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Abstract— Human detection and tracking are essential as-
pects to be considered in service robotics, as the robot of-
ten shares its workspace and interacts closely with humans.
This paper presents an online learning framework for human
classification in 3D LiDAR scans, taking advantage of robust
multi-target tracking to avoid the need for data annotation by
a human expert. The system learns iteratively by retraining
a classifier online with the samples collected by the robot
over time. A novel aspect of our approach is that errors in
training data can be corrected using the information provided
by the 3D LiDAR-based tracking. In order to do this, an
efficient 3D cluster detector of potential human targets has
been implemented. We evaluate the framework using a new
3D LiDAR dataset of people moving in a large indoor public
space, which is made available to the research community. The
experiments analyse the real-time performance of the cluster
detector and show that our online learned human classifier
matches and in some cases outperforms its offline version.

I. INTRODUCTION

In service robotics, detecting and tracking moving objects
is key to implementing useful and safe robot behaviors.
Identifying which of the detected objects are humans is
particularly important for domestic and public environments.
Typically the robot is required to collect environmental data
of the surrounding area using its on-board sensors, analysing
where humans are and where they are going to. Humans
should be detected and tracked accurately and as early as
possible in order to have enough time to react accordingly.
Unfortunately many service robots trade accuracy and ro-
bustness of the tracking with the actual coverage area of
the detection (i.e. maximum range and field of view of the
sensors), which is often limited to a few meters and small
angular intervals.

3D LiDAR sensors have recently been applied to many
applications in robotics and autonomous vehicles, either
alone [1], [2], [3], [4], [5], [6], [7] or in combination
with other sensors [8], [9], including human tracking. An
important specification of this type of sensor is the ability to
provide long-range and wide-angle laser scans. In addition,
3D LiDARs are usually very accurate and not affected
by lighting conditions. However, humans are difficult to
identify in 3D LiDAR scans because there are no low-
level features such as texture and colour, and because of the
lack of details when the person is far away from the robot.
Detecting features in 3D scans can also be computationally
very expensive, as the covered area grows with the range
of the sensor, as does the number of human candidates.
Moreover, previous methods mostly apply an offline learned

Fig. 1. A screenshot of the 3D LiDAR-based tracking system in action with
an online learned human classifier. The detected people are enclosed in green
bounding boxes. The colored lines are the people trajectories generated by
the tracker.

classifier for human detection, which usually requires a large
number of manually-annotated training data. Unfortunately,
labelling this data is tedious work that is prone to human
error. Such an approach is also infeasible when dealing with
very complex real-world scenarios and when the same system
needs to be (re-)trained for different environments.

In this paper, we develop an online learning framework
to classify humans from 3D LiDAR detections, taking ad-
vantage of and extending our previously developed multi-
target tracking system1 [10] to work with 3D LiDAR scans.
We rely on the judgement of a false-positive and a false-
negative estimator, similarly to the Positive and Negative
“experts” proposed in previous tracking-learning-detection
techniques [11], but in this case to train online a classifier
that only looks for humans among the detections (i.e. the
classification performance does not influence the tracking).

The contributions of this paper are three-fold. First, we
present a computationally efficient clustering algorithm for
3D LiDAR scans suitable for real-time model-free detection
and tracking. Then, we propose a framework for online
learning of a human classifier, which estimates the classifier’s
errors and updates it to continually improve its performance.
Finally, we provide a large dataset2 of partially-labeled 3D
LiDAR point clouds to be used by the research community
for training and comparison of human classifiers. This dataset
captures new research challenges for indoor service robots

1https://github.com/lcas/bayestracking
2https://lcas.lincoln.ac.uk/wp/research/data-

sets-software/l-cas-3d-point-cloud-people-dataset/
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including human groups, children, people with trolley, etc.
The remainder of this paper is organized as follows.

Section II gives an overview of the related literature, in par-
ticular about 3D LiDAR-based human detection and tracking.
Then, we introduce our framework in Section III and the
link between tracking and online learning. The former is
presented in Section IV, including a detailed description
of the 3D cluster detection. The actual online learning is
explained in Section V, which clarifies the role of the P-N
experts in the classification improved by tracking. Section VI
presents the experimental setup and results, as well as our
new 3D LiDAR dataset. Finally, conclusions and future
research are discussed in Section VII.

