
Online Big Data Stream Mining Using Adaptive Contexts

Cem Tekin ∗ Mihaela van der Schaar †

Abstract

A plethora of stream mining applications have emerged

which require classification of large data streams generated

by distributed and heterogeneous sources. This data is pro-

cessed by decentralized learners who have different sets of

classification functions to make predictions about the data.

However, the accuracy of the predictions of a classification

function is unknown initially to the learner, its data de-

pendent and time varying. Besides these unknowns, stream

classification has high computation and delay costs due to

the high dimensionality of the data. Each learner, if acting

independently, makes predictions solely based on the lim-

ited number of classification functions it has and limited

data streams it processes. Therefore, it is important for the

learner to choose the best classification function for each spe-

cific data stream. However, a learner can also get help from

other learners when making predictions about its own data

stream. The data streams are characterized by their context

information which can be used as meta-data to choose which

type of classifiers should be deployed to make better predic-

tions. In this paper, we propose a context-adaptive learning

algorithm which learns online what is the best context to

deploy to select what learners and classification functions

to use to process a data stream. Learning is performed for

all the possible types of contexts simultaneously, in parallel,

rather than serially learning about different contexts at dif-

ferent times. This learning framework works for both single

and multi-learner distributed data mining systems. We the-

oretically bound the performance gap between our context-

adaptive learning algorithm and a benchmark policy that

knows everything about classification accuracies, data and

context arrivals. Our numerical results illustrate that our

algorithm outperforms most of prior online learning algo-

rithms, for which such online performance bounds have not

been proven.

Keywords: Stream mining, context-adaptive learning,
distributed multi-user learning, contextual bandits.

1 Introduction

A plethora of Big Data applications (network monitor-
ing [1] , surveillance [2], health monitoring [3], stock
market prediction, intelligent driver assistance [4], etc.)
are emerging which require online classification of large

∗University of California, Los Angeles.
†University of California, Los Angeles.

data sets collected from distributed network and traf-
fic monitors, multimedia sources, sensor networks, etc.
The input data stream is heterogeneous and dynami-
cally evolves over time. Automatically generated meta-
data is often associated with these data streams, i.e.
contexts that represent any information related to the
input data stream such as time, location and type
(e.g., data features/characteristics/modality) informa-
tion, which is available to the learners before the actual
classification and can be used to select which classifi-
cation function is used to make predictions. Our prior
work has shown that the performance of existing learn-
ing algorithms usually depends on the dimension of the
context space [5]. In general, the performance degrades
exponentially with the dimension of the context space
which makes it impractical to exploit all the context
information available to the learners. Instead, learners
need to choose which contexts they should base their
decisions on. This is because contexts may have dif-
ferent types of correlations with the data stream itself,
which results in different accuracies depending on which
classification function is chosen. Each learner can pro-
cess (label) the incoming data in two different ways: ei-
ther it can exploit its own information and its own clas-
sification functions or it can forward its input stream
to another learner (possibly by incurring some cost) to
have it labeled. A learner learns the accuracies of its
own classification functions or other learners in an on-
line way by comparing the result of the predictions with
the true label of its input stream which is revealed at
the end of each slot. The goal of each learner is to max-
imize its long term expected total reward, which is the
expected number of correct labels minus the costs of
classification. In this paper the cost is a generic term
that can represent any known cost such as processing
cost, delay cost, communication cost, etc. Similarly,
data is used as a generic term. It can represent files
of several Megabytes size, chunks of streaming media
packets or contents of web pages. A key differentiating
feature of the approach proposed in this paper is the fo-
cus on how the context information of the data stream
can be effectively utilized to maximize the classification
performance of a distributed data mining system. We
consider cooperative learners which classify other’s data
when requested, but instead of maximizing the system



utility function, a learner’s goal is to maximize its in-
dividual utility. However, it can be shown that when
the classification costs capture the cost to the learner
which is cooperating with another learner to classify its
data, maximizing the individual utility corresponds to
maximizing the system utility.

To jointly optimize the performance of the dis-
tributed data mining system, we design distributed on-
line learning algorithms whose long-term average re-
wards converge to the best distributed solution which
can be obtained for the classification problem given
complete knowledge of online data characteristics as
well as their classification function accuracies and costs
when applied to this data. We extend the novel coop-
erative contextual bandit framework in [5] to learn the
best contexts to exploit adaptively over time, and show
that this significantly improves the performance of on-
line big data mining systems. The benchmark we com-
pare against is a genie aided scheme, in which the ge-
nie knows classification accuracies of each classification
function of each learner, and chooses the classification
function which yields the highest expected accuracy for
the best context in the set of available contexts at each
time step. We call the difference between the expected
total reward (correct predictions minus cost) of learner
i under the genie aided scheme and the expected total
reward of the online learning algorithm used by learner
i as the regret of learner i, and show that it is sublinear
in time. The time order is independent of the dimension
of the context space, in contrast to [5], where the time
order is linear in the dimension of the context space.

When time is incorperated in the context, we show
that our distributed contextual learning framework can
be used to deal with concept drift [6], which occurs
when the distribution of problem instances changes over
time. To illustrate the advantage of our approach which
adaptively chooses among different contexts to exploit
at each time step, we provide numerical results by
applying our learning algorithms to the classification
of various data streams and compare the results with
existing state-of-the-art solutions. Although in this
paper we focus on a distributed multi-learner data
mining system, the idea of context-adaptive learning is
also new for a single learner data mining system. Our
algorithm and results can be easily modified to work in
single learner system.

2 Related Work

Online learning in distributed data classification sys-
tems aims to address the informational decentralization,
communication costs and privacy issues arising in these
systems. In these systems, learning rates are different
because either each learner observes the entire feature

space but has access to a subset of instances of the entire
data set, which is called horizontally distributed data, or
each learner has access to only a subset of the features
but the instances can come from the entire data set,
which is called vertically distributed data. For example
in [7–10], various solutions are proposed for distributed
data mining problems of horizontally distributed data,
while in [11, 12], ensemble learning techniques are de-
veloped that exploit the correlation between the local
learners for vertically distributed data. Several cooper-
ative distributed data mining techniques are proposed
in [12–15], where the goal is to improve the prediction
accuracy with costly communication between local pre-
dictors. In this paper, we take a different approach:
instead of focusing on the characteristics of a specific
data stream, we focus on the characteristics of data
streams with the same context information. This novel
approach allows us to deal with both horizontally and
vertically distributed data in a unified manner within a
distributed data mining system. Although our frame-
work and illustrative results are depicted using horizon-
tally distributed data, if context is changed to be the set
of relevant features, then our framework and results can
operate on vertically distributed data. Moreover, we as-
sume no prior knowledge of the data and context arrival
processes and classification function accuracies, and the
learning is done in a non-Bayesian way. Learning in a
non-Bayesian way is appropriate in decentralized system
since learners often do not have correct beliefs about the
distributed system dynamics.

