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 טּוֹב מֵחָרוּץ; מַה חָכְמָה קְנֹה
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 [משלי ט"ז, ט"ז]

“How much better to get wisdom than gold,
to choose understanding rather than silver”

[Proverbs 16:16]
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Abstract

Online learning is the process of answering a sequence of questions given knowledge of the correct
answers to previous questions and possibly additional available information. Answering questions
in an intelligent fashion and being able to make rational decisions as a result is a basic feature of
everyday life. Will it rain today (so should I take an umbrella)? Should I fight the wild animal that
is after me, or should I run away? Should I open an attachment in an email message or is it a virus?
The study of online learning algorithms is thus an important domain in machine learning, and one
that has interesting theoretical properties and practical applications.

This dissertation describes a novel framework for the design and analysis of online learning
algorithms. We show that various online learning algorithms can all be derived as special cases of
our algorithmic framework. This unified view explains the properties of existing algorithms and
also enables us to derive several new interesting algorithms.

Online learning is performed in a sequence of consecutive rounds, where at each round the
learner is given a question and is required to provide an answer to this question. After predicting an
answer, the correct answer is revealed and the learner suffers a loss if there is a discrepancy between
his answer and the correct one.

The algorithmic framework for online learning we propose in this dissertation stems from a
connection that we make between the notions of regret in online learning and weak duality in convex
optimization. Regret bounds are the common thread in the analysis of online learning algorithms.
A regret bound measures the performance of an online algorithm relative to the performance of a
competing prediction mechanism, called a competing hypothesis. The competing hypothesis can
be chosen in hindsight from a class of hypotheses, after observing the entire sequence of question-
answer pairs. Over the years, competitive analysis techniques have been refined and extended to
numerous prediction problems by employing complex and varied notions of progress toward a good
competing hypothesis.

We propose a new perspective on regret bounds which is based on the notion of duality in
convex optimization. Regret bounds are universal in the sense that they hold for any possible fixed
hypothesis in a given hypothesis class. We therefore cast the universal bound as a lower bound
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for an optimization problem, in which we search for the optimal competing hypothesis. While the
optimal competing hypothesis can only be found in hindsight, after observing the entire sequence
of question-answer pairs, this viewpoint relates regret bounds to lower bounds of minimization
problems.

The notion of duality, commonly used in convex optimization theory, plays an important role
in obtaining lower bounds for the minimal value of a minimization problem. By generalizing the
notion of Fenchel duality, we are able to derive a dual optimization problem, which can be opti-
mized incrementally, as the online learning progresses. The main idea behind our derivation is the
connection between regret bounds and Fenchel duality. This connection leads to a reduction from
the process of online learning to the task of incrementally ascending the dual objective function.

In order to derive explicit quantitative regret bounds we make use of the weak duality prop-
erty, which tells us that the dual objective lower bounds the primal objective. The analysis of our
algorithmic framework uses the increase in the dual for assessing the progress of the algorithm.
This contrasts most if not all previous works that have analyzed online algorithms by measuring the
progress of the algorithm based on the correlation or distance between the online hypotheses and a
competing hypothesis.

We illustrate the power of our framework by deriving various learning algorithms. Our frame-
work yields the tightest known bounds for several known online learning algorithms. Despite the
generality of our framework, the resulting analysis is more distilled than earlier analyses. The frame-
work also serves as a vehicle for deriving various new algorithms. First, we obtain new algorithms
for classic prediction problems by utilizing different techniques for ascending the dual objective.
We further propose efficient optimization procedures for performing the resulting updates of the
online hypotheses. Second, we derive novel algorithms for complex prediction problems, such as
ranking and structured output prediction.

The generality of our approach enables us to use it in the batch learning model as well. In
particular, we underscore a primal-dual perspective on boosting algorithms, which enables us to
analyze boosting algorithms based on the framework. We also describe and analyze several generic
online-to-batch conversion schemes.

The proposed framework can be applied in an immense number of possible real-world applica-
tions. We demonstrate a successful application of the framework in two different domains. First, we
address the problem of online email categorization, which serves as an example of a natural online
prediction task. Second, we tackle the problem of speech-to-text and music-to-score alignment. The
alignment problem is an example of a complex prediction task in the batch learning model.
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Chapter 1

Introduction

This introduction presents an overview of the online learning model and the contributions of this
dissertation. The main concepts introduced here are covered in depth and more rigorously in later
chapters.

1.1 Online Learning

Online learning takes place in a sequence of consecutive rounds. On each round, the learner is
given a question and is required to provide an answer to this question. For example, a learner might
receive an encoding of an email message and the question is whether the email is spam or not.
To answer the question, the learner uses a prediction mechanism, termed a hypothesis, which is a
mapping from the set of questions to the set of admissible answers. After predicting an answer,
the learner gets the correct answer to the question. The quality of the learner’s answer is assessed
by a loss function that measures the discrepancy between the predicted answer and the correct one.
The learner’s ultimate goal is to minimize the cumulative loss suffered along its run. To achieve
this goal, the learner may update the hypothesis after each round so as to be more accurate in later
rounds.

As mentioned earlier, the performance of an online learning algorithm is measured by the cu-
mulative loss suffered by the learning along his run on a sequence of question-answer pairs. We
also use the term example to denote a question-answer pair. The learner tries to deduce information
from previous examples so as to improve its predictions on present and future questions. Clearly,
learning is hopeless if there is no correlation between past and present examples. Classic statistical
theory of sequential prediction therefore enforces strong assumptions on the statistical properties of
the input sequence (for example, it must form a stationary stochastic process).

1



CHAPTER 1. INTRODUCTION 2

In most of this dissertation we make no statistical assumptions regarding the origin of the se-
quence of examples. We allow the sequence to be deterministic, stochastic, or even adversarially
adaptive to our own behavior (as in the case of spam email filtering). Naturally, an adversary can
make the cumulative loss of our online learning algorithm arbitrarily large. For example, the adver-
sary can ask the same question on each online round, wait for the learner’s answer, and provide the
opposite answer as the correct answer. To overcome this deficiency, we restate the learner’s goal
based on the notion of regret. To help understand this notion, note that the learner’s prediction on
each round is based on a hypothesis. The hypothesis is chosen from a predefined class of hypothe-
ses. In this class, we define the optimal fixed hypothesis to be the hypothesis that minimizes the
cumulative loss over the entire sequence of examples. The learner’s regret is the difference between
his cumulative loss and the cumulative loss of the optimal fixed hypothesis. This is termed ’regret’
since it measures how ’sorry’ the learner is, in retrospect, not to have followed the predictions of the
optimal hypothesis. In the example above, where the adversary makes the learner’s cumulative loss
arbitrarily large, any competing fixed hypothesis would also suffer a large cumulative loss. Thus,
the learner’s regret in this case would not be large.

This dissertation presents an algorithmic framework for online learning that guarantees low
regret. Specifically, we derive several bounds on the regret of the proposed online algorithms. The
regret bounds we derive depend on certain properties of the loss functions, the hypothesis class, and
the number of rounds we run the online algorithm.

1.2 Taxonomy of Online Learning Algorithms

Before delving into the description of our algorithmic framework for online learning, we would like
to highlight connections to and put our work in context of some of the more recent work on online
learning. For a more comprehensive overview of relevant publications see Section 1.6 below and
the references in the papers cited there. Due to the centrality of the online learning setting, quite a
few methods have been devised and analyzed in a diversity of research areas. Here, we focus on the
machine learning and pattern recognition field. In this context, the Perceptron algorithm [1, 95, 91]
is perhaps the first and simplest online learning algorithm and it will serve as our starting point.

The Perceptron is designed for answering yes/no questions. The algorithm assumes that ques-
tions are encoded as vectors in some vector space. We also use the term “instances” to denote the
input vectors and the term “labels” to denote the answers. The class of hypotheses used by the Per-
ceptron for predicting answers is the class of linear separators in the vector space. Therefore, each
hypothesis can be described using a vector, often called a weight vector. For example, if the vector
space is the two dimensional Euclidean space (the plane), then instances are points in the plane
and hypotheses are lines. The weight vector is perpendicular to the line. The Perceptron answers
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yes
no

yes
no

Figure 1.1: An illustration of linear separators in the plane (R2). The solid black line separates the
plane into two regions. The circled point represents an input question. Since it falls into the “yes”
region, the predicted answer will be “yes”. The arrow designates a weight vector that represents the
hypothesis.

“yes” if a point falls on one side of the line and otherwise it answers “no”. See Figure 1.2 for an
illustration.

The Perceptron updates its weight vector in an additive form, by adding (or subtracting) the
input instance to the weight vector. In particular, if the predicted answer is negative whereas the
true answer is positive then the Perceptron adds the instance vector to the weight vector. If the
prediction is positive but the true answer is negative then the instance vector is subtracted from the
weight vector. Finally, if the predicted answer is correct then the same weight vector is used in the
subsequent round.

Over the years, numerous online learning algorithms have been suggested. The different ap-
proaches can be roughly divided into the following categories.

1.2.1 Update Type

Littlestone, Warmuth, Kivinen, and colleagues proposed online algorithms in which the weight
vector is updated in a multiplicative way. Examples of algorithms that employ multiplicative updates
are the Weighed Majority [85], Winnow [82], and Exponentiated Gradient (EG) algorithms [75].
Multiplicative updates are more efficient then additive updates when the instances contain many
noisy elements. Later on, Gentile and Littlestone [59] proposed the family of p-norm algorithms
that interpolates between additive and multiplicative updates.

This flurry of online learning algorithms sparked unified analyses of seemingly different online
algorithms. Most notable is the work of Grove, Littlestone, and Schuurmans [62] on a quasi-additive
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family of algorithms, which includes both the Perceptron [95] and the Winnow [82] algorithms as
special cases. A similar unified view for regression was derived by Kivinen and Warmuth [75, 76].

1.2.2 Problem Type

The Perceptron algorithm was originally designed for answering yes/no questions. In real-world
applications we are often interested in more complex answers. For example, in multiclass catego-
rization tasks, the learner needs to choose the correct answer out of k possible answers.

Simple adaptations of the Perceptron for multiclass categorization tasks date back to Kessler’s
construction [44]. Crammer and Singer [31] proposed more sophisticated variants of the Perceptron
for multiclass categorization. The usage of online learning for more complex prediction problems
has been further addressed by several authors. Some notable examples are multidimensional regres-
sion [76], discriminative training of Hidden Markov Models [23], and ranking problems [28, 29].

1.2.3 Aggressiveness Level

The update procedure used by the Perceptron is extremely simple and is rather conservative. First,
no update is made if the predicted answer is correct. Second, all instances are added (subtracted)
from the weight vector with a unit weight. Finally, only the most recent example is used for updating
the weight vector. Older examples are ignored.

Krauth [78] proposed aggressive variants of the Perceptron in which updates are also performed
if the Perceptron’s answer is correct but the input instance lies too close to the decision boundary.
The idea of trying to push instances away from the decision boundary is central to the Support
Vector Machines literature [117, 33, 100]. In addition, various authors [68, 57, 80, 74, 103, 31, 28]
suggested using more sophisticated learning rates, i.e., adding instances to the weight vector with
different weights.

Finally, early works in game theory derive strategies for playing repeated games in which all
past examples are used for updating the hypothesis. The most notable is follow-the-leader ap-
proaches [63].

1.3 Main Contributions

In this dissertation we introduce a general framework for the design and analysis of online learning
algorithms. Our framework includes various online learning algorithms as special cases and yields
the tightest known bounds for these algorithms. This unified view explains the properties of existing
algorithms. Moreover, it also serves as a vehicle for deriving and analyzing new interesting online
learning algorithms.
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Our framework emerges from a new view on regret bounds, which are the common thread in
the analysis of online learning algorithms. As mentioned in Section 1.1, a regret bound measures
the performance of an online algorithm relative to the performance of a competing hypothesis. The
competing hypothesis can be chosen in retrospect from a class of hypotheses, after observing the
entire sequence of examples.

We propose an alternative view of regret bounds that is based on the notion of duality in con-
vex optimization. Regret bounds are universal in the sense that they hold for any possible fixed
hypothesis in a given hypothesis class. We therefore cast the universal bound as a lower bound for
an optimization problem. Specifically, the cumulative loss of the online learner should be bounded
above by the minimum value of an optimization problem in which we jointly minimize the cu-
mulative loss and a “complexity” measure of a competing hypothesis. Note that the optimization
problem can only be solved in hindsight after observing the entire sequence of examples. Neverthe-
less, this viewpoint implies that the cumulative loss of the online learner forms a lower bound for a
minimization problem.

The notion of duality, commonly used in convex optimization theory, plays an important role
in obtaining lower bounds for the minimal value of a minimization problem (see for example [89]).
By generalizing the notion of Fenchel duality, we are able to derive a dual optimization problem,
which can be optimized incrementally as the online learning progresses. In order to derive explicit
quantitative regret bounds we make immediate use of the weak duality property, which tells us that
the dual objective lower bounds the primal objective. We therefore reduce the process of online
learning to the task of incrementally increasing the dual objective function. The amount by which
the dual increases serves as a new and natural notion of progress. By doing so we are able to
associate the cumulative loss of the competing hypothesis (as reflected by the primal objective
value) and the cumulative loss of the online algorithm, using the increase in the dual.

Different online learning algorithms can be derived from our general framework by varying
three components: the complexity function, the type of the loss function, and the dual ascending
procedure. These three components correspond to the three categories described in the previous
section; namely, to the update type, the problem type, and the aggressiveness level. We now briefly
describe this correspondence.

First, recall that in the primal problem we jointly minimize the cumulative loss and the com-
plexity of a competing hypothesis. It turns out that different complexity functions yield different
types of updates. For example, using the squared Euclidean norm as a complexity function results
in additive updates whereas by using the relative entropy we obtain multiplicative updates. Sec-
ond, our framework can be used in conjunction with a large family of loss functions. Therefore, by
constructing a loss function that fits a particular prediction problem, we immediately obtain online
algorithms for solving this prediction problem. Last, the regret bounds we derive for the framework
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hold as long as we have a sufficient increment in the dual objective. By monitoring the increase in
the dual we are able to control the aggressiveness level of the resulting online learning algorithm.

To make this dissertation coherent and due to the lack of space, some of my research work was
omitted from this thesis. For example, I have also worked on boosting and online algorithms for
regression problems with smooth loss functions [38, 40], online learning of pseudo-metrics [109],
online learning of prediction suffix trees [39], online learning with various notions of margin [103],
online learning with simultaneous projections [4], online learning with kernels on a budget [41],
and stochastic optimization using online learning techniques [110].

1.4 Outline

The dissertation is divided into three main parts, titled Theory, Algorithms, and Applications. In
each part, there are several chapters. The last section of each of the chapters includes a detailed
review of previous work relevant to the specific contents described in the chapter.

1.4.1 Part I: Theory

In the theory part, we derive and analyze our algorithmic framework in its most general form. We
start in Chapter 2 with a formal description of online learning and regret analysis. We then describe
a more abstract framework called online convex programming and cast online learning as a special
case of online convex programming. As its name indicates, online convex programming relies on
convexity assumptions. We describe a common construction used when the natural loss function for
an online learning task is not convex.

Next, in Chapter 3 we derive our algorithmic framework based on the relation between regret
bounds and duality. Our presentation assumes some previous knowledge about convex analysis,
which can be found in Chapter A in the appendix. We provide a general analysis for all algorithms
that can be derived from the framework. To simplify the representation, we start the chapter with a
description of a basic algorithmic framework that depends on a parameter. This parameter reflects
the trade-off between the cumulative loss of the competing hypothesis and its complexity. We later
suggest methods for automatically tuning this parameter. We conclude the chapter by discussing the
tightness of our bounds.

The regret bounds we derive in Chapter 3 for our general algorithmic framework grow as the
sqrt root of the number of online rounds. While this dependence is tight in the general case, it can be
improved by imposing additional assumptions. In Chapter 4 we derive online learning algorithms
with logarithmic regret, assuming that the loss functions are strongly convex.

So far, we have focused on the online learning model. Another popular learning model is the
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PAC learning framework. For completeness, in Chapter B given in the appendix, we discuss the
applicability of our algorithmic framework to the PAC learning model. We start this chapter with
a short introduction to the PAC learning model. Next, we discuss the relative difficulty of online
learning and PAC learning. Finally, we propose general conversion schemes from online learning
to the PAC setting.

1.4.2 Part II: Algorithms

The second part is devoted to more specific algorithms and implementation details. We start in
Chapter 5 by deriving specific algorithms from our general algorithmic framework. In particular,
we demonstrate that by varying the three components of the general framework we can design
algorithms with different update types, different aggressiveness levels, and for different problem
types.

Next, in Chapter 6 we show the applicability of our analysis for deriving boosting algorithms.
While boosting algorithms do not fall under the online learning model, our general analysis fits
naturally to general primal-dual incremental methods. As we discuss, the process of boosting can
be viewed as a primal-dual game between a weak learner and a booster.

Finally, in Chapter 7 we discuss the computational aspects of the different update schemes.
Depending on the loss function and update scheme at hand, we derive procedures for performing
the update with increasing computational complexity.

1.4.3 Part III: Applications

In the last part of the dissertation we demonstrate the applicability of our algorithms to real world
problems. We start with the problem of online email categorization, which is a natural online
learning task. Next, we discuss the problem of alignment. The alignment problem is an example
of a complex prediction task. We study the alignment problem in the PAC learning model and use
our algorithmic framework for online learning along with the conversion schemes described in the
appendix (Chapter B) to construct an efficient algorithm for alignment.

1.5 Notation

We denote scalars with lower case letters (e.g. x and λ), and vectors with bold face letters (e.g. x
and λ). The ith element of a vector x is denoted by xi. Since online learning is performed in a
sequence of rounds, we denote by xt the tth vector in a sequence of vectors x1,x2, . . . ,xT . The ith
element of xt is denoted by xt,i.
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Table 1.1: Summary of notations.