II. RELATED WORK

Human detection and tracking have been widely studied in
recent years. Many popular approaches are based on RGB-D
cameras [12], [13], although these have limited range and
field of view. 3D LiDARs can be an alternative, but one of the
main challenges working with these sensors is the difficulty
of recognizing humans using only the relatively low infor-
mation they provide. A possible approach to detect humans
is by clustering point clouds in depth images or 3D laser
scans. For example, Rusu [14] presented a straightforward
but computationally expensive method based on Euclidean
distance. Bogoslavskyi and Stachniss [15] proposed a faster
approach, although the computational efficiency limits the
clustering precision. In our method, instead, both runtime
and precision are opportunely balanced.

A very common approach is to use an offline trained clas-
sifier for human detection. For example, Navarro-Serment et
al. [1], introduced seven features for human classification and
trained an SVM classifier based on these features. Kidono
et al. [3] proposed two additional features considering the
3D human shape and the clothing material (i.e. using the
reflected laser beam intensities), showing significant clas-
sification improvements. Li et al. [7] implemented instead
a resampling algorithm in order to improve the quality
of the geometric features proposed by the former authors.
Spinello et al. [4] combined a top-down classifier based on
volumetric features and a bottom-up detector, to reduce false
positives for distant persons tracked in 3D LiDAR scans.
Wang and Posner [8] applied a sliding window approach
to 3D point data for object detection, including humans.
They divided the space enclosed by a 3D bounding box
into sparse feature grids, then trained a linear SVM classifier
based on six features related to the occupancy of the cells,
the distribution of points within them, and the reflectance of
these points. The problem with offline methods, though, is
that the classifier needs to be manually retrained every time
for new environments.

The above solutions rely on pre-trained classifiers to detect
humans from the most recent LiDAR scan. Only a few meth-
ods have been proposed that use tracking to boost human
detection. Shackleton et al. [2], for example, employed an
Extended Kalman Filter to estimate the position of a target

and assist human detection in the next LiDAR scan. Teich-
man et al. [5] presented a semi-supervised learning method
for track classification. Their method requires a large set
of labeled background objects (i.e. no pedestrians) to trains
classifiers offline, which showed good performances for track
classification but not for object recognition. Our solution,
instead, simultaneously learns human and background, and
iteratively corrects classification errors online.

Besides datasets collected with RGB-D cameras [12], [13],
[16], there are a few 3D LiDAR datasets available to the
scientific community for outdoor scenarios [4], [6], [9], [17],
but not with annotated data for human tracking in large
indoor environments, like the one presented here.

Some authors proposed annotation-free methods. Deuge et
al. [6] introduced an unsupervised feature learning approach
for outdoor object classification by projecting 3D LiDAR
scans into 2D depth images. Dewan et al. [18] proposed
a model-free approach for detecting and tracking dynamic
objects, which relies only on motion cues. These methods,
however, are either not very accurate or unsuitable for slow
and static pedestrians.

It is clear that there remains a large gap between the state
of the art and what would be required for an annotation-
free, high-reliability human classification implementation
that works with 3D LiDAR scans. Our work helps to
close this gap by demonstrating that human classification
performance can be improved by combining tracking and
online learning with a mobile robot in highly dynamic
environments.

III. GENERAL FRAMEWORK

Our learning framework is based on four main compo-
nents: a 3D LiDAR point cluster detector, a multi-target
tracker, a human classifier and a sample generator (see
Fig. 2). At each iteration, a 3D LiDAR scan (i.e. 3D point
cloud) is first segmented into clusters. The position and
velocity of these clusters are estimated in real-time by a
multi-target tracking system, which outputs the trajectories
of all the clusters. At the same time, a classifier identifies
the type of cluster, i.e. human or non-human. At first, the
classifier has to be initialised by supervised training with
labeled clusters of human subjects. The initial training set can
be very small though (e.g. one sample), as more samples will
be incrementally added and used for retraining the classifier
in future iterations.