Most of the prior work in distributed data mining
provides algorithms which are asymptotically converg-
ing to an optimal or locally-optimal solution without
providing any rates of convergence. On the contrary,
we do not only prove convergence results, but we are
also able to explicitly characterize the performance loss
incurred at each time step with respect to the optimal
solution. In other words, we prove regret bounds that
hold uniformly over time. Some of the existing solu-
tions (including [9, 10, 16–21]) propose ensemble learn-
ing techniques. In our work we only consider choosing
the best classification function (initially unknown) from
a set of classification functions that are accessible by de-
centralized learners. However, our proposed distributed
learning methods can easily be adapted to perform en-
semble learning. We provide a detailed comparison to
our work in Table 1.

Other than distributed data mining, our learning
framework can be applied to any problem that can be
formulated as a decentralized contextual bandit problem
[5]. Contextual bandits have been studied before in
[22, 23] and other works in a single agent setting.
Different from these work we consider decentralized



[9, 14,19–21] [13,15] [11] This work
Aggregation non- cooperative cooperative no

cooperative
Message none data training data and
exchange residual label only

if improves
performance

Learning offline/ offline offline Non-bayesian
approach online online
Correlation N/A no no yes
exploitation
Information no all all only if
from other improves
learners accuracy
Data horizontal horizontal vertical horizontal
partition and vertical
Bound on no no no sublinear
regret
Learning the no no no yes
best context

Table 1: Comparison with related work in distributed
data mining.

agents and learning the best type of context to exploit
adaptively over time.

3 Problem Formulation

The system model is shown in Fig. 1. There are
M learners which are indexed by the set M :=
{1, 2, . . . ,M}. LetM−i :=M−{i} be the set of learn-
ers learner i can choose from to send its data for classi-
fication. These learners work in a discrete time setting
t = 1, 2, . . . , T , where the following events happen se-
quentially, in each time slot: (i) a data stream si(t)
with a specific D-dimensional context vector xi(t) =
(x1i (t), . . . , x

D
i (t)) arrives to each learner i ∈ M, where

xdi (t) ∈ Xd for d ∈ D := {1, . . . , D}, where Xd is the
set of type-d contexts1, (ii) each learner chooses one
of its own classification functions or another learner to
send its data and context, and produces a label based
on the prediction of its own classification function or
the learner to which it sent its data and context, (iii)
the truth (true label) is revealed eventually, perhaps by
events or by a supervisor, only to the learner where the
data arrived, (iv) the learner where the data arrived
passes the true label to the learner it had chosen to
classify its data, if there is such a learner.

Each learner i ∈ M has access to a set of clas-
sification functions Fi which it can invoke to classify
the data. The performance of these classification func-
tions are data dependent and unknown a priori. Also
the learners have no prior beliefs about the accuracy
of these classification functions. Given that the con-
text is xd ∈ Xd, the prediction of classification function
f ∈ F is a Bernoulli random variable with expecta-
tion πdf (xd). This expectation is defined in the follow-
ing way. The data stream si(t) that comes with context
x ∈ X := X1 × . . . × XD is drawn from an unknown

1We do not make any assumptions about how the context is
generated. It can be non-stochastic as well as stochastic.

but fixed distribution F (x) which is a function of the
context. This distribution is a fixed function of the con-
text, but when one of the type-d contexts is time2, the
distribution will be time varying. Let πf (x) of f ∈ F
be the expected accuracy of classification function f ,
where the expectation is taken with respect to distri-
bution F (x). Let x−d := (x1, . . . , xd−1, xd+1, . . . , xD).
We define πdf (xd) as πdf (xd) :=

∫
x−d

πf (x)dF (x). In
our problem, the unknowns for learner i are (i) Fj ,
j ∈ M−i, (ii) F (x), x ∈ X , (iii) πf (x), f ∈ Fi, x ∈ X ,
(iv) πdf (xd), f ∈ Fi, xd ∈ Xd, d ∈ 1, . . . , D. Learner i

knows (i) the functions in Fi and costs of calling them3,
(ii) the set of other learners M−i and costs of calling
them, (iii) and an upper bound on the number of clas-
sification functions that each learner has, i.e., Fmax on
|Fji |4, ji ∈M−i. Let Ki := Fi ∪M−i. We call Ki the
set of arms (alternatives) for learner i. We use index
k to denote any arm in Ki, ki to denote the set classi-
fication functions of i, i.e., the elements of the set Fi,
ji to denote other learners in M−i. Let F := ∪j∈MFj
denote the set of all arms of all learners. We use index
f to denote an element of F .

At each time step t, learner i can either invoke one
of its classification functions or forward the data to an-
other learner to have it labeled. We assume that for
learner i, calling each classification function ki ∈ Fi in-
curs a cost ciki . For example, if the application is delay
critical this can be the delay cost, or this can represent
the computational cost and power consumption associ-
ated with calling a classification function. We assume
that a learner can only call a single function for each
input data in order to label it. This is a reasonable as-
sumption when the application is delay sensitive since
calling more than one classification function increases
the delay. A learner i can also send its data to another
learner in M−i in order to have it labeled. Because
of the communication cost and the delay caused by pro-
cessing at the recipient, we assume that whenever a data
stream is sent to another learner ji ∈M−i a cost of ciji
is incurred by learner i5. Since the costs are bounded,
without loss of generality we assume that costs are nor-
malized, i.e., cik ∈ [0, 1] for all k ∈ Ki. The learners are
cooperative which implies that learner ji ∈ M−i will

2For example, if the final time is T , one of the contexts can be

the normalized time tN = t/T , t = 1, . . . , T .
3Alternatively, we can assume that the costs are random

variables with bounded support whose distribution is unknown.

In this case, the learners will not learn the accuracy but they will

learn accuracy minus cost.
4For a set A, let |A| denote the cardinality of that set.
5The cost for learner i does not depend on the cost of the

classification function chosen by learner ji. Since the learners are
cooperative, ji will obey the rules of the proposed algorithm when
choosing a classification function to label i’s data.



Figure 1: Operation of the distributed data classifica-
tion system during a time slot.

return a label to i when called by i. Similarly, when
called by ji ∈ M−i, learner i will return a label to ji.
We do not consider the effect of this on i’s learning rate,
however, since our results hold for the case when other
learners are not helping i to learn about its own clas-
sification functions, they will hold when other learners
help i to learn about its own classification functions. If
we assume that ciji also captures the cost to learner ji
to classify and send the label back to learner i, then
maximizing i’s own utility corresponds to maximizing
the system utility.

We assume that each classification function pro-
duces a binary label6. The data stream at time t
arrives to learner i with context information xi(t) =
(x1i (t), . . . , x

D
i (t)). The context may be generated as

a result of pre-classification or a header of the data
stream. For simplicity we assume that for each type-
d context Xd = [0, 1], while our results can simply be
generalized to any bounded interval [a, b]. For a learner
ji ∈M−i its expected accuracy for a type-d context xd

is equal to the expected accuracy of its best classifica-
tion function, i.e., πdji(x

d) = maxkji∈Fji π
d
kji

(xd).

