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Abstract— For large-scale and long-term simultaneous lo-
calization and mapping (SLAM), a robot has to deal with
unknown initial positioning caused by either the kidnapped
robot problem or multi-session mapping. This paper addresses
these problems by tying the SLAM system with a global loop
closure detection approach, which intrinsically handles these
situations. However, online processing for global loop closure
detection approaches is generally influenced by the size of the
environment. The proposed graph-based SLAM system uses
a memory management approach that only consider portions
of the map to satisfy online processing requirements. The
approach is tested and demonstrated using five indoor mapping
sessions of a building using a robot equipped with a laser
rangefinder and a Kinect.

I. INTRODUCTION

Autonomous robots operating in real life settings must
be able to navigate in large, unstructured, dynamic and
unknown spaces. To do so, they must build a map of their
operating environment in order to localize itself in it, a
problem known as Simultaneous localization and mapping
(SLAM). A key feature in SLAM is detecting previously
visited areas to reduce map errors, a process known as loop
closure detection. Our interest lies with graph-based SLAM
approaches [1] that use nodes as poses and links as odometry
and loop closure transformations.

While single session graph-based SLAM has been largely
addressed [2]–[4], multi-session SLAM involves having to
deal with the fact that robots, over a long period of operation,
will eventually be shutdown and moved to another location
without knowing it. Such situations include the so-called
kidnapped robot problem and the initial state problem: when
it is turned on, a robot does not know its relative position
to a map previously created. One way to do multi-session
mapping is to have the robot, on startup, localize itself in
a previously-built map. This solution has the advantage to
always use the same referential and only one map is created
across the sessions. However, the robot must start in a portion
of the environment already mapped, otherwise it never can
relocalize itself in it. Another approach is to initialize a new
map with its own referential and when a previously visited
location is encountered, the transformation between the two
maps can be computed. In [5], special nodes called “anchor
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nodes” are used to keep transformation information between
the maps. A similar approach is also used with multi-robot
mapping [6]: transformations between maps are computed
when a robot sees the other or when a landmark is seen by
both robots in their respective maps.

Global loop closure detection approaches, by being inde-
pendent of the robot’s estimated position [7], can intrinsically
solve the problem of determining when a robot comes back
to a previous map using a different referential [8]. Popular
global loop detection approaches are appearance-based [9]–
[12], exploiting the distinctiveness of images. The underlying
idea behind these approaches is that loop closure detection
is done by comparing all previous images with the new one.
When loop closures are found between the maps, a global
graph can be created by combining the graphs from each
session. Graph pose optimization approaches [13]–[15] can
then be used to reduce odometry errors using poses and link
transformations inside each map and also between the maps.

All the solutions above can be integrated together to create
a functional graph-based SLAM system. However, for loop
closure detection and graph optimization approaches, online
constraint satisfaction is limited by the size of the environ-
ment. For large-scale and long-term operation, the bigger the
map is, the more computing power is required to process the
data online. Mobile robots have limited computing resources,
therefore online map updating is limited, and so some parts
of the map must be somewhat forgotten. Memory manage-
ment approaches [16] can be used to limit the size of the
map so that loop closure detections are always processed
under a fixed time limit, thus satisfying online requirements
for long-term and large-scale environment mapping.

The solution presented in this paper simultaneously ad-
dresses these two problems: multi-session mapping, and on-
line map updating with limited computing resources. Global
loop closure detection is used across the mapping sessions
to detect when the robot revisits a previous map. Using these
loop closure constraints, the graph is optimized to minimize
trajectory errors and to merge the maps together in the same
referential. A memory management mechanism is used to
limit the data processed by global loop closure detection
and graph optimization in order to respect online constraints
independently of the size of the environment. The algorithm
is tested over five mapping sessions using a robot in an indoor
environment.

The paper is organized as follows. Section II describes
our approach. Section III presents experimental results and
Section IV discusses limitations of the approach on very
long-term operation. Section V concludes the paper.