The classifier can make two types of errors: false positive
and false negative. Based on the estimation of the error type
by two independent “experts”, i.e. a positive P-expert and
a negative one N-expert, which cross-check the output of
the classifier with that of the tracker, the sample generator
produces new training data for the next iteration. In par-
ticular, the P-expert converts false negatives into positive
samples, while the N-expert converts false positives into
negative samples. When there are enough new samples, the
classifier is re-trained. The process typically iterates until
convergence (i.e. no more false positives and false negatives)
or some other stopping criterion is reached.
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Fig. 2. Process details of the online learning framework.

Our system, however, differs from the previous work [11]
in three key aspects, namely the frequency of the training
process, the independence of the tracker from the classifier,
and the implementation of the experts. In particular, rather
than instance-incremental training (i.e. frame-by-frame train-
ing), our system relies on less frequent batch-incremental
training [19] (i.e. gathering samples in batches to train
classifiers), collecting new data online as the robot moves in
the environment. Also, while the performance of the human
classifier depends on the reliability of the P-N experts and
the tracker, the latter is independent from and completely
unaffected by the classification performance. Finally, the
implementation of our experts can deal with more than one
target and therefore generate new training samples from
multiple detections, speeding up the online training process.

Note that under particular conditions, the stability of our
training process is guaranteed as per [11]. The assumption
here is that the number of correct samples generated by
the N-expert is greater than the number of errors of the
P-expert, and conversely that the correct samples of the P-
expert outnumber the errors of the N-expert. Although in the
real world these assumptions are not always met, the stability
of our system is simplified by the fact that we operate in
environments where the vast majority of moving targets are
humans and occasional errors are corrected online.

IV. 3D LIDAR-BASED TRACKING

Key components of this system include the efficient 3D
LiDAR point cluster detector and the robust multi-target
tracker. This section provides details about both.

A. Cluster Detector

The input of this module is a 3D LiDAR scan, which is
defined as a set of I points:

P = {pi | pi = (xi, yi, zi) ∈ R3, i = 1, . . . , I} (1)

The first step of the cluster detection is to remove the
ground plane by keeping only the points pi with zi ≥ zmin,

Fig. 3. Examples of a human (1.68 m high) detected by a 3D LiDAR at
different distances.

obtaining a subset P ∗ ⊂ P . This is necessary in order
to remove from object clusters points that belong to the
floor, accepting the fact that small parts of the object bottom
could be removed as well. Note that this simple but efficient
solution works well only for relatively flat ground, which is
one of the assumptions in our scenarios.

Point clusters are then extracted from the point cloud P ∗,
based on the Euclidean distance between points in 3D space.
A cluster can be defined as follows:

Cj ⊂ P ∗, j = 1, . . . , J (2)

where J is the total number of clusters. A condition to avoid
overlapping clusters is that they should not contain the same
points [14], that is:

Cj ∩ Ck = ∅, for j 6= k, if min‖pj − pk‖2 ≥ d∗ (3)

where the sets of points pj , pk ∈ P belong to the point clus-
ters Cj and Ck respectively, and d∗ is a distance threshold.

Accurate cluster extraction based on Euclidean distance is
challenging in practice. If the value of the distance threshold
d∗ is too small, a single object could be split into multiple
clusters. If too high, multiple objects could be merged into
one cluster. Moreover, in 3D LiDAR scans, the shape formed
by laser beams irradiated on the human body can be very
different, depending on the distance of the person from
the sensor (see Fig. 3). In particular, the vertical distance
between points can vary a lot due to the vertical angular
resolution, which is usually limited for this type of sensor.
We therefore propose an adaptive method to determine d∗

according to different scan ranges, that can be formulated
as:

d∗ = 2 r tan
Θ

2
(4)

where r is the scan range of the 3D LiDAR and Θ is the
fixed vertical angular resolution. In practice, d∗ is the vertical
distance between two adjacent laser scans. Obviously, the
farther the person from the sensor, the larger is the gap
between the vertical laser beams, as depicted in Fig. 3. In the
case of our sensor, for example, the resolution is 2◦ (while
horizontally the angular resolution is much smaller). This
means that to cluster points at a distance of, for example,
9 m, the minimum threshold should be d∗ = 0.314 m.