Different classification functions can have different
accuracies for the same context. Although we do not
make any assumptions about the classification accuracy
πdk(xd) and the classification cost cik for k ∈ Ki, in
general one can assume that classification accuracy

6In general we can assume that labels belong to R and define

the classification error as the mean squared error or some other
metric. Our results can be adapted to this case as well.

increases with classification cost (e.g., classification
functions with higher resolution, better processing).
In this paper the cost cik is a generic term that can
represent any known cost such as processing cost, delay
cost, communication cost, etc. We assume that each
classification function has similar accuracies for similar
contexts; we formalize this in terms of a (uniform)
Lipschitz condition.

Assumption 1. For each f ∈ F and d ∈ D, there exists
L > 0, α > 0 such that for all xd, (x′)d ∈ Xd, we have
|πdf (xd)− πdf ((x′)d)| ≤ L|xd − (x′)d|α.

Assumption 1 indicates that the accuracy of a
classification function for similar contexts will be similar
to each other. For example, the context can be the
time of the day or/and the location from which the
data originates. Therefore, the relation between the
classification accuracy and time can be written down
as a Lipschitz condition. We assume that α is known
by the learners, while L does not need to be known. An
unknown α can be estimated online using the sample
mean estimates of accuracies for similar contexts, and
our proposed algorithm can be modified to include the
estimation of α. The goal of learner i is to explore
the alternatives in Ki to learn the accuracies, while at
the same time exploiting the best alternative for the
context xi(t) arriving at each time step t that balances
the accuracy and cost to minimize its long term loss
due to uncertainty. Learner i’s problem can be modeled
as a contextual bandit problem [22, 23]. After labeling
the input at time t, each learner observes the true label
and updates the sample mean accuracy of the selected
arm based on this. Accuracies translate into rewards in
bandit problems. In the next subsections, we define
the benchmark solution and the regret which is the
performance loss due to uncertainty about classification
accuracies.
3.1 Optimal Classification with Complete In-
formation Our benchmark when evaluating the per-
formance of the learning algorithms is the optimal solu-
tion which selects the arm in Ki with the highest accu-
racy minus cost for the best type of context for learner i
given the context vector xi(t) at time t. We assume that
the costs are normalized so the tradeoff between accu-
racy and cost is captured without using weights. Specif-
ically, the optimal solution we compare against is given
by k∗i (x) = arg maxk∈Ki

(
maxxd∈x π

d
k(xd)− cik

)
, ∀x ∈

X . Knowing the optimal solution means that learner
i knows the classification function in F that yields the
highest expected accuracy for each xd ∈ Xd, d ∈ D.
Choosing the best classification function for each con-
text x requires to evaluate the accuracy minus cost for
each context and is computationally intractable, be-
cause the context space X has infinitely many elements.



3.2 The Regret of Learning Simply, the regret is
the loss incurred due to the unknown system dynamics.
Regret of a learning algorithm α which selects an
arm αt(xi(t)) at time t for learner i is defined with
respect to the best arm k∗i (xi(t)) at time t. The
regret of a learning algorithm for learner i is given

by Ri(T ) :=
∑T
t=1

(
πk∗i (xi(t))(xi(t))− c

i
k∗i (xi(t))

)
−

E
[∑T

t=1(I(ŷit(αt(xi(t))) = yit)− ciαt(xi(t)))
]
, where

ŷit(.) denotes the prediction of the arm selected by
learner i at time t, yit denotes the true label of the data
stream that arrived to learner i in time slot t, and the
expectation is taken with respect to the randomness of
the prediction. Regret gives the convergence rate of the
total expected reward of the learning algorithm to the
value of the optimal solution k∗i (x), x ∈ X . Any algo-
rithm whose regret is sublinear, i.e., Ri(T ) = O(T γ)
such that γ < 1, will converge to the optimal solution
in terms of the average reward.

4 Adaptive Contexts with Adaptive Partition

In this section we propose an online learning algorithm
which adaptively explores different types of contexts
and their context spaces to maximize the total expected
reward of each learner. Different from prior explore-
exploit learning algorithms, our algorithm uses a three-
phased learning structure which includes training ex-
ploration and exploitation phases. The novel training
phase helps a learner to teach others how to choose
good classification functions. We name our algorithm
adaptive contexts and adaptive partitions (ACAP).

4.1 The ACAP algorithm The basic idea behind
ACAP is to adaptively divide the context space into
finer and finer regions over time such that regions of
the context space with high number of arrivals are
trained and explored more accurately than regions of
the context space with small number of arrivals, and
then only use the observations in those sets when
estimating the accuracy of arms in Ki for contexts that
lie in those sets. ACAP also adaptively chooses the
best context over time from the context vector to choose
which arm to exploit, by forming sample mean estimates
of the expected accuracies of the arms as a function
of the contexts. These sample mean accuracies are
updated in parallel for each context, while the decision
made at an exploitation step depends on the context
which offers the highest estimated accuracy for the best
arm for the context vector. While the decision made
by ACAP is to choose an arm in Ki at each time step,
this decision is only based on one type of context among
contexts in D. We call the context which the decision
is based on at time t as the main context of that time.

For each type-d context ACAP starts with a single

hypercube which is the entire context space Xd, then
divides the space into finer regions and explores them as
more contexts arrive. In this way, the algorithm focuses
on parts of the space in which there is large number
of context arrivals. An illustration that shows how
partitions of different types of contexts may evolve for
ACAP is given in Fig. 2. The idea of zooming into the
regions of context space with high arrivals is previously
addressed in [22] by activating balls with smaller radius
over time. However, the results in [22] cannot be easily
generalized to a distributed setting. The first reason
is that each learner may have different active balls for
the same context at the same time, and the centers
of these balls depend on the previous context arrivals,
therefore the number of active balls may be much higher
than the number of active hypercubes which divides
the context space in a more efficient way. Secondly,
the training and exploration phases will require keeping
information about all the active balls of all learners
including their center and radius information. Thirdly,
balls in [22] are formed over the entire context space
Xd, while we form different hypercubes for each Xd.
This allows us to differentiate between different types
of contexts. For example if type-d context has few
arrivals in interval [a, b] and if type-d′ context has a lot
of arrivals in interval [a, b], then ACAP will estimate the
expected accuracy of arms by using past observations
from low level hypercubes for type-d context and high
level hypercubes for type-d′ context, while the algorithm
in [22] will use a single ball over Xd × Xd′ . Finally,
whenever another learner is selected by a learner, the
exact position of the context should be sent to that
learner in [22], while in our work only the information
about which hypercube context belongs to is enough to
make a decision.

The learning algorithm for learner i should zoom
into the regions of space with large number of context
arrivals, but it should also persuade other learners to
zoom to the regions of the space where learner i has
a large number of context arrivals. The pseudocode of
ACAP is given in Fig. 3, and the training, exploration,
exploitation and initialization modules are given in Fig.
5 and Fig. 4.

For each type-d context, we call an interval
(a2−l, (a + 1)2−l] ⊂ [0, 1] a level l hypercube for a =
1, . . . , 2l−17. Let Pdl be the partition of type-d context
space [0, 1] generated by level l hypercubes. Clearly,
|Pdl | = 2l. Let Pd := ∪∞l=0Pdl denote the set of all possi-
ble hypercubes. Note that Pd0 contains only a single hy-
percube which is Xd itself. At each time step, ACAP
keeps for learner i a set of hypercubes that cover the con-

7The first level l hypercube is defined as [0, 2−l].