II. ONLINE MULTI-SESSION GRAPH-BASED
SLAM

In our approach, the underlying structure of the map is
a graph with nodes and links. The nodes save odometry
poses for each location in the map. The nodes also contain
visualization information like laser scans, RGB images,
depth images and visual words [17] used for loop closure
detection. The links store rigid geometrical transformations
between nodes. There are two types of links: neighbor and
loop closure. Neighbor links are added between the current
and the previous nodes with their odometry transformation.
Loop closure links are added when a loop closure detection
is found between the current node and one from the same
or previous maps. Our contribution in this paper involves
combining two algorithms, loop closure detection [16] and
graph optimization [14], through a memory management
process [16] that limits the number of nodes available from
the graph for loop closure detection and graph optimization,
so that they always satisfy online requirements.

A. Loop Closure Detection

For global loop closure detection, the bag-of-words ap-
proach described in [16] is used. Briefly, this approach uses
a bayesian filter to evaluate loop closure hypotheses over all
previous images. When a loop closure hypothesis reaches a
pre-defined threshold H , a loop closure is detected. Visual
words, which are SURF features quantized to an incremental
visual dictionary, are used to compute the likelihood required
by the filter.

In this paper, the RGB image, from which the visual words
are extracted, is registered with a depth image, i.e., for each
2D point in the RGB image, a 3D position can be computed
using the calibration matrix and the depth information given
by the depth image. The 3D positions of the visual words
are then known. When a loop closure is detected, the rigid
transformation between the matching images is computed by
a RANSAC approach using the 3D visual word correspon-
dences. If a minimum of I inliers are found, loop closure
is accepted and a link with this transformation between
the current node and the loop closure hypothesis node is
added to the graph. If the robot is constrained to operate
on a single plane, the transformation can be refined with
2D iterative-closest-point (ICP) optimization [18] using laser
scans contained in the matching nodes.

B. Graph Optimization

TORO [14] (Tree-based netwORk Optimizer) is the graph
optimization approach used, in which node poses and the link
transformations are used as constraints. When loop closures
are found, the errors introduced by the odometry can then
be propagated to all links, thus correcting the map. It is
relatively straightforward to use TORO to create a tree from
the map’s graph when there is only one map: the TORO
tree has therefore only one root. In multi-session mapping,
the different maps created have their own root with their
own reference frames. When loop closures occur between
the maps, TORO cannot optimize the graph if there are
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Fig. 1. Memory management model.

multiple roots. It may also be difficult to find a unique root if
some portions of the map are forgotten or unavailable at that
time (because of the memory management approach used to
satisfy online processing requirements, explained in Sect. II-
C). To alienate these problems, our approach takes the root
of the tree to be the latest node added to the current map
graph, which is always uniquely defined across intra-session
and inter-session mapping.

C. Memory Management for Online Multi-Session Mapping

For online mapping, new incoming data must be processed
faster than the time required to acquire them. For example,
if data are acquired at 1 Hz, new data should be added
to the graph with global loop closure detection and graph
optimization should be done in less than R = 1 second. The
problem is that the time required for loop closure detection
and graph optimization depends on the map’s graph size.
Long-term and large-scale online mapping is then limited
by the size of the environment. To handle this, the RTAB-
Map memory management approach [16] is used to maintain
a graph manageable online by the loop closure detection
and graph optimization algorithms, thus making the metric
SLAM approach presented in this paper independent of the
size of the environment.

The approach works as follows. The memory is composed
of a Short-Term Memory (STM), a Working Memory (WM)
and a Long-Term Memory (LTM), as shown by Figure 1.
The STM is the entry point for new nodes added to the
graph when new data are acquired, and has a fixed size S.
Nodes in STM are not considered for loop closure detection
because they are generally very similar from one to another.
When the STM size reaches S nodes, the oldest node is
moved to WM to be considered for loop closure detection.
The WM size indirectly depends on a fixed time limit T .
When the time required to process the new data reaches
T , some nodes of the graph are transferred from WM to
LTM, thus keeping the WM size nearly constant. The LTM
is not used for loop closure detection and graph optimization.
However, if a loop closure is detected, neighbors in LTM of
the old node can be transferred back to WM (a process called
Retrieval) for further loop closure detections. In other words,
when a robot revisits an area which was previously forgotten,
it can remember incrementally the area if a least one node
of this area is still in WM.

