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Online Change-Point Detection of Linear
Regression Models

Jun Geng, Bingwen Zhang, Lauren M. Huie and Lifeng Lai

Abstract—In this paper, we consider the problem of quickly
detecting an abrupt change in linear regression models. Specifi-
cally, an observer sequentially obtains a sequence of observations,
whose underlying linear model changes at an unknown time.
Moreover, the pre-change linear model is perfectly known by
the observer but the post-change linear model is unknown.
The observer aims to design an efficient online algorithm to
detect the presence of the change via his sequential observations.
Based on different assumptions on the change time, both non-
Bayesian and Bayesian problem formulations are considered
in this paper. In the non-Bayesian setting, the change-point is
modeled as a fixed but unknown constant. Two performance
metrics, namely the worst case detection delay (WADD) and the
average run length to false alarm (ARL2FA), are adopted to
evaluate the performance of detection algorithms. We proposed a
low complexity algorithm, namely the parallel-sum algorithm, for
change-point detection. In the Bayesian setting, the change-point
is modeled as a geometrically distributed random variable. For
this case, the average detection delay (ADD) and the probability
of false alarm (PFA) are used to evaluate the performance of
detection algorithms. A modified version of the parallel-sum
algorithm is proposed for the Bayesian formulation. For both
setups, we analyze the performance of the proposed algorithms
and show that they offer good performance while requiring low
computational complexity.

Index Terms—Change-point detection; linear regression mod-
el; sequential analysis.

I. INTRODUCTION

Linear regression is a basic but important tool in statistics,
signal processing and machine learning. It has wide range
applications in data fitting, classification, feature or subset
selection [2], beam forming [3], image interpolation [4], cogni-
tive radio network [5], economic data analysis [6], biomedical
science [7], etc. Many efforts have been devoted into the
problem of estimating the coefficients in the linear regression
model based on a group of observing data [8]–[12]. The
underlying assumption in such estimation problem is that all
data come from a single linear model. However, in many other
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applications, the underlying model changes over time [13].
For example, in building economic growth models, it is more
appropriate to assume that the available various economic
indicators obey different models in different time period as
the economic growth pattern undergoes structural changes
over the years [14]. As another example, in monitoring the
health of control systems, the presence of a problem will
cause the system to change from a model of normal state
to another model of abnormal state [15]. In such applications,
it is of interest to detect the presence of such changes in the
underlying model quickly.

In this paper, we focus on on-line detection of such changes
in linear regression models. In particular, an observer keeps
monitoring the explanatory variables xn and the dependent
variable yn. Here, yn and xn are assumed to obey a linear
model at each time slot n. At the very beginning, the relation-
ship between yn and xn is assumed to be known. However,
some of the linear coefficients change at an unknown time
t, and the observer does not know the post-change linear
coefficients. Based on his sequential observations, the observer
aims to design an on-line detection algorithm to quickly and
accurately detect such change in the linear model.

We formulate this problem in the framework of quickest
change-point detection. Based on different assumptions on
change-point t, both non-Bayesian and Bayesian setups are
considered in this paper. In the non-Bayesian setup, the
change time t is assumed to be a fixed but unknown number.
Specifically, Lorden’s setup [16] is considered. In this case, the
observer aims to minimize the worst case average detection
delay (WADD) while keeping the average run length to false
alarm (ARL2FA), namely the expected duration between two
false alarms, under control. WADD and ARL2FA will be
precisely defined in the model section. In the Bayesian setup,
the change-point is assumed to be a geometrically distributed
random variable [17], [18]. Correspondingly, the observer
wants to minimize the average detection delay (average over
the prior distribution of the change-point) subject to a false
alarm probability constraint.

The optimal solutions for classic quickest detection prob-
lems, for which the post-change distribution is perfectly known
by the observer, are well known. Specifically, the cumulative
sum (CUSUM) procedure is optimal for Lorden’s formulation
[16], [19], [20] and the Shiryaev-Robert (SR) procedure is op-
timal for the Bayesian formulation [17], [21]. In our problem,
however, the post-change coefficient in the linear regression
model is unknown to the observer. It is natural to consider
the generalized likelihood ratio (GLR) based algorithms for
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problems with unknown models. However, as we will discuss
in the sequel, in our setup, the GLR-CUSUM procedure and
the GLR-SR procedure suffer huge computational burden. In
this paper, we focus on designing schemes that have low
complexity yet still offer reasonable performance. In particular,
we propose a low complexity algorithm named parallel-sum al-
gorithm. In the proposed algorithm, the observer calculates the
correlations between yn and each individual component of xn

and then compares the sum of these calculated statistics with
a pre-designed threshold. If the threshold is exceeded, which
indicates that yn strongly depends on some components in xn,
the observer raises an alarm. The performance of the proposed
algorithm is analyzed for both non-Bayesian and Bayesian
formulations. Specifically, in the non-Bayesian formulation,
to guarantee ARL2FA to be no less than a preset threshold γ,
we show that WADD of the parallel-sum algorithm is on the
order of O(log γ) when p/γ → 0, in which p is the dimension
of xn, and is on the order of O(log p) when p/γ → c with
c being a constant. In the Bayesian formulation, to guarantee
PFA to be no larger than a given threshold α, we show that
ADD of the proposed algorithm is on the order of O(| logα|)
when pα → 0 and is on the order of O(log p) when pα → c.
We note that the proposed algorithm is neither optimal nor
asymptotically optimal; however, the proposed algorithm has
very low computational complexity and its detection delay is
reasonable. At time slot n, the computational complexity of
the proposed parallel-sum algorithm is on the order of O(np).

The problem considered in this paper is related to recent
works on the quickest change-point detection problem with
unknown post-change parameters. In particular, [20] shows
GLR-CUSUM is asymptotic optimal for the non-Bayesian
quickest detection problem when the post-change distribution
contains unknown parameters. [15] adopts the window-limited
GLR-CUSUM for the change detection in the stochastic dy-
namic system. [22] proposes the SUM algorithm, which based
on the sum of local CUSUMs, to quickly detect the abrupt
change in multiple independent data streams. The authors in
[23] also consider the change detection problem for linear
model. Particularly, the unknown post-change parameter space
is decomposed into several subspaces, and for each subspace
the observer runs a recursive GLR test for detection purpose.
To the author’s best knowledge, there are few works that con-
sidered the Bayesian quickest detection problem with unknown
post-change parameters. Different from these works, we point
out that the commonly analyzed GLR-CUSUM procedure
suffer a huge computational burden in our problem, and we
propose a low complexity detection algorithm to deal with our
proposed problem. In addition, the proposed algorithm also
works under Bayeisan setting and corresponding performance
is analyzed.

We also briefly review other related papers. There are a
series of works such as [24], [25] that consider the problem of
monitoring model or structural change. However, these works
focus on the probability of detection of the change-point while
our work focuses on analyzing the detection delay. Some other
works, such as [14], [26], also consider that the structure of

data in the data set undergo several changes. These works
commonly assume that the whole dataset is available to the
observer, and the observer aims to design the offline algorithm
to estimate the location change-point; hence the estimation
error is of interest. However, in our work, observations come to
the observer in a sequential manner, and the observer aims to
design online change detection algorithm; hence the detection
delay and the false alarm is of interest.

This paper extends our previous conference publication [1]
in several ways. Specifically, [1] focuses on the non-Bayesian
formulation and analyzes the performance of the parallel-sum
algorithm under p/γ → 0. However, besides the contributions
made in [1], this paper also considers the Bayesian formulation
and analyzes the performance of the proposed algorithms un-
der p/γ → c. In addition, this paper provides detailed technic
proofs, and also discusses the computational complexity of the
proposed parallel-sum algorithm.