Figure 2: An illustration showing how the adaptive
partitions are generated for different types of contexts
over time. In this example D = 2. The times when a
new partition for type-d context is created i.e., t1, t2, t

′
1

and t′2 depends on the context arrival process and can
be different for different types of contexts.

text space of each type of context which are mutually
exclusive. We call these hypercubes active hypercubes,
and denote the set of active hypercubes for type-d con-
text at time t by Adi (t). Let Ai(t) := (A1

i (t), . . . ,ADi (t))
Clearly, we have ∪C∈Adi (t)C = Xd. Denote the active

hypercube that contains xdi (t) by Cdi (t). Let Ci(t) :=
(C1

i (t), . . . , CDi (t)) be the set of active hypercubes that
contains xi(t). The arm chosen by learner i at time t
only depends on the previous observations and actions
taken on Cdi (t), d ∈ D. Let N i,d

C (t) be the number
of times type-d contexts have arrived to hypercube C
of learner i by time t. Once activated, a level l hyper-
cube C will stay active until the first time t such that
N i,d
C (t) ≥ A2pl, where p > 0 and A > 0 are parameters

of ACAP. After that, ACAP will divide C into 2 level
l + 1 hypercubes.

For each arm in Fi, ACAP have a single (determin-
istic) control function D1(t) which controls when to ex-
plore or exploit, while for each arm inM−i, ACAP have
two (deterministic) control functions D2(t) and D3(t),
where D2(t) controls when to train or explore, D3(t)
controls when to explore or exploit. When type-d con-
text is selected as the main context at time t, for an
arm ki ∈ Fi, all the observations up to time t in hy-
percube Cdi (t) are used by learner i to estimate the ex-
pected reward of that arm. This estimation is different
for ji ∈ M−i. This is because learner i cannot choose
the arm that is used by learner ji. If the estimated
rewards of arms of learner ji are inaccurate, i’s esti-
mate of ji’s reward will be different from the expected
reward of ji’s optimal arm. Therefore, learner i uses
the rewards from learner ji to estimate the expected
reward of learner ji only if it believes that learner ji
estimated the expected rewards of its own arms accu-
rately. In order for learner ji to estimate the rewards
of its own arms accurately, if the number of context ar-
rivals to learner ji in set Cdi (t) is small, learner i trains
learner ji by sending its context to ji, receiving back
the prediction of the classification function chosen by

Adaptive Contexts and Adaptive Partitions Algorithm
(for learner i):

1: Input: D1(t), D2(t), D3(t), p, A
2: Initialization: Ad

i = {[0, 1]}, d ∈ D.
Ai = A1

i × . . .×AD
i . Run Initialize(Ai)

3: Notation: r̄i
k = (r̄i,d

k,Cd(t)
)d∈D,

r̄i = (r̄i
k)k∈Ki ,

lC : level of hypercube C,
N i

k = (N i,d

k,Cd(t)
)d∈D, k ∈ Ki,

N i
1,k = (N i,d

1,k,Cd(t)
)d∈D, k ∈M−i,

N i = (N i
k)k∈Ki .

4: while t ≥ 1 do
5: if ∃d ∈ D and ∃k ∈ Fi such that N i,d

k,C ≤ D1(t)
then

6: Run Explore(t, k, N i
k, r̄i

k)
7: else if ∃d ∈ D and ∃k ∈M−i such that

N i,d
1,k,Cd(t) ≤ D2(t) then

8: Obtain Nk,d

Cd(t)
(t) from learner k.

9: if Nk,d

Cd(t)
(t) = 0 then

10: Ask k to create hypercube Cd(t) for its

type-d context, set N i,d

1,k,Cd(t)
= 0

11: else
12: Set N i,d

1,k,Cd(t)
= Nk,d

Cd(t)
(t)−N i,d

k,Cd(t)

13: end if
14: if N i,d

1,k,Cd(t)
≤ D2(t) then

15: Run Train(t, k, N i
1,k)

16: else
17: Go to line 7
18: end if
19: else if ∃d ∈ D and ∃k ∈M−i such that

N i,d

k,Cd(t)
≤ D3(t) then

20: Run Explore(t, k, N i
k, r̄i

k)
21: else
22: Run Exploit(t, N i, r̄i, Ki)
23: end if
24: N i,d

Cd(t)
= N i,d

Cd(t)
+ 1

25: for d ∈ D do
26: if N i,d

Cd(t)
≥ A2

pl
Cd(t) then

27: Create 2 level lCd(t) + 1 child hypercubes
denoted by ACd(t)

28: Run Initialize(ACd(t))

29: Ai = Ai ∪ ACd(t) − Cd(t)
30: end if
31: end for
32: t = t+ 1
33: end while

Figure 3: Pseudocode of the ACAP algorithm.

ji and sending the true label at the end of that time
step to ji so that ji can compute the estimated accu-
racy of the classification function it had chosen for i. In
order to do this, learner i keeps two counters N i,d

1,ji,C
(t)

and N i,d
2,ji,C

(t) for each C ∈ Aid(t), which are initially
set to 0. At the beginning of each time step for which
N i,d

1,ji,C
(t) ≤ D2(t), learner i asks ji to send it N ji,d

C (t)



Initialize(A):

1: for C ∈ A do
2: Set N i,d

C = 0, N i,d
k,C = 0, r̄i,dk,C = 0 for k ∈ Ki,

N i,d
1,k,C = 0 for k ∈M−i.

3: end for

Figure 4: Pseudocode of the initialization module.

which is the number of type-d context arrivals to learner
ji in C from the activation of C by learner ji to time t
including the contexts sent by learner i to learner ji. If
C is not activated by ji yet, then it sends N ji,d

C (t) = 0
and activates the hypercube C for its type-d context.
Then learner i sets N i,d

1,ji,C
(t) = N ji,d

C (t) − N i,d
2,ji,C

(t)

and checks again if N i,d
1,ji,C

(t) ≤ D2(t). If so, then it
trains learner ji by sending its data and context stream
si(t),xi(t), receiving a prediction from learner ji, and
then sending the true label yi(t) to learner ji so that
learner ji can update the estimated accuracy of the
classification function in Fj it had chosen to make a

prediction for learner i. If N i,d
1,ji,C

(t) > D2(t), for
all d ∈ D this means that learner ji is trained enough
for all types of contexts so it will almost always se-
lect its optimal arm when called by i. Therefore, i
will only use observations when N i,d

1,ji,C
(t) > D2(t) to

estimate the expected reward of learner ji for type-d
contexts. To have sufficient observations from ji be-
fore exploitation, i explores ji when N i,d

1,ji,C
(t) > D2(t)

and N i,d
2,ji,C

(t) ≤ D3(t), and updates N i,d
2,ji,C

(t) and the
sample mean accuracy of learner ji which is ratio of
the total number of correct predictions ji has made
for i’s contexts in hypercube C to the total number
of predictions ji has made for i for contexts in hyper-
cube C. For simplicity of notation we let N i,d

ji,C
(t) :=

N i,d
2,ji,C

(t) for ji ∈ M−i. Let Si,d
Cdi (t)