The choice of which nodes to keep in WM is based on
a Weight Update step done in STM. The heuristic used to
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Fig. 2. Illustration of a local map created from multi-session mapping.

increase the weight of a node is based on the principle that,
as humans do [19], [20], the robot should remember more
the areas where they spent most of their time in. Therefore,
the longer the robot is at a particular location, the larger the
weight of the node should be. If two consecutive images are
similar, i.e., the ratio of corresponding visual words between
the images is over a specified threshold Y , the node’s weight
of the first image is increased by one and no new node is
created for the second image. By following this heuristic, the
compromise made between search time and space is therefore
driven by the environment and the experiences of the robot.
Oldest and less weighted nodes in WM are transferred to
LTM before the others, thus keeping in WM only the nodes
seen for longer periods of time.

For the approach presented in this paper, a local map
consists of the biggest fully connected graph that can be
created through neighbor and loop closure links from the last
node (used as the root) with those in WM. Figure 2 illustrates
the concept. The diamonds represent initial and end nodes
for each mapping session. The nodes in LTM are shown in
red and the others are those in WM. The current local map
is created and optimized only using nodes in WM that are
linked to the last node (all nodes in the dashed area). The
local map therefore represents more than the latest mapping
session: it can span over multi-session mapping through loop
closure links (green links). The other nodes still in WM that
are not included in the local map are unreachable from the
last node through links available in WM at this time.

Using this memory management approach, some parts of
the map may be missing for graph optimization, as described
in II-B. Online graph optimization is done on the local
map, with the constraints available in WM at that time.
Constraints transferred to LTM are not used, thus limiting
graph quality compared to using all constraints available.
This is the compromise to make to be able to satisfy online
processing requirements. However, if required, the approach
is still able to create a global map by using all constraints
from LTM and conduct offline a global graph optimization.

III. RESULTS

The data sets used for the experiments are acquired using
the AZIMUT-3 robot [21], shown by Fig. 3, equipped with
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Fig. 3. AZIMUT-3 robot equipped with a URG-04XL laser range finder
and a Kinect sensor.

a URG-04LX laser rangefinder and a Kinect sensor. The
RGB images from the Kinect are used for the appearance-
based loop closure detection while the depth images are used
to find the 3D position of the visual words. Laser scans
and RGB-D point clouds created from the Kinect are used
for map visualization. As mentioned in II-A, since in this
experiment the robot is constrained to a single plane, loop
closure transformations are refined using 2D ICP with the
laser scans to increase precision: the transformations are then
limited to three degrees of freedom (x, y and rotation over z
axis), ignoring noise on other degrees of freedom computed
by the visual transformation.

Five mapping sessions (total length of 750 m) were
conducted by starting the robot at different locations in our
lab building. Between the mapping sessions, the robot was
turned off to reset odometry, and moved to another location.
In each session, the robot revisited at least one part of the
environment mapped in a previous session. Data acquisi-
tion is done using the ROS bag mechanism (http://ros.org).
Odometry, laser scans, RGB images and depth images are
recorded at 1 Hz (i.e., R = 1 s) in a ROS bag. A ROS bag
can be played using the same timings as during acquisition,
making a realistic input for mapping and a good common
format for other algorithms using ROS. One ROS bag per
mapping session is taken. The ROS bags are processed on a
MacBook Pro 2010: 2.66 GHz Intel Core i7 and SSD hard
drive (on which the LTM is saved).

