits and	Rate Varies								
2	Deposits are Monthly for 30	Years in Equal Amo	unts								
3											
4	Monthly Deposit	-100	\$69,404.94	2%	3%	4%	5%	6%	7%	8%	9%
5	Years Until Retirement	30	-100	\$ 49,273	\$ 58,274	\$ 69,405	\$ 83,226	\$100,452	\$121,997	\$149,036	\$183,074
6	Expected Monthly Avg Rate	4%	-125	\$ 61,591	\$ 72,842	\$ 86,756	\$104,032	\$125,564	\$152,496	\$186,295	\$228,843
7	Value at Retirement (FV)	\$69,404.94	-150	\$ 73,909	\$ 87,411	\$104,107	\$124,839	\$150,677	\$182,996	\$223,554	\$274,612
8			-175	\$ 86,227	\$101,979	\$121,459	\$145,645	\$175,790	\$213,495	\$260,813	\$320,380
9			-200	\$ 98,545	\$116,547	\$138,810	\$166,452	\$200,903	\$243,994	\$298,072	\$366,149
10			-225	\$110,863	\$131,116	\$156,161	\$187,258	\$226,016	\$274,493	\$335,331	\$411,917
11			-250	\$123,181	\$145,684	\$173,512	\$208,065	\$251,129	\$304,993	\$372,590	\$457,686
12			-275	\$135,499	\$160,253	\$190,864	\$228,871	\$276,242	\$335,492	\$409,849	\$503,454
13			-300	\$147,818	\$174,821	\$208,215	\$249,678	\$301,355	\$365,991	\$447,108	\$549,223
14			-325	\$160,136	\$189,389	\$225,566	\$270,484	\$326,467	\$396,491	\$484,367	\$594,992
15			-350	\$172,454	\$203,958	\$242,917	\$291,291	\$351,580	\$426,990	\$521,626	\$640,760

Exercise: Two Variable Data Table

Show Future Value for Various Monthly Deposits and Various Rates


	A	В	C	D	Е	F	G	Н	I	J	K	L
1	Two Variable Data Table:	FV as Deposits and R	ate V	aries								
2	Deposits are Monthly for 30	Years in Equal Amoun	ts									
3												
4	Monthly Deposit	-100		=B7	2%	3%	4%	5%	6%	7%	8%	99
5	Years Until Retirement	30		-100								
6	Expected Monthly Avg Rate	4%		-125								
7	Value at Retirement (FV)	=FV(B6/12,B5*12,B4)		-150								
8				-175								
9				-200								
4			_	-225								
1:	Create the data cells a	ind formulas snov	vn.	-250								
12				-275								
13				-300								
14				-325								
15				-350								
10												


Exercise: Two Variable Data Table

Show Future Value for Various Monthly Deposits and Various Rates

Part 2

- a.) Highlight **D4:L15**.
- b.) From the menu:Data What If Analysis –Data Table...
- c.) Set Row Input Cell to: **B6**Set Column Input Cell to **B4**
- d. Click "OK".

You should get the results shown on the first page of this exercise.

Using Data Tables (and some algebra) for a Break Even Analysis

What is Break Even Analysis?

The Point where your Sales Cover your Expenses

	Α		В	С	D					
1	Break Even Analysis (Pr	Break Even Analysis (Profit Goes to 0)								
2	If we produced 100 units, who	If we produced 100 units, what price must we sell them at to break even?								
3	If Price is \$25, how many unit	s mu	st we sell to bred	ak even?						
4										
5	Price		25							
6	Units Sold		100							
7	Revenue	\$	2,500.00							
8	Cost Per Unit (\$15)	\$	15.00							
9	Variable Cost	\$	1,500.00							
10	Fixed Costs (\$2000)	\$	2,000.00							
11	Total Costs	\$	3,500.00		Goes to Zero					
12	Profit	\$	(1,000.00))	at Break Even					
4.0										

 For a given price, how many units must you sell to break even?

or

 For a given number of units sold, what price must you charge to break even?