(t) := {ki ∈ Fi
such that N i,d

ki,Cdi (t)
(t) ≤ D1(t) or ji ∈ M−i such

that N i,d

1,ji,Cdi (t)
(t) ≤ D2(t) or N i,d

2,ji,Cdi (t)
(t) ≤ D3(t)

}
.

and SiCi(t)
(t) = ∪d∈DSi,dCdi (t)(t). If SiCi(t)

(t) 6= ∅ then

ACAP randomly selects an arm in SiCi(t)
(t) to ex-

plore, while if SiCi(t)
(t) = ∅, ACAP selects an arm in

arg maxk∈Ki

(
maxd∈D r̄

i,d

k,Cdi (t)
(t)
)

, where r̄i,d
k,Cdi (t)

(t) is

the sample mean of the rewards collected from arm k
in time steps for which the type-d context is in Cdi (t)
from the activation of Cdi (t) by learner i to time t for
k ∈ Fi, and it is the sample mean of the rewards col-
lected from exploration and exploitation steps of arm k
in time steps for which the type-d context is in Cdi (t)
from the activation of Cdi (t) to time t for k ∈M−i.

Train(t, k, N i
1,k):

1: Select arm k.
2: Send current data and context stream to k.
3: Receive prediction ŷk(si(t),xi(t)).
4: Receive true label yit (if k ∈ M−i, send this also to

learner k).
5: Compute reward rk(t) = I(ŷk(si(t),xi(t)) = yit)− cik.

6: N i,d

k,Cd(t)
+ + for d ∈ D.

Explore(t, k, N i
k, r̄i

k):

1: Select arm k.
2: Receive prediction ŷk(si(t),xi(t)).
3: Receive true label yit (if k ∈M−i, send this also to

learner k).
4: Compute reward rk(t) = I(ŷk(si(t),xi(t)) = yit)− cik.

5: r̄i,d
k,Cd(t)

=
N
i,d

k,Cd(t)
r̄
i,d

k,Cd(t)
+rk(t)

N
i,d

k,Cd(t)
+1

, d ∈ D.

6: N i,d

k,Cd(t)
+ +, d ∈ D.

Exploit(t, N i, r̂i, Ki):

1: Select arm k ∈ arg maxj∈Ki

(
maxd∈D r̄

i,d

j,Cd(t)

)
.

2: Receive prediction ŷk(si(t),xi(t)).
3: Receive true label yit (if k ∈M−i, send this also to

learner k).
4: Compute reward rk(t) = I(ŷk(si(t),xi(t)) = yit)− cik.

5: r̄i,d
k,Cd(t)

=
N
i,d

k,Cd(t)
r̄
i,d

k,Cd(t)
+rk(t)

N
i,d

k,Cd(t)
+1

, d ∈ D.

6: N i,d

k,Cd(t)
+ +, d ∈ D.

Figure 5: Pseudocode of the training, exploration and
exploitation modules.

4.2 Analysis of the regret of ACAP In this
subsection we analyze the regret of ACAP for arbitrary
context arrival processes and derive a sublinear upper
bound on the regret. Let β2 :=

∑∞
t=1 1/t2 = π2/6. For

a set A, Ac denotes the complement of that set. We
start with a simple lemma which gives an upper bound
on the highest level hypercube that is active at any time
t.

Lemma 4.1. All the active hypercubes Adi (t) for type-d
contexts at time t have at most a level of (log2 t)/p+ 1.

Proof. Let l + 1 be the level of the highest level active
hypercube. We must have A

∑l
j=0 2pj < t, otherwise

the highest level active hypercube will be less than l+1.

We have for t/A > 1, A 2p(l+1)−1
2p−1 < t ⇒ 2pl < t

A ⇒ l <
log2 t
p .

The following lemma bounds the regret due to
trainings and explorations in a level l hypercube for a
type-d context.



Lemma 4.2. Let D1(t) = D3(t) = tz log t and D2(t) =
Fmaxt

z log t. Then, for any level l hypercube for type-
d context the regret due to trainings and explorations
by time t is bounded above by 2(|Fi|+ (M − 1)(Fmax +
1))(tz log t+ 1).

Proof. This directly follows from the number of train-
ings and explorations that are required before any arm
can be exploited (see definition of SiCi(t)

(t)). If the pre-
diction at any training or exploration step is incorrect
or a high cost arm is chosen, learner i loses at most 2
from the highest realized reward it could get at that
time step.

Lemma 4.2 states that the regret due to trainings and
explorations increases exponentially with z.

For each set of hypercubes C = (C1, . . . , CD),
let k∗(C) ∈ Ki be the arm which is optimal for the
center context of the type-d hypercube which has the
highest expected reward among all types of contexts
for C, and let d∗(C) be the type of the context for
which arm k∗(C) has the highest expected reward.
Let µdk,Cd := supx∈Cd µ

d
k(x), µd

k,Cd
:= infx∈Cd µ

d
k(x)

µk,C := maxd∈D µ
d
k,Cd , and µ

k,C
:= mind∈D µ

d
k,Cd

,

for k ∈ Ki. When the set of active hypercubes of
learner i is C, the set of suboptimal arms is given by

LiC,B :=
{
k ∈ Ki : µ

k∗(C),C
− µk,C > BL2−lmax(C)α

}
,

where B > 0 is a constant and lmax(C) is the level of
the highest level hypercube in C. In the next lemma
we bound the regret due to choosing a suboptimal arm
in the exploitation steps.

Lemma 4.3. Let LiC,B, B = 12/(L2−α) + 2 denote the
set of suboptimal arms for set of hypercubes C. When
ACAP is run with parameters p > 0, 2α/p ≤ z < 1,
D1(t) = D3(t) = tz log t and D2(t) = Fmaxt

z log t,
the regret of learner i due to choosing suboptimal arms
in LiCi(t),B

at time steps 1 ≤ t ≤ T in exploitation

steps is bounded above by 2(1 + D)β2|Fi| + 8(M −
1)Fmaxβ2T

z/2/z.

Proof. Let Ω denote the space of all possible outcomes,
and w be a sample path. The event that the ACAP
exploits when xi(t) ∈ C is given by Wi

C(t) := {w :
SiC(t) = ∅,xi(t) ∈ C,C ∈ Ai(t)}. We will bound the
probability that ACAP chooses a suboptimal arm for
learner i in an exploitation step when i’s context vector
is in the set of active hypercubes C for any C, and
then use this to bound the expected number of times
a suboptimal arm is chosen by learner i in exploitation
steps using ACAP. Recall that reward loss in every step
in which a suboptimal arm is chosen can be at most 2.