R The set of real numbers
R+ The set of non-negative real numbers
[k] The set {1, 2, . . . , k}
S A set of vectors
x, λ Scalars
x,λ Vectors
x1, . . . ,xT A sequence of vectors
xt,i ith element of the vector xt
〈x,w〉 inner product
[[π]] 1 if predicate π holds an 0 otherwise
[a]+ Hinge function: max{0, a}
‖x‖,‖x‖? A norm and its dual norm
f, g, h Functions
∇f(x) Gradient of f at x
∇2f(x) Hessian of f at x
∂f(x) The differential set of f at x
f? The Fenchel conjugate of function f
Z A random variable
P[A] Probability that an event A occurs
E[Z] Expectation of Z

The inner product between vectors x and w is denoted by 〈x,w〉. Sets are designated by upper
case letters (e.g. S). The set of real numbers is denoted by R and the set of non-negative real
numbers is denoted by R+. For any k ≥ 1, the set of integers {1, . . . , k} is denoted by [k]. Given a
predicate π, we use the notation [[π]] to denote the function that outputs 1 if π holds and 0 otherwise.
The hinge function is denoted by [a]+ = max{0, a}.

A norm of a vector x is denoted by ‖x‖. The dual norm is defined as ‖λ‖? = sup{〈x,λ〉 :
‖x‖ ≤ 1}. For example, the Euclidean norm, ‖x‖2 = (〈x,x〉)1/2 is dual to itself and the `1 norm,
‖x‖1 =

∑
i |xi|, is dual to the `∞ norm, ‖x‖∞ = maxi |xi|.

Throughout the dissertation, we make extensive use of several notions from convex analysis. In
the appendix we overview basic definitions and derive some useful tools. Here we summarize some
of our notations. The gradient of a differentiable function f is denoted by ∇f and the Hessian is
denoted by ∇2f . If f is non-differentiable, we denote its sub-differential set by ∂f . We denote
the Fenchel conjugate of a function f(w) by f?(θ) = supw〈w,θ〉 − f(w) (see Section A.3 in the
appendix for more details).

Random variables are designated using upper case letters (e.g. Z). We use the notation P[A] to
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denote the probability that an event A occurs. The expected value of a random variable is denoted
by E[Z]. In some situations, we have a deterministic function h that receives a random variable as
input. We denote by E[h(Z)] the expected value of the random variable h(Z). Occasionally, we
omit the dependence of h on Z. In this case, we clarify the meaning of the expectation by using the
notation EZ [h].

Table 1.1 provides a summary of our notations.

1.6 Bibliographic Notes

How to predict rationally is a key issue in various research areas such as game theory, machine
learning, and information theory. In this section we give a high level overview of related work in
different research fields. The last section of each of the chapters below includes a detailed review
of previous work relevant to the specific contents of each chapter.

In game theory, the problem of sequential prediction has been addressed in the context of playing
repeated games with mixed strategies. A player who can achieve low regret (i.e. whose regret grows
sublinearly with the number of rounds) is called a Hannan consistent player [63]. Hannan consistent
strategies have been obtained by Hannan [63], Blackwell [9] (in his proof of the approachability
theorem), Foster and Vohra [49, 50], Freund and Schapire [55], and Hart and Mas-collel [64]. Von
Neumann’s classical minimax theorem has been recovered as a simple application of regret bounds
[55]. The importance of low regret strategies was further amplified by showing that if all players
follow certain low regret strategies then the game converges to a correlated equilibrium (see for
example [65, 10]). Playing repeated games with mixed strategies is closely related to the expert
setting widely studied in the machine learning literature [42, 82, 85, 119].

Prediction problems have also intrigued information theorists since the early days of the in-
formation theory field. For example, Shannon estimated the entropy of the English language by
letting humans predict the next symbol in English texts [111]. Motivated by applications of data
compression, Ziv and Lempel [124] proposed an online universal coding system for arbitrary in-
dividual sequences. In the compression setting, the learner is not committed to a single prediction
but rather assigns a probability over the set of possible outcomes. The success of the coding system
is measured by the total likelihood of the entire sequence of symbols. Feder, Merhav, and Gutman
[47] applied universal coding systems to prediction problems, where the goal is to minimize the
number of prediction errors. Their basic idea is to use an estimation of the conditional probabilities
of the outcomes given previous symbols, as calculated by the Lempel-Ziv coding system, and then
to randomly guess the next symbol based on this conditional probability.

Another related research area is the “statistics without probability” approach developed by
Dawid and Vovk [34, 35], which is based on the theory of prediction with low regret.



CHAPTER 1. INTRODUCTION 10

In an attempt to unify different sequential prediction problems and algorithms, Cesa-Bianchi
and Lugosi developed a unified framework called potential-based algorithms [19]. See also their
inspiring book [20] about learning, prediction, and games. The potential-based decision strategy
formulated by Cesa-Bianchi and Lugosi differs from our construction, which is based on online
convex programming [123]. The analysis presented in [19] relies on a generalized Blackwell’s
condition, which was proposed in [65]. This type of analysis is also similar to the analysis presented
by [62] for the quasi-additive family of online learning algorithms. Our analysis is different and is
based on the weak duality theorem, the generalized Fenchel duality, and strongly convex functions
with respect to arbitrary norms.
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Theory
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Chapter 2

Online Convex Programming

2.1 Casting Online Learning as Online Convex Programming

In this chapter we formally define the setting of online learning. We then describe several as-
sumptions under which the online learning setting can be cast as an online convex programming
procedure.

Online learning is performed in a sequence of T consecutive rounds. On round t, the learner
is first given a question, cast as a vector xt, and is required to provide an answer to this question.
For example, xt can be an encoding of an email message and the question is whether the email is
spam or not. The learner’s prediction is performed based on a hypothesis, ht : X → Y , where X is
the set of questions and Y is the set of possible answers. In the aforementioned example, Y would
be {+1,−1} where +1 stands for a spam email and −1 stands for a benign one. After predicting
an answer, the learner receives the correct answer to the question, denoted yt, and suffers a loss
according to a loss function `(ht, (xt, yt)). The function ` assesses the quality of the hypothesis ht
on the example (xt, yt). Formally, let H be the set of all possible hypotheses, then ` is a function
from H × (X × Y) into the reals. The ultimate goal of the learner is to minimize the cumulative
loss he suffers along his run. To achieve this goal, the learner may choose a new hypothesis after
each round so as to be more accurate in later rounds.

In most cases, the hypotheses used for prediction come from a parameterized set of hypotheses,
H = {hw : w ∈ S}, where S is a subset of a vector space. For example, the set of linear classifiers
which is used for answering yes/no questions, is defined as H = {hw(x) = sign(〈w,x〉) : w ∈
Rn}. Thus, rather than saying that on round t the learner chooses a hypothesis, we can say that
the learner chooses a parameter vector wt and his hypothesis is hwt . Next, we note that once the
environment chooses a question-answer pair (xt, yt), the loss function becomes a function over the
hypothesis space or equivalently over the set of parameter vectors S. We can therefore redefine

12
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the online learning process as follows. On round t, the learner chooses a vector wt ∈ S, which
defines a hypothesis hwt to be used for prediction. Then, the environment chooses a question-
answer pair (xt, yt), which induces the following loss function over the set of parameter vectors,
gt(w) = `(hw, (xt, yt)). Finally, the learner suffers the loss gt(wt) = `(hwt , (xt, yt)).

Let us further assume that the set of admissible parameter vectors, S, is convex and that the
loss functions gt are convex functions (for an overview of convex analysis see the appendix). Under
these assumptions, the online learning process can be described as an online convex programming
procedure, defined as follows:

For t = 1, 2, . . . , T :

Learner chooses a vector wt ∈ S, where S is a convex set

Environment responds with a convex function gt : S → R

Outcome of the round is gt(wt)

Figure 2.1: Online Convex Programming

In offline convex programming, the goal is to find a vector w within a convex set S that mini-
mizes a convex objective function, g : S → R. In online convex programming, the set S is known
in advance, but the objective function may change along the online process. The goal of the online
optimizer, which we call the learner, is to minimize the cumulative objective value

T∑
t=1

gt(wt) .

In summary, we have shown that the online learning setting can be cast as the task of online
convex programming, assuming that:

1. The hypotheses used for prediction come from a parameterized set of hypotheses,H = {hw :
w ∈ S}, where S is a convex set.

2. The loss functions, gt(w) = `(hw, (xt, yt)), are convex functions with respect to w.

In Section 2.3 we discuss the case in which the second assumption above does not hold; namely, the
loss functions are non-convex.

We conclude this section with a specific example in which the above assumptions clearly hold.
The setting we describe is called online regression with squared loss. In online regression, the set of
instances is the n-dimensional Euclidean space, X = Rn, and the set of targets (possible answers)
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is the reals, Y = R. The hypothesis set is

H = {hw(x) = 〈w,x〉 |w ∈ Rn} ,

and thus S = Rn. The loss function is defined to be

`(hw, (x, y)) = (〈w,x〉 − y)2 .

It is straightforward to verify that S is a convex set and that for all t, gt(w) = `(hw, (xt, yt)) is
convex with respect to w.

2.2 Regret

As mentioned earlier, the performance of an online learning algorithm is measured by the cumula-
tive loss it suffers along its run on a sequence of examples (x1, y1), . . . , (xT , yT ). Ideally, we would
like to think of the correct answers as having been generated by an unknown yet fixed hypothesis
h such that yt = h(xt) for all t ∈ [T ]. Moreover, in a utopian case, the cumulative loss of h on
the entire sequence is zero. In this case, we would like the cumulative loss of our online algorithm
to be independent of T . In the more realistic case there is no h that correctly predicts the correct
answers of all observed instances. In this case, we would like the cumulative loss of our online
algorithm not to exceed by much the cumulative loss of any fixed hypothesis h. Formally, we assess
the performance of the learner using the notion of regret. Given any fixed hypothesis h ∈ H, we
define the regret of an online learning algorithm as the excess loss for not consistently predicting
with the hypothesis h,

R(h, T ) =
T∑
t=1

`(ht, (xt, yt))−
T∑
t=1

`(h, (xt, yt)) .

Similarly, given any fixed vector u ∈ S, we define the regret of an online convex programming
procedure as the excess loss for not consistently choosing the vector u ∈ S,

R(u, T ) =
T∑
t=1

gt(wt)−
T∑
t=1

gt(u) .

In the next chapter, we present an algorithmic framework for online convex programming that guar-
antees a regret of O(

√
T ) with respect to any vector u ∈ S. Since we have shown that online

learning can be cast as online convex programming, we also obtain a low regret algorithmic frame-
work for online learning.
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2.3 Non-convex loss functions and relative mistake bounds

In Section 2.1 we presented a reduction from online learning to online convex programming. This
reduction is based on the assumption that for each round t, the loss function gt(w) = `(w, (xt, yt))
is convex with respect to w. A well known example in which this assumption does not hold is
online classification with the 0-1 loss function. In this section we describe the mistake bound model,
which extends the utilization of online convex programming to online learning with non-convex loss
functions.

For simplicity and for historical reasons, we focus on binary classification problems, in which
the set of instances is X = Rn and the set of possible answers is Y = {+1,−1}. Extending the
technique presented below to general non-convex loss functions is straightforward.

Define the hypothesis set of separating hyperplanes,

H = {hw(x) = sign(〈w,x〉) |w ∈ Rn} ,

and the 0-1 loss function

`0-1(hw, (x, y)) =

1 if hw(x) 6= y

0 if hw(x) = y

Therefore, the cumulative 0-1 loss of the online learning algorithm is the number of prediction
mistakes the online algorithm makes along its run.

We now show that no algorithm can obtain a sub-linear regret bound for the 0-1 loss function. To
do so, let X = {1} so our problem boils down to finding the bias of a coin in an online manner. An
adversary can make the number of mistakes of any online algorithm to be equal to T , by simply
waiting for the learner’s prediction and then providing the opposite answer as the true answer.
In contrast, the number of mistakes of the constant prediction u = sign(

∑
t yt) is at most T/2.

Therefore, the regret of any online algorithm with respect to the 0-1 loss function will be at least
T/2.

To overcome the above hardness result, the common solution in the online learning literature is
to find a convex loss function that upper bounds the original non-convex loss function. In binary
classification, a popular convex loss function is the hinge-loss, defined as

`hinge(hw, (x, y)) = [1− y〈w,x〉]+ ,

where [a]+ = max{0, a}. It is straightforward to verify that `hinge(hw, (x, y)) is a convex function
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and `hinge(hw, (x, y)) ≥ `0-1(hw, (x, y)). Therefore, for any u ∈ S we have

R(u, T ) =
T∑
t=1

`hinge(hwt , (xt, yt))−
T∑
t=1

`hinge(hu, (xt, yt))

≥
T∑
t=1

`0-1(hwt , (xt, yt))−
T∑
t=1

`hinge(hu, (xt, yt)) .

As a direct corollary from the above inequality we get that a low regret algorithm for the (convex)
hinge-loss function can be utilized for deriving an online learning algorithm for the 0-1 loss with
the bound

T∑
t=1

`0-1(hwt , (xt, yt)) ≤
T∑
t=1

`hinge(hu, (xt, yt)) +R(u, T ) .

Denote by M the set of rounds in which hwt(xt) 6= yt and note that the left-hand side of the
above is equal to |M|. Furthermore, we can remove the examples not inM from the sequence of
examples, and obtain a bound of the form

|M| ≤
∑
t∈M

`hinge(hu, (xt, yt)) +R(u, |M|) . (2.1)

Such bounds are called relative mistake bounds.
In the next chapter, we present a low regret algorithmic framework for online learning. In

particular, this framework yields an algorithm for online learning with the hinge-loss that attains
the regret bound R(u, T ) = X ‖u‖

√
T , where X = maxt ‖xt‖. Running this algorithm on the

examples inM results in the famous Perceptron algorithm [95]. Combining the regret bound with
Eq. (2.1) we obtain the inequality

|M| ≤
∑
t∈M

`hinge(hu, (xt, yt)) +X ‖u‖
√
|M| ,

which implies that (see Lemma 19 in Section A.5)

|M| ≤
∑
t∈M

`hinge(hu, (xt, yt)) +X ‖u‖
√∑
t∈M

`hinge(hu, (xt, yt)) +X2 ‖u‖2 .

The bound we have obtained is the best relative mistake bound known for the Perceptron algo-
rithm [58, 103, 106].
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2.4 Bibliographic notes

The term “online convex programming” was introduced by Zinkevich [123] but this setting was
introduced some years earlier by Gordon in [60]. This model is also closely related to the model of
relative loss bounds presented by Kivinen and Warmuth [76, 75, 77]. Our presentation of relative
mistake bounds follows the works of Littlestone [84], and Kivinen and Warmuth [76].

The impossibility of obtaining a regret bound for the 0-1 loss function dates back to Cover [26],
who showed that any online predictor that makes deterministic predictions cannot have a vanishing
regret universally for all sequences. One way to circumvent this difficulty is to allow the online
predictor to make randomized predictions and to analyze its expected regret. In this dissertation we
adopt another way and follow the mistake bound model, namely, we slightly modify the regret-based
model in which we analyze our algorithm.



Chapter 3

Low Regret and Duality

3.1 Online Convex Programming by Incremental Dual Ascend

In this chapter we present a general low regret algorithmic framework for online convex program-
ming. Recall that the regret of an online convex programming procedure for not consistently choos-
ing the vector u ∈ S is defined to be,

R(u, T ) =
T∑
t=1

gt(wt)−
T∑
t=1

gt(u) . (3.1)

We derive regret bounds that take the following form

∀u ∈ S, R(u, T ) ≤ (f(u) + L)
√
T , (3.2)

where f : S → R+ and L ∈ R+. Informally, the function f measures the “complexity” of vectors
in S and the scalar L is related to some generalized Lipschitz property of the functions g1, . . . , gT .
We defer the exact requirements we impose on f and L to later sections.

Our algorithmic framework emerges from a representation of the regret bound given in Eq. (3.2)
using an optimization problem. Specifically, we rewrite Eq. (3.2) as follows

T∑
t=1

gt(wt) ≤ inf
u∈S

T∑
t=1

gt(u) + (f(u) + L)
√
T . (3.3)

That is, the learner’s cumulative loss should be bounded above by the minimum value of an op-
timization problem in which we jointly minimize the cumulative loss of u and the “complexity”
of u as measured by the function f . Note that the optimization problem on the right-hand side of

18
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Eq. (3.3) can only be solved in retrospect after observing the entire sequence of loss functions. Nev-
ertheless, writing the regret bound as in Eq. (3.3) implies that the learner’s cumulative loss forms a
lower bound for a minimization problem.

The notion of duality, commonly used in convex optimization theory, plays an important role in
obtaining lower bounds for the minimal value of a minimization problem (see for example [89]). By
generalizing the notion of Fenchel duality, we are able to derive a dual optimization problem. While
the primal minimization problem of finding the best vector in S can only be solved in hindsight, the
dual problem can be optimized incrementally, as the online learning progresses. In order to derive
explicit quantitative regret bounds we make immediate use of the fact that dual objective lower
bounds the primal objective. We therefore reduce the process of online convex optimization to
the task of incrementally increasing the dual objective function. The amount by which the dual
increases serves as a new and natural notion of progress. By doing so we are able to link the primal
objective value, the learner’s cumulative loss, and the increase in the dual.

3.2 Generalized Fenchel Duality

In this section we derive our main analysis tool. First, it should be recalled that the Fenchel conju-
gate of a function f is the function (see Section A.3)

f?(θ) = sup
w∈S
〈w,θ〉 − f(w) .

In the following, we derive the dual problem of the following optimization problem,

inf
w∈S

(
f(w) +

T∑
t=1

gt(w)

)
.

An equivalent problem is

inf
w0,w1,...,wT

(
f(w0) +

T∑
t=1

gt(wt)

)
s.t. w0 ∈ S and ∀t ∈ [T ], wt = w0 .

Introducing T vectors λ1, . . . ,λT , each λt ∈ Rn is a vector of Lagrange multipliers for the equality
constraint wt = w0, we obtain the following Lagrangian

L(w0,w1, . . . ,wT ,λ1, . . . ,λT ) = f(w0) +
T∑
t=1

gt(wt) +
T∑
t=1

〈λt,w0 −wt〉 .
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The dual problem is the task of maximizing the following dual objective value,

D(λ1, . . . ,λT ) = inf
w0∈S,w1,...,wT

L(w0,w1, . . . ,wT ,λ1, . . . ,λT )

= − sup
w0∈S

(
〈w0,−

T∑
t=1

λt〉 − f(w0)

)
−

T∑
t=1

sup
wt

(〈wt,λt〉 − gt(wt))

= −f?
(
−

T∑
t=1

λt

)
−

T∑
t=1

g?t (λt) ,

where f?, g?1, . . . , g
?
T are the Fenchel conjugate functions of f, g1, . . . , gT . Therefore, the general-

ized Fenchel dual problem is

sup
λ1,...,λT

− f?
(
−

T∑
t=1

λt

)
−

T∑
t=1

g?t (λt) . (3.4)

Note that when T = 1 the above duality is the so-called Fenchel duality [11].