Clustering points in 3D space, however, can be compu-
tationally intensive. The computational load is proportional
to the desired coverage area: the longer the maximum range,
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Fig. 4. Different values of d∗ correspond to different nested regions.

the higher the value of d∗, and therefore the number of point
clouds that can be considered as clusters. In addition, the
larger the area, the more likely it is that indeed new clusters
will appear within it. To face this challenge, we propose
to divide the space into nested circular regions centred at
the sensor (see Fig. 4), like wave fronts propagating from a
point source, where different distance thresholds are applied.
In practice, we consider a set of values d∗i at fixed intervals
∆d, where d∗i+1 = d∗i + ∆d. For each of them, we compute
the maximum cluster detection range ri using the inverse
of Equation (4), and round them down to obtain the radius
Ri = bric of the circular area. The area corresponding to d∗i
is therefore the ring with width li = Ri−Ri−1, where R0 is
just the centre of the sensor. Using ∆d = 0.1 m, we define
rings 2-3 m wide, depending on the approximation, which is
a good resolution to detect potential human clusters. In the
example considered above, a cluster at 9 m from the sensor
would belong to the 4th ring, where a threshold d∗4 = 0.4 m
would be applied.

Finally, a human-like volumetric model is used to filter
out over- and under-segmented clusters:

C = {Cj | 0.2 ≤ wj ≤ 1.0,

0.2 ≤ dj ≤ 1.0, 0.2 ≤ hj ≤ 2.0}
(5)

where wj , dj and hj represent, respectively, the width, depth
and height (in meters) of the volume containing Cj .

B. Multi-target Tracker

Cluster tracking is performed using Unscented Kalman
Filter (UKF) and Nearest Neighbour (NN) data association
methods, which have already been proved to perform effi-
ciently in previous systems [10], [16]. Tracking is performed
in 2D, assuming people move on a plane, and without taking

into account the 3D cluster size, which is left to future
extensions of our work.

The estimation consists of two steps. In the first step, the
following 2D constant velocity model is used to predict the
target state at time tk given the previous state at tk−1:

xk = xk−1 + ∆t ẋk−1

ẋk = ẋk−1

yk = yk−1 + ∆t ẏk−1

ẏk = ẏk−1

(6)

where x and y are the Cartesian coordinates of the target, ẋ
and ẏ the respective velocities, and ∆t = tk − tk−1. In the
second step, if one or more new observations are available
from the cluster detector, the predicted states are updated
using a 2D polar observation model:{

θk = tan−1(yk/xk)

γk =
√
x2k + y2k

(7)

where θk and γk are, respectively, the bearing and the
distance of the cluster from the detector, extracted from the
projection on the (x, y) plane of the cluster’s centroid:

cj =
1

|Cj |
∑

pi∈Cj

pi (8)

For the sake of simplicity, in the above equations, noises
and transformations between robot and world frames of
reference are omitted. However, it is worth noting that,
from our experience, the choice of the (non-linear) polar
observation model, rather than a simpler (linear) Cartesian
model, as in [20], is important for the good performance of
long range tracking. This applies independently of the robot
sensor used, as in virtually all of them, the resolution of
the detection decreases with the distance of the target. In
particular, the polar coordinates better represent the actual
functioning of the LiDAR sensor, so its angular and range
noises are more accurately modelled. This leads also to the
UKF adoption, since it is known to perform better than
Extended Kalman Filters (EKF) in the case of non-linear
models [10]. Finally, the NN data association takes care of
multiple cluster observations in order to update, in parallel,
multiple UKFs (i.e. one for each tracked target).

V. ONLINE LEARNING FOR HUMAN
CLASSIFICATION

Online learning is performed iteratively by selecting and
accumulating a pre-defined number of new cluster samples
while the robot moves and/or tracks people, and re-training a
classifier using old and new samples. Details of the process
are presented next.