Let Vik,C(t) be the event that a suboptimal arm k
is chosen for the set of hypercubes C by learner i at

time t. For ki ∈ Fi, let E iki,C(t) be the set of rewards
collected by learner i from arm ki in time steps when
the context vector of learner i is in the active set C
by time t. For ji ∈ M−i, let E iji,C(t) be the set of
rewards collected from selections of learner ji in time
steps t′ ∈ {1, . . . , t} for which N i

1,ji,l
(t′) > D2(t′) and

the context vector of learner i is in the active set C by
time t. Let Biji,C(t) be the event that at most tφ samples

in E iji,C(t) are collected from suboptimal arms of learner

ji. For ki ∈ Fi let Biki,C(t) := Ω. In order to facilitate
our analysis of the regret, we generate two different
artificial i.i.d. processes to bound the probabilities
related to r̄i,d

k,Cd
(t), k ∈ Ki. The first one is the best

process in which rewards are generated according to a
bounded i.i.d. process with expected reward µdk,Cd , the
other one is the worst process in which the rewards are
generated according to a bounded i.i.d. process with
expected reward µd

k,Cd
. Let rb,i,d

k,Cd
(t) denote the sample

mean of the t samples from the best process and rw,i,d
k,Cd

(t)
denote the sample mean of the t samples from the worst
process. We have for any k ∈ LiC,B

P
(
Vik,C(t),Wi

C(t)
)

≤ P
(

max
d∈D

r̄b,i,d
k,Cd

(N i,d
k,Cd

(t)) ≥ µk,C +Ht,Wi
C(t)

)
+ P

(
max
d∈D

r̄b,i,d
k,Cd

(N i,d
k,Cd

(t)) ≥ r̄w,i,d
∗(C)

k∗(C),Cd∗(C)(N
i,d∗(C)

k∗(C),Cd∗(C)(t))

−2tφ−1,max
d∈D

r̄b,i,d
k,Cd

(N i,d
k,Cd

(t)) < µk,C + L2−lmax(C)α

+Ht + 2tφ−1, r̄
w,i,d∗(C)

k∗(C),Cd∗(C)(N
i,d∗(C)

k∗(C),Cd∗(C)(t))

> µ
k∗(C),C

− L2−lmax(C)α −Ht,Wi
C(t)

)(4.1)

+ P
(
r̄
w,i,d∗(C)

k∗(C),Cd∗(C)(N
i,d∗(C)

k∗(C),Cd∗(C)(t)) ≤ µk∗(C),C
−Ht

+2tφ−1,Wi
C(t)

)
+ P ((Bik,C(t))c),

where Ht > 0. In order to make the probability in (4.1)
equal to 0, we need

4tφ−1 + 2Ht ≤ (B − 2)L2−lmax(C)α.(4.2)

By Lemma 4.1, (4.2) holds when

4tφ−1 + 2Ht ≤ (B − 2)L2−αt−α/p.(4.3)

For Ht = 4tφ−1, φ = 1 − z/2, z ≥ 2α/p and B =
12/(L2−α) + 2, (4.3) holds by which (4.1) is equal to
zero. Also by using a Chernoff-Hoeffding bound we can
show that

P

(
max
d∈D

r̄b,i,d
k,Cd

(N i,d
k,Cd

(t)) ≥ µk,C +Ht,Wi
C(t)

)
≤ D/t2,



and

+ P
(
r̄
w,i,d∗(C)

k∗(C),Cd∗(C)(N
i,d∗(C)

k∗(C),Cd∗(C)(t)) ≤ µk∗(C),C
−Ht

+2tφ−1,Wi
C(t)

)
≤ 1/t2.

We also have P (Biki,C(t)c) = 0 for ki ∈ Fi and

P (Biji,C(t)c) ≤ E[Xi
ji,C

(t)]/tφ ≤ 2Fmaxβ2t
z/2−1. for

ji ∈ M−i, where Xi
ji,C

(t) is the number of times a
suboptimal arm of learner ji is selected when learner i
calls ji in exploration and exploitation phases in time
steps when the context vector of i is in the set of
hypercubes C which are active by time t. Combining

all of these we get P
(
Viki,C(t),Wi

C(t)
)
≤ (1 + D)/t2,

for ki ∈ Fi and P
(
Viji,C(t),Wi

C(t)
)
≤ (1 + D)/t2 +

2Fmaxβ2t
z/2−1, for ji ∈ M−i. We get the final bound

by summing these probabilities from t = 1 to T .

In the next lemma we bound the regret due to near
optimal learners choosing their suboptimal classification
functions when called by learner i in exploitation steps
when the context vector of learner i belongs to is C.

Lemma 4.4. Let LiC,B, B = 12/(L2−α) + 2 denote the
set of suboptimal actions for set of hypercubes C. When
ACAP is run with parameters p > 0, 2α/p ≤ z < 1,
D1(t) = D3(t) = tz log t and D2(t) = Fmaxt

z log t,
for any set of hypercubes C that has been active and
contained xi(t

′) for some exploitation time steps t′ ∈
{1, . . . , T}, the regret due to a near optimal learner
choosing a suboptimal classification function when called
by learner i is upper bounded by 4(M − 1)Fmaxβ2.

Proof. Let Xi
ji,C

(T ) denote the random variable which
is the number of times a suboptimal arm for learner
ji ∈M−i is chosen in exploitation steps of i when xi(t

′)
is in set C ∈ Ai(t′) for t′ ∈ {1, . . . , T}. It can be shown
that E[Xi

ji,C
(T )] ≤ 2Fmaxβ2. Thus, the contribution

to the regret from suboptimal arms of ji is bounded
by 4Fmaxβ2. We get the final result by considering the
regret from all M − 1 other learners.

The following lemma bounds the one-step regret to
learner i from choosing near optimal arms. This lemma
is used later to bound the total regret from near optimal
arms.

Lemma 4.5. Let LiC,B, B = 12/(L2−α) + 2 denote
the set of suboptimal actions for set of hypercubes
C. When ACAP is run with parameters p > 0,
2α/p ≤ z < 1, D1(t) = D3(t) = tz log t and D2(t) =
Fmaxt

z log t, for any set of hypercubes C, the one-
step regret of learner i from choosing one of its near
optimal classification functions is bounded above by

BL2−lmax(C)α, while the one-step regret of learner i
from choosing a near optimal learner which chooses one
of its near optimal classification functions is bounded
above by 2BL2−lmax(C)α.

Proof. At time t if xi(t) ∈ C ∈ Ai(t), the one-step
regret of any near optimal arm of any near optimal
learner ji ∈ M−i is bounded by 2BL2−lmax(C)α by the
definition of LiC,B . Similarly, the one-step regret of any

near optimal arm ki ∈ Fi is bounded by BL2−lmax(C)α.

The next lemma bounds the regret due to learner i
choosing near optimal arms by time T .

Lemma 4.6. Let LiC,B, B = 12/(L2−α) + 2 denote the
set of suboptimal actions for set of hypercubes C. When
ACAP is run with parameters p > 0, 2α/p ≤ z < 1,
D1(t) = D3(t) = tz log t and D2(t) = Fmaxt

z log t, the
regret due to near optimal arm selections in LiCi(t),B

at
time steps 1 ≤ t ≤ T in exploitation steps is bounded

above by 2BLA22(1+p−α)

21+p−α−1 T
1+p−α
1+p + 4Fmaxβ2.