The remainder of this paper is organized as follows. The
mathematical model is given in Section II. Section III presents
the proposed algorithms and the main conclusions of this
paper. In Section IV, we provide the technic proofs of the
main conclusions. Numerical examples are given in Section V
to illustrate the results obtained in this work. Finally, Section
VI offers concluding remarks.

II. MODEL

We consider the change-point detection problem in a linear
regression model. Let {(xn, zn)}∞n=1 be a sequence of ob-
servations whose underlying model changes at an unknown
change-point t. For each time instant n, the scaler dependent
variable zn and the explanatory variable xn obey the following
model

zn =

{
βT
0 xn + ϵn n < t

βT
1 xn + ϵn n ≥ t

, (1)

in which ϵn ∼ N (0, 1) models the normalized Gaussian
noise, β0 and β1 model the pre-change and the post-change
linear regression coefficients, respectively. In addition, β0 is
perfectly known by the observer but β1 is unknown. Hence,
(1) indicates that the relationship between xn and zn) abruptly
changes to an unknown linear model from a known linear
model at some unknown time t.

In this paper, we assume that xn = [x1,n, x2,n, . . . , xp,n]
T

∈ Rp; hence β0 and β1 are also p-dimensional real vectors.
Furthermore, we assume that xn has an underlying probabil-
ity distribution with probability density function (pdf) f(x).
However, the observer does not have any information on f(x)
except that x has zero mean and that the elements of its
covariance matrix R are finite. {xn} and {ϵn} are independent
and identically distributed (i.i.d.) over time slots n.

We note that (1) can be transformed to a simpler but
equivalent form. Since β0 is perfectly known, by setting
yn = zn − βT

0 xn, we can obtain

yn =

{
0Txn + ϵn n < t
aTxn + ϵn n ≥ t

, (2)
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in which a = β1 − β0. In the rest of this paper, we assume
that the observer has conducted above transformation on his
observation sequence, and we will focus on the simplified
model (2) in the sequel.

It is of interest to consider the case that the abrupt change
only modifies a few components in the linear coefficient.
Hence, we assume that the post-change linear coefficient
a only contains s non-zero components. Furthermore, s is
assumed to be known to the observer.

Let a = [a1, a2, . . . , ap]
T and let A be the domain of a.

Particularly, A is specified in the following manner: if the ith

component in a is modified by the abrupt change, then ai falls
in the set:

Ai = {ai|ai ∈ (−bi,2,−bi,1] ∪ [di,1, di,2)}, (3)

in which bi,2 > bi,1 > 0 and di,2 > di,1 > 0. Furthermore,
we define Āi := {ai = 0}, then A can be expressed as

A =
∪

(i1,...,ip)∈P

(Ai1 ∪ · · · ∪ Ais ∪ Āis+1 ∪ · · · ∪ Āip), (4)

where P consists of all permutations of set {1, 2, . . . , p}. We
note that a = 0 is excluded from A and we assume that A is
also known to the observer.

The observer aims to detect the change-point t via his
sequential observations {(xn, yn), n = 1, 2, . . .}. Let τ be the
stopping time when the observer declares that a change has
occurred. The goal of the observer is to, loosely speaking,
minimize the detection delay (τ − t)+ while keeping the
false alarm {τ < t} under control. Two formal mathematic
formulations, based on different assumptions on the change-
point t, are considered in this paper.

In the non-Bayesian formulation, the change-point t is
assumed to be a fixed but unknown number. The detection
problem is formulated as

minimizeτ WADD(τ ;a) :=

sup
t≥1

esssupEa
t [(τ − t+ 1)+|Ft−1], for all a ∈ A

subject to ARL2FA(τ) := E∞[τ ] ≥ γ, (5)

in which Ea
t is the expectation with respect to P a

t , and P a
t is

the probability measure of the observations when the change
occurs at t with the post change linear coefficient being a, E∞
is the expectation under the probability measure that change
never happens (t = ∞), and Ft−1 is the sigma field generated
by {(xn, yn)}t−1

n=1. (5) is known as Lorden’s formulation [16],
which is a min-max setting that aims to minimize the worst
case average detection delay (WADD) over both change-point
t and observations up to t−1. E∞[τ ] is termed as average run
length to false alarm (ARL2FA). Since no change happens in
the event {t = ∞}, the declaration at τ is a false alarm; hence
the constraint in (5) requires that the expected duration to a
false alarm is no less than γ.

In the Bayesian formulation, the change-point t is modeled
as a geometrically distributed random variable. Particularly,
we assume

P (t = m) = ρ(1− ρ)m−1, m = 1, 2, . . . , (6)

in which ρ ∈ (0, 1) is a known parameter. Define probability
measure P a

π for a measurable event F as

P a
π (F ) :=

∞∑
m=1

P a
t (F |t = m)P (t = m)

=
∞∑

m=1

P a
m(F )P (t = m). (7)

The problem under the Bayesian framework is then formulated
as

minimizeτ ADD(τ ;a) := Ea
π[τ − t|τ ≥ t], for all a ∈ A.

subject to PFA(τ) := sup
a∈A

P a
π (τ < t) ≤ α, (8)

in which Ea
π is the expectation with respect to P a

π . Hence, (8)
aims to minimize the average detection delay (ADD) while
keeping the probability of false alarm (PFA) under control.

We note that both (5) and (8) are multi-objective opti-
mization problems. Optimal solutions for these two proposed
problems are in general difficult to obtain. Hence, in this paper,
we aim to propose low complexity sub-optimal algorithms and
to analyze their performances.

III. THE PARALLEL-SUM ALGORITHM

A. Challenges for Existing Methods
Let f0(xn, yn) be the joint probability density function (pdf)

of (xn, yn) when n < t. Let f1(xn, yn;a) be the joint pdf of
(xn, yn) when n > t and the post-change linear coefficient is
a. Even though both f0 and f1 are assumed to be unknown
in our paper, for any given a, the likelihood ratio (LR) can be
calculated as

L(xn, yn;a) :=
f1(xn, yn;a)

f0(xn, yn)
=

f1(yn|xn;a)f(xn)

f0(yn)f(xn)

=
exp{− 1

2 (yn − aTxn)
2}

exp{−1
2y

2
n}

= exp

{
aTxnyn − 1

2
aTxnx

T
na

}
. (9)

Further, the Kullback-Leibler (KL) divergence between
f0(xn, yn) and f1(xn, yn;a) is

D(f1, f0;a) = Ea [logL(xn, yn;a)] =
1

2
aTRa

=
1

2

p∑
i=1

a2i ri,i +
1

2

∑
i ̸=j

aiajri,j , (10)

in which ri,j is the element located at the ith row and the
jth column in R. Recall that R is the covariance matrix of
xn. The lower bounds of the detection delay for the proposed
formulations are presented in the following theorem, which
restates the well known results in [20] and [21] in our context.

Theorem III.1. (Theorem 1 in [20] and Theorem 1 in [21])
For the non-Bayesian formulation, as γ → ∞,

inf{WADD(τ,a) : ARL2FA(τ) ≥ γ}

≥ | log γ|
D(f1, f0;a)

(1 + o(1)) (11)
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for any a ∈ A. For the Bayesian formulation, as α → 0,

inf{ADD(τ,a) : PFA(τ) ≤ α}

≥ | logα|
D(f1, f0;a) + | log(1− ρ)|

(1 + o(1)) (12)

for any a ∈ A.