Two experiments were conducted (STM size S = 10,
minimum inliers I = 5 of RANSAC, hypothesis threshold
H = 0.11 and similarity threshold Y = 0.45). For the first
experiment, our approach processed each mapping session
independently, i.e., the memory was cleared between each
session. Time limit T was set to 0.7 s. Fig. 4 shows the
resulting maps for sessions 1, 2 and 3, with and without
graph optimizations. The light gray areas are empty spaces
detected using the laser rangefinder. No nodes were trans-
ferred to LTM in these experiments (local maps are equal
to global maps). This is confirmed by Fig. 6: T was never
reached for these sessions, and thus all nodes were used for
loop closure detection and graph optimization. Fig. 5 shows
results for the mapping sessions 4 and 5 (i.e., Map 4 and Map
5): the global graph not optimized (left), the last local map
(middle) and the global map (right). The local map is the
biggest map that was created online from the last node (with
nodes available in WM), and the global map was generated
offline after the mapping sessions (with all nodes in WM and
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Fig. 4. Resulting local maps without (left) and with (right) graph
optimizations for a) Map 1, b) Map 2 and c) Map 3. Loop closures are
shown in red.
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Fig. 5. Results for Map 4 (top) and Map 5 (bottom), with a) the map
from all nodes still in WM (light gray) with the global graph (blue line) not
optimized, b) the local map with local graph optimization and c) the global
map with global graph optimization. Loop closures are shown in red.

LTM). As shown by Fig. 6, T was reached before the end.
Fig. 5 b) illustrate the effect of transferring nodes to LTM
to satisfy the online requirement. Even if loop closures can
be detected with older portions of the map still in WM (as
shown in a)), the maps cannot be globally optimized if the
neighbors of the loop closures are in LTM. For comparison,
Fig. 5 c) are maps created offline using all constraints in
LTM: here, loop closures with old portions of the map have
an effect on graph optimization.

For the second experiment, the data sets for the five maps
were processed one after each other, as in a real multi-session
mapping trial. The robot automatically started a new map
when the odometry was reset to zero before each session. The
memory was preserved between the sessions and T was also
set to 0.7 s. Fig. 7 shows the last local map (nodes in light
gray areas are those in WM) and global graph (blue line)
without optimization. The maps lie over each other because
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Fig. 6. Processing time in relation to the number of nodes processed over
time for each data set. T is shown by the horizontal line.

Fig. 7. Top view of the map without optimization after five mapping
sessions. The red and green links show intra-session and inter-session loop
closures detected, respectively.

they are all starting from the same referential. Loop closures
detected in the same map (intra-session) and those detected
between the maps (inter-session) are shown in red and green,
respectively. To distinguish more easily inter-session loop
closures, Fig. 8 illustrates the global graph for y-value of the
poses over time. Note that all paths for each session started
at y = 0 and they were not connected together by neighbor
links. Optimizing the graph using all these detected loop
closures results in a single fully connected map of all five
mapping sessions. Fig. 9 shows the resulting global map by
assembling the RGB-D point clouds from the Kinect using
the optimized poses of the graph.

Fig. 10 a) shows the resulting local map created from all
the mapping sessions. Because the local map is built only
from nodes in WM that are linked (directly or indirectly)
to the last node, only a small portion of the global map
is available online. Note that the local map is also smaller
than Map 5 taken independently (shown by Fig. 5): in
the second experiment, there were nodes with more weight
from previous mapping sessions that were still in WM, thus
more nodes from the latest mapping session were transferred
to LTM and not used for local map creation. These high
weighted nodes are located in the light gray areas of Fig.
10 b). The blue line represents the global graph created
using all constraints in LTM. When using all constraints in
LTM, the local map is also slightly more straight. At the
end of the experiment, the global graph has 2074 nodes
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Fig. 8. Loop closures between the mapping sessions. Only the y values
of the poses are illustrated for visibility purposes. Green and red links are
inter-session and intra-session loop closures detected, respectively. Neighbor
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Fig. 9. Five online mapping sessions merged together automatically.
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Fig. 10. Graphs optimized for a) the last local map built online, b) the
global map built offline, with nodes in light gray areas are those still in
WM, and the other nodes are in LTM.

with all mapping sessions connected, with 330 nodes in
WM (107, 12, 27, 28, 156 nodes from maps 1, 2, 3, 4 and
5, respectively) for which 173 nodes are accessible for the
local map (4, 15, 6, 0, 148 nodes from maps 1, 2, 3, 4
and 5, respectively). For the local map, it is normal that a
high proportion of nodes are from the last session, which
is the most recent one. Nodes from older maps are those
retrieved from LTM around the latest loop closures found.
For example, when the robot is mapping a new area, only
nodes of the last session would be in the local map.