A. Human Classifier

A Support Vector Machine (SVM) [21] is used for human
classification, which is known to be effective in non-linear
cases and has shown to work well experimentally in 3D
LiDAR-based human detection [1], [3]. Six features with a
total of 61 dimensions are extracted from the clusters for
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TABLE I
FEATURES FOR HUMAN CLASSIFICATION

Feature Description Dimension
f1 Number of points included in the cluster 1
f2 Minimum cluster’s distance from the sensor 1
f3 3D covariance matrix of the cluster 6
f4 Normalized moment of inertia tensor 6
f5 Slice feature for the cluster 20
f6 Reflection intensity’s distribution (mean,

standard dev. and normalized 1D histogram)
27

human classification, as shown in Table I. The set of feature
values of each sample Cj forms a vector fj = (f1, . . . , f6).
Features from f1 to f4 were introduced by [1], while
features f5 and f6 were proposed by [3]. We discard the
other three features, i.e. the so-called “geometric features”,
presented in [1], because of their relatively low classification
performance [3] and the heavy computational load observed
in our experiments, which make them unsuitable for real-
time tracking. We also observed that our classifier, based
on this set features, can typically identify both standing and
sitting people, even after being initially trained with samples
of walking people only.

A binary classifier is trained for human classification
(i.e. human or non-human) at each iteration, based on the
above features, using LIBSVM [22]. The ratio of positive
to negative training samples is set to 1 : 1, and all data
are scaled to [−1, 1], generating probability outputs and
using a Gaussian Radial Basis Function kernel [23]. Since
LIBSVM does not currently support incremental learning,
our system stores all the training samples accumulated from
the beginning and retrains the entire classifier at each new
iteration. The framework, however, also allows for other
classifiers and learning algorithms.

B. Sample Generator

An approach based on two independent positive and neg-
ative experts is adopted for generating new training samples.
At each time step, the P-expert analyses all the new cluster
samples classified as negative, identifies those that are more
likely to be wrong (i.e. false negatives) and adds them to
the training set as positive samples. The N-expert instead
analyses samples classified as positive, extracts the wrong
ones (i.e. false positives) and adds them to the set of negative
samples for the next training iteration. The P-expert increases
the classifier’s generality, while the N-expert increases the
classifier’s discriminability. Once a pre-defined number of
new samples is collected, the augmented training set is used
to re-train the classifier. This learning process iterates until
convergence or other stopping criterion, such as maximum
training set size.

The P-expert is based on the tracker’s trajectories. The
idea is that clusters classified as non-human (negative) but
belonging to a human-like trajectory in which at least one
cluster has been classified as human (positive), will be
considered as false negatives and added to the training set

Fig. 5. Example of human-like trajectory samples, including one (red-
crossed) filtered out because too uncertain. The green dashed line is
the target’s trajectory, while the blue dashed circles are the position’s
uncertainties.

as positive samples. In our system, a human-like trajectory
satisfies the following two conditions: 1) the target moves a
minimum distance rpmin within a given time interval K ∆t:

rk =
√

(xk−xk−1)2+(yk−yk−1)2 and
K∑

k=1

rk≥rpmin (9)

and 2) the target’s velocity is non-zero but also not faster
than a person’s preferred walking speed of 1.4 m/s [24]:

vk =
√
ẋ2k + ẏ2k and vpmin ≤ vk ≤ v

p
max (10)

In addition, a human-like sample is selected only if the
variances (σ2

x, σ
2
y) of its estimated position (xk, yk) satisfy

the following condition:

σ2
x + σ2

y ≤ (σp
max)2 (11)

The values of K, rpmin, vpmin, vpmax, and σp
max are empir-

ically determined. The last threshold, in particular, filters
out objects (true negatives) that are associated to human-
like trajectories but are too “uncertain” because moving in
an unexpected way or affected by the proximity of other
clusters (see Fig. 5).