If the post-change linear coefficient a is perfectly known
by the observer, it is well known that the cumulative sum
(CUSUM) procedure is the optimal detection procedure for
Lorden’s formulation and the Shiryaev-Robert (SR) procedure
is optimal for the Bayesian formulation. In our paper, the
true post-change linear coefficient exhibits uncertainty to the
observer since a could be any value in A. Hence, it is natural to
replace the likelihood ratio used in the CUSUM procedure and
the SR procedure by the generalized likelihood ratio (GLR).
In particular, the GLR-CUSUM procedure can be written as

Tn := max
1≤m≤n

supa∈A
∏n

k=m f1(xk, yk;a)∏n
k=m f0(xk, yk)

= max
1≤m≤n

sup
a∈A

n∏
k=m

L(xk, yk;a), (13)

τGLR−CUSUM := min{n ≥ 0 : Tn ≥ B}, (14)

and the GRL-SR procedure can be written as

Rn :=
n∑

m=1

(
1

1− ρ

)n−m+1
supa∈A

∏n
k=m f1(xk, yk;a)∏n

k=m f0(xk, yk)

=
n∑

m=1

(
1

1− ρ

)n−m+1

sup
a∈A

n∏
k=m

L(xk, yk;a), (15)

τGLR−SR := min{n ≥ 0 : Rn ≥ B}. (16)

Note that the threshold B in (14) should be designed according
to the ARL2FA constraint (5), and threshold B in (16) should
be designed to satisfy the PFA constraint (8).

The GLR-CUSUM procedure has been shown to be asymp-
totically optimal for Lorden’s formulation when the post-
change parameter is unknown [20]. However, to authors’
best knowledge, the optimality of the GLR-SR procedure for
the Bayesian formulation is still an open problem. Though
these two GLR based algorithms are natural and attractive,
the huge computational burden prevents them from practical
applications. In particular, we note that for both GLR based
algorithms the observer has to estimate a by solving

sup
a∈A

n∏
k=m

L(xk, yk;a) = sup
a∈A

n∏
k=m

exp{− 1
2 (yk − aTxk)

2}
exp{−1

2y
2
k}

for each m ∈ {1, . . . , n}, which is equivalent to solve

inf
a∈A

n∑
k=m

(yk − aTxk)
2 for m = 1, . . . , n. (17)

The challenges of solving this problem include
• (17) is a non-convex problem as the feasible set A is non-

convex. It is known that to find an s−sparse solution of
an underdetermined system is NP hard.

• One may consider to use the popular l1-relaxation tech-
niques, such as LASSO, to solve for the s−sparse solu-
tion. However, l1-relaxation techniques cannot guarantee
to find the optimal solution of (17) since 1) A is not
the whole s−sparse space but possesses some special
structure (3) and 2) when m is close to n, e.g. n−m ∼
o(s log p), the observer does not have enough samples for
a successful recovery.

• Even if the LASSO algorithm could work in solving (17),
its computational complexity is high.

Because of above reasons, we are interested in finding algo-
rithms with low computational complexity.

B. Parallel-Sum Algorithm for the Non-Bayesian Setup

In this subsection, we propose a low complexity algorithm,
termed as parallel-sum algorithm, for Lorden’s formulation.
Specifically, the proposed detection procedure is described as
follows:

Wi(m,n; ai) := κai

n∑
k=m

xi,kyk − κ

2
a2i

n∑
k=m

x2
i,k,

for 1 ≤ i ≤ p, (18)

U(m,n) := sup
a∈A

p∑
i=1

Wi(m,n; ai), (19)

Cn := sup
1≤m≤n

U(m,n), (20)

τc := inf{n ≥ 0 : Cn ≥ logB}, (21)

in which κ is a designed constant, and B is a properly selected
threshold to control ARL2FA.

The motivation of the above algorithm is to use the cor-
relation between yk and xk for the change-point detection.
From (2), we see that in the transformed model, yk does not
depend on xi,k before the change as the linear coefficients
are 0. After the change, yk depends on xi,k if ai ̸= 0,
and ai reflects the correlation strength between yk and xi,k.
Actually, Wi(m,n; ai) defined in (18) is a measurement of
the correlation between yk and xi,k. If the components in xk

are mutually independent, we notice that

Ea[Wi(m,n; ai)]=(n−m+1)
κ

2
a2i ri,i=−E∞[Wi(m,n; ai)].

That is, the conditional expectation (conditioned on a) of
Wi(m,n; ai) after the change-point is opposite to its expecta-
tion before the change-point.

When change occurs at {t = m}, Wi(m,n; ai) is close
to zero if the ith component in a is unchanged and tends to
be positive if changed. Hence, the observer wants to sum up
all s positive Wi’s to speed up the detection procedure. This
idea is reflected by U(m,n) in (19). As the change-point t
is unknown, the observer then searches over all time instants
within [1, n] in (20) and detect the change-point via a threshold
rule in (21). This follows a similar idea of constructing the
CUSUM procedure from the one-side SPRT procedure [16].

The performance of the proposed parallel-sum algorithm is
presented in the following theorem.
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Theorem III.2. By setting

logB = 2κs

[
log

(
2p+ p

√
κs

4π
+ E[Nmax]

)
+ log γ

]
, (22)

in which Nmax is a finite random variable whose distribution
relies on f(x), and E[Nmax] ≤ c1p with c1 being a constant
independent of p. One can guarantee that

ARL2FA[τc] ≥ γ. (23)

Furthermore, the detection delay is bounded by

WADD(τc;a)

≤ 2| logB|
κ
∑p

i=1 a
2
i ri,i + 2κ

∑
i ̸=j aiajri,j

(1 + o(1)) (24)

as γ → ∞.

Proof: Please see Section IV-A.

Remark III.3. 1) In the asymptotic analysis when p, s are
constants and γ → ∞, i.e., roughly speaking, the observer
has infinitely many (compared with dimension p) post-change
observations to detect the change-point, we have logB =
2κs log γ(1 + o(1)) and

WADD(τc;a)

infτ WADD(τ ;a)
≤ 2s

∑p
i=1 a

2
i ri,i +

∑
i ̸=j aiajri,j∑p

i=1 a
2
i ri,i + 2

∑
i ̸=j aiajri,j

.

Hence, when the components in xn are mutually uncorrelated,
i.e., R is a diagonal matrix, the performance loss of the
proposed algorithm is no more than 2s.
2) In high dimension setting when p → ∞, s → ∞, γ → ∞
and γ/p → c (c is constant that could be zero), we have
logB ∼ O(s log p). Note that the denominator in (24) is on
the order of O(s) since there are only s non-zero components
in a; hence the detection delay WADD(τc;a) ∼ O(log p). That
is, the observer only needs O(log p) post-change observations
on average to detect the change-point. Recall that in sparse
recovery problem, one needs O(s log p) observations to recov-
er an s−sparse vector. However, we require less observations
for the purpose of detection.
3) From (22) and (24), we note that the constant κ does not
affect the upperbound of WADD in the non-Bayesian case.
However, as will be shown in the sequel, κ plays a role in the
upperbound of ADD in the Bayesian case.

C. Parallel-Sum Algorithm for the Bayesian Setup

In this subsection, we construct the the parallel-sum algo-
rithm for the Bayesian formulation. Specifically, the proposed
detection procedure is described as follows:

Wi(m,n; ai) := κai

n∑
k=m

xi,kyk − κ

2
a2i

n∑
k=m

x2
i,k,

for 1 ≤ i ≤ p, (25)
Vi(m,n; ai) := Wi(m,n; ai) + (n−m+ 1)µ, (26)

U(m,n) := sup
a∈A

p∑
i=1

Vi(m,n; ai)

= sup
a∈A

p∑
i=1

Wi(m,n; ai) + p(n−m+ 1)µ, (27)

Cn := sup
1≤m≤n

U(m,n), (28)

τc := inf{n ≥ 0 : Cn ≥ logB}. (29)

With a little abuse of notations, we still use U(m,n), Cn

and τc in the Bayesian case to denote the detection proce-
dure. However, these notations can be clearly distinguished
from the ones for the non-Bayesian formulation in a given
context. Similar to the non-Bayesian case, the parallel-sum
algorithm for the Bayesian formulation also explores the
correlated information between yk and xk for the purpose of
change-point detection. However, the proposed algorithm in
the Bayesian case contains one more designed parameter µ
in (26). Specifically, µ is a factor adopted by the observer
to speed up the detection procedure by exploring the prior
knowledge of the change-point.