Using a One Variable Data Table

	Α		В	С	D		Е
1	Break Even Analysis (P						
2	What Should Price be to bred	ık eve	en if we vary Unit	s?	Unit	s V	/aried
3					Units	P	rices Are:
4		U	nits Varied				\$55.00
5	Price	\$	55.00		50		\$55.00
6	Units Sold		50		100		\$35.00
7	Revenue	\$	2,750.00		150		\$28.33
8	Cost Per Unit (\$15)	\$	15.00		200		\$25.00
9	Variable Cost	\$	750.00		250		\$23.00
10	Fixed Costs (\$2000)	\$	2,000.00		300		\$21.67
11	Total Costs	\$	2,750.00		350		\$20.71
12	Profit	\$	-		400		\$20.00
13					450		\$19.44
14					500		\$19.00
15							

We wish to generate a list of breakeven *Prices* for the *Units* listed. For example, at 300 Units the breakeven price is \$21.67.

This example has two main requirements:

Part One: Building the Model

Create a model where typing almost any number in *Units Sold* will cause the formula in *Price* to return a value that causes the formula in *Profit* to return zero.

Part Two: Use of a One-Variable Data Table to generate Prices.

Algebraically Forcing Profit to Go to Zero when Units Sold Varies (Finding Price)

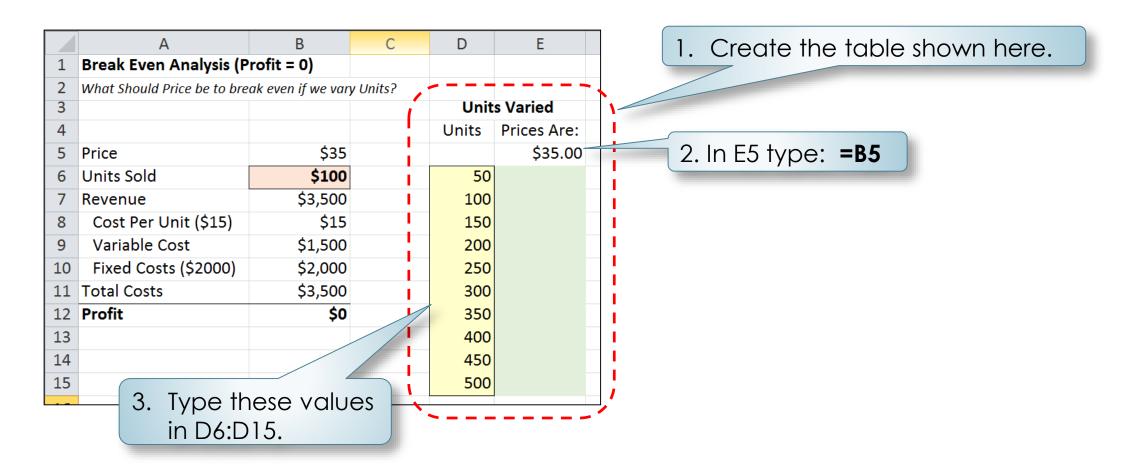
Price and Units Sold are both variables that affect Profit. If we state any value for **Units Sold** there is almost always a corresponding value we can assign to **Price** to make Profit go to zero.