Proof. At any time t for the set of active hypercubes
Ci(t) that the context vector of i belongs to, lmax(Ci(t))
is at least the level of the active hypercube xdi (t) ∈
Cdi (t) for some type-d context. Since a near optimal
arm’s one-step regret at time t is upper bounded by
2BL2−lmax(Ci(t))α, the total regret due to near optimal
arms by time T is upper bounded by

2BL

T∑
t=1

2−lmax(Ci(t))α ≤ 2BL

T∑
t=1

2−l(C
d
i (t))α.

Let lmax,u be the maximum level type-d hypercube when
type-d contexts are uniformly distributed by time T . We
must have

A

lmax,u−1∑
l=1

2l2pl < T(4.4)

otherwise the highest level hypercube by time T will be
lmax,u − 1. Solving (4.4) for lmax,u, we get lmax,u < 1 +

log2(T )/(1+p).
∑T
t=1 2−l(C

d
i (t))α takes its greatest value

when type-d context arrivals by time T is uniformly
distributed in Xd. Therefore we have

T∑
t=1

2−l(C
d
i (t))α ≤

lmax,u∑
l=0

2lA2pl2−αl <
A22(1+p−α)

21+p−α − 1
T

1+p−α
1+p .

From Lemma 4.6, we see that the regret due to
choosing near optimal arms increases with the param-
eter p that determines how much each hypercube will
remain active, and decreases with α, which determines



how similar is the expected accuracy of a classification
function for similar contexts. Next, we combine the re-
sults from Lemmas 4.2, 4.3 and 4.6 to obtain the regret
bound for ACAP.
Theorem 4.1. Let LiC,B, B = 12/(L2−α) + 2 denote
the set of suboptimal actions for set of hypercubes C.

When ACAP is run with parameters p = 3α+
√
9α2+8α
2 ,

z = 2α/p < 1, D1(t) = D3(t) = tz log t and D2(t) =
Fmaxt

z log t, the regret of learner i by time T is upper
bounded by

Ri(T ) ≤ T f1(α)
(

8DZi log T +
2BLA22+α+

√
9α2+8α

2
2+α+

√
9α2+8α
2 − 1

)
+ T f2(α)8(M − 1)Fmaxβ2(3α+

√
9α2 + 8α)/(4α)

+ T f3(α)(8DZi + 4(M − 1)Fmaxβ2) + 2(1 +D)|Fi|β2,

where Zi = |Fi|+ (M − 1)(Fmax + 1), f1(α) = (2 + α+√
9α2 + 8α)/(2 + 3α +

√
9α2 + 8α), f2(α) = 2α/(3α +√

9α2 + 8α), f3(α) = 2/(2 + 3α+
√

9α2 + 8α).

Proof. For each hypercube of each type-d context, the
regret due to training and explorations is bounded by
Lemma 4.2. It can be shown that for each type-d
context there can be at most 4T 1/(1+p) hypercubes
that is activated by time T . Using this we get a
O(T z+1/(1+p) log T ) upper bound on the regret due to
explorations and trainings for a type-d context. Then
we sum over all types of contexts d ∈ D. We show
in Lemma 4.6 that the regret due to near optimal arm

selections in exploitation steps is O(T
1+p−α
1+p ). In order

to balance the time order of regret due to explorations,
trainings and near optimal arm selections in exploita-
tions, while at the same time minimizing the number
of explorations and trainings, we set z = 2α/p, and

p = 3α+
√
9α2+8α
2 , which is the value which balances

these two terms. We get the final result by summing
these two terms together with the regret due to subop-
timal arm selections in exploitation steps which is given
in Lemma 4.3.

From the result of Theorem 4.1, it is seen that the
regret increases linearly with the number of learners in
the system and their number of classification functions
(which Fmax is an upper bound on). We note that the
regret is the gap between the total expected reward of
the optimal distributed policy that can be computed
by a genie which knows the accuracy functions of every
classification function, and the total expected reward
of ACAP. Since the performance of optimal distributed
policy never gets worse as more learners are added
to the system or as more classification functions are
introduced, the benchmark we compare our algorithm
against with may improve. Therefore, the total reward

of ACAP may improve even if the regret increases with
M , |Fi| and Fmax. Another observation is that the time
order of the regret does not depend on the number of
types of contextsD. Therefore the regret bound we have
in this paper and its analysis is significantly different
from the regret bounds we had in our prior work [5]
for algorithms which do not adaptively choose the type
of the context to exploit, whose time order approaches
linear as D increases.

5 Numerical Results

For our simulations, we use the network security data
from KDD Cup 1999 data set. We compare the perfor-
mance of our learning algorithms with state-of-the-art
online ensemble learning techniques given in Table 3.
Different from our algorithm ACAP which makes a pre-
diction based on a single classification function at each
time step, these algorithms combine the predictions of
all classification functions of all learners to make the
final prediction. The network security data has 42 fea-
tures. The goal is to predict at any given time if an
attack occurs or not based on the values of the features.
To show the effectiveness of adaptively choosing the best
context over time we take D = 3; type-1 context is the
label at the previous time step, type-2 context is the fea-
ture named srcbytes, which is the number of data bytes
from source to destination, type-3 context is time. All
the type-d context information is normalized to be in
[0, 1]. There are 4 local learners. Each local learner
has 2 classification functions. The classification costs cik
are set to 0 for all k ∈ Ki. All classification functions
are trained using 5000 consecutive samples from differ-
ent segments of the network security data (except for
OnAda in which the base classifiers are trained online).
Then, they are tested on T = 20000 consecutive sam-
ples. In our first simulation S1, there are two good clas-
sifiers that have low number of errors on the test data,
while in our second simulation S2, there are no good
classifiers. The types of classification functions used in
S1 and S2 are given in Table 2 along with the number of
errors each of these classification functions made on the
test data. From Table 2, we can observe that the error
percentage of the best classification function is 3 in S1,
while it is 47 in S2. A situation like in S2 can appear
when the distribution of the data changes abruptly, i.e.,
concept drift, so that the classification functions trained
on the old data becomes inaccurate for the new data.
In our numerical results, we will show how the context
information can be used to improve the performance in
both S1 and S2. The accuracies of the classifiers on the
test data are unknown to the learners. In all our simula-
tions, we assume that the test data sequentially arrives
to the system and the label is revealed to the algorithms



Learner Class. Fn. (S1) Error Class. Fn. (S2) Error
% (S1) % (S2)

1 Naive Bayes 47 Naive Bayes 47
Logistic 3 Random 50

2 Always 1 53 Always 1 53
Voted Perceptron 4 Random 50

3 RBF Network 47 RBF Network 47
J48 47 J48 47

4 Random Tree 47 Random Tree 47
Always 0 47 Always 0 47

Table 2: Base classification functions used by the
learners and their error percentages on the test data
for S1 and S2.
with a one step delay.