The analysis of the proposed parallel-sum algorithm re-
quires some additional mild assumptions. In particular, let

Yk := κyk

p∑
i=1

aixi,k − κ

2

p∑
i=1

(aixi,k)
2 + pµ. (30)

Since {xn} is i.i.d. over n, on the event {t = m}, we have

1

n

m+n−1∑
k=m

Yk
a.s.→ Ea

1 [Yk]

by the strong law of large numbers. Define

Tϵ := inf

{
n ≥ 0 :

∣∣∣n−1
m+n−1∑
k=m

Yk − Ea
1 [Yk]

∣∣∣ > ϵ

}
, (31)

hence Tϵ < ∞ almost surely. We make further assumption
that

Ea
m[Tϵ] < ∞ and Ea

π[Tϵ] < ∞ for all a ∈ A. (32)

With Assumption (32), we have the following result:

Theorem III.4. Let

c2 = (1− κ)−
1
2 exp

{p
s
µ
}
.

By setting

logB = s| logα|+ s log
ρc2

(c2 − 1)[1− (1− ρ)c2]
,

and choosing κ < 1,

s

2p
log(1− κ) ≤ µ <

s

2p
log(1− κ) +

s

p
| log(1− ρ)|, (33)

one can guarantee that

PFA[τc] ≤ α (34)
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for all a ∈ A. Furthermore, the average detection delay is
bounded by

ADD(τc;a) ≤ Ea
π[τc − t|τc ≥ t]

=
2| logB|+ 2c3s

κ
∑p

i=1 a
2
i rii + 2κ

∑
i ̸=j aiajrij + 2pµ

(1 + o(1))(35)

as α → 0, in which

c3 :=
1− ρ

ρ

(
1

2
| log(1− κ)|+ κ

2
max
1≤i≤p

a2i ri,i

)
(36)

is a constant that is independent of p.

Proof: Please see Section IV-B.

Remark III.5. 1) In the asymptotic analysis when p, s are
constants and α → 0, it is easy to see that (33) is satisfied if
we choose

µ =
s

2p
log(1− κ) +

s

p
log

1− α

1− ρ
.

With this selection, we have c2 = (1− α)/(1− ρ) and hence
logB = 2s| logα|(1 + o(1)) as α → 0. Correspondingly, the
lower bound of detection delay

ADD(τc;a) ≤
4s| logα|
ϑ(a,R, κ)

(1 + o(1)),

in which

ϑ(a,R, κ) = κ

p∑
i=1

a2i rii + 2κ
∑
i ̸=j

aiajrij

+2s| log(1− ρ)|+ s log(1− κ).

By adjusting the value of κ, we can obtain a family of
upper bounds for the detection delay. In this case, we have
ADD(τc;a) ∼ O(| logα|) for all a ∈ A.

2) In the high dimension setting when p → ∞, s → ∞,
α → 0 and pα → c (c is a constant that could also be infinity),
it is easy to see that (33) is satisfied if we choose

µ =
s

2p
log(1− κ) +

s

p
log

1− p−1

1− ρ
,

we then have logB ∼ O(s log p). Since the denominator in
(35) is on the order of O(s), the detection delay ADD(τc;a) ∼
O(log p). Hence, similar to the conclusion obtained in the non-
Bayesian case, we require less observations for the purpose
of online change-point detection than that for the sparse
recovery.

D. Implementation of the Parallel-Sum Algorithms

The proposed parallel-sum algorithm can be easily comput-
ed. From (19) and (27), the main calculation of the parallel-
sum algorithm, for both non-Bayesian and Bayesian cases, is
to solve the optimization problem

sup
a∈A

p∑
i=1

Wi(m,n; ai) (37)

By solving ∂
∂ai

Wi(m,n; ai) = 0, we can easily show that
Wi(m,n; ai) achieves its maximum at

a∗i =

∑n
k=m xi,kyk∑n
k=m x2

i,k

(38)

if ai has no constraint. Hence,

âi := arg max
ai∈Ai

Wi(m,n; ai) (39)

can be easily found. In particular, âi = a∗i if a∗i ∈ Ai and âi
equals to one of the four candidates {−bi,2,−bi,1, di,1, di,2}
otherwise.

Let â∗ = [â∗1, â
∗
2, . . . , â

∗
p]

T be the optimal solution for (37).
Denote the order statistics of {Wi(m,n; âi), i = 1, . . . , p} as

W(1)(m,n; â(1)) ≥ W(2)(m,n; â(2)) ≥
· · · ≥ W(p)(m,n; â(p)). (40)

It is easy to see that the optimal estimation â∗ is given as

â∗i =

{
âi if Wi(m,n; âi) ≥ W(s)(m,n; â(s))
0 otherwise . (41)

As a result, for the non-Bayesian case, we have

U(m,n) =

s∑
i=1

W(i)(m,n; â(i)), (42)

and for the Bayesian case

U(m,n) =
s∑

i=1

W(i)(m,n; â(i)) + p(n−m+ 1)µ. (43)

We then discuss the computation complexity of the pro-
posed algorithm. The main computation of the parallel-sum
algorithm consists of four parts: 1) Calculating Wi(m,n; âi)
for m = 1, . . . , n. Since

∑n
k=m xi,kyk and

∑n
k=m x2

i,k can be
calculated recursively for adjacent values of m, the computa-
tional complexity of calculating {Wi(m,n; âi),m = 1, . . . , n}
is on the same level of calculating Wi(1, n; âi), which is
on the level of O(n). As the observer has to find Wi’s for
i = 1, . . . , p, the total amount of computation in this part
is O(np); 2) Finding {W(i)(m,n; â(i)), i = 1, . . . , s} for
m = 1, . . . , n. The computational complexity of searching the
sth largest number from a group of p numbers is known as
O(p), hence the total computational amount in this step is also
O(np); 3) Calculating U(m,n) for m = 1, . . . , n. The amount
of calculation is O(ns) in this step. 4) Calculating Cn. The
computational complexity of finding the largest number from
n numbers is O(n). As a result, the computational complex
of proposed algorithm at time slot n is O(np).

One may notice that the computational complexity increases
as n increases; hence the amount of computation explodes
when n → ∞. For implementation purposes, one can truncate
the proposed algorithm by a window with length lw. Specifi-
cally, one can modify Cn defined in (21) and (29) as

Cn := sup
n−lw+1≤m≤n

U(m,n).
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With this modification, the computational complexity will be
limited to O(lwp) for each time slot. This kind of window
based algorithms was first introduced in [27] and then is
analyzed in detail in [20]. For our algorithm, we can choose
lw on the order of detection delay. For example, as pointed
out in Remark III.3 and Remark III.5, the detection delay
is O(log p) for high dimensional settings, which indicates
that the detection procedure requires O(log p) post-change
observations on average to detect the change-point. Hence,
roughly speaking, to set lw on the order of O(log p) can
provide enough post-change observations for the detection.

IV. PROOFS

A. Proof of Theorem III.2

In this subsection, we prove Theorem III.2 by exploring the
relationship between Lorden’s quickest detection problem and
the one-sided SPRT problem.