The N-expert converts false positives into new negative
samples. We assume that people are not completely static,
and there will still be some small changes in the clusters’
shape and/or position even though they are just standing or
sitting. Taking advantage of the 3D LiDAR’s high accuracy,
these static objects with low position variances can be
identified by the following conditions:

rk ≤ rnmax and vk ≤ vnmax and σ2
x + σ2

y ≤ (σn
max)2 (12)

The parameters rnmax, vnmax, and σn
max are determined em-

pirically. In practice, the N-expert selects those clusters that
were originally classified as humans, although belonging to
other static objects (false positives), and adds them to the
training set as negative samples.

VI. EXPERIMENTS

A. Dataset

We evaluated the framework on a new dataset collected
with a Velodyne VLP-16 3D LiDAR in one of the main
buildings of our university. The 3D LiDAR has 16 scan
channels with a 360◦ horizontal and 30◦ vertical field-of-
view, and was mounted at a height of 0.8 m from the floor
on the top of a Pioneer 3-AT robot, as shown in Fig. 6. It was
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Fig. 6. Robot equipped with (1) a Velodyne VLP-16 3D LiDAR used for
dataset collection.

set to rotate at 10 Hz with a maximum scan range of 100 m
for data recording. The dataset includes 28,002 scan frames
recorded with the robot both while it was stationary and
moving in the building. Each frame contains around 30,000
3D points. The robot odometry, coordinate transformation,
as well as panoramic image surrounding the robot were also
recorded, providing a complete ground-truth for algorithm
evaluation. The dataset captures many challenges, such as
human groups, children, people with trolleys, etc., as shown
in Fig. 7, which are not addressed by most of the current
solutions.

A set of 5,492 frames (about 19.6% of the total) was
manually annotated using a new open-source GUI tool3,
which contains 6,140 single-person labels (“pedestrian”).
The minimum and maximum number of 3D points included
in the single-person labels are 3 and 3,925 respectively, while
the minimum and the maximum distance from the sensor to
the single-person labels are 0.5 m and 27.0 m respectively.

B. Experimental Setup

Our framework has been fully implemented into the Robot
Operating System (ROS) [25] with high modularity. All
components are ready for download4 and use by other
researchers. Dataset collection, as well as all experiments re-
ported in this paper, were carried out with Ubuntu 14.04 LTS
(64-bit) and ROS Indigo, with an Intel i7-4785T processor
and 8 GB memory. The data were recorded in sensor frame
of references, and the transformation between the coordinate
frames was implemented by the ROS tf package.

C. Clustering Performance

Previous studies have shown that real-time human tracking
can be performed successfully when the sensor update rate
is ≥ 5 Hz [10]. In this experiments, we ran the detector over
the entire dataset and observed its operating frequency with
respect to different detection distances. Fig. 8 shows that the
performance of our cluster detector meets the desired update

3https://github.com/lcas/cloud_annotation_tool
4https://github.com/lcas/online_learning

(a) people with luggage (b) children

(c) crowd of people (d) human group

(e) sitting people (f) people on stairs

(g) people with trolley I (h) people with trolley II

Fig. 7. Different challenges captured in our dataset.
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Fig. 8. Clustering performance over a range of distances, with mean shown
on the right of each box.

rate requirement. The results show that average frequency
decreases with the cluster distance, becoming steady from
22 m onwards. The detection speed, however, was always
enough for real-time people tracking, and could be further
increased by simply reducing the maximum detection range.

It is worth noting that the maximum number of moving
targets simultaneously tracked was 17. Taking advantage of
our cluster detector, the maximum distance from the sensor
to a tracked moving target was approximately 25 m. Also,
thanks to the 360◦ horizontal field-of-view of the 3D LiDAR,
it was possible to track the same target continuously for
more than 40 m (total path length), corresponding to a linear

869



TABLE II
PERFORMANCE ANALYSIS OF THE P-N EXPERTS

Iteration P TP FP N TN FN
1 175 175 0 0 0 0
2 174 174 0 39 39 0
3 156 151 5 5 0 5
4 113 110 3 0 0 0
5 49 49 0 25 0 25
6 183 183 0 130 84 46
7 41 41 0 0 0 0
8 122 121 1 0 0 0
9 123 123 0 0 0 0