Results in Table 3 show that ACAP has a very small
error percentage for both S1 and S2 and is significantly
better than all ensemble learning techniques except
TrackExp for S2. Recall that ACAP’s prediction at any
t is only based on a single classification function. Results
for ACAP-d shows that performance is significantly
affected by what is chosen as the context if contexts
are not adaptively chosen over time. Clearly for our
specific example, previous label is the best context to
exploit. However, in general the best type of context
can change over time since the data stream can be
non-stationary, and it is impossible to predict a priori
which type of context is the best to exploit. ACAP
is slightly worse than ACAP-1 due to the fact that
it needs to train and explore for all three types of
context, while ACAP-1 does this only for one type of
context. Although we do not check if the conditions
of Theorem 4.1 is satisfied for the set of parameters
used by ACAP, our experimentation with different types
of parameters (omitted due to space) suggests that
the training and exploration rates can be made much
smaller than the ones stated in Theorem 4.1 without
degrading the performance.
References

[1] J. Gao, W. Fan, and J. Han, “On appropriate assump-
tions to mine data streams: Analysis and practice,” in
Data Mining, 2007. ICDM 2007. Seventh IEEE Inter-
national Conference on. IEEE, 2007, pp. 143–152.

[2] C. Stauffer and W. E. L. Grimson, “Learning patterns
of activity using real-time tracking,” Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
vol. 22, no. 8, pp. 747–757, 2000.

[3] V. S. Tseng, C.-H. Lee, and J. Chia-Yu Chen, “An
integrated data mining system for patient monitoring
with applications on asthma care,” in Computer-Based
Medical Systems, 2008. CBMS’08. 21st IEEE Interna-
tional Symposium on. IEEE, 2008, pp. 290–292.

[4] S. Avidan, “Support vector tracking,” Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
vol. 26, no. 8, pp. 1064–1072, 2004.

[5] C. Tekin and M. van der Schaar, “Distributed online
big data classification using context information,” in
Proc. of the 51st Annual Allerton Conference, 2013.

[6] L. L. Minku, A. P. White, and X. Yao, “The impact of
diversity on online ensemble learning in the presence
of concept drift,” Knowledge and Data Engineering,
IEEE Transactions on, vol. 22, no. 5, pp. 730–742,
2010.

[7] J. B. Predd, S. Kulkarni, and H. V. Poor, “Distributed
learning in wireless sensor networks,” Signal Processing
Magazine, IEEE, vol. 23, no. 4, pp. 56–69, 2006.

[8] F. Pérez-Cruz and S. R. Kulkarni, “Robust and low
complexity distributed kernel least squares learning
in sensor networks,” Signal Processing Letters, IEEE,
vol. 17, no. 4, pp. 355–358, 2010.

[9] L. Breiman, “Bagging predictors,” Machine learning,
vol. 24, no. 2, pp. 123–140, 1996.

[10] D. H. Wolpert, “Stacked generalization,” Neural net-
works, vol. 5, no. 2, pp. 241–259, 1992.

[11] H. Zheng, S. R. Kulkarni, and H. Poor, “Attribute-
distributed learning: models, limits, and algorithms,”
Signal Processing, IEEE Transactions on, vol. 59,
no. 1, pp. 386–398, 2011.

[12] D. T. Y. Zhang, D. Sow and M. van der Schaar, “A
fast online learning algorithm for distributed mining
of bigdata,” in the Big Data Analytics workshop at
SIGMETRICS 2013, 2013.

[13] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Dis-
tributed sparse linear regression,” Signal Processing,
IEEE Transactions on, vol. 58, no. 10, pp. 5262–5276,
2010.

[14] B. Chen, R. Jiang, T. Kasetkasem, and P. K. Varsh-
ney, “Channel aware decision fusion in wireless sensor
networks,” Signal Processing, IEEE Transactions on,
vol. 52, no. 12, pp. 3454–3458, 2004.

[15] H. Kargupta, B. Park, D. Hershberger, and E. Johnson,
“Collective data mining: A new perspective toward
distributed data mining,” Advances in Distributed and
Parallel Knowledge Discovery, no. part II, pp. 131–174,
1999.

[16] M. Sewell, “Ensemble learning,” RN, vol. 11, no. 02,
2008.

[17] E. Alpaydin, Introduction to machine learning. The
MIT Press, 2004.

[18] S. McConnell and D. B. Skillicorn, “Building predic-
tors from vertically distributed data,” in Proc. of the
2004 conference of the Centre for Advanced Studies on
Collaborative research. IBM Press, 2004, pp. 150–162.

[19] P. Bühlmann and B. Yu, “Boosting with the l 2 loss:
regression and classification,” Journal of the American
Statistical Association, vol. 98, no. 462, pp. 324–339,
2003.

[20] A. Lazarevic and Z. Obradovic, “The distributed
boosting algorithm,” in Proc. of the seventh ACM
SIGKDD international conference on knowledge dis-
covery and data mining. ACM, 2001, pp. 311–316.

[21] C. Perlich and G. Świrszcz, “On cross-validation and
stacking: Building seemingly predictive models on ran-
dom data,” ACM SIGKDD Explorations Newsletter,
vol. 12, no. 2, pp. 11–15, 2011.

[22] A. Slivkins, “Contextual bandits with similarity infor-



Abbrev. Name Ref. Parameters Error%(S1) Error%(S2)
BC Best classification function in F - - 3.12 46.9
Ada Adaboost [24] - 4.82 53.1
OnAda Fan’s Online Adaboost [25] Window size w = 100 2.69 2.42
AM Average Majority [1] - 46.9 46.9
Blum Blum’s variant of [26] Multiplicative parameters 53.1 2.82

weighted majority β = 0.5, γ = 1.5
TrackExp Herbster’s variant of [27] Multiplicative and sharing 2.41 0.64

weighed majority parameters β = 0.5, α = 0.25
ACAP Adaptive contexts and adaptive Our D1(t) = D3(t) = 1/8t1/8 log t 0.7 0.83

partitions algorithm D = 3 work D2(t) = 1/4t1/8 log t, A = 1, p = 4
ACAP-1 ACAP D = 1, context = previous label ” Same as ACAP 0.39 0.45
ACAP-2 ACAP D = 1, context = srcbytes feature ” Same as ACAP 3.75 41.3
ACAP-2 ACAP D = 1, context = time ” Same as ACAP 20.5 11.7
Bandit-T Similar to ACAP with training phase ” Same as ACAP 5.2 49.8

but does not exploit contexts

Table 3: Error percentages of various online learning methods and our work for settings S1 and S2.

mation,” in 24th Annual Conference on Learning The-
ory (COLT), 2011.

[23] J. Langford and T. Zhang, “The epoch-greedy algo-
rithm for contextual multi-armed bandits,” Advances
in Neural Information Processing Systems, vol. 20, pp.
1096–1103, 2007.

[24] Y. Freund and R. E. Schapire, “A decision-theoretic
generalization of on-line learning and an application to
boosting,” in Computational learning theory. Springer,
1995, pp. 23–37.

[25] W. Fan, S. J. Stolfo, and J. Zhang, “The application
of adaboost for distributed, scalable and on-line learn-
ing,” in Proceedings of the fifth ACM SIGKDD inter-
national conference on Knowledge discovery and data
mining, 1999, pp. 362–366.

[26] A. Blum, “Empirical support for winnow and weighted-
majority algorithms: Results on a calendar scheduling
domain,” Machine Learning, vol. 26, no. 1, pp. 5–23,
1997.

[27] M. Herbster and M. K. Warmuth, “Tracking the best
expert,” Machine Learning, vol. 32, no. 2, pp. 151–178,
1998.