Consider a hypothesis testing problem that the observation
sequence {(xn, yn)}∞n=1 obeys one of the following hypothe-
sis:

H0 : yn = 0Txn + ϵn versus H1 : yn = aTxn + ϵn. (44)

Denote P∞(·) and P a(·) as probability measures under H0

and H1, respectively. Note that (44) is a sequential hypothesis
testing problem rather than a change-point detection problem.
In the one-sided SPRT problem, the observer wants to take
as many (even infinitely many) observations as possible when
H0 is true, and wants to take as few observations as possible
when H1 is true. Specifically, a testing procedure can be
defined as a stopping time τ . {τ = n} indicates the number of
observations taken by the observer when he claims H1 to be
true. {τ = ∞} is the event that the procedure takes infinitely
many observations. For a given a ∈ A, the one-sided SPRT
problem aims to solve

minimizeτ Ea[τ ],

subject to P∞(τ < ∞) ≤ α. (45)

The relationship between one-sided SPRT and Lorden’s quick-
est detection formulation is revealed in [16]. We rewrite the
corresponding result in our context as the following lemma.

Lemma IV.1. (Lemma 1 in [16]) Suppose τ is a stopping time
for one-sided SPRT problem with respect to {(xn, yn)}∞n=1

such that

P∞(τ < ∞) ≤ α, 0 < α < 1. (46)

For each k = 1, 2, . . . , let τk denote the stopping time
obtained by applying τ to {(xn, yn)}∞n=k and define

τ∗ = inf{τk + k − 1|k = 1, 2, . . .}. (47)

Then τ∗ is also a stopping time, and for the problem formu-
lation defined in (5) it satisfies

ARL2FA(τ∗) ≥ 1

α
(48)

and

WADD(τ∗) ≤ Ea[τ ]. (49)

Using this lemma, we will study the performance of follow-
ing algorithm for the one-sided SPRT problem (45). Consider
the detection procedure

Wi(1, n; ai) = κai

n∑
k=1

xi,kyk − κ

2
a2i

n∑
k=1

x2
i,k,

Un = sup
a∈A

p∑
i=1

Wi(1, n; ai),

τ1 = inf{n ≥ 0 : Un ≥ logB}. (50)

Let τk be the stopping time that applies τ1 to {(xn, yn)}∞n=k.
We note that τc defined in (21) can be equivalently written as
τc = inf{τk +k− 1|k = 1, 2, . . .}. As a result, due to Lemma
IV.1, it is sufficient to study the performance of Ea[τ1] and
P∞(τ1 < ∞) in (45).

Lemma IV.2. (Detection deley) For a given threshold B, as
B → ∞ we have

Ea[τ1] ≤
2| logB|

κ
∑p

i=1 a
2
i ri,i + 2κ

∑
i ̸=j aiajri,j

(1 + o(1)). (51)

for any a ∈ A.

Lemma IV.3. (False alarm probability) For a given threshold
B, the error probability of τ1 is given as

P∞(τ1 < ∞) ≤

2pB− 1
κs +

(
p

√
κs

4π
+ E[Nmax]

)
(logB)−

1
4B− 1

2κs , (52)

in which Nmax is a finite random variable whose distribution
relies on f(x), and E[Nmax] ≤ c1p, where c1 is a constant
independent of p.

With above two lemmas, by setting

logB = 2κs

[
log

(
2p+ p

√
κs

4π
+ E[Nmax]

)
+ log γ

]
,

we have

P∞(τ1 < ∞)

≤ 2pB− 1
κs +

(
p

√
κs

4π
+ E[Nmax]

)
(logB)−

1
4B− 1

2κs

≤
(
2p+ p

√
κs

4π
+ E[Nmax]

)
B− 1

2κs =
1

γ
.

Then, Theorem III.2 follows by exploring the result (48) and
(49).

In the rest of this subsection, we provide proofs for Lemma
IV.2 and Lemma IV.3.

Proof of Lemma IV.2:
In the following, we study the detection delay of test

procedure τ1 for the one-sided SPRT problem (45). Assume
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that a genie knows the true post-change linear coefficient a,
and he uses the statistic

Ũn =

p∑
i=1

[
κai

n∑
k=1

xi,kyk − κ

2
a2i

n∑
k=1

x2
i,k

]

=

n∑
k=1

[
κyk

p∑
i=1

aixi,k − κ

2

p∑
i=1

(aixi,k)
2

]
for detection. Let Yk := κyk

∑p
i=1 aixi,k − κ

2

∑p
i=1(aixi,k)

2,
it is easy to see {Yk} is a sequence of i.i.d. random variables
under the alternative hypothesis, and hence Ũn is a random
walk. Moreover, it is easy to verify that

Ea[Yk] =
κ

2

p∑
i=1

a2i ri,i + κ
∑
i ̸=j

aiajri,j .

Let τ̃1 = inf{n ≥ 1 : Ũn ≥ logB}, using Wald’s identity and
ignoring the overshoot, we can obtain

Ea[τ̃1] =
2| logB|

κ
∑p

i=1 a
2
i ri,i + 2κ

∑
i ̸=j aiajri,j

as B → ∞. We note that Un ≥ Ũn since Un takes supreme
value over a ∈ A. As a result, we have τ1 < τ̃1; hence Lemma
IV.2 holds.

Proof of Lemma IV.3
In the following, we study the false alarm probability of τ1

for the one-sided SPRT problem (45). Under P∞, by solving
∂

∂ai
Wi(1, n; ai) = 0, we can easily obtain that

a∗i =

∑n
k=1 xi,kϵi∑n
k=1 x

2
i,k

. (53)

By the strong law of large number, as n → ∞, we have

a∗i =

∑n
k=1 xi,kϵk∑n
k=1 x

2
i,k

=
1
n

∑n
k=1 xi,kϵk

1
n

∑n
k=1 x

2
i,k

→ E[xi,kϵk]

E[x2
i,k]

= 0,

P∞ − almost surely . (54)

Recall that Ai = {ai|ai ∈ (−bi,2,−bi,1]∪ [di,1, di,2)}. There-
fore, (54) indicates that there exists a finite random variable
Ni such that −bi,1 < a∗i < di,1 almost surely when n > Ni.
The distribution of Ni depends on the convergence rate of
1
n

∑n
k=1 xi,kϵk and 1

n

∑n
k=1 x

2
i,k, which further depends on

the marginal distribution of x. Furthermore, we have

Wk(1, n; a
∗
k) =

κ

2

(
∑n

k=1 xi,kϵk)
2∑n

k=1 x
2
i,k

=
κ

2

(
n∑

k=1

wkϵk

)2

(55)

with

wk =
xi,k√∑n
k=1 x

2
i,k

. (56)

Denote Hn =
∑n

k=1 wkϵk. Hn can be viewed as a lin-
ear combination of Gaussian random variables with random
weights satisfying

∑n
k=1 w

2
k = 1; hence for any given real-

ization of {w1, . . . , wn}, Hn is distributed as N (0, 1). Let

w = [w1, w2, . . . , wn] and let ϕ denote the pdf of standard
Gaussian distribution, the pdf of Hn can be calculated as

f(hn) =

∫
f(hn,w)dw =

∫
f(hn|w)f(w)dw

=

∫
ϕ(hn)f(w)dw = ϕ(hn). (57)

Hence, Hn is distributed as N (0, 1) for any n. Therefore,
2
κWi(1, n; a

∗
i ) is χ2

1 distributed.
Let Nmax := maxi Ni; hence Nmax is an almost sure finite

random variable, and

E[Nmax] ≤ E

[
p∑

i=1

Ni

]
≤ c1p, (58)

where c1 := maxi E[Ni] is a constant that is independent of
p. Further, let N be a large constant, we have

P∞(τ < ∞)

= P∞ [Uτ > logB]

= P∞

[
sup
a∈A

p∑
i=1

Wi(1, τ ; ai) > logB

]

≤ P∞

[
sup
a∈A

p∑
i=1

Wi(1, τ ; ai) > logB, τ ≤ N

]

+P∞

[
sup
a∈A

p∑
i=1

Wi(1, τ ; ai) > logB, τ > Nmax

]

+P∞

[
sup
a∈A

p∑
i=1

Wi(1, τ ; ai) > logB,Nmax ≥ τ > N

]
.(59)

We then bound these three items on the right hand side of
(59) individually. To bound the first item, we have to introduce
some notations. Specifically, let

â∗ = argmax
a∈A

Uτ .