3.3 A Low Regret Algorithmic Framework for Online Convex Pro-
gramming

In this section we describe a template learning algorithm for online convex programming. Recall
that we would like our learning algorithm to achieve a regret bound of the form given in Eq. (3.3).
We start by rewriting Eq. (3.3) as follows

T∑
t=1

gt(wt)− cL ≤ inf
u∈S

(
c f(u) +

m∑
t=1

gt(u)

)
, (3.5)

where c =
√
T . Thus, up to the sublinear term cL, the learner’s cumulative loss lower bounds the

optimum of the minimization problem on the right-hand side of Eq. (3.5). Based on the previous
section, the generalized Fenchel dual function of the right-hand side of Eq. (3.5) is

D(λ1, . . . ,λT ) = − c f?
(
−1
c

T∑
t=1

λt

)
−

T∑
t=1

g?t (λt) , (3.6)

where we used the fact that the Fenchel conjugate of c f(w) is −cf?(θ/c) (see Section A.3.1).
Our construction is based on the weak duality theorem stating that any value of the dual problem

is smaller than the optimal value of the primal problem. The algorithmic framework we propose is
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therefore derived by incrementally ascending the dual objective function. Intuitively, by ascending
the dual objective we move closer to the optimal primal value and therefore our performance be-
comes similar to the performance of the best fixed weight vector which minimizes the right-hand
side of Eq. (3.5).

Our algorithmic framework utilizes the following important property of the dual function given
in Eq. (3.6): Assume that for all t we have infw gt(w) = 0 and thus the definition of g?t implies that
g?t (0) = 0. Then, for any sequence of t vectors (λ1, . . . ,λt) we have

D(λ1, . . . ,λt,0, . . . ,0) = − c f?
−1

c

∑
i≤t
λi

−∑
i≤t

g?(λi) .

That is, if the tail of dual solutions is grounded to zero then the dual objective function does not
depend on the yet to be seen tail of functions gt+1, . . . , gT . This contrasts with the primal objective
function where we must know all the functions g1, . . . , gT for calculating the primal objective value
at some vector w.

Based on the above property, we initially use the elementary dual solution λ1
t = 0 for all t.

Since f serves as a measure of “complexity” of vectors in S we enforce the requirement that the
minimum of f over the vectors in S is zero. From this requirement we get thatD(λ1

1, . . . ,λ
1
T ) = 0.

We assume in addition that f is strongly convex (see Definition 4 in Section A.4). Therefore, based
on Lemma 15 in Section A.4, the function f? is differentiable. At round t, the learner predicts the
vector

wt = ∇f?
(
−1
c

T∑
i=1

λti

)
. (3.7)

After predicting wt, the environment responds with the function gt and the learner suffers the loss
gt(wt). Finally, the learner finds a new set of dual variables as follows. Denote by ∂t the differential
set of gt at wt, that is,

∂t = {λ : ∀w ∈ S, gt(w)− gt(wt) ≥ 〈λ,w −wt〉} . (3.8)

The new dual variables (λt+1
1 , . . . ,λt+1

T ) are set to be any set of vectors that satisfy the condition:

∃λ′ ∈ ∂t s.t. D(λt+1
1 , . . . ,λt+1

T ) ≥ D(λt1, . . . ,λ
t
t−1,λ

t
t + λ′,λtt+1, . . . ,λ

t
T ) . (3.9)

In practice, we cannot calculate the dual objective value at the end of round t unless the last T − t
dual vectors are still grounded to zero. In this case, we can rewrite Eq. (3.9) as follows

∃λ′ ∈ ∂t s.t. D(λt+1
1 , . . . ,λt+1

t ,0, . . . ,0) ≥ D(λt1, . . . ,λ
t
t−1,λ

′,0, . . . ,0) . (3.10)
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PARAMETERS: A strongly convex function f : S → R
A positive scalar c

INITIALIZE: ∀t, λ1
t = 0

FOR t = 1, 2, . . . , T ,

Set: wt = ∇f?
(
−1
c

∑T
i=1 λ

t
i

)
Receive gt : S → R
Choose (λt+1

1 , . . . ,λt+1
T ) that satisfies Eq. (3.9)

Figure 3.1: An Algorithmic Framework for Online Convex Programming

Put another way, the increase in the dual objective due to the update step must be at least as large
as the increase that would have been obtained had we only set the t variable to be λ′ instead of its
previous value of zero.

A summary of the algorithmic framework is given in Figure 3.1. In the next section we show
that the above condition ensures that the increase of the dual at round t is proportional to the loss
gt(wt).

We conclude this section with two update rules that trivially satisfy the above condition. The
first update scheme simply finds λ′ ∈ ∂t and set

λt+1
i =

{
λ′ if i = t

λti if i 6= t
. (3.11)

The second update defines

(λt+1
1 , . . . ,λt+1

T ) = argmax
λ1,...,λT

D(λ1, . . . ,λT ) s.t. ∀i 6= t, λi = λti . (3.12)

3.4 Analysis

In this section we analyze the performance of the template algorithm given in the previous section.
Our proof technique is based on monitoring the value of the dual objective function. The main result
is the following lemma which upper and lower bounds the final value of the dual objective function.

Lemma 1 Let f be a strongly convex function with respect to a norm ‖ · ‖ over a set S and assume
that minw∈S f(w) ≥ 0. Let ‖ · ‖? be the dual norm of ‖ · ‖. Let g1, . . . , gT be a sequence of convex
and closed functions such that infw gt(w) ≥ 0 for all t ∈ [T ]. Assume that an algorithm of the form
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given in Figure 3.1 is run on this sequence with the function f . Let w1, . . . ,wT be the sequence
of primal vectors that the algorithm generates and λT+1

1 , . . . ,λT+1
T be its final sequence of dual

variables. Then, there exists a sequence of sub-gradients λ′1, . . . ,λ
′
T , where λ′t ∈ ∂t for all t, such

that

T∑
t=1

gt(wt)−
1

2 c

T∑
t=1

‖λ′t‖2? ≤ D(λT+1
1 , . . . ,λT+1

T ) ≤ inf
w∈S

c f(w) +
T∑
t=1

gt(w) .

Proof The second inequality follows directly from the weak duality theorem. Turning to the left
most inequality, we first note that the assumption minw∈S f(w) ≥ 0 implies that

f?(0) = max
w∈S
〈w,0〉 − f(w) = −min

w∈S
f(w) ≤ 0 .

Similarly, for all t we have g?t (0) ≤ 0, and thus D(0, . . . ,0) ≥ 0. Denote

∆t = D(λt+1
1 , . . . ,λt+1

T )−D(λt1, . . . ,λ
t
T )

and note that D(λT+1
1 , . . . ,λT+1

T ) can be rewritten as

D(λT+1
1 , . . . ,λT+1

T ) =
T∑
t=1

∆t +D(λ1
1, . . . ,λ

1
T ) ≥

T∑
t=1

∆t . (3.13)

The condition on the update of the dual variables given in Eq. (3.9) implies that

∆t ≥ D(λt1, . . . ,λ
t
t−1,λ

t
t + λ′t,λ

t
t+1, . . . ,λ

t
T )−D(λt1, . . . ,λ

t
t−1,λ

t
t,λ

t
t+1, . . . ,λ

t
T ) (3.14)

for some subgradient λ′t ∈ ∂t. Denoting θt = −1
c

∑T
j=1 λ

t
j and using the definition of D, we can

rewrite Eq. (3.14) as,

∆t ≥ −c
(
f?(θt − λ′t/c)− f?(θt)

)
− g?t (λ′t) .

Lemma 15 in Section A.4 tells us that if f is a strongly convex function w.r.t. a norm ‖ · ‖ then for
any two vectors µ1 and µ2 we have

f?(µ1 + µ2)− f?(µ1) ≤ 〈∇f?(µ1),µ2〉+ 1
2‖µ2‖2? . (3.15)

Using this lemma and the definition of wt we get that

∆t ≥ 〈∇f?(θt),λ′t〉 − g?t (λ′t)−
1

2 c
‖λ′t‖2? = 〈wt,λ

′
t〉 − g?t (λ′t)−

1
2 c
‖λ′t‖2? . (3.16)
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Since λ′t ∈ ∂t and since we assume that gt is closed and convex, we can apply Lemma 11 from
Section A.3 to get that 〈wt,λ

′
t〉 − g?t (λ

′
t) = gt(wt). Plugging this equality into Eq. (3.16) and

summing over t we obtain that

T∑
t=1

∆t ≥
T∑
t=1

gt(wt)−
1

2 c

T∑
t=1

‖λ′t‖2? .

Combining the above inequality with Eq. (3.13) concludes our proof.

Rearranging the inequality in Lemma 1 we obtain that

∀u ∈ S, R(u, T ) ≤ c f(u) +
1

2 c

T∑
t=1

‖λ′t‖2? . (3.17)

To derive a regret bound from the above inequality we need to bound the cumulative sum of ‖λ′t‖2?.
Let us first assume that ‖ · ‖? is the Euclidean norm. In this case, we can bound ‖λ′t‖ by assuming
that gt is a Lipschitz continuous function. More generally, let us define

Definition 1 A function g : S → R is L-Lipschitz with respect to a norm ‖ · ‖ if

∀w ∈ S, ∀λ ∈ ∂g(w), ‖λ‖? ≤ L .

The following regret bound follows as a direct corollary of Lemma 1.

Corollary 1 Under the same conditions of Lemma 1. Assume that there exists a constant L such
that for all t, the function gt is

√
2L-Lipschitz with respect to the norm ‖ · ‖?. Then, for all u ∈ S

we have,

R(u, T ) =
T∑
t=1

gt(wt)−
T∑
t=1

gt(u) ≤ c f(u) +
LT

c
.

In particular, for any constant U > 0, setting c =
√
T L/U yields the regret bound R(u, T ) ≤(

f(u)/
√
U +

√
U
)√

LT . Furthermore, if f(u) ≤ U then R(u, T ) ≤ 2
√
LU T .

The second regret bound we derive is based on a different bound on the norm of sub-gradients.
We first need the following definition:

Definition 2 A function g : S → R is L-self-bounded with respect to a norm ‖ · ‖ if

∀w ∈ S, ∃λ ∈ ∂g(w),
1
2
‖λ‖2? ≤ Lg(w) .
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Based on the above definition, we are ready to state our second regret bound.

Theorem 1 Under the same conditions of Lemma 1. Assume that there exists a constant L such
that for all t, the function gt is L-self-bounded with respect to the norm ‖ · ‖?. Let U1 and U2 be two
positive scalars and set c = L +

√
L2 + LU2/U1. Then, for any u ∈ S that satisfies f(u) ≤ U1

and
∑T

t=1 gt(u) ≤ U2 we have,

R(u, T ) =
T∑
t=1

gt(wt)−
T∑
t=1

gt(u) ≤ 2
√
LU1 U2 + 4LU1 .

Proof Combining Eq. (3.17) with the assumption that {gt} are L-self-bounded yields

T∑
t=1

gt(wt)−
T∑
t=1

gt(u) ≤ cf(u) +
L

c

T∑
t=1

gt(wt) .

Rearranging the above we get that

T∑
t=1

gt(wt)−
T∑
t=1

gt(u) ≤ c

1− L
c

f(u) +

(
1

1− L
c

− 1

)
T∑
t=1

gt(u) .

Using the assumptions f(u) ≤ U1 and
∑T

t=1 gt(u) ≤ U2 we obtain

R(u, T ) ≤ cU1

1− L
c

+

(
1

1− L
c

− 1

)
U2 =

U2
c
L − 1

(
1 +

c2

L2

U1 L

U2

)
.

Plugging the definition of c into the above gives

R(u, T ) ≤ U2√
1 + U2

U1L

1 +

(
1 +

√
1 +

U2

U1L

)2
U1 L

U2


=

U2√
1 + U2

U1L

(
1 +

(
2 + 2

√
1 +

U2

U1L
+

U2

U1L

)
U1 L

U2

)

=
2U2√

1 + U2
U1L

+
2U1 L√
1 + U2

U1L

+ 2U1 L

≤ 2U2√
1 + U2

U1L

+ 4U1 L =
2U2

√
U1 L
U2√

U1L
U2

+ 1
+ 4U1 L

≤ 2
√
U1 U2 L+ 4U1 L .
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The regret bound in Theorem 1 will be small if there exists u for which both f(u) and
∑

t gt(u)
are small. In particular, settingU1 to be a constant andU2 =

√
T we obtain thatR(u, T ) ≤ O(

√
T ).

Note that the bound can be much better if there exists u with
∑

t gt(u) �
√
T . Unfortunately, to

benefit from this case we must know the upper bound U2 in advance (since c depends on U2).
Similarly, in Corollary 1 the definition of c depends on the horizon T . In Section 3.5 we propose a
method that automatically tunes the parameter c as the online learning progresses.

3.5 Automatically tuning the complexity tradeoff parameter

In the previous sections we described and analyzed an algorithmic framework for online convex
programming that achieves low regret provided that the parameter c is appropriately tuned. In
this section, we present methods for automatically tuning the parameter c as the online learning
progresses.

We start by writing an instantaneous objective function

Pt(w) = ct f(w) +
∑
t

gt(w) ,

where 0 < c1 ≤ c2 ≤ . . .. Using the generalized Fenchel duality derived in Section 3.2 we obtain
that the dual objective of Pt is

Dt(λ1, . . . ,λT ) = −ct f?
(
− 1
ct

T∑
t=1

λt

)
−

T∑
t=1

g?t (λt) .

We now describe an algorithmic framework for online convex programming in which the pa-
rameter c is changed from round to round. Initially, we define λ1

1 = . . . = λ1
T = 0 and c0 = 0. At

each round of the online algorithm we choose ct ≥ ct−1 and set wt to be

wt = ∇f?
(
− 1
ct

∑
i

λti

)
. (3.18)

At the end of each online round, we set the new dual variables (λt+1
1 , . . . ,λt+1

T ) to be any set of
vectors that satisfy the condition:

∃λ′ ∈ ∂t s.t. Dt(λt+1
1 , . . . ,λt+1

T ) ≥ Dt(λt1, . . . ,λtt−1,λ
t
t + λ′,λtt+1, . . . ,λ

t
T ) . (3.19)
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PARAMETERS: A strongly convex function f : S → R
INITIALIZE: c0 = 0, ∀t, λ1

t = 0

FOR t = 1, 2, . . . , T ,
Choose ct ≥ ct−1

Set: wt = ∇f?
(
− 1
ct

∑T
i=1 λ

t
i

)
Receive gt : S → R
Choose (λt+1

1 , . . . ,λt+1
T ) that satisfies Eq. (3.19)

Figure 3.2: An Algorithmic Framework for Online Convex Programming with a variable learning
rate.

The algorithmic framework is summarized in Figure 3.2.
The following lemma generalizes Lemma 1 to the case where c varies as learning progresses.

Lemma 2 Let f be a strongly convex function with respect to a norm ‖ · ‖ over a set S and let
‖ · ‖? be the dual norm of ‖ · ‖. Assume that minw∈S f(w) ≥ 0. Let g1, . . . , gT be a sequence of
convex and closed functions, such that infw gt(w) ≥ 0 for all t ∈ [T ]. Assume that an algorithm
of the form given in Figure 3.2 is run on this sequence with the function f . Let w1, . . . ,wT be the
sequence of primal vectors that the algorithm generates and λT+1

1 , . . . ,λT+1
T be its final sequence

of dual variables. Then, there exists a sequence of sub-gradients λ′1, . . . ,λ
′
T , where λ′t ∈ ∂t for all

t, such that

∀u ∈ S,
T∑
t=1

gt(wt)−
T∑
t=1

gt(u) ≤ cT f(u) +
1
2

T∑
t=1

‖λ′t‖2?
ct

.

Proof We prove the lemma by bounding DT (λT+1
1 , . . . ,λT+1

T ) from above and below. The upper
bound

DT (λT+1
1 , . . . ,λT+1

T ) ≤ cT f(u) +
T∑
t=1

gt(u) , (3.20)

follows directly from the weak duality theorem. Turning to derive a lower bound, we denote

∆t = Dt(λt+1
1 , . . . ,λt+1

T )−Dt−1(λt1, . . . ,λ
t
T ) ,

where for simplicity we set D0 = D1. We can now rewrite,

DT (λT+1
1 , . . . ,λT+1

T ) =
T∑
t=1

∆t +D0(λ1
1, . . . ,λ

1
T ) ≥

T∑
t=1

∆t , (3.21)
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where the last inequality follows from the assumptions, minw∈S f(w) ≥ 0 and minw∈S gt(w) ≥ 0.
Lemma 12 in Section A.3 tells us that conjugate functions preserve order. If a function f1 is always
greater than a function f2 then f?1 ≤ f?2 . Combining this fact with the assumption ct ≥ ct−1 implies
that for any θ, ct f?(−θ/ct) ≤ ct−1 f

?(−θ/ct−1) and thus the definition of D yields that

Dt(λ1, . . . ,λT ) ≥ Dt−1(λ1, . . . ,λT ) .

Therefore,
∆t ≥ Dt(λt+1

1 , . . . ,λt+1
T )−Dt(λt1, . . . ,λtT ) .

As in the proof of Lemma 1, using the definition of wt, Lemma 15 and Lemma 11 we get that

∆t ≥ gt(wt)−
1

2ct
‖λ′t‖2? .

We conclude our proof by summing over t and combining with Eq. (3.21) and Eq. (3.20).

Choosing for example ct ∝
√
t and using the inequality

∑T
t=1 1/

√
t ≤ 2

√
T we obtain the

following:

Corollary 2 Under the same conditions of Lemma 2. Assume that there exists a constant L such
that for all t, the function gt is

√
2L-Lipschitz with respect to the norm ‖ ·‖?. Let U > 0 be a scalar

and for all t set ct =
√
t L/U . Then, for all u ∈ S we have,

R(u, T ) ≤ 2
(
f(u)/

√
U +

√
U
) √

LT .

Furthermore, if f(u) ≤ U then R(u, T ) ≤ 4
√
LU T .