Profit = Price * Units - Variable Cost Per Unit * Units - Fixed Costs

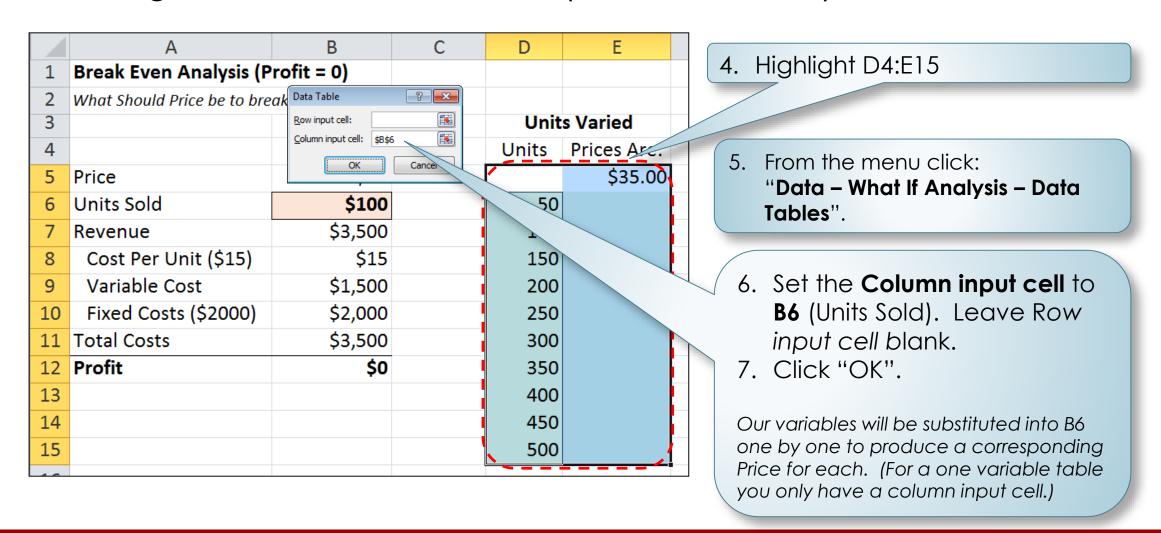
	А	В
4		
5	Price	\$ 25.00
6	Units Sold	500
7	Revenue	\$ 12,500.00
8	Cost Per Unit (\$15)	\$ 15.00
9	Variable Cost	\$ 7,500.00
10	Fixed Costs (\$2000)	\$ 2,000.00
11	Total Costs	\$ 9,500.00
12	Profit	\$ 3,000.00

If we set Profit to Zero and Solve for Price, the equation will return the Price we need to charge for any given number of Units.

Part One: Setting Profit to Zero and Solving for Price


Note that if you want Break Even Units, use this Formula:

Part one: Formula in Price sets Profit to Zero if Value in Units Sold Changes


	А	В	С			
1	Break Even Analysis (Pr					
2	What Should Price be to break even if we vary Units?					
3						
4						
5	Price	\$35	=B8+(B10/B6)			
6	Units Sold	\$100				
7	Revenue	\$3,500	=B5*B6			
8	Cost Per Unit (\$15)	\$15				
9	Variable Cost	\$1,500	=B8*B6			
10	Fixed Costs (\$2000)	\$2,000				
11	Total Costs	\$3,500	=B9+B10			
12	Profit	\$0	=B7-B11			
12						

- 1. Copy the data from the previous exercise and edit it as shown. (Formula in B5 is the only difference.)
- 2. Type a value in *Units Sold* (B6). *Price* should update to force *Profit* to remain at zero.

Creating the Data Table Structure (Units Sold Varies)

Creating the Data Table Structure (Units Sold Varies)

Find Breakeven Prices for Various Units Sold (Solution)

	А	В	С	D	Е
1	Break Even Analysis (P	rofit = 0)			
2	What Should Price be to break even if we vary Units?				
3				Units Varied	
4				Units	Prices Are:
5	Price	\$35			\$35.00
6	Units Sold	\$100		50	\$55.00
7	Revenue	\$3,500		100	\$35.00
8	Cost Per Unit (\$15)	\$15		150	\$28.33
9	Variable Cost	\$1,500		200	\$25.00 <
10	Fixed Costs (\$2000)	\$2,000		250	\$23.00
11	Total Costs	\$3,500		300	\$21.67
12	Profit	\$0		350	\$20.71
13				400	\$20.00
14				450	\$19.44
15				500	\$19.00

Excel will produce the price that will set profit to zero for each given number of units.

Note that if you type in different Units in column D your Prices will update to give you the corresponding break even price.