Follow a discussion that is similar from (39) to (42), one can
easily obtain

Uτ =
s∑

i=1

W(i)(1, τ ; â(i)), (60)

in which

âi = arg max
ai∈Ai

Wi(1, n; ai) (61)

and

W(1)(1, n; â(1)) ≥ W(2)(1, n; â(2)) ≥ · · · ≥ W(p)(1, n; â(p))

is the order statistic of Wi(1, n; âi). Then, for the first item,
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we have

P∞

[
sup
a∈A

p∑
i=1

Wi(1, τ ; ai) > logB, τ ≤ N

]
(a)
= P∞

[
s∑

i=1

W(i)

(
1, τ ; â(i)

)
> logB, τ ≤ N

]

≤ P∞

[
W(1)

(
1, τ ; â(1)

)
>

logB

s
, τ ≤ N

]
=

∞∑
n=1

P∞

[
W(1)

(
1, n; â(1)

)
>

logB

s
, τ = n, τ ≤ N

]

≤
N∑

n=1

P∞

[
W(1)

(
1, n; â(1)

)
>

logB

s

]

≤
N∑

n=1

P∞

[
∃i ∈ {1, . . . , p} such that Wi(1, n; âi) >

logB

s

]

≤
N∑

n=1

p∑
i=1

P∞

[
Wi(1, n; âi) >

logB

s

]
(b)

≤
N∑

n=1

p∑
i=1

P∞

[
2

κ
Wi(1, n; a

∗
i ) >

2

κ

logB

s

]
= NpP∞

[
χ2
1 >

2

κ

logB

s

]
(c)

≤ Np

√
κs

4π

1

B1/κs[logB]1/2
, (62)

in which (a) is because of (60), (b) is because of definitions
of âi and a∗i , and (c) is because of the tail bounds inequality

P (X > x) ≤ exp(−x2/2)

x
√
2π

for a standard normal random variable X .
We then bound the second item in (59). For xi,k under P∞,

we generate another two probability measures Qb(xi,k, yk)
and Qd(xi,k, yk). In particular, Qb(xi,k, yk) is generated by
linear transformation yk = −bi,1xi,k + ϵk and Qd(xi,k, yk)
by yk = di,1xi,k + ϵk. A direct calculation shows that
the Radon-Nikodym derivatives of Qb, Qd and P∞ for
(xi,1, . . . , xi,n, y1, . . . , yn) are given as

dQb

dP∞
= exp

{
−bi,1

n∑
k=1

xi,kyk − 1

2

n∑
k=1

b2i,1x
2
i,k

}

= exp

{
1

κ
Wi(1, n;−bi,1)

}
,

dQd

dP∞
= exp

{
di,1

n∑
k=1

xi,kyk − 1

2

n∑
k=1

d2i,1x
2
i,k

}

= exp

{
1

κ
Wi(1, n; di,1)

}
.

We note that when τ > Nmax, âi defined in (61) equals to
either −bi,1 or di,1 because of (54) for all i ∈ {1, . . . , p}.
Then, for the second item on the right hand side of (59), we

have

P∞

[
sup
a∈A

p∑
i=1

Wi(1, τ ; ai) > logB, τ > Nmax

]

= P∞

[
s∑

i=1

W(i)

(
1, τ ; â(i)

)
> logB, τ > Nmax

]

≤ P∞

[
W(1)

(
1, τ ; â(1)

)
>

logB

s
, τ > Nmax

]
≤

p∑
i=1

P∞

[
Wi (1, τ ; âi) >

logB

s
, τ > Nmax

]

=

p∑
i=1

P∞

[
Wi (1, τ ; âi) >

logB

s
,

{âi = −bi,1 or âi = di,1}, τ > Nmax]

≤
p∑

i=1

[
P∞

[
Wi (1, τ ;−bi,1) >

logB

s

]
+P∞

[
Wi (1, τ ; di,1) >

logB

s

]]
=

p∑
i=1

[∫
{Wi(1,τ ;−bi,1)>

log B
s }

dP∞

dQb
dQb

+

∫
{Wi(1,τ ;di,1)>

log B
s }

dP∞

dQd
dQd

]
(a)

≤
p∑

i=1

1

elogB/κs

[
Qb

[
Wi (1, τ ;−bi,1) >

logB

s

]
+Qd

[
Wi (1, τ ; di,1) >

logB

s

]]
=

2p

B1/κs
, (63)

in which (a) holds because of inequalities (64) and (65) in the
following∫
{Wi(1,τ ;di,1)>

log B
s }

dP∞

dQd
dQd

=

∞∑
n=1

∫
{Wi(1,τ ;di,1)>

log B
s ,τ=n}

dP∞

dQd
dQd

=

∞∑
n=1

∫
{Wi(1,n;di,1)>

log B
s ,τ=n}

exp

{
− 1

κ
Wi(1, n; di,1)

}
dQd

≤ exp

{
− 1

κ

logB

s

} ∞∑
n=1

∫
{Wi(1,n;di,1)>

log B
s ,τ=n}

dQd

= exp

{
− logB

κs

}
Qd

[
Wi (1, τ ; di,1) >

logB

s

]
. (64)

Similarly, we have∫
{Wi(1,τ ;−bi,1)>

log B
s }

dP∞

dQb
dQb

≤ exp

{
− logB

κs

}
Qb

[
Wi (1, τ ;−bi,1) >

logB

s

]
.(65)
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The third term in the right hand of (59) can be bounded by
Markov inequality. Particularly

P∞

[
sup
a∈A

p∑
i=1

Wi(1, τ ; ai) > logB,Nmax ≥ τ > N

]

≤ P (Nmax > N) ≤ E[Nmax]

N
. (66)

By setting
N = B1/2κs(logB)1/4

and adding three bounds together, we obtain that

P∞(τ < ∞)

≤ Np

√
2s

π

1

B1/2s[logB]1/2
+

p

B1/s
+

E[Nmax]

N

= 2pB− 1
κs +

(
p

√
κs

4π
+ E[Nmax]

)
(logB)−

1
4B− 1

2κs .

This ends the proof.

B. Proofs for the Bayesian setup

In this subsection, we prove Theorem III.4. In particular,
Theorem III.4 can be obtained directly from following two
supporting lemmas:

Lemma IV.4. (Detection Delay) If κ < 1 and µ ≥ s
2p log(1−

κ), then as B → ∞

Ea
π[τc − t|τc ≥ t]

≤ logB + c3s
κ
2

∑p
i=1 a

2
i rii + κ

∑
i ̸=j aiajrij + pµ

(1 + o(1)),(67)

in which

c3 :=
1− ρ

ρ

(
1

2
| log(1− κ)|+ κ

2
max
1≤i≤p

a2i ri,i

)
is a constant that is independent of p.

Lemma IV.5. (False Alarm) If κ < 1 and
s

2p
log(1− κ) ≤ µ <

s

2p
log(1− κ) +

s

p
| log(1− ρ)|, (68)

then for threshold B,

P a
π (τc < t) ≤ 1

B1/s

ρc2
c2 − 1

1

1− (1− ρ)c2
, ∀a ∈ A, (69)

in which c2 = (1− κ)−1/2 exp{pµ/s}.

Theorem III.4 then can be proved by setting

logB = s| logα|+ s log
ρc2

(c2 − 1)[1− (1− ρ)c2]
. (70)

Putting this threshold into (69), we have P a
π (τc < t) ≤ α for

all a ∈ A; hence the false alarm constraint supa∈A P a
π (τc <

t) ≤ α is satisfied. Putting (70) into (67), we will obtain
the upperbound of the detection delay presented in Theorem
III.4. In the rest of this subsection, we will prove above two
supporting lemmas.