10 108 106 2 93 93 0
11 102 101 1 29 29 0
12 129 129 0 0 0 0
13 67 67 0 185 55 130
14 37 34 3 0 0 0
15 63 63 0 0 0 0
16 115 110 5 0 0 0
17 57 57 0 0 0 0
18 33 31 2 30 30 0
19 41 41 0 0 0 0
20 37 30 7 0 0 0

Total 1952 1896 56 536 330 206

P-precision 97.1% N-precision 61.6%

displacement of almost 30 m.

D. Experts Performance

Table II reports the performance of our P-N experts for 20
learning iterations. We count all positives (P), true positives
(TP), false positives (FP), all negatives (N), true negatives
(TN), and false negatives (FN) in every iteration and report
the total numbers and the precision of each expert. The P-
expert shows a high precision, since the moving objects in
our dataset are mostly humans. The N-expert precision is
lower, because our assumption that “people are not com-
pletely static” does not always hold. For instance, in iteration
13 the number of errors of the N-expert was relatively large
because a person, who was standing close to a static object
for a long time, was considered a negative sample. However,
the results illustrate that the total number of errors of the
P-expert (56) is far less than the number of correct samples
generated by the N-expert (330), and the P-expert’s correct
samples (1896) are far more than the N-expert’s errors (206),
which satisfy the stability criteria discussed in Sec. III.

E. Classification Results

A comparison of classification performance between an
offline trained classifier and the online learned classifier was
conducted. In order to illustrate the evolution of the online
learned one, both initial and final classifiers were evaluated.
The offline classifier was trained using the annotated data,
i.e. 6,140 single-person samples, with an equal amount of
randomly selected negative samples (non-human). The online
initial classifier was trained by a human supervisor with 100
positive samples, plus an equal amount of randomly selected
negative ones. The online classifier was then retrained every

300 positive and 300 negative samples, until 6,140 positives
and 6,140 negatives had been acquired.

For the test set, we selected 100 scan frames from the
dataset distributed across 18 minutes (excluding those frames
already manually annotated) and fully annotated these, in-
cluding standing and sitting people. This contains 995 single-
person labels with point cluster size varying from 5 to 2,250,
and distance from the sensor between 0.7 m to 19.9 m. The
classification performance was evaluated using Precision,
Recall, Average Precision (AveP) [26] and F-measure. A
true positive was considered such if the overlap between the
ground truth and the detection was larger than 50%. Experi-
mental results are shown in Fig. 9. The results illustrate that
the final classifier obtained a great improvement by online
learning with respect to the initial one. Moreover, the final
online classifier matched and in some cases outperformed the
offline trained classifier, also thanks to the fact that our online
learning framework facilitates the detection of many long-
distance samples provided by the tracker, which are difficult
to label instead by a human annotator.

VII. CONCLUSIONS
In this paper, we presented an online learning framework

for human classification from 3D LiDAR scans. The frame-
work, which relies on a robust multi-target tracking system,
enables a mobile robot to learn what humans look like di-
rectly from the deployment environment, greatly reducing the
need for data annotation. Inspired by previous P-N learning
methods, two tracking-based experts have been developed in
order to correct errors made by the classifier at each learning
iteration. The experimental results based on a real-world
dataset demonstrate that the classification performance has
been significantly improved.

The proposed framework works in real-time and has been
fully implemented in ROS with a high level of modularity.
The software and the dataset are publicly available to the
research community to perform objective and systematic
comparisons between the classification capabilities of dif-
ferent robots. Moreover, our framework should be easy to
extend to other moving objects such as cars, bicycles, and
animals, or to other sensors such as RGB-D cameras and 2D
LiDAR.

Future work will include extending the approach to im-
prove human detection and tracking with the online learned
classifier, to better disambiguate different clusters (e.g.
shorter versus taller people) by tracking human sizes, and to
fuse other sensors to better deal with challenging situations
such as groups and strong occlusions.
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