The above corollary assumes that the Lipschitz constant L is known in advance. In some situations,
the Lipschitz constant of each function gt is known only at the beginning of round t (although
the function itself is only revealed at the end of round t). This will be the case for example in
online learning with the hinge-loss, where the Lipschitz constant depends on the instance whereas
the function gt also depends on the unknown label. The following corollary gives an improved
parameter selection for this case.

Corollary 3 Under the same conditions of Lemma 2. Assume that for all t, the function gt is
√

2Lt-
Lipschitz with respect to the norm ‖ · ‖?, where Lt is known to the algorithm at the beginning of
round t. Denote L = maxt Lt. Let U > 0 be a scalar and for all t set ct =

√
t maxi≤t Lt/U .
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Then, for all u ∈ S we have,

R(u, T ) ≤ 2
(
f(u)/

√
U +

√
U
) √

LT .

Furthermore, if f(u) ≤ U then R(u, T ) ≤ 4
√
LU T .

Next, we turn to deriving a regret bound analogous to the bound in Theorem 1, without assuming
prior knowledge of the parameter U2. We first need the following technical lemma.

Lemma 3 Let 0 = a0 ≤ a1 ≤ . . . ≤ aT be a sequence of scalars and denoteA = maxt(at−at−1).
Then, for any β ≥ 1 we have

T∑
t=1

at − at−1√
β + at−1

≤ 2
√

1 +A/β (
√
β + aT −

√
β) .

Proof Using Holder inequality, we get that

T∑
t=1

at − at−1√
β + at−1

=
T∑
t=1

at − at−1√
β + at

√
β + at
β + at−1

≤

(
max
t

√
β + at
β + at−1

) (
T∑
t=1

at − at−1√
β + at

)
.

Next, we note that

T∑
t=1

at − at−1√
β + at

≤
∫ aT

0

1√
β + x

dx = 2(
√
β + aT −

√
β + 0) .

Finally, for all t we have

β + at
β + at−1

= 1 +
at − at−1

β + at−1
≤ 1 +

at − at−1

β
≤ 1 +A/β .

Combining the above three equations we conclude our proof.

Based on the above lemma, we are ready to provide a regret bound for self-bounded functions.

Theorem 2 Under the same conditions of Lemma 2. Assume that there exists a constant L such
that for all t, the function gt is L-self-bounded with respect to the norm ‖ · ‖?. Let β1 ≥ 1 and
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β2 > 0 be two scalars, and for all t define

ct = β2

√
β1 +

∑
i<t

gi(wi) .

Denote G = 2
√

1 + maxt gt(wt)/β1. Then, for all u ∈ S we have,

R(u, T ) ≤
(
β2f(u) +

LG

β2

)( T∑
t=1

gt(u) + β1

) 1
2

+
(
β2f(u) +

LG

β2

)2

.

Proof Combining the assumption that {gt} are L-self-bounded with Lemma 2 gives that

R(u, T ) ≤ cT f(u) + L
T∑
t=1

gt(wt)
ct

. (3.22)

Denote at =
∑

i≤t gi(wi) and note that at − at−1 = gt(wt). Using Lemma 3 and the definition of
ct we get that

T∑
t=1

gt(wt)
ct

≤ 2
β2

√
aT (1 + max

i
gi(wi)/β1) =

G

β2

√
aT ≤

G

β2

√
β1 + aT .

Combining the above with Eq. (3.22), using the fact that cT ≤ β2
√
β1 + aT , and rearranging terms

we obtain that

(β1 + aT )−
(
β2f(u) +

LG

β2

)√
β1 + aT −

(
T∑
t=1

gt(u) + β1

)
≤ 0 .

The above inequality holds only if (see Lemma 19 in Section A.5)

β1 + aT ≤
T∑
t=1

gt(u) + β1 +
(
β2f(u) +

LG

β2

)2

+
(
β2f(u) +

LG

β2

)√√√√ T∑
t=1

gt(u) + β1 .

Rearranging the above concludes our proof.

The regret bound in the above theorem depends on the variable G, which depends on the
maximal value of gt(wt). To ensure that gt(wt) is bounded, one can restrict the set S so that
maxw∈S gt(w) will be bounded. In this case, we can set β1 to be maxt maxw∈S gt(w), which
gives that G ≤ 2

√
2, and we obtain the following corollary.



CHAPTER 3. LOW REGRET & DUALITY 31

Corollary 4 Under the same conditions of Theorem 2. Assume that for all t maxw∈S gt(w) ≤ β1

and that maxw∈S f(w) ≤ U . Set β2 = 8
1
4

√
L/U . Then,

R(u, T ) ≤ 3.4
√
LU

(
T∑
t=1

gt(u) + β1

) 1
2

+ 11.4LU .

3.6 Tightness of regret bounds

In the previous sections we presented algorithmic frameworks for online convex programming with
regret bounds that depend on

√
T and on the complexity of the competing vector as measured by

f(u). In this section we show that without imposing additional conditions our bounds are tight, in
a sense that is articulated below.

First, we study the dependence of the regret bounds on
√
T .

Theorem 3 For any online convex programming algorithm, there exists a sequence of 1-Lipschitz
convex functions of length T such that the regret of the algorithm on this sequence with respect to a
vector u with ‖u‖2 ≤ 1 is Ω(

√
T ).

Proof The proof is based on the probabilistic method [2]. Let S = [−1, 1] and f(w) = 1
2w

2. We
clearly have that f(w) ≤ 1/2 for all w ∈ S. Consider a sequence of linear functions gt(w) = σtw

where σ ∈ {+1,−1}. Note that gt is 1-Lipschitz for all t. Suppose that the sequence σ1, . . . , σT is
chosen in advance, independently with equal probability. Since wt only depends on σ1, . . . , σt−1 it
is independent of σt. Thus, Eσt [gt(wt) |σ1, . . . , σt−1] = 0. On the other hand, for any σ1, . . . , σT

we have that

min
u∈S

T∑
t=1

gt(u) ≤ −

∣∣∣∣∣
T∑
t=1

σt

∣∣∣∣∣ .
Therefore,

Eσ1,...,σT [R(u, T )] = Eσ1,...,σT [
∑
t

gt(wt)]− Eσ1,...,σT [min
u

∑
t

gt(u)]

≥ 0 + Eσ1,...,σT

[
|
∑
t

σt|

]
.

The right-hand side above is the expected distance after T steps of a random walk and is thus equal
approximately to

√
2T/π = Ω(

√
T ) (see for example [88]). Our proof is concluded by noting that

if the expected value of the regret is greater than Ω(
√
T ), then there must exist at least one specific

sequence for which the regret is greater than Ω(
√
T ).
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Next, we study the dependence on the complexity function f(w).

Theorem 4 For any online convex programming algorithm, there exists a strongly convex function
f with respect to a norm ‖ · ‖, a sequence of 1-Lipschitz convex functions with respect to ‖ · ‖?, and
a vector u, such that the regret of the algorithm on this sequence is Ω(f(u)).

Proof Let S = RT and f(w) = 1
2‖w‖

2
2. Consider the sequence of functions in which

gt(w) = [1− yt〈w, et〉]+ where yt ∈ {+1,−1} and et is the tth vector of the standard base,
namely, et,i = 0 for all i 6= t and et,t = 1. Note that gt(w) is 1-Lipschitz with respect to the
Euclidean norm. Consider any online learning algorithm. If on round t we have wt,i ≥ 0 then
we set yt = −1 and otherwise we set yt = 1. Thus, gt(wt) ≥ 1. On the other hand, the vector
u = (y1, . . . , yT ) satisfies f(u) ≤ T/2 and gt(u) = 0 for all t. Thus, R(u, T ) ≥ T = Ω(f(u)).

3.7 Bibliographic notes

We presented a new framework for designing and analyzing algorithms for online convex program-
ming. The usage of duality for the design of online algorithms was first proposed in [106, 107],
in the context of binary classification with the hinge-loss. The generalization of the framework to
online convex programming is based on [104]. The self-tuning version we presented in Section 3.5
is new. Specific self-tuning online algorithms were originally proposed by [5]. An alternative way is
to use the so called “doubling trick” [21]. The idea of automatically tuning the parameters was also
used in the context of prediction suffix trees [39] and in online learning with kernels on a budget
[41].

There is a voluminous amount of work on unifying approaches for deriving online learning
algorithms. We refer the reader to [62, 76, 20]. By generalizing our framework beyond online
learning, we can automatically utilize well known online learning algorithms, such as the EG and
p-norm algorithms [76, 62], to the setting of online convex programming.

Zinkevich [123] presented several specific algorithms for online convex programming. His
algorithms can be derived as special cases of our algorithmic framework by using the complexity
function f(w) = 1

2‖w‖
2. Gordon [61] described another algorithmic framework for online convex

programming that is closely related to the potential based algorithms described by Cesa-Bianchi
and Lugosi [19]. Our work generalizes some of the theorems in [61] while providing a somewhat
simpler analysis.

The generality of our approach enables us to analyze boosting algorithms based on the
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framework (see Chapter 6). Many authors have derived unifying frameworks for boosting algo-
rithms [86, 56, 24]. Nonetheless, our general framework and the connection between online convex
programming and the Fenchel duality highlights an interesting perspective on both online learning
and boosting. We believe that this viewpoint has the potential of yielding new algorithms in both
domains.

The analysis of our algorithmic framework is derived by using the increase in the dual for assess-
ing the progress of the algorithm. Concretely, the regret bounds above were derived by reasoning
about the increase in the dual due to the loss suffered by the online algorithm. Most if not all previ-
ous works have analyzed online algorithms by measuring the progress of the algorithm based on the
correlation or distance between wt and a fixed (yet unknown to the online algorithm) competitor,
denoted here by u. For example, Novikoff’s analysis of the Perceptron [91] is based on the inner
product between the competitor and the current predicted vector, ∆t = 〈wt,u〉 − 〈wt+1,u〉. An-
other progress measure, which has been extensively used in previous analyses of online algorithms,
is based on the squared Euclidean distance, ∆t = ‖wt − u‖2 − ‖wt+1 − u‖2 (see for example
[6, 58, 75, 76, 123] and the references therein). In [107] we show that we can represent these previ-
ous definitions of progress as an instantaneous difference of dual objective values by modifying the
primal problem.

The probabilistic arguments we use in the proof of Theorem 3, showing the lower bound Ω(
√
T )

for the regret of online convex programming, is based on [66]. The construction we used in the proof
of Theorem 4 is widely known for proving the tightness of the Perceptron’s mistake bound.



Chapter 4

Logarithmic Regret for Strongly Convex
Functions

In Chapter 3 we presented a general algorithmic framework for online convex programming and
analyzed its regret. Specifically, we showed that under some mild conditions, the regret is bounded
by O(

√
T ). Moreover, in Section 3.6 we showed that this dependence is tight. In this chapter we

introduce an algorithmic framework that attains logarithmic regret, assuming that each function gt
is strongly convex. We start this section with a definition of a generalized notion of strong convexity.
Next, we present our algorithmic framework and analyze its regret.

4.1 Generalized Strong Convexity

We have already used the notion of strong convexity with respect to a norm in Chapter 3 for the
complexity function f . We now generalize the notion of strong convexity. First, we recall the
definition of Bregman divergence. Let f be a differentiable convex function over a set S. Then, f
induces the following Bregman divergence over S:

Bf (u‖v) = f(u)− f(v)− 〈u− v,∇f(v)〉 . (4.1)

For example, the function f(v) = 1
2‖v‖

2
2 yields the divergence Bf (u‖v) = 1

2‖u− v‖22. Since f is
convex, the Bregman divergence is non-negative.

We recall that a function f is strongly convex over S with respect to a norm ‖ · ‖ if

∀u,v ∈ S, ∀λ ∈ ∂f(v), f(u)− f(v)− 〈u− v,λ〉 ≥ ‖u− v‖2

2
.

34
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PARAMETERS: A function f : S → R and a scalar σ > 0
INITIALIZE: w1 ∈ S
FOR t = 1, 2, . . . , T

Predict wt

Receive a function gt
Choose λt ∈ ∂gt(wt)
Set ηt = 1/(σ t)
Set wt+1 = ∇f? (∇f(wt)− ηtλt)

Figure 4.1: An algorithmic framework for online strongly convex programming.

(See Section A.4.) A direct generalization of the above definition is achieved by replacing the
squared norm at the right-hand side of the inequality with a Bregman divergence.

Definition 3 A convex function g is strongly convex over S with respect to a convex and differen-
tiable function f if

∀u,v ∈ S, ∀λ ∈ ∂g(v), g(u)− g(v)− 〈u− v,λ〉 ≥ Bf (u‖v) .

The following lemma provides a sufficient condition for strong convexity of g w.r.t. f .

Lemma 4 Assume that f is a differentiable and convex function and let g = σf + h where σ > 0
and h is also a convex function. Then, g is strongly convex w.r.t. the function σ f .

Proof Let v,u ∈ S and choose a vector λ ∈ ∂g(v). Since ∂g(v) = ∂h(v) + ∂(σf)(v) (see
Section A.2), we have that there exists λ1 ∈ ∂h(v) s.t. λ = λ1 + σ∇f(v). Thus,

g(u)− g(v)− 〈u− v,λ〉 = B(σf)(u‖v) + h(u)− h(v)− 〈λ1,u− v〉 ≥ B(σf)(u‖v) ,

where the last inequality follows from the convexity of h.

4.2 Algorithmic Framework

In Figure 4.1 we describe our algorithmic framework for online strongly convex programming.
Before we turn to the analysis of the algorithm, let us first describe a couple of specific examples.
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Example 1 Let S be a closed convex set and let f(w) = 1
2‖w‖

2
2. The conjugate of f is,

f?(θ) = max
w∈S

〈w,θ〉 − 1
2
‖w‖22 =

1
2
‖θ‖22 −min

w∈S

1
2
‖w − θ‖22 .

Based on Lemma 15 we also obtain that∇f?(θ) is the projection of θ onto S, that is,

∇f?(θ) = argmin
w∈S

‖w − θ‖22 .

Therefore, the update of our algorithm can be written as

wt+1 = argmin
w∈S

‖w − (wt − ηtλt)‖22 .

When gt is differentiable, this specific update procedure was originally proposed in [66]. Note that
when S is the n’th dimensional ball of radius ρ, S = {w | ‖w‖ ≤ ρ}, the projection of θ on S
amounts to scaling θ by min{1, ρ

‖θ‖}.

Example 2 Let S be the n’th dimensional probability simplex,

S = {w|
n∑
j=1

wj = 1 , ∀j : wj ≥ 0} ,

and let f(w) =
∑n

j=1wj log(wj) + log(n). The conjugate of f is,

f?(θ) = max
w∈S

〈w,θ〉 −
n∑
j=1

wj log(wj)− log(n)

= − log(n)−min
w∈S

n∑
j=1

wj log
(wj
eθj

)
.

Using again Lemma 15 we obtain that ∇f?(θ) is the (entropic) projection of θ onto the simplex S,
that is,

∇f?(θ) = argmin
w∈S

n∑
j=1

wj log
(wj
eθj

)
.

Algebraic manipulations yield that the update wt+1 = ∇f? (∇f(wt)− ηtλt), when ∇f?(θ) is of
the above form, can be written as follows,

wt+1,j =
wt,je

−ηtλt,j

Zt
where Zt =

n∑
r=1

wt,re
−ηtλt,r .
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In this case we recovered a version of the multiplicative update [75, 85, 82].

4.3 Analysis

We start with the following lemma.

Lemma 5 Let f be a strongly convex function w.r.t. a norm ‖ · ‖ over S and u be an arbitrary
vector in S. Then,

〈wt − u,λt〉 ≤
Bf (u‖wt)−Bf (u‖wt+1)

ηt
+ ηt
‖λt‖2?

2
.

Proof Denote ∆t = Bf (u‖wt)−Bf (u‖wt+1). Expanding the definition of Bf we have that

∆t = 〈u−wt+1,∇f(wt+1)−∇f(wt)〉+Bf (wt+1‖wt) .

Since f is strongly convex w.r.t. ‖ · ‖ we have that

∆t ≥ 〈u−wt+1,∇f(wt+1)−∇f(wt)〉+
1
2
‖wt+1 −wt‖2 . (4.2)

Let us denote by θt the term ∇f(wt) − ηtλt. Using the last part of Lemma 15 with θ set to be θt
and rewriting∇f?(θt) as wt+1 (see Figure 4.1) we get that,

0 ≥ 〈u−∇f?(θt),θt −∇f(∇f?(θt))〉

= 〈u−wt+1,θt −∇f(wt+1)〉

= 〈u−wt+1,∇f(wt)− ηtλt −∇f(wt+1)〉 .

Rearranging terms we we obtain that

〈u−wt+1,∇f(wt+1)−∇f(wt)〉 ≥ ηt〈wt+1 − u,λt〉 .

Combining the above with Eq. (4.2) gives that

∆t ≥ ηt〈wt+1 − u,λt〉+
1
2
‖wt+1 −wt‖2

= ηt〈wt − u,λt〉 − 〈wt+1 −wt, ηtλt〉+
1
2
‖wt+1 −wt‖2 .
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Applying the inequality

|〈v,θ〉| ≤ ‖v‖ ‖θ‖? =
1
2
‖v‖2 +

1
2
‖θ‖2? −

1
2

(‖v‖ − ‖θ‖?)2 ≤ 1
2
‖v‖2 +

1
2
‖θ‖2? ,

which holds for all v and θ, we obtain that

∆t ≥ ηt〈wt − u,λt〉 −
1
2
‖wt+1 −wt‖2 −

1
2
‖ηtλt‖2? +

1
2
‖wt+1 −wt‖2

= ηt〈wt − u,λt〉 −
η2
t

2
‖λt‖2? .

Theorem 5 Let f be a strongly convex function w.r.t. a norm ‖ · ‖ over S. Let σ > 0 and assume
that for all t, 1

σgt is a strongly convex function w.r.t. f . Additionally, let L be a scalar such that
1
2‖λt‖

2
? ≤ L for all t. Then, the following bound holds for all T ≥ 1,

T∑
t=1

gt(wt)−
T∑
t=1

gt(u) ≤ L

σ
(1 + log(T )) .

Proof From Lemma 5 we have that

〈wt − u,λt〉 ≤
Bf (u‖wt)−Bf (u‖wt+1)

ηt
+ ηt
‖λt‖2?