Proof of Lemma IV.4:

In the following, we study the detection delay of τc defined
in (29) for the Bayesian formulation. Assume that a genie
knows the true post-change linear coefficient a, and he uses
the statistic

Ũ(m,n)

=

p∑
i=1

[
κai

n∑
k=m

xi,kyk − κ

2
a2i

n∑
k=m

x2
i,k + (n−m+ 1)µ

]

=
n∑

k=m

[
κyk

p∑
i=1

aixi,k − κ

2

p∑
i=1

(aixi,k)
2 + pµ

]
. (71)

Let Yk := κyk
∑p

i=1 aixi,k − κ
2

∑p
i=1(aixi,k)

2 + pµ (note
that this is the same Yk defined in (30)), it is easy to see
{Yk, k = m,m+1,m+2, . . .} is a sequence of i.i.d. random
variable on the event {t = m} and hence Ũ(m,n) is a random
walk. Let

τ̃c = inf{n ≥ 0 : Ũ(1, n) ≥ logB}. (72)

Note that Ũ(1, n) ≤ Cn since the definition of Cn takes
supreme over {a ∈ A} and over {1 ≤ m ≤ n}; hence we
have τ̃c > τc. Then it is sufficient to find an upper bound for
τ̃c.

On the event {t = m}, by the strong law of large numbers,
we have

1

n
Ũ(m,m+ n− 1)

a.s.→ Ea
1 [Yk] =

κ

2

p∑
i=1

a2i ri,i + κ
∑
i̸=j

aiajri,j + pµ.

Rewrite the Tϵ defined in (31) as

Tϵ = inf{n ≥ 0 : |n−1Ũ(m,m+ n− 1)− Ea
1 [Yk]| > ϵ}. (73)

On the event {τ̃c > Tϵ + (m− 1)}, we have

Ũ(m, τ̃c − 1) > (τ̃c −m+ 1)(Ea
1 [Yk]− ϵ)

or equivalently,

τ̃c −m+ 1 <
Ũ(m, τ̃c − 1)

Ea
1 [Yk]− ϵ

<
logB − Ũ(1,m− 1)

Ea
1 [Yk]− ϵ

.

Then we have

τ̃c −m+ 1

<
logB − Ũ(1,m− 1)

Ea
1 [Yk]− ϵ

1{τ̃c>Tϵ+(m−1)} + Tϵ1{τ̃c≤Tϵ+(m−1)}

≤ logB − Ũ(1,m− 1)

Ea
1 [Yk]− ϵ

+ Tϵ. (74)

Taking the conditional expectation on both sides, we have

Ea
m[τ̃c −m|τ̃c ≥ m]

≤ Ea
m

[
logB − Ũ(1,m− 1)

Ea
1 [Yk]− ϵ

+ Tϵ

∣∣∣τ̃c ≥ m

]
=

logB

Ea
1 [Yk]− ϵ

− Ea
m

[
Ũ(1,m− 1)

Ea
1 [Yk]− ϵ

∣∣∣τ̃c ≥ m

]
+ Ea

m

[
Tϵ

∣∣∣τ̃c ≥ m
]
.
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As a result, we have

Ea
π[τ̃c − t|τ̃c ≥ t]

≤ logB

Ea
1 [Yk]− ϵ

− Ea
π

[
Ũ(1, t− 1)

Ea
1 [Yk]− ϵ

∣∣∣τ̃c ≥ t

]
+ Ea

π

[
Tϵ

∣∣∣τ̃c ≥ t
]
.

Since

Ea
m

[
Ũ(1,m− 1)

]
= E∞

[
Ũ(1,m− 1)

]
= E∞

[
m−1∑
k=1

Yk

]

=

m−1∑
k=1

E∞

[
κyk

p∑
i=1

aixi,k − κ

2

p∑
i=1

(aixi,k)
2 + pµ

]

= (m− 1)

[
pµ− κ

2

p∑
i=1

a2
i ri,i

]
(75)

is bounded for any given p. As a result, we have

Ea
π

[
Ũ(1, t− 1)

]
=

∞∑
m=1

πmEa
m

[
Ũ(1,m− 1)

]
=

1− ρ

ρ

(
pµ− κ

2

p∑
i=1

a2i ri,i

)

≥ 1− ρ

ρ

(
1

2
log(1− κ)− κ

2
max
1≤i≤p

a2i ri,i

)
s, (76)

in which the last inequality is because of the condition
µ ≥ s

2p log(1−κ). Recall ρ is the parameter in the geometric
distribution. Let

c3 :=
1− ρ

ρ

(
1

2
| log(1− κ)|+ κ

2
max
1≤i≤p

a2i ri,i

)
be a constant that is independent of p. Since we have assumed
that Ea

π [Tϵ] < ∞, and {τ̃c ≥ t} is an almost sure event as
B → ∞, by (76) we have

Ea
π[τ̃c − t|τ̃c ≥ t]

≤

 logB

Ea
1 [Yk]− ϵ

−
Ea
π

[
Ũ(1, t− 1)

]
Ea
1 [Yk]− ϵ

 (1 + o(1))

≤ logB + c3s

Ea
1 [Yk]− ϵ

(1 + o(1)). (77)

Then, Lemma IV.4 follows the fact that ϵ is arbitrarily close to
zero and that Ea

1 [Yk] =
κ
2

∑p
i=1 a

2
i ri,i+κ

∑
i ̸=j aiajri,j+pµ.

Proof of Lemma IV.5:
In the following, we study the false alarm probability of τc

defined in (29) for the Bayesian formulation. To proceed, we
first recall some notations in Section III-D. Specifically, â∗ =
[â∗1, â

∗
2, . . . , â

∗
p]

T is the optimal estimation of a in (27). Note
that â∗ is also optimal for supa∈A

∑p
i=1 Wi(m,n; ai). Further

âi = argmaxai∈Ai Wi(m,n; ai) and W(i)(m,n; â(i)) is the
ith order statistic of {Wi(m,n; âi)}pi=1. With these notations,

for a constant N , we have

P∞(τc ≤ N) = P∞

(
max

1≤n≤N
exp{Cn} ≥ B

)
= P∞

(
max

1≤n≤N
exp

{
sup

1≤m≤n
sup
a∈A

p∑
i=1

Vi(m,n; ai)

}
≥ B

)

= P∞

(
max

1≤n≤N
exp

{
sup

1≤m≤n

p∑
i=1

Vi(m,n; â∗
i )

}
≥ B

)

= P∞

(
max

1≤n≤N
sup

1≤m≤n

p∏
i=1

eVi(m,n;â∗
i ) ≥ B

)

= P∞

(
max

1≤n≤N
sup

1≤m≤n
ep(n−m+1)µ

p∏
i=1

eWi(m,n;â∗
i ) ≥ B

)
(a)
= P∞

(
max

1≤n≤N
sup

1≤m≤n
ep(n−m+1)µ

s∏
i=1

eW(i)(m,n;â(i)) ≥ B

)

≤ P∞

(
max

1≤n≤N
sup

1≤m≤n
e

p
s
(n−m+1)µeW(1)(m,n;â(1)) ≥ B

1
s

)
,(78)

where (a) is true due to (41) and (43). In the following, we
will construct a submartingale and apply Doob’s martingale
inequality to bound the false alarm probability. Specifically,
we have

W(1)(m,n; â(1)) = max
1≤i≤p

Wi(m,n; âi)

= max
1≤i≤p

sup
ai∈Ai

Wi(m,n; ai)

= max
1≤i≤p

sup
ai∈Ai

[
κai

n∑
k=m

xi,kyk − κ

2

n∑
k=m

(aixi,k)
2

]