Fig. 11. Global maps with (blue) and without (red) T . The maps are
manually superimposed over the actual plan of the building.

To observe the influence of memory management on
the quality of the map created, we conducted the same
experiment without T . All nodes were then kept in WM and
they were processed by both loop closure detection and graph
optimization at each time step. Normally, without transfer-
ring nodes to LTM, more loop closures would be detected,
so more constraints would be used for graph optimization.
As shown in Fig. 12, the processing time becomes greater
than the acquisition time R, which is not the case with
T = 0.7 s. However, without T , 193 intra-session and 387
inter-session loop closures were detected, comparatively to
188 and 258 respectively for the online experiment. Fig. 11
compares the resulting global maps with (blue) and without
(red) T . By comparing with the building plan (the plan was
scaled to 5 cm / pixel like the generated maps, the maps were
manually oriented so trajectories are aligned to most doors
traversed), the quality of the experiment without T (red) is a
little better than with T (blue), probably because more loop
closures were used for graph optimization. However, for the
two conditions, the large loop from Map 5 is not correctly
aligned with the building plan. The robot traversed this area
only once and exited from the same door from which it
entered, making it more difficult for the graph optimization
algorithm to correct angular errors for this single entry point.
For comparison, the left part of the map was also traversed
once during session 4, but the robot exited the area from
another door, thus making the area more robust to angular
errors.

IV. DISCUSSION

In term of processing time, the results show that the
proposed approach is able to satisfy online processing re-
quirements independently of the size of the environment.
However, map quality depends on the number of loop
closures that can be detected. To satisfy online requirements,
the robot transfers in LTM some portions of the map which
cannot be used for loop closure detection. For multi-session
mapping, the worst case would occur if all nodes of a
previous map are transferred to LTM before a loop closure
is detected with the new map. This would result in definitely
forgetting the previous map: there would be no links in
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Fig. 12. Processing time for each node added to graph. The horizontal
lines are T = 0.7 and R = 1.

WM and even in LTM that could connect this older map
to the new one, and it would be ignored even for the global
map construction. To avoid this problem, our approach could
keep at least one node for each map in WM. However, if
the number of mapping sessions becomes very high (e.g.,
thousands of sessions), these nodes would definitely have
to be transferred in LTM to satisfy the online requirement.
For long-term, large-scale and multi-session mapping, some
portions of the map would then be definitely forgotten,
and therefore some kind of heuristic to efficiently manage
important nodes to keep in WM is required.

Another observation is that frequently revisiting old maps
increases global map quality. A robot autonomously mapping
a facility could, when detecting an old map, decide to revisit
some parts of it to detect more inter-session loop closures,
thus creating more constraints for graph optimization.

In the experiments conducted, no invalid loop closures
were detected. If this occur, erroneous constraints would
be added to graph optimization, resulting in map errors.
Some graph optimization approaches such as [22], [23] deal
with possible invalid matches, and could be used to increase
robustness of the proposed approach.

V. CONCLUSION

Results presented in this paper suggest that the pro-
posed graph-based SLAM approach is able to meet online
requirements needed for large-scale, long-term and multi-
session online mapping. By limiting the number of nodes in
WM available for global loop closure detection and graph
optimization, online processing is achieved for new data ac-
quired. Our approach is tightly based on global loop closure
detection, allowing it to naturally deal with the kidnapped
robot problem and gross errors in odometry. Our code is
open source and available at http://rtabmap.googlecode.com/.
In future work, we plan to study the impact of autonomous
exploration strategies on multi-session mapping, especially
how it can actively direct exploration based on nodes avail-
able for online mapping and graph optimization.
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