2
. (4.3)

Since 1
σgt is strongly convex w.r.t. f we can bound the left-hand side of the above inequality as

follows,
〈wt − u,λt〉 ≥ gt(wt)− gt(u) + σBf (u‖wt) . (4.4)

Combining Eq. (4.3) with Eq. (4.4), and using the assumption 1
2‖λt‖

2
? ≤ L we get that

gt(wt)− gt(u) ≤
(

1
ηt
− σ

)
Bf (u‖wt)−

1
ηt
Bf (u‖wt+1) + ηtL .

Summing over t we obtain

T∑
t=1

(gt(wt)− gt(u)) ≤
(

1
η1
− σ

)
Bf (u‖w1)−

(
1
ηT

)
Bf (u‖wT+1)+

T∑
t=2

Bf (u‖wt)
(

1
ηt
− 1
ηt−1

− σ
)

+ L

T∑
t=1

ηt .
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Plugging the value of ηt into the above inequality, we obtain that the first and third summands on
the right-hand side of the inequality vanish and that the second summand is negative. We therefore
get,

T∑
t=1

(gt(wt)− gt(u)) ≤ L

T∑
t=1

ηt =
L

σ

T∑
t=1

1
t
≤ L

σ
(log(T ) + 1) .

4.4 Bibliographic Notes

Hazan et al. [66] introduced the novel idea of using strong convexity assumptions for achieving
logarithmic regret. They also described three algorithms for strongly convex functions and our
algorithmic framework generalizes their first algorithm.
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Chapter 5

Derived Algorithms

In chapter 3 we introduced a general framework for online convex programming based on the notion
of duality. In this chapter we derive various online learning algorithms from the general framework.
Algorithms that derive from the framework may vary in one of three ways. First, we can use
different complexity functions, f(w), which induces different mappings between the primal and
dual variables. In Section 5.1 we demonstrate the effect of f(w) by deriving the family of quasi-
additive algorithms [62] from the framework. We show that our analysis produces the best known
mistake bounds for several known quasi-additive algorithms such as the Perceptron, Winnow, and
p-norm algorithms. We also use our self-tuning technique from Section 3.5 to derive a self-tuned
variant of the Winnow algorithm for binary classification problems. Second, different algorithms
may use different update schemes of the dual variables. We illustrate this fact in Section 5.2 by
deriving novel online learning algorithms based on a hierarchy of dual ascending methods. The
third way in which different algorithms may vary is the form the functions {gt} take. In Section 5.3
we exemplify this by deriving online learning algorithms for complex prediction problems.

5.1 Quasi-additive Online Classification Algorithms

In this section we analyze the family of quasi-additive online algorithms described in [62, 75, 76]
using the algorithmic framework given in chapter 3. The family of quasi-additive algorithms in-
cludes several known algorithms such as the Perceptron algorithm [95], Balanced-Winnow [62],
and the family of p-norm algorithms [58]. Quasi-additive algorithms are based on a link function,
denoted Link : Rn → Rn, and are summarized in Figure 5.1.

We now derive the quasi-additive family of algorithms from our algorithmic framework given
in Figure 3.1. To do so, we choose a complexity function1 f : S → R so that Link ≡ ∇f?. Denote

1Any strongly convex function over S with respect to some norm can be a complexity function (see Chapter 3).

41
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PARAMETERS: Link function Link : Rn → Rn

Learning rate c > 0
INITIALIZE: θ1 = 0
FOR t = 1, 2, . . . , T

Set wt = Link(θt)
Receive an instance vector xt
Predict ŷt = sign(〈wt,xt〉)
Receive the correct label yt
IF ŷt 6= yt
θt+1 = θt + 1

c ytxt
ELSE

θt+1 = θt

Linki(θ)

Perceptron θi

Winnow exp(θi)

p-norm
sign(θi) |θi|p−1

‖θ‖p−2
p

Figure 5.1: Left: The Quasi-Additive Family of Online Learning Algorithms for Binary Classifica-
tion. Right: Several known members of the quasi-additive family.

M = {t ∈ [T ] : ŷt 6= yt} to be the set of rounds in which the algorithm makes a prediction mistake.
Since the algorithm does not change its vector whenever t /∈ M we can simply ignore the rounds
not inM (see the discussion in Section 2.3). For a round t ∈M, we set

gt(w) = [γ − yt〈wt,xt〉]+ , (5.1)

where [a]+ = max{0, a} is the hinge function and γ > 0 is a parameter. Finally, we use the update
scheme given in Eq. (3.11) to ascend the dual objective.

We now prove the equivalence between the above family of algorithms and the quasi-additive
family given in Figure 5.1. To do so, it suffices to show that for each round t, the vector θt defined
in Figure 5.1 equals to −1

c

∑T
i=1 λ

t
i. This claim can be proven using a simple inductive argument.

To simplify notation, denote vt =
∑T

i=1 λ
t
i. Initially, θ1 = −1

cv1 = 0 and the claim clearly holds.
Assume that θt = −1

cvt. If t /∈ M then θt+1 = θt and vt+1 = vt and the claim holds for the
round t+1 as well. Otherwise, the function gt is differentiable at wt and its gradient at wt is−ytxt.
Thus, vt+1 = vt− ytxt, which implies that θt+1 = θt + 1

cytxt = −1
c (vt− ytxt) = −1

cvt+1. This
concludes our inductive argument.

To analyze the quasi-additive family of algorithms we note that for t ∈M we have gt(wt) ≥ γ.
In addition, the functions gt(w) are clearly X-Lipschitz where X = maxt∈M ‖xt‖?. Thus, the
regret bound in Corollary 1 implies that

γ |M| ≤ c f(u) +
X2 |M|

2 c
+
∑
t∈|M|

gt(u) . (5.2)
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The above inequality can yield a mistake bound if we appropriately choose the parameters c and γ.
We now provide concrete analyses for specific complexity functions f . For each choice of f we

derive the specific form the update takes and briefly discuss the implications of the resulting mistake
bounds.

5.1.1 Perceptron

The Perceptron algorithm [95] can be derived from Figure 5.1 by setting Link to be the identity
function. This is equivalent to defining f(w) = 1

2‖w‖
2 over the domain S = Rn. To see this, we

note that the conjugate of f is f?(θ) = 1
2‖θ‖

2 (see Section A.3.1) and thus ∇f?(θ) = θ. The
update wt+1 = Link(θt+1) thus amounts to, wt+1 = wt + 1

c yt xt, which is a scaled version of the
well known Perceptron update.

To analyze the Perceptron algorithm we note that the function f(w) = 1
2‖w‖

2 is strongly
convex over S = Rn with respect to the Euclidean norm ‖ · ‖2. Since the Euclidean norm is
dual to itself we obtain that each function gt(w) defined in Eq. (5.1) is X-Lipschitz where X =
maxt∈M ‖xt‖2. Setting γ = 1 in Eq. (5.2) we obtain that

|M| ≤ c
‖u‖2

2
+
X2 |M|

2 c
+
∑
t∈|M|

[1− yt〈u,xt〉]+ . (5.3)

We next show that since we are free to choose the constant c, which acts here as a simple scaling,
the above yields the tightest mistake bound that is known for the Perceptron. Note that on round t,
the hypothesis of the Perceptron can be rewritten as,

wt =
1
c

∑
i∈M:i<t

yi xi .

The above form implies that the predictions of the Perceptron algorithm do not depend on the actual
value of c so long as c > 0. Therefore, we can choose c to be the minimizer of the bound given in
Eq. (5.3), namely,

c =
X

‖u‖
√
|M| .

Plugging this value back into Eq. (5.3) yields

|M| ≤ X ‖u‖
√
|M|+

∑
t∈|M|

[1− yt〈u,xt〉]+ .

Rearranging the above and using Lemma 19 in Section A.5 we obtain the following:
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Corollary 5 Let (x1, y1), . . . , (xm, ym) be a sequence of examples and assume that this sequence
is presented to the Perceptron algorithm. Let M = {t ∈ [T ] : ŷt 6= yt} be the set of rounds on
which the Perceptron predicts an incorrect label and define X = maxt∈M ‖xt‖2. Then, for all
u ∈ Rn we have

|M| ≤
∑
t∈M

[1− yt〈u,xt〉]+ +X ‖u‖
√∑
t∈M

[1− yt〈u,xt〉]+ + X2 ‖u‖2 .

Note that this bound is identical to the best known mistake bound for the Perceptron algorithm (see
for example [58]). However, our proof technique is vastly different. Furthermore, the new technique
also enables us to derive mistake and regret bounds for new algorithms such as the ones discussed
in Section 5.2.

5.1.2 Winnow

We now analyze a version of the Winnow algorithm called Balanced-Winnow [62]. This algorithm
is closely related to the Exponentiated-Gradient algorithm [75]. For brevity we refer to the algorithm
we analyze simply as Winnow. The Winnow algorithm can be derived from Figure 5.1 by setting
the i’th element of the link function to be

Linki(θ) = exp(θi) . (5.4)

The i’th element of wt+1 can thus be rewritten using a multiplicative update rule,

wt+1,i = exp
(
θt,i +

1
c
ytxt,i

)
= wt,i β

ytxt,i , (5.5)

where β = exp(1/c).
To analyze the Winnow algorithm we set f(w) to be

f(w) =
n∑
i=1

wi log
(
wi

1/n

)
,

and set the domain S to be the probabilistic simplex, S =
{
w ∈ Rn

+ :
∑n

i=1wi = 1
}

. The function
f is the relative entropy between the probability vector w and the uniform vector ( 1

n , . . . ,
1
n). The

relative entropy is non-negative and measures the entropic divergence between two distributions. It
attains a value of zero whenever the two vectors are equal. Therefore, the minimum value of f(w)
is zero and is attained for w = ( 1

n , . . . ,
1
n). The conjugate of f is the logarithm of the sum of
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exponentials (see Section A.3.1)

f?(θ) = log

(
1
n

n∑
i=1

exp(θi)

)
. (5.6)

The i’th element of the gradient of f? is,

exp(θi)∑n
j=1 exp(θj)

.

We note that although ∇f?(θ) does not equal Link(θ) as given in Eq. (5.4), we still have that
sign(〈∇f?(θ),x〉) = sign(〈Link(θ),x〉) for all x and θ. Therefore, the two algorithms produce
the same predictions and are thus equivalent.

The relative entropy is strongly convex over the probabilistic simplex with respect to the norm
‖ · ‖1 (see Lemma 16). The dual norm in this case is ‖ · ‖∞ and thus each function gt(w) defined in
Eq. (5.1) is X-Lipschitz with X = maxt∈M ‖xt‖∞. Next, we note that for all u ∈ S we have

f(u) =
n∑
i=1

ui log(ui) + log(n)
n∑
i=1

ui ≤ log(n) .

Plugging the above into Eq. (5.2) we obtain that

|M| ≤ 1
γ

c log(n) +
X2 |M|

2 c
+
∑
t∈|M|

[γ − yt〈u,xt〉]+

 . (5.7)

Had we known the value of |M| and X , we could have set c = X
√
|M|/(2 log(n)) and obtained

the inequality

|M| ≤ 1
γ

X√2 |M| log(n) +
∑
t∈|M|

[γ − yt〈u,xt〉]+

 ,

which yields the bound (see again Lemma 19)

|M| ≤ 1
γ

∑
t∈|M|

[γ − yt〈u,xt〉]+ +
X

γ3/2

√
2 log(n)

∑
t∈|M|

[γ − yt〈u,xt〉]+ +
2X2 log(n)

γ2
. (5.8)

Naturally, knowing the value of |M| prior to the run of the algorithm is not realistic. In the next
section we describe an automatic method for tuning the parameter c. The automatically tuned
algorithm achieves a bound similar to the bound in Eq. (5.8) without assuming any prior knowledge.
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To conclude this section, we describe the applicability of the Winnow algorithm to learning
Boolean r-of-k functions. Formally, a function h : {0, 1}n → {+1,−1} is an r-of-k Boolean
function if there exists k indices, i1, . . . , ik such that h(x) = 1 iff xi1 + . . . + xik ≥ r. That is, h
returns 1 if r out of the k bits i1, . . . , ik are 1. Otherwise, h returns −1. Let us now show that h(x)
can be rewritten as sign(〈u,x〉) for some vector u. For simplicity, assume that the last element of x
is always −1 (if this is not the case, we can add another element to x). Let u be defined as follows

up =



1

r+k−1
2

if ∃j ∈ [k] : p = ij

r−1
2

r+k−1
2

if p = n

0 otherwise

.

Clearly, u ∈ S. In addition, setting γ = 1/2
r+k−1/2 we get that if xi1 + . . .+ xik ≥ r than 〈u,x〉 ≥ γ

and otherwise 〈u,x〉 ≤ −γ. The mistake bound in Eq. (5.8) therefore gives that

|M| ≤ 2 log(n)
γ2

= 8 (r + k − 1/2)2 log(n) .

The above mistake bound is better than the mistake bound for the Perceptron algorithm given in
Corollary 5 since the latter grows linearly with n.

5.1.3 Self-tuned Winnow

We now describe an adaptation of the Winnow algorithm in which the parameter c is automatically
tuned. Specifically, LetMt = {i < t : ŷi 6= yi} be the set of rounds on which the algorithm errs
up until round t. We also define Xt = maxi≤t ‖xi‖∞. We set the learning rate parameter to be

ct = Xt

√
(|Mt|+ 1)/ log(n) .

A summary of the self-tuned variant of the Winnow algorithm is given in Figure 5.2.
We now analyze the self-tuned Winnow algorithm given in Figure 5.2. Based on Lemma 2, and

using the facts that f(u) ≤ log(n) and gt(w) is ‖xt‖∞-Lipschitz with respect to the `∞ norm we
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INITIALIZE: θ1 = 0, X0 = 0, M1 = 0
FOR t = 1, 2, . . . , T

Receive an instance vector xt
Set Xt = max{‖xt‖∞, Xt−1}
ct = Xt

√
(Mt + 1)/ log(n)

Set wt,i = exp(θt,i/ct)
Predict ŷt = sign(〈wt,xt〉)
Receive the correct label yt
IF ŷt 6= yt
θt+1 = θt + ytxt
Mt+1 = Mt + 1

ELSE

θt+1 = θt
Mt+1 = Mt

Figure 5.2: A self-tuned variant of the Winnow algorithm for binary classification.

obtain that

∑
t∈M

gt(wt)−
∑
t∈M

gt(u) ≤ cT f(u) +
1
2

∑
t∈M

‖xt‖2∞
ct

≤ XT

√
|M| log(n) +

√
log(n)

2

|M|∑
i=1

Xt√
i

≤ XT

√
|M| log(n) +

XT

√
log(n)
2

|M|∑
i=1

1√
i

≤ 2XT

√
|M| log(n) .

Combining the above with the fact that for t ∈ M we have gt(wt) ≥ γ and and using Lemma 19
we obtain the following:

Corollary 6 Let (x1, y1), . . . , (xm, ym) be a sequence of examples and assume that this sequence
is presented to the self-tuned Winnow algorithm given in Figure 5.2. Let M = {t ∈ [T ] :
ŷt 6= yt} be the set of rounds on which the algorithm predicts an incorrect label and define
X = maxt∈M ‖xt‖∞. Let S = {u ∈ Rn

+ :
∑

ui = 1}. Then, for all u ∈ S and γ > 0 we
have

|M| ≤ 1
γ

∑
t∈|M|

[γ − yt〈u,xt〉]+ +
2X
γ3/2

√
log(n)

∑
t∈|M|

[γ − yt〈u,xt〉]+ +
4X2 log(n)

γ2
.
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5.1.4 p-norm algorithms

We conclude this section with the analysis of the family of p-norm algorithms [58, 62]. This family
can be viewed as a bridge between the Perceptron algorithm and the Winnow algorithm. As we
show in the sequel, the Perceptron algorithm is a special case of a p-norm algorithm, obtained by
setting p = 2, whereas the Winnow algorithm can be approximated by setting p to a large number.
The family of p-norm algorithms can be derived from Figure 5.1 by setting the i’th element of the
link function to be

Linki(θ) =
sign(θi) |θi|p−1

‖θ‖p−2
p

. (5.9)

To analyze any p-norm algorithm we assume that p ≥ 2 and let q be (1 − 1/p)−1. Thus,
1
p + 1

q = 1 and the norm ‖ · ‖p is dual to the norm ‖ · ‖q. Define,

f(w) =
1

2(q − 1)
‖w‖2q ,

and let S = Rn. The assumption p ≥ 2 implies that q ∈ (1, 2] and thus the function f(w) is
strongly convex with respect to the norm ‖ · ‖q (see Example 5 in Section A.4). The conjugate
function of f in this case is f?(θ) = 1

2(p−1)‖θ‖
2
p (see Section A.3.1) and its gradient ∇f? equals

the link function given in Eq. (5.9) divided by p− 1. Setting γ = 1 in Eq. (5.2) we obtain that

|M| ≤ c

2(q − 1)
‖u‖2q +

X2 |M|
2 c

+
∑
t∈|M|

gt(u) , (5.10)

where X = maxt∈M ‖xt‖p.
We next show that the predictions of the p-norm algorithm do not depend on the actual value of

c as long as c > 0. Recall that θt for the update of the family of quasi-additive algorithms can be
written as

θt =
1
c

∑
i∈M:i<t

yi xi .

Denote by v =
∑

i∈M:i<t yi xi. Clearly, this vector does not depend on c. Since hypothesis wt is
defined from θt as given by Eq. (5.9) we can rewrite the j’th component of wt as,

wt,j =
sign(vj) |vj/c|p−1

‖v/c‖p−2
p

=
1
c

sign(vj) |vj |p−1

‖v‖p−2
p

.

We have therefore shown that the predictions of the algorithm do not depend on the specific value
of c as long as c > 0, so we are free to choose c so as to minimize the right-hand side of Eq. (5.10).
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Specifically, plugging the value

c = X
√
|M| (q − 1)/‖u‖q

into Eq. (5.10) we obtain that

|M| ≤ 1√
q − 1

X ‖u‖q
√
|M|+

∑
t∈|M|

gt(u) .

Rearranging the above, using the equality 1
q−1 = p− 1, and using Lemma 19 yield the following:

Corollary 7 Let (x1, y1), . . . , (xm, ym) be a sequence of examples and assume that this sequence
is presented to a p-norm algorithm with p ≥ 2. LetM = {t ∈ [T ] : ŷt 6= yt} be the set of rounds
on which the algorithm predicts an incorrect label and define X = maxt∈M ‖xt‖p. Then, for all
u ∈ Rn we have

|M| ≤
∑
t∈M

[1− yt〈u,xt〉]+ +X ‖u‖q
√

(p− 1)
∑
t∈M

[1− yt〈u,xt〉]+ + (p− 1)X2 ‖u‖2q ,

where q = (1− 1/p)−1.