≤ max
1≤i≤p

κ
n∑

k=m

sup
ai∈Ai

[
aixi,kyk − 1

2
(aixi,k)

2

]
(a)
= max

1≤i≤p

κ

2

n∑
k=m

y2k =
κ

2

n∑
k=m

y2k, (79)

in which (a) is true as aixi,kyk − 1
2 (aixi,k)

2 achieves its
maximum value y2k/2 when ai = yk/xi,k. Putting (79) into
(78), we have

P∞(τc ≤ N)

≤ P∞

(
max

1≤n≤N
sup

1≤m≤n
e

p
s (n−m+1)µe

κ
2

∑n
k=m y2

k ≥ B
1
s

)
≤ P∞

(
max

1≤n≤N

n∑
m=1

n∏
k=m

e
κ
2 y

2
k+

p
sµ ≥ B

1
s

)
. (80)

Let

Sn :=
n∑

m=1

n∏
k=m

exp
{κ
2
y2k +

p

s
µ
}

= (Sn−1 + 1) exp
{κ
2
y2n +

p

s
µ
}
. (81)

We note that Sn could be a submartingale. Particularly, let
Fn := σ{x1, y1, . . . ,xn, yn}, we have

E∞[Sn|Fn−1] = (Sn−1 + 1) exp
{p
s
µ
}
E∞

[
exp

{κ
2
y2n

}]
.
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Since we have κ < 1 in the condition, then E∞
[
exp

{
κ
2 y

2
n

}]
is integrable and E∞

[
exp

{
κ
2 y

2
n

}]
= (1 − κ)−1/2. In ad-

dition, the condition s
2p log(1 − κ) ≤ µ guarantees (1 −

κ)−
1
2 exp

{
p
sµ
}
≥ 1; hence we have E∞[Sn|Fn−1] ≥ Sn−1+

1 > Sn−1, i.e., Sn is a submartingale. In addition,

E∞[Sn] =
n∑

m=1

n∏
k=m

E∞

[
exp

{κ
2
y2k +

p

s
µ
}]

=
n∑

m=1

n∏
k=m

[
(1− κ)−

1
2 exp

{p
s
µ
}]

=
c2(c

n
2 − 1)

c2 − 1
, (82)

in which c2 := (1− κ)−
1
2 exp {pµ/s}. By Doob’s martingale

inequality

P∞

(
max

1≤n≤N
Sn ≥ B1/s

)
≤ E∞[SN ]

B1/s
. (83)

Combining (80) and (82), we have

P∞(τc ≤ N)≤P∞

(
max

1≤n≤N
Sn ≥ B1/s

)
≤ 1

B1/s

c2(c
N
2 − 1)

c2 − 1
.

Further,

Pπ(τc < t) =

∞∑
N=1

πNP∞(τc ≤ N − 1)

≤
∞∑

N=1

ρ(1− ρ)N−1 1

B1/s

c2
c2 − 1

cN−1
2

=
1

B1/s

ρc2
c2 − 1

1

1− (1− ρ)c2
. (84)

in which the last step is because the condition µ < s
2p log(1−

κ) + s
p | log(1− ρ)| guarantees (1− ρ)c2 < 1.

V. NUMERICAL EXAMPLES

In this section, we provide numerical examples to illus-
trate the theoretic results obtained in our paper. In the first
numerical example, we assume that p = 15 and s = 3,
the post-change linear coefficient a is given as a1 = 0.8,
a2 = 0.65, a3 = 0.5, and ai = 0 for the rest of components
in a. We set Ai = [0.4, 2.5] for all i ∈ {1, . . . , p}. R,
the covariance matrix of xn, is randomly selected as R =
diag[1.32, 1.18, 1.04, 0.93, 0.86, 0.84, 0.71, 0.64, 0.52, 0.42,
0.39, 0.28, 0.17, 0.14, 0.03]. The theoretic results obtained in
Section III do not rely on the distribution of xn. In the simu-
lation, we test our proposed algorithm under two distributions:
Gaussian distribution with zero mean and Possion distribution
with its expectation shifted to zero.

Figure 1 illustrates the performance of the proposed parallel-
sum algorithm under the non-Bayesian setting. In particular,
the blue line with squares is the performance of the parallel-
sum algorithm when xn is Gaussian distributed, and the green
line with diamonds is the performance when xn is Possion
distributed. The black dot-dash line is the lower bound of
WADD for all detection algorithms, which is presented in
Theorem III.1. The black dash-line is the upper bound of
the parallel-sum algorithm, which is presented in Theorem
III.2. Figure 1 presents the relationship between WADD and

ARL2FA for the proposed parallel-sum algorithm. From the
simulation, we can see that the parallel-sum algorithm is not
asymptotically optimal since it diverges from the lower bound
as γ increases. However, we note that the detection delay of
the parallel-sum algorithm still increases linearly with log γ,
and the computation complexity of this algorithm is low.

log γ
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Fig. 1. WADD versus ARL2FA when p = 15, s = 3

Figure 2 illustrates the relationship between ADD and PFA
for the proposed parallel-sum algorithm under the Bayesian
setting. In this simulation, we set ρ = 0.2 and we choose
κ = 0.35, µ = 0.0014. The performance result is similar to
the one obtained in the non-Bayesian simulation. In particular,
the performances under Gaussian distribution and Possion dis-
tribution are close to each other, which verifies our theoretical
results that the asymptotic performance is irreverent to the
underlying distribution xn. In addition, the performance of
the proposed algorithm diverges from the lower bound hence
it is not asymptotically optimal, but the detection delay is still
on the order of | logα| as the performance is upper bounded
by the result in Theorem III.4. The computational complexity
of the proposed algorithm is low.

|log α|
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Fig. 2. ADD vs. PFA under when p = 15, s = 3

Finally, we test our proposed algorithm on a real dataset,
which is published on the webpage of the Center for Machine
Learning and Intelligent Systems at University of California,
Irvine [28]. This data set is comprised of measured EMG
signals for six different kinds of hand movements of different
persons. Specifically, each kind of hand movements is repeated
and measured 30 times, and each time the signal is recorded
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TABLE I
PERFORMANCE OF THE PARALLEL-SUM ALGORITHM UNDER DIFFERENT

THRESHOLDS

logB approximated change change- detection
ARL2FA declaration time point delay

84.67 10 45 60 false alarm
105.39 102 72 60 12
126.11 103 81 60 21
146.84 104 87 60 27

by a 2-channel EMG system; hence each person totally has
30× 2× 6 = 360 different measurements. In data processing,
we use the last measurement as dependent variable yn and the
rest of measurements as xn; hence p = 359 in this numerical
example. We then concatenate two different person’s data
to model the change-point. 60 samples for each person are
selected; hence the real change-point is located at t = 60 and
the total time duration is 120. Since the change-point is fixed
(but unknown to the observer in the simulation), we implement
the proposed algorithm for non-Bayesain formulation and
select s = 9 in our simulation. The evolution of the detection
statistic Cn over time is shown in Figure 3. As we can see, Cn

tends to increase for n > 60. The performance under different
threshold logB is listed in Table I, which shows the efficiency
of the proposed algorithm.

Fig. 3. The evolution of statics Cn over time slot

VI. CONCLUSION

In this paper, we have considered the problem of quickly
detecting an abrupt change in the linear model. Both non-
Bayesian and Bayesian formulations are considered. For each
case, we have proposed a low complexity online algorithm.
When p and s are fixed, the average detection delay for the
proposed strategy is on the order of O(log γ) for the non-
Bayesian formulation as γ → ∞ and is on the order of
O(| logα|) for the Bayesian formulation as α → 0. When
p → ∞, the average detection delay of the proposed algorithm
has been shown to be upper bounded by O(log p) for both
non-Bayesian and Bayesian formulations.
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