5.2 Deriving new online updates based on aggressive dual ascending
procedures

In the previous section we described the family of quasi-additive online learning algorithms. The al-
gorithms are based on the simple update procedure defined in Eq. (3.11) that leads to a conservative
increase of the dual objective since we modify a single dual vector by setting it to a sub-gradient of
gt(wt). Furthermore, such an update takes place solely on rounds for which there was a prediction
mistake (t ∈M). Algorithms that update their hypotheses only on erroneous rounds are also called
conservative. In this section we describe broader and, in practice, more powerful update procedures.
The motivation for the new algorithms is as follows. Intuitively, update schemes that yield larger
increases of the dual objective value on each online round are likely to “consume” more of the upper
bound on the total possible increase in the dual as set by the minimal primal value. Thus, they are
in practice likely to suffer a smaller number of mistakes.

Building on the exposition provided in Section 3.3 we cast the online learning problem as the
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task of incrementally increasing the dual objective function

D(λ1, . . . ,λT ) = − cf?
(
−1
c

T∑
t=1

λt

)
−

T∑
t=1

g?t (λt) . (5.11)

To simplify our derivation, we focus on the problem of binary classification with the hinge-loss.
Formally, let (xt, yt) ∈ Rn × {±1} be the tth classification example. We set

gt(w) = [γ − yt〈w,xt〉]+ ,

where γ > 0 is a margin parameter, and [a]+ = max{0, a} is the hinge function. Based on
Section A.3, the Fenchel conjugate of gt(w) is the function

g?t (λ) =

−γ α if λ ∈ {−αytxt : α ∈ [0, 1]}

∞ otherwise

Since our goal is to maximize the dual objective, we can restrict ourselves to the case λt = −αtytxt,
where αt ∈ [0, 1], and rewrite the dual objective as a function of the vector α = (α1, . . . , αT )

D(α) = − cf?
(

1
c

T∑
t=1

αtytxt

)
+ γ

T∑
t=1

αt . (5.12)

The update scheme we described in Section 5.1 for increasing the dual can be rewritten as

αt+1
i =

1 t ∈M ∧ i = t

αti otherwise
. (5.13)

This update modifies α only on rounds on which there was a prediction mistake (t ∈ M). The
update is performed by setting the t’th element of α to 1 and keeping the rest of the variables
intact. This simple update can be enhanced in several ways. First, note that while setting αt+1

t to
1 guarantees a sufficient increase in the dual, there might be other values αt+1

t which would lead
to even larger increases of the dual. Furthermore, we can also update α on rounds on which the
prediction was correct so long as the loss is non-zero. Last, we need not restrict our update to the
t’th element of α. We can instead update several dual variables as long as their indices are in [t].

We now describe and briefly analyze a few new updates which increase the dual more aggres-
sively. The goal here is to illustrate the power of the approach and the list of new updates we outline
is by no means exhaustive.
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5.2.1 Aggressive quasi-additive online algorithms

We start by describing an update which sets αt+1
t adaptively, so as to maximize the dual objective

with respect to the tth element of α. This improved update constructs αt+1 as follows:

αt+1 = argmax
α

D(α) s.t. ∀i 6= t, αi = αti . (5.14)

We defer the problem of how to solve the optimization problem in the definition of the update to
Section 7.2. The update in Eq. (5.14) is equivalent to the update described in Eq. (3.12). Clearly,
this update satisfies Eq. (3.9). Assume that f(w) is strongly convex with respect to some norm ‖ · ‖
and let X = maxt ‖xt‖?. Applying Corollary 1 we get the regret bound

T∑
t=1

gt(wt)−
T∑
t=1

gt(u) ≤ c f(u) +
X2 T

2 c
.

The above yields a regret of O(
√
T ) provided that c = Θ(

√
T ). We can also use the self-tuned

version of our algorithmic framework given in Figure 3.2 and define the update to be

αt+1 = argmax
α

Dt(α) s.t. ∀i 6= t, αi = αti . (5.15)

The conditions of Corollary 3 hold for this update. Therefore, by setting

ct =

√
t

U
max
i≤t
‖xt‖?

we obtain that the following regret bound holds for any u ∈ {w : f(w) ≤ U}

T∑
t=1

gt(wt)−
T∑
t=1

gt(u) ≤ 2X
√
U T . (5.16)

Mistake Bounds The update given in Eq. (5.15) yields the regret bound given in Eq. (5.16). We
can derive a mistake bound from Eq. (5.16) by noting that the hinge-loss upper bounds γ |M|.
However, the resulting mistake bound depends on

√
T whereas the mistake bounds we derived in

Section 5.1 for the conservative quasi-additive algorithms may be better whenever there exists a
vector u that suffers a small cumulative loss over the sequence of examples. If our primary goal is
to bound the number of mistakes we can set the variables ct in a different way so as to obtain an
improved mistake bound for the update given in Eq. (5.15).
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PARAMETERS: A strongly convex function f w.r.t. a norm ‖ · ‖
A constant U > 0
Margin parameter γ > 0

INITIALIZE: ∀t, α1 = 0, X0 = 0, M0 = 0
FOR t = 1, 2, . . . , T

Receive an instance vector xt
Set Xt = max{‖xt‖∞, Xt−1}
Set ct = Xt

√
Mt−1 + 1 /

√
U

Set wt = ∇f?(− 1
ct

∑
i<t α

t
i yi xi)

Predict ŷt = sign(〈wt,xt〉)
Receive the correct label yt
Update αt+1 as in Eq. (5.15)
IF ŷt 6= yt
Mt+1 = Mt + 1

ELSE

Mt+1 = Mt

Figure 5.3: A self-tuned variant of the aggressive quasi-additive family of algorithms for binary
classification.

Specifically, we set

ct = Xt

√
|Mt−1|+ 1

U
, (5.17)

where Mt = M ∩ [t], Xt = maxi≤t ‖xt‖?, and U is a positive scalar. The following theorem
bounds the number of prediction mistakes the resulting algorithm makes.

Theorem 6 Let f be a strongly convex function over a set S with respect to a norm ‖ · ‖ and let
‖ · ‖? be the norm dual to ‖ · ‖. Assume that minw∈S f(w) ≥ 0. Let (x1, y1), . . . , (xT , yT ) be a
sequence of classification examples and assume that this sequence is presented to an algorithm of
the form given in Figure 5.3. Let M = {t ∈ [T ] : ŷt 6= yt} be the set of rounds on which the
algorithm predicts an incorrect label and define X = maxt∈[T ] ‖xt‖?. Then, for all u ∈ S that
satisfies f(u) ≤ U we have

|M| ≤ 1
γ

T∑
t=1

gt(u) +
2X
√
U

γ3/2

√√√√ T∑
t=1

gt(u) +
4X2 U

γ2
.

Proof Denote ∆t = Dt(αt+1) − Dt−1(αt). The main property of the update given in Eq. (5.15)
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that we utilize is that ∆t ≥ 0 for all t. Furthermore, if t ∈M then

∆t ≥ gt(wt)−
‖xt‖2?
2 ct

≥ γ − ‖xt‖
2
?

2 ct
≥ γ −

√
U Xt

2
√
|Mt|

≥ γ −
√
U X

2
√
|Mt|

.

Therefore,

D(αT+1) ≥
T∑
t=1

∆t ≥
∑
t∈M

∆t ≥ γ|M| −
√
U X

2

|M|∑
i=1

1√
i
≥ γ|M| −

√
U X

√
|M| .

Next, we upper bound D(αT+1). Without loss of generality, we assume that T ∈ M (otherwise,
we can simply ignore the last rounds). Therefore,

D(αT+1) ≤ cT f(u) +
T∑
t=1

gt(u) = X
√
|M|/U f(u) +

T∑
t=1

gt(u) ≤ X
√
U |M|+

T∑
t=1

gt(u) .

Combining the upper and lower bounds we obtain that

γ |M| − 2X
√
U |M| −

T∑
t=1

gt(u) ≤ 0 .

The bound in the theorem follows from the above inequality using Lemma 19.

Our focus thus far was on an update which modifies a single dual variable, albeit aggressively.
We now examine another implication of our analysis that suggests the modification of multiple dual
variables on each round. The simple argument presented below implies that this broader family of
updates also achieves the mistake and regret bounds above.

5.2.2 Updating multiple dual variables

The new update given in Eq. (5.15) is advantageous compared to the previous conservative update
given in Eq. (5.13) since in addition to the same increase in the dual on rounds with a prediction
mistake it is also guaranteed to increase the dual on the rest of the rounds. Yet both updates are
confined to the modification of a single dual variable on each round. We nonetheless can increase
the dual more dramatically by modifying multiple dual variables on each round. We now outline
two forms of updates that modify multiple dual variables on each round.

In the first update scheme we optimize the dual over a set of dual variables It ⊆ [t], which
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includes t. Given It, we set αt+1 to be

αt+1 = argmax
α∈[0,1]T

Dt(α) s.t. ∀i /∈ It, αi = αti . (5.18)

The increase in the dual due to this update is guaranteed to be at least as large as the increase due
to the update given in Eq. (5.15). Therefore, this more general update also achieves the regret and
mistake bounds discussed in the previous section.

Let us examine a few choices for It. Setting It = [t] for all t gives a regularized version of
the follow-the-leader algorithm, originally suggested by Hannan [63].2 This algorithm makes use
of all the examples that have been observed and thus is likely to make the largest increase in the
dual objective on each round. It does require however a full-blown optimization procedure. In
contrast, Eq. (5.18) can be solved analytically when we employ the smallest possible set, It = {t},
with f(w) = 1

2‖w‖
2 (see Section 7.2). This algorithm was described in [27] and belongs to a

family of Passive Aggressive algorithms. The mistake bound that we obtain as a by-product is
however superior to the one in [27]. Naturally, we can interpolate between the minimal and maximal
choices for It by setting the size of It to a predefined value k and choosing, say, the last k observed
examples as the elements of It. For k = 1 and k = 2 we can solve Eq. (5.18) analytically while
gaining modest increases in the dual. The full power of the update is unleashed for large values of
k. However, Eq. (5.18) cannot be solved analytically and requires the usage of numerical solvers
based on, for instance, interior point methods.

The second update scheme modifies multiple dual variables on each round as well, but it does
not require solving an optimization problem with multiple variables. Instead, we perform kt mini-
updates each of which focuses on a single variable from the set [t]. Formally, let i1, . . . , ikt be a
sequence of indices such that i1 = t and ij ∈ [t] for all j ∈ [kt]. We define a sequence of dual
solutions in a recursive manner as follows. We start by setting α̂0 = αt and then perform a sequence
of single variable updates of the form,

α̂j = argmax
α∈[0,1]T

Dt(α) s.t. ∀p 6= ij , α̂
j
p = α̂j−1

p .

Finally, we update αt+1 = α̂kt . In words, we first decide on an ordering of the dual variables and
incrementally increase the dual by fixing all the dual variables but the current one under consider-
ation. For this variable we find the optimal solution of the constrained dual. The first dual variable

2In contrast to follow-the-leader algorithms, our regularized version of the algorithm also takes the complexity of w
in the form of f(w) into account when constructing its predictors. Note that in general, follow-the-leader algorithms
may not attain a regret bound and some perturbation is needed. Our regularized version of follow-the-leader does yield a
regret bound without perturbation.
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we update is αt thus ensuring that the first step in the row of updates is identical to the aggressive
update given in Eq. (5.15). Since on each operation we can only increase the dual we immediately
conclude that the regret and mistake bounds discussed in the previous section hold for this compos-
ite update scheme as well. The main advantage of this update is its simplicity since each operation
involves optimization over a single variable, which can be solved analytically. The increase in the
dual due to this update is closely related to the so-called row action methods in optimization (see
for example [16]).

5.3 Complex Prediction Problems

Our focus in previous sections was mainly on the binary classification problem. The goal of this
section is to demonstrate the applicability of our algorithmic framework to deriving online learning
algorithms for various prediction problems. Recall that on each online round, the learner receives
a question, xt ∈ X , and is required to predict an answer for this question taken from a domain Y .
The prediction is based on a hypothesis hwt where wt is a parameter vector. After predicting an
answer, the learner receives the correct answer, yt ∈ Y , and suffers loss gt(wt) = `(hwt , (xt, yt)).
For each prediction problem, we define the domains X ,Y , the form the hypotheses take, and an
appropriate loss function.

5.3.1 Regression

In regression problems, the questions domain is X = Rn and the answers domain is Y = R. A
widely used hypothesis class is the set of linear regressors where hw(x) = 〈w,x〉. A common loss
function is the squared error defined as

`(hw, (x, y)) =
1
2

(hw(x)− y)2 =
1
2

(〈w,x〉 − y)2 .

This loss function is (2 ‖x‖2)-self-bounded with respect to any norm ‖ · ‖. To see this, we note that
` is differentiable with respect to w and its gradient is λ = (〈w,x〉 − y) x. Therefore,

‖λ‖2 = (〈w,x〉 − y)2 ‖x‖2 = `(hw, (x, y))(2 ‖x‖2) .

Thus, we can use Figure 3.1 and Figure 3.2 for deriving online learning algorithms for regression
with the above loss function and analyze them based on Theorem 1 and Theorem 2.

Another popular loss function for regression is the ε-insensitive absolute loss defined as

`(hw, (x, y)) = max{0, |〈w,x〉 − y| − ε} ,
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where ε is a predefined tolerance parameter. That is, we do not suffer loss for predictions in y ±
ε. Otherwise, we pay linearly for the miss-prediction. It is simple to show that the ε-insensitive
absolute loss is ‖x‖-Lipschitz with respect to any norm ‖·‖. Therefore, we can again use Figure 3.1
and Figure 3.2 to derive online learning algorithms for regression with the ε-insensitive loss function
and analyze them based on Corollary 1 and Corollary 3.

5.3.2 Multiclass Categorization

In multiclass categorization, the questions domain is an arbitrary set X and the answers domain is a
finite set of labels. For concreteness we assume that there are k different possible labels and denote
the set of all possible labels by Y = {1, . . . , k}.

To describe a hypothesis class for multiclass categorization we assume that we are provided
with a class dependent feature function φ : X × Y → Rd. That is, φ takes as input an instance x
and a possible label r ∈ Y and returns as output a feature vector in Rd. The hypotheses we use are
parameterized by a weight vector w ∈ Rd and are defined as follows:

hw(x) = argmax
r∈Y

〈w,φ(x, r)〉 .

After making its prediction, the algorithm receives the correct label yt ∈ Y . Similar to the setting
of binary classification, the primary goal of the online algorithm is to minimize the cumulative
number of prediction mistakes it makes along its run. Put another way, we would like to minimize
the cumulative 0 − 1 loss function, `0−1(hw, (x, y)) = [[hw(x) 6= y]]. Unfortunately, the 0 − 1
loss function is not convex so we could not apply our algorithmic framework to this loss function.
Instead, we follow the methodology described in Section 2.3 that we used for binary classification
and define the following convex upper bound for the 0− 1 loss function:

`(hw, (x, y) = max
r 6=y

[γ − 〈w,φ(x, y)− φ(x, r)〉]+ , (5.19)

where [a]+ = max{0, a} and γ > 0 is a margin parameter. The above definition generalizes the
definition of the hinge-loss for binary classification. In words, the function φ maps the instance x
into k vectors in Rd, each of which is associated with one of the labels in Y . Then, the parameter
vector w ∈ Rd maps points in Rd into the reals. After applying the above two mappings, we end
up with a single scalar for each label. The loss function given in Eq. (5.19) requires that the scalar
associated with the correct label is larger than the scalars associated with the rest of the labels by at
least the margin parameter γ.

To apply our algorithmic framework for the loss function given in Eq. (5.19) we note that a
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subgradient of the function gt(w) = `(hw, (x, y)) can be found as follows. Define

i = argmax
r 6=y

γ − 〈w,φ(x, y)− φ(x, r)〉 = argmax
r 6=y

〈w,φ(x, r)〉 .

Then, a subgradient of gt(w) at w is

λ =

φ(x, r)− φ(x, y) if gt(w) > 0

0 otherwise
.

In particular, the above implies that the function gt(w) isX-Lipschitz with respect to any norm ‖·‖,
whereX = maxr 6=y ‖φ(x, r)−φ(x, y)‖. Therefore, we can use Figure 3.1 and Figure 3.2 to derive
online learning algorithms for multiclass categorization and analyze them based on Corollary 1 and
Corollary 3.

5.3.3 Learning with Structured Output

A useful application of machine learning is learning with structured output. In this setting, the set
of possible labels are endowed with a predefined structure. Typically, the set of labels is very large
and the structure plays a key role in constructing efficient learning and inference procedures. No-
table examples of structured label sets are graphs (in particular trees) and strings [22, 3, 113, 115].
We now overview how our algorithmic frameworks described in Figure 3.1 and Figure 3.2 can be
adapted to structured output settings. For concreteness, we focus on an adaptation for string pre-
diction. Our derivation, however, can be easily mapped to other settings of learning with structured
output.

In string prediction problems we are provided with a predefined alphabet Σ = {1, . . . , k}. Each
input question is associated with an answer which is a string over Σ. For simplicity we assume that
the output string is of a fixed lengthm. Thus, on round t, the learning algorithm receives an instance
xt from an arbitrary domain X and then predicts an output string y′t ∈ Y where Y = Σm.

As in the multiclass categorization task, we assume that there exists a class dependent feature
function φ : X × Σm → Rd, which takes as its input an instance x and a string y and outputs a
feature vector in Rd. The hypotheses we use are parameterized by a weight vector w ∈ Rd and are
defined as follows

hw(x) = argmax
y∈Σm

〈w,φ(x,y)〉 . (5.20)

Calculating hw(x) in the general case may require as many as km evaluations of 〈w,φ(x,y)〉. This
problem becomes intractable as m becomes large. We must therefore impose some restrictions on
the feature representation φ that will enable us to find hw(x) efficiently. A possible restriction on
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the feature representation is to assume that each feature φj takes the form,

φj(x,y) = ψ0
j (y1,x) +

m∑
i=2

ψj(yi, yi−1,x) , (5.21)

where ψ0
j and ψj are any computable functions. This construction is analogous to imposing a first

order Markovian structure on the output string. This form paves the way for an efficient inference,
i.e. solving Eq. (5.20), using a dynamic programming procedure. Similar yet richer structures
such as dynamic Bayes nets can be imposed so long as the solution to Eq. (5.20) can be computed
efficiently.

Upon predicting, the algorithm receives the correct output string yt ∈ Σm that is associated
with xt. The learning algorithm is also provided with a cost function ρ : Σm × Σm → R+. The
value of ρ(y,y′) represents the cost associated with predicting the string y′ instead of the string y.
For example, ρ can be an edit distance between y and y′. The primary goal of the algorithm is to
minimize its cumulative cost

∑
t ρ(yt, hwt(xt)). In general, ρ is not necessarily a convex function

of w. To resolve this issue, we suggest two strategies.

Maximal loss function The first approach is to define the following generalization of the hinge-
loss as our loss function:

`(hw, (x,y) = max
y′ 6=y

[
ρ(y,y′)− 〈w,φ(x,y)− φ(x,y′)〉

]
+

. (5.22)

To apply our algorithmic framework for the loss function given in Eq. (5.22) we again note that a
subgradient of the function gt(w) = `(hw, (x, y)) is

λ =

φ(x, ŷ)− φ(x, y) if gt(w) > 0

0 otherwise
,

where
ŷ = argmax

y′ 6=y
ρ(y′,y)− 〈w,φ(x,y)− φ(x,y′)〉 . (5.23)

In particular, the above implies that the function gt(w) isX-Lipschitz with respect to any norm ‖·‖,
where X = maxy′ 6=y ‖φ(x,y′) − φ(x,y)‖. Therefore, we can use Figure 3.1 and Figure 3.2 to
derive online learning algorithms for structured output prediction problems and analyze them based
on Corollary 1 and Corollary 3.

The disadvantage of the above approach is that in order to apply it we must impose structural
restrictions on the function ρ since otherwise we cannot efficiently solve the optimization problem
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PARAMETERS: A constant U > 0 ; Cost function ρ : Σm × Σm → {0} ∪ [1,∞)
INITIALIZE: θ1 = 0 ; X0 = 0 ; M0 = 0
FOR t = 1, 2, . . . , T

Receive an instance xt
Predict y′t = arg maxy〈θt,φ(xt,y)〉
Receive correct target yt
IF ρ(yt,y′t) > 0

Set Mt = Mt−1 + 1
Set at = φ(xt,yt)− φ(xt,y′t)
Set Xt = max{‖at‖ , Xt−1}
Set ct = Xt

√
Mt/(2U)

Set αt = min{1 , [ctρ(yt,y′t)−〈θt,at〉]+
‖at‖2 }

Set θt+1 = θt + αt at
ELSE

Set Xt = Xt−1 ; ct = ct−1 ; θt+1 = θt

Figure 5.4: A self-tuned algorithm for learning with structured output when the range of the cost
function ρ is {0} ∪ [1,∞).

given in Eq. (5.23). For example, we can impose on ρ similar restrictions to the restrictions we
imposed on φ in Eq. (5.21). In this case, Eq. (5.23) can be solved efficiently using a dynamic
programming procedure. The second approach we discuss below lifts this restriction.

Prediction based loss function In our second approach we define the loss function on round t to
be

`(hw, (xt,yt) = [ρ(yt, ŷt)− 〈w,φ(xt,yt)− φ(xt, ŷt)〉]+ , (5.24)

where ŷt = hwt(xt). That is, the loss depends on the actual prediction the algorithm makes on
round t. While such a definition may seem unusual, note that in online convex programming, we
receive the loss function gt(w) only after we define wt and therefore the definition of gt(w) based
on wt does not pose any problem.

Next, note that a subgradient of gt(w) at wt is the zero vector if gt(wt) = 0 and otherwise λ =
φ(xt, ŷt)−φ(xt,yt). Thus, as opposed to the Maximal loss given in Eq. (5.22), the subgradient of
the prediction based loss can be calculated without imposing any restrictions on ρ.

The prediction based loss function given in Eq. (5.24) is X-Lipschitz with respect to any norm
‖·‖, whereX = ‖φ(xt, ŷt)−φ(xt,yt)‖. Therefore, we can use Figure 3.1 to derive online learning
algorithms for structured output prediction problems and analyze them based on Corollary 1. In
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particular, combining Corollary 1 with the inequalities

ρ(yt, ŷt) ≤ gt(wt) and gt(u) ≤ max
y′ 6=yt

[
ρ(yt,y′)− 〈u,φ(xt,yt)− φ(xt,y′t)〉

]
+
,

we obtain that

T∑
t=1

ρ(yt, ŷt) ≤
T∑
t=1

max
y′ 6=yt

[
ρ(yt,y′)− 〈u,φ(xt,yt)− φ(xt,y′t)〉

]
+

+ c f(u) +
X2 T

2 c
.

Setting c =
√
T we obtain a bound that grows asO(

√
T ). A similar bound can be obtained by using

the algorithmic framework given in Figure 3.2 and setting ct to be proportional to
√
t.

In some situations, the range of the function ρ is {0}∪[1,∞). For example, ρ can classify strings
as being reasonably correct (ρ(y,y′) = 0), slightly incorrect (ρ(y,y′) = 1), wrong (ρ(y,y′) = 2),
and grossly wrong (ρ(y,y′) = 3). In Figure 5.4 we describe an algorithm for this case. This
algorithm is derived from Figure 3.2 by setting f(w) = 1

2‖w‖
2
2 and using the update rule given in

Eq. (3.12). The assumption that ρ is either 0 or greater than 1 yields the following improved bound:

Theorem 7 Let (x1,y1), . . . , (xT ,yT ) be a sequence of classification examples and assume
that this sequence is presented to the algorithm given in Figure 5.4. Denote X =
maxt maxy′ 6=yt ‖φ(xt,y′)− φ(xt,yt)‖ and

Loss(u) =
T∑
t=1

max
y′ 6=yt

[
ρ(yt,y′)− 〈u,φ(xt,yt)− φ(xt,y′)〉

]
+

.

Then, for all u ∈ S that satisfies ‖u‖ ≤
√

2U we have

T∑
t=1

ρ(yt,y′t) ≤ Loss(u) +X
√

8U Loss(u) + 8X2 U .

Proof Let M = {t ∈ [T ] : ρ(yt,y′t) > 0}. Using Corollary 3 on the set of rounds in M with
the loss functions gt(w) = [ρ(yt,y′t)− 〈w,at〉]+ and the update rule given in Eq. (3.12) we obtain
that ∑

t∈M
gt(wt)−

∑
t∈M

gt(u) ≤ X
√

8U |M| .
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Next, note that for all t ∈M we have gt(wt) ≥ ρ(yt,y′t) ≥ 1. Therefore, the above yields

∑
t∈M

ρ(yt,y′t)−
∑
t∈M

gt(u) ≤ X

√
8U

∑
t∈M

ρ(yt,y′t) .

Using the facts that
∑

t∈M ρ(yt,y′t) =
∑T

t=1 ρ(yt,y′t) and that Loss(u) ≥
∑

t∈M gt(u) we get
that

T∑
t=1

ρ(yt,y′t)−X

√√√√8U
T∑
t=1

ρ(yt,y′t)− Loss(u) ≤ 0 .

Combining the above with Lemma 19 concludes our proof.

5.3.4 Instance Ranking

We now demonstrate the applicability of our algorithmic framework to the problem of instance
ranking. We analyze this setting since several prediction problems, including multilabel prediction,
and label ranking, can be cast as special cases of the instance ranking problem.

In instance ranking, the question is encoded by a matrix Xt of dimension kt×n and the answer
is a vector yt ∈ Rkt . The semantic of yt is as follows. For any pair (i, j), if yt,i > yt,j then we
say that yt ranks the i’th row of Xt ahead of the j’th row of Xt. We also interpret yt,i − yt,j as the
confidence in which the i’th row should be ranked ahead of the j’th row. For example, each row of
Xt encompasses a representation of a movie while yt,i is the movie’s rating, expressed as the number
of stars this movie has been awarded by a movie reviewer. The learner’s predictions are determined
based on a weight vector wt ∈ Rn and are defined to be ŷt = Xtwt. Finally, let us define two
loss functions for ranking; both generalize the hinge-loss used in binary classification problems.
Denote by Et the set {(i, j) : yt,i > yt,j}. For all (i, j) ∈ Et we define a pair-based hinge-loss
`i,j(w, (Xt,yt)) = [(yt,i − yt,j)− 〈w,xt,i − xt,j〉]+, where [a]+ = max{a, 0} and xt,i,xt,j are
respectively the i’th and j’th rows of Xt. Note that `i,j is zero if w ranks xt,i higher than xt,j with
sufficient confidence. Ideally, we would like `i,j(wt, (Xt,yt)) to be zero for all (i, j) ∈ Et. If this
is not the case, we are penalized according to some combination of the pair-based losses `i,j . For
example, we can set `(w, (Xt,yt)) to be the average over the pair losses,

`avg(w, (Xt,yt)) =
1
|Et|

∑
(i,j)∈Et

`i,j(w, (Xt,yt)) . (5.25)

This loss was suggested by several authors (see for example [121]). Another popular approach (see



CHAPTER 5. DERIVED ALGORITHMS 62

for example [28]) penalizes according to the maximal loss over the individual pairs,

`max(w, (Xt,yt)) = max
(i,j)∈Et

`i,j(w, (Xt,yt)) . (5.26)

We can apply our algorithmic frameworks given in Figure 3.1 and Figure 3.2 for ranking, using for
gt(w) either `avg(w, (Xt,yt)) or `max(w, (Xt,yt)). Denote by Xt the maximum over (i, j) ∈ Et
of ‖xt,i − xt,j‖2. Then, both gt(w) = `avg(w, (Xt,yt)) and gt(w) = `max(w, (Xt,yt)) are Xt-
Lipschitz with respect to the norm ‖ · ‖. Therefore, we can again use Corollary 1 and Corollary 3
for analyzing the resulting algorithms.

5.4 Bibliographic Notes

The Perceptron dates back to Rosenblatt [95]. An analysis for the separable case (i.e. there exists a
vector that achieves zero cumulative hinge-loss) appears in [1, 87]. Freund and Schapire [53] pre-
sented an analysis for the non-separable case with a squared-hinge-loss based on a reduction to the
separable case. An analysis for the inseparable case with the hinge-loss was given by Gentile [58].

Winnow was invented by Littlestone [82]. It is also closely related to the Weighted Majority
algorithm [85] and to the EG updates [75]. The p-norm algorithm was developed by Gentile and
Littlestone [59]. The class of quasi-additive algorithms was described in [62]. The analysis in [62]
is for the separable case. A similar derivation for regression problems was made by [6, 75, 76].
Kivinen and Warmuth analyzed their algorithms in the non-separable case using the regret and
mistake bound models. They use the terminology “relative loss bounds”.

Self-tuned algorithms for regression problems with the squared and absolute loss were proposed
in [5]. They also discuss the difference between self-tuning techniques and the “doubling trick”.

A special case of the aggressive quasi-additive update as given in Eq. (5.14), in the special
case where f(w) = 1

2‖w‖
2
2, was called a Passive-Aggressive update in [28]. The mistake bounds

presented here are tighter than the mistake bounds given in [28]. In addition, the self-tuned version
given in Figure 5.3 is new. The idea of updating multiple dual variables is also novel.

A simple reduction from online multiclass categorization to the binary classification setting
dates back to Kessler (see Duda and Hart’s book [44]). A more sophisticated algorithm, called
MIRA, was suggested by Crammer and Singer [31]. A detailed description of online learning with
complex prediction problems can be found for example in [28].

The basic extension of online multiclass categorization to the structured output setting was sug-
gested by Collins [22]. The idea of imposing structural restrictions on the feature mapping φ was
also proposed in [3, 113, 115]. The introduction of the cost function in the context of online learning
was suggested in [102]. Prediction based loss functions vs. Maximal loss functions were discussed
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in [28].



Chapter 6

Boosting

6.1 A Primal-Dual Perspective of Boosting

In this chapter we describe the applicability of our algorithmic framework to the analysis of boosting
algorithms. A boosting algorithm uses a weak learning algorithm that generates weak hypotheses,
whose performances are just slightly better than random guessing, to build a strong hypothesis,
which can attain an arbitrarily low error. The first boosting algorithm was derived by Schapire [98]
and later on, Freund and Schapire [54] proposed a more efficient boosting algorithm called Ad-
aBoost.

The AdaBoost algorithm receives as input a training set of examples {(x1, y1), . . . , (xm, ym)}
where for all i ∈ [m], xi is taken from an instance domain X , and yi is a binary label, yi ∈
{+1,−1}. The boosting process proceeds in a sequence of consecutive rounds. At round t, the
booster first defines a distribution, denoted wt, over the set of examples. Then, the booster passes
the training set along with the distribution wt to the weak learner. The weak learner is assumed to
return a hypothesis ht : X → {+1,−1} whose average error is slightly smaller than 1

2 . That is,
there exists a constant γ > 0 such that,

εt
def
=

m∑
i=1

wt,i
1− yiht(xi)

2
≤ 1

2
− γ . (6.1)

The goal of the boosting algorithm is to invoke the weak learner several times with different distri-
butions, and to combine the hypotheses returned by the weak learner into a final, so-called strong
hypothesis whose error is small. The final hypothesis combines linearly the T hypotheses returned
by the weak learner with coefficients α1, . . . , αT , and is defined to be the sign of hf (x) where

64
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hf (x) =
∑T

t=1 αt ht(x) . The coefficients α1, . . . , αT are determined by the booster. In Ad-
aBoost, the initial distribution is set to be the uniform distribution, w1 = ( 1

m , . . . ,
1
m). At iter-

ation t, the value of αt is set to be 1
2 log((1 − εt)/εt). The distribution is updated by the rule

wt+1,i = wt,i exp(−αt yi ht(xi))/Zt, where Zt is a normalization factor. Freund and Schapire [54]
have shown that under the assumption given in Eq. (6.1), the error of the final strong hypothesis is
at most exp(−2 γ2 T ).

Several authors [97, 86, 56, 24] have suggested that boosting is best seen as a coordinate-wise
greedy optimization process. To do this, note first that hf errs on an example (x, y) iff y hf (x) ≤
0. Therefore, the exp-loss function, defined as exp(−y hf (x)), is a smooth upper bound of the
zero-one error, which equals 1 if y hf (x) ≤ 0 and 0 otherwise. Thus, we can restate the goal of
boosting as minimizing the average exp-loss of hf over the training set with respect to the variables
α1, . . . , αT . To simplify our derivation in the sequel, we prefer to say that boosting maximizes the
negation of the loss, that is,

max
α1,...,αT

− 1
m

m∑
i=1

exp

(
−yi

T∑
t=1

αtht(xi)

)
. (6.2)

In this view, boosting is an optimization procedure which iteratively maximizes Eq. (6.2) with re-
spect to the variables α1, . . . , αT . This view of boosting enables the hypotheses returned by the
weak learner to be general functions into the reals, ht : X → R (see for instance [97]).

In this section we view boosting as a primal-dual online convex programming procedure. To
motivate our construction, note that boosting algorithms define weights in two different domains:
the vectors wt ∈ Rm which assign weights to examples and the weights {αt : t ∈ [T ]} over weak-
hypotheses. In the terminology used throughout this manuscript, the weights wt ∈ Rm are primal
vectors while (as we show in the sequel) each weight αt of the hypothesis ht is related to a dual
vector λt. In particular, we show that Eq. (6.2) is exactly the Fenchel dual of a primal problem for
an online convex programming; thus the algorithmic framework described so far for online convex
programming naturally fits the problem of iteratively solving Eq. (6.2).

To derive the primal problem whose Fenchel dual is the problem given in Eq. (6.2) let us first
denote by vt the vector in Rm whose ith element is vt,i = yiht(xi). For all t, we set gt to be
the function gt(w) = [〈w,vt〉]+. Intuitively, gt penalizes vectors w that assign large weights to
examples which are predicted accurately, that is yiht(xi) > 0. In particular, if ht(xi) ∈ {+1,−1}
and wt is a distribution over the m examples (as is the case in AdaBoost), gt(wt) reduces to 1− 2εt
(see Eq. (6.1)). In this case, minimizing gt is equivalent to maximizing the error of the individual
hypothesis ht over the examples. Consider the problem of minimizing c f(w)+

∑T
t=1 gt(w) where

f(w) = log(m) +
∑

iwi log(wi) is the relative entropy and c is a scalar to be set later. To derive its
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Fenchel dual, we note that g?t (λt) = 0 if there exists βt ∈ [0, 1] such that λt = βtvt and otherwise
g?t (λt) = ∞ (see Appendix A.3.1). In addition, let us define αt = 1

c βt. Since our goal is to
maximize the dual, we can restrict λt to take the form λt = βtvt = c αtvt, and get that

D(λ1, . . . ,λT ) = −c f?
(
−1
c

T∑
t=1

βt vt

)
= −c log

(
1
m

m∑
i=1

e−
PT
t=1 αtyiht(xi)

)
. (6.3)

Minimizing the exp-loss of the strong hypothesis is therefore the dual problem of the following
primal minimization problem: find a distribution over the examples whose relative entropy to the
uniform distribution is as small as possible, while the correlation of the distribution with each vt
is as small as possible. Since the correlation of w with vt is inversely proportional to the error
of ht with respect to w, we obtain that in the primal problem we want to maximize the error of
each individual hypothesis, while in the dual problem we minimize the global error of the strong
hypothesis. The intuition of finding distributions which in retrospect result in large error rates of
individual hypotheses was also alluded to in [97, 56].

We can now apply our algorithmic framework from Section 3.3 to boosting. We describe the
boosting process with the parameters αt, where αt ∈ [0, 1/c], and stress that in our case, λt =
c αt vt. At the beginning of the boosting process the booster sets all dual variables to be zero,
∀t αt = 0. At round t, the booster first constructs a primal weight vector wt ∈ Rm, which assigns
importance weights to the examples in the training set. The primal vector wt is constructed as in
Eq. (3.7), that is, wt = ∇f?(θt), where θt = −

∑
i<t αivi. We can also rewrite the kth element of

wt as follows:

wt,k =
eθt,k

Zt
=

e−
P
i<t αivi,k

Zt
,

where Zt is a normalization factor that ensures that wt sums to 1. Next, the weak learner responds
by presenting the loss function gt(w) = [〈w,vt〉]+. Finally, the booster updates the dual variables
so as to increase the dual objective function.

We next show that the update rule given in Eq. (3.11) results in a boosting algorithm, which is
closely related to the “boost-by-majority” algorithm presented in [52]. To see this, we note that the
definition of gt and the weak learnability assumption given in Eq. (6.1) imply that vt is a subgradient
of gt(w) at wt. Since in our case λt = c αt vt we obtain that Eq. (3.11) is equivalent to the update
rule αt = 1/c. Thus, the final strong hypothesis becomes hf (x) = 1

c

∑
t ht(x), which is equivalent

to the majority vote of the weak hypotheses if the range of each weak hypothesis is {+1,−1}. The
update of the distribution vector wt can be rewritten as

wt+1,k =
wt,k e

−1
c ykht(xk)

Zt
,
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where Zt is a normalization factor.
To analyze the boosting algorithm, we note that the conditions given in Lemma 1 hold and

therefore the left-hand side inequality given in Lemma 1 tells us that

T∑
t=1

gt(wt)−
1

2 c

T∑
t=1

‖λ′t‖2∞ ≤ D(λT+1
1 , . . . ,λT+1

T ) . (6.4)

The definition of gt and the weak learnability assumption given in Eq. (6.1) imply that 〈wt,vt〉 ≥
2 γ for all t. Thus, gt(wt) = 〈wt,vt〉 ≥ 2 γ, which also implies that λ′t = vt. Recall that
vt,i = yiht(xi). Assuming that the range of ht is [+1,−1] we get that ‖λ′t‖∞ ≤ 1. Combining all
the above with Eq. (6.4) we get that

2T γ − T

2 c
≤ D(λT+1

1 , . . . ,λT+1
T ) = − c log

(
1
m

m∑
i=1

e−yi
PT
t=1 αtht(xi)

)
,

where in the last equality we used the definition of D as given in Eq. (6.3). Setting c = 1/(2 γ) and
rearranging terms we recover the original boosting bound

1
m

m∑
i=1

e−yi
PT
t=1 αt ht(xi) ≤ e−2 γ2 T .

A disadvantage of the algorithm above is that we need to know the parameter γ. The AdaBoost
algorithm lifts this limitation. In the next section we show that the AdaBoost algorithm can be
derived from our algorithmic framework by using the dual update rule given in Eq. (3.12). As a
by-product, we also derive the Gentle-Boost algorithm [56] from our framework.

6.2 AdaBoost

Let us now consider the boosting process described above with the update rule given in Eq. (3.12).
We assume that the range of each ht is {+1,−1} and thus the elements of vt are also in {+1,−1}.
Denote

w+
t =

∑
i:vt,i=1

wt,i ; w−t =
∑

i:vt,i=−1

wt,i .

Based on Eq. (7.16) given in Section 7.2 it is easy to verify that Eq. (3.12) yields:

αt = min
{

1
c ,

1
2 log

(
w+
t

w−t

)}
. (6.5)



CHAPTER 6. BOOSTING 68

Note that the definition of εt given in Eq. (6.1) implies that 2εt = 1 − w+
t + w−t . Combining the

above with the fact that w+
t + w−t = 1 gives that w−t = εt and w+

t = 1 − εt. Assume that c is
sufficiently small1 we obtain that Eq. (6.5) can be rewritten as

αt = 1
2 log

(
1−εt
εt

)
, (6.6)

and we have recovered the original AdaBoost algorithm.
To analyze the AdaBoost algorithm, denote θt = −

∑
i<t αivi and note that the increase in the

dual due to the update step given in Eq. (6.6) is

∆t = −c (f?(θt − αtvt)− f?(θt)) (6.7)

≥ −c
(
−αt〈wt,vt〉+ 1

2α
2
t ‖vt‖2∞

)
(6.8)

≥ −c
(
−αt〈wt,vt〉+ 1

2α
2
t

)
(6.9)

≥ c
(〈wt,vt〉)2

2
(6.10)

≥ c 2 γ2 . (6.11)

In the above, Eq. (6.7) follows from the definition of D, Eq. (6.8) follows from Lemma 15 in
Section A.4 and the definition of wt, Eq. (6.9) follows from the assumption |ht(x)| ≤ 1, Eq. (6.10)
follows from the fact that αt maximizes ∆t, and Eq. (6.11) follows from the weak learnability
assumption given in Eq. (6.1). We note in passing that the same bound would have been obtained
had we set αt to be 〈wt,vt〉. In fact, this boosting variant was proposed by Friedman et al [56] and
is called Gentle-Boost.

Summing over t and using the fact that D(0, . . . , 0) = 0 we obtain that

c 2 γ2 T ≤ D(α1, . . . , αT ) = − c log

(
1
m

m∑
i=1

e−yi
PT
t=1 αtht(xi)

)
. (6.12)

Rearranging terms in the above we recover the original celebrated boosting bound

1
m

m∑
i=1

e−yi
PT
t=1 αt ht(xi) ≤ e−2 γ2 T .

1Note that the bound we derive later in Eq. (6.12) does not depend on the value of c and thus we are allowed to set c
to be arbitrarily small. Note in addition that by setting c = 1/(2γ) we obtain a variant of AdaBoost in which the weights
αt are capped above by 2 γ. This variant enjoys the same bound as AdaBoost. However, a disadvantage of this variant is
that we need to know the parameter γ.
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6.3 Bibliographic Notes

Boosting algorithms are effective batch learning procedures. Freund and Schapire [55] were the first
to relate boosting to online learning. For an analysis of the generalization properties of boosting
algorithms see for example [99] and the references therein. Our algorithmic framework can be
used to derive additional boosting algorithms such as the LogitBoost [56] and TotalBoost [120]
algorithms.



Chapter 7

Efficient Implementation

In previous chapters, we were mainly interested in understanding the regret properties of different
update procedures. In this chapter we address the computational aspects of updating the online hy-
pothesis. First, as we showed in Example 1 in Chapter 4, calculating the gradient of f? may involve
a projection operation. We start in Section 7.1 by describing efficient techniques for projecting onto
`1 balls and onto the probabilistic simplex. We discuss both Euclidean and Entropic projections.
The remaining sections in this chapter focus on the computational aspects of the aggressive update
rule given in Eq. (3.12). Depending on the loss function at hand, we derive procedures for solving
the optimization problem given in Eq. (3.12) with increasing computational complexity. In Sec-
tion 7.2 we provide analytical solutions for the hinge-loss. Next, in Section 7.3 we extend ideas
from Section 7.1 and derive efficient procedures for solving Eq. (3.12) for a specific loss function
encountered in ranking problems. Finally, in Section 7.4 we describe an iterative procedure for a
more general loss function that is widely used in various complex prediction problems.

7.1 Projections onto `1 Balls and onto the Probabilistic Simplex

7.1.1 Euclidean Projections onto the Probabilistic Simplex

In this section we describe an efficient procedure for solving the following problem:

min
α

1
2
‖α− µ‖22 s.t.

p∑
i=1

αi = z , αi ≥ 0 . (7.1)

If z = 1 the above problem is a Euclidean projection onto the probabilistic simplex. To simplify
our notation, we use the shorthand ‖ · ‖ for denoting the Euclidean norm ‖ · ‖2.

70
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The Lagrangian of the problem in Eq. (7.1) is,

L =
1
2
‖α− µ‖2 + θ

(
p∑
i=1

αi − z

)
− ζ ·α ,

where θ ∈ R is a Lagrange multiplier and ζ ∈ Rp
+ is a vector of non-negative Lagrange multipliers.

Differentiating with respect to αi and comparing to zero gives the following KKT condition,

dL
dαi

= αi − µi + θ − ζi = 0 .

The complementary slackness KKT condition implies that whenever αi > 0 we must have that
ζi = 0. Thus, if αi > 0 we get that,

αi = µi − θ + ζi = µi − θ . (7.2)

Since all the non-negative elements of the vector α are tied via a single variable we would have
ended up with a much simpler problem had we known the indices of these elements. At first sight,
this task seems difficult, as the number of potential subsets of α is clearly exponential in the di-
mension of α. Fortunately, the particular form of the problem renders an efficient algorithm for
identifying the non-zero elements of α. The following lemma is a key tool in deriving our proce-
dure for identifying the non-zero elements.

Lemma 6 Let α be the optimal solution to the minimization problem in Eq. (7.1). Let s and j be
two indices such that µs > µj . If αs = 0 then αj must be zero as well.

Proof Assume by contradiction that αs = 0 yet αj > 0. Let α̃ ∈ Rk be a vector whose elements are
equal to the elements of α except for α̃s and α̃j which are interchanged, that is, α̃s = αj , α̃j = αs,
and for every other r /∈ {s, j} we have α̃r = αr. It is immediately clear that the constraints of
Eq. (7.1) still hold. In addition we have that,

‖α− µ‖2 − ‖α̃− µ‖2 = µ2
s + (αj − µj)2 − (αj − µs)2 − µ2

j = 2αj(µs − µj) > 0 .

Therefore, we obtain that ‖α − µ‖2 > ‖α̃ − µ‖2, which contradicts the fact that α is the optimal
solution.

Let I denote the set {i ∈ [p] : αi > 0}. The above lemma gives a simple characterization of the set
I . Let us reorder the µ such that µ1 ≥ µ2 ≥ . . . ≥ µp. Simply put, Lemma 6 implies that after the
reordering, the set I is of the form {1, . . . , ρ} for some 1 ≤ ρ ≤ p. Had we known ρ we could have
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INPUT: A vector µ ∈ Rp and a scalar z > 0
DO:

Sort µ so that µ1 ≥ µ2 ≥ . . . ≥ µp
Define ρ = max{j ∈ [p] : µj − 1

j (
∑j

r=1 µr − z) > 0}
Define α to be the vector so that

For i ≤ ρ: αi = µi − 1
ρ (
∑ρ

i=1 µi − z)
For i > ρ: αi = 0

OUTPUT: The vector α is the solution of Eq. (7.1)

Figure 7.1: A procedure for projecting onto the probabilistic simplex.

simply used Eq. (7.2) and obtained that

p∑
i=1

αi =
ρ∑
i=1

αi =
ρ∑
i=1

(µi − θ) = z ⇒ θ =
1
ρ

(
ρ∑
i=1

µi − z

)
.

To recapitulate, given ρ we can summarize the optimal solution for α as follows,

αi =

 µi −
1
ρ

(
ρ∑
i=1

µi − z

)
i ≤ ρ

0 i > ρ

. (7.3)

We are left with the problem of finding the optimal value of ρ. We could simply enumerate all
possible values of ρ in [p], for each possible value computeα as given by Eq. (7.3), and then choose
the value for which the objective function (‖α − µ‖2) is the smallest. While this procedure can
be implemented quite efficiently, the following lemma provides an even simpler solution once we
reorder the elements of µ to be in a non-increasing order.

Lemma 7 Letα be the optimal solution to the minimization problem given in Eq. (7.1) and assume
that µ1 ≥ µ2 ≥ . . . ≥ µp. Then, the number of strictly positive elements in α is,

ρ(z,µ) = max

{
j ∈ [p] : µj −

1
j

(
j∑
r=1

µr − z

)
> 0

}
.

The proof of this technical lemma is given in Section A.5. A procedure for solving Eq. (7.1) is
summarized in Figure 7.1.
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7.1.2 Projections onto `1 balls

In this section we describe an efficient solution to the following problem,

argmin
α∈Rn

‖α− µ‖22 s.t. ‖α‖1 ≤ z . (7.4)

We do so by presenting a reduction to the problem of projecting onto the simplex given in
Eq. (7.1). First, we note that if ‖µ‖1 ≤ z then the solution of Eq. (7.4) is α = µ. Therefore,
from now on we assume that ‖µ‖1 > z. In this case, the optimal solution must be on the boundary
of the constraint set and thus we can replace the inequality constraint ‖α‖1 ≤ z with an equality
constraint ‖α‖1 = z. Having done this, the sole difference between the problem in Eq. (7.4) and
the one in Eq. (7.1) is that in the latter we have an additional positiveness constraint: α ≥ 0.

The following lemma shows that the sign of the elements in µ is preserved in α. We use this
property later on to complete our reduction.

Lemma 8 Let α be an optimal solution of Eq. (7.4). Then, for all i, αi µi ≥ 0.

Proof Assume by contradiction that the claim does not hold. Thus, there exists i for which αi µi <
0. Let α̂ be a vector such that α̂i = 0 and for all j 6= i we have α̂j = αj . Therefore, ‖α̂‖1 =
‖α‖1 − |αi| ≤ z and hence α̂ is a feasible solution. In addition,

‖α− µ‖22 − ‖α̂− µ‖22 = (αi − µi)2 − (0− µi)2 = α2
i − 2αiµi > α2

i > 0 .

We have shown that α̂ is a feasible solution whose objective value is smaller than that of α which
leads us to the desired contradiction.

Let ν be a vector such that for all i, νi = |µi|. Based on the above lemma, we can replace
Eq. (7.4) with the problem

argmin
β∈Rn

‖β − ν‖22 s.t. ‖β‖1 ≤ z and β ≥ 0 , (7.5)

and construct a solution α of Eq. (7.4) from a solution of Eq. (7.5) by letting αi = sign(µi)βi. A
summary of the algorithm for solving Eq. (7.4) is given in Figure 7.2.
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INPUT: A vector µ ∈ Rn and a scalar z > 0
DO:

If ‖µ‖1 ≤ z set α = µ and return
Define ν ∈ Rn to be a vector such that for all i, νi = |µi|
Call Figure 7.1 with ν and z and let β be the output of Figure 7.1
Define α to be the vector such that for all i, αi = sign(µi) νi.

OUTPUT: The vector α is the solution of Eq. (7.4)

Figure 7.2: A procedure for projecting onto `1 balls.

7.1.3 Entropic projections onto the Probabilistic Simplex

In this section we describe an efficient solution to the following problem,

argmin
w∈S

n∑
j=1

wj log
(
wj
uj

)
where S =

w |
n∑
j=1

wj = 1 , ∀j : wj ≥ ε

 . (7.6)

If ε = 0 the above problem is an Entropic projection onto the Probabilistic simplex.
We start by writing the Lagrangian of the above constrained optimization problem,

L =
n∑
j=1

wj log(wj/uj) + θ

 n∑
j=1

wj − 1

− n∑
j=1

βj(wj − ε) ,

Here, θ is an unconstrained Lagrange multiplier and {βj} is a set of non-negative Lagrange multi-
pliers for the inequality constraints, wj ≥ ε. By taking the derivative of L with respect to ui, we get
that at the optimum the following should hold,

log(wi)− log(ui) + 1 + θ − βi = 0 .

After rearranging terms, taking the exponent of the above equation, we can rewrite the above equa-
tion as follows,

wi = uie
βi/Z ,

where Z = eθ+1. Since, θ is a Lagrange multiplier for the constraint
∑

j uj = 1 we can also write
Z as,

Z =
n∑
j=1

uje
βj .

From KKT conditions we know that at the saddle point (w?, θ?, {β?i }) of the Lagrangian L the
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following holds,
β?i (w?i − ε) = 0 .

Therefore, if the i’th coordinate of the optimal solution is strictly greater than ε we must have that
β?i = 0. In the case where w?i = ε the Lagrange multiplier β?i is simply constrained to be non-
negative, β?i ≥ 0. Thus, the optimal solution can be rewritten in the following distilled form,

w?i =

{
ui/Z w?i > ε

ε otherwise
, (7.7)

whereZ is set such that
∑

iw
?
i = 1. The lingering question is what components of u? we need to set

to ε. The following Lemma paves the way to an efficient procedure for determining the components
of w? which are equal ε.

Lemma 9 Let w? denote optimal solution of Eq. (7.6) and let i and j be two indices such that, (i)
ui ≤ uj and (ii) w?j = ε, then w?i = ε.

Proof Assume by contradiction that w?i > ε. We now use the explicit form of the optimal solution
and write,

w?i = uie
β?i /Z and w?j = uje

β?j /Z .

Since w?j = ε we get that β?j ≥ 0 while the fact that w?i > ε implies that β?i = 0. (See also
Eq. (7.7).) Combining these two facts we get that,

w?i = ui/Z ≤ uj/Z ≤ ujeβ
?
j /Z = w?j = ε .

Thus, w?i ≤ ε which stands in contradiction to the assumption w?i > ε.

The above lemma implies that if we sort the elements of u in an ascending order, then there
exists an index l? such that the optimal solution w? takes the following form,

w? = (ε, . . . , ε,
ul?+1

Z
,
ul?+2

Z
, . . . ,

un
Z

) .

We are therefore left with the task of finding l?. We do so by examining all possible values for
l ∈ {1, . . . , n}. Given a candidate value for l?, denoted l, we need to check the feasibility of the
solution induced by the assumption l? = l. We next calculate Z for this choice of l. Since the role
of Z is to enforce the constraint

∑
j w

?
j = 1 we get that,

Z =

∑n
j=l+1 uj

1− lε
.



CHAPTER 7. EFFICIENT IMPLEMENTATION 76

INPUT: Sorted vector u ∈ Rn
+(uj ≤ uj+1) ; A scalar ε > 0

INITIALIZE: Z =
∑n

i=1 ui
FOR l = 1, . . . , n:

If ul/Z ≥ ε Then
l? = l − 1
Break

EndIf
Z = Z + εZ−ul

1−lε
OUTPUT: w?

w?j = uj/Z for j = l? + 1, . . . , n
w?j = ε for j = 1, . . . , l?

Figure 7.3: Pseudo-code for solving the Entropic projection problem given in Eq. (7.6).

If l indeed induces a feasible solution then for all j > l we must have that uj/Z > ε. Since we
assume that the vector u is sorted in an ascending order it is enough to verify that ul+1/Z > ε. In
case that we find more than one single feasible solution, it is easy to verify that the smallest candidate
for l? should be taken. Last, note that the condition ul+1/Z > ε can be efficiently calculated if we
simply keep track of partial sums. Each partial sum is of the form

∑n
j=l+1 uj and is computed from

its predecessor
∑n

j=l uj . The pseudo-code describing the entire algorithm is given in Figure 7.3.

7.2 Aggressive Updates for the Hinge-loss

In this section we derive analytical solutions for the aggressive update rule given in Eq. (3.12) when
gt(w) is the hinge-loss. The hinge-loss is usually the primary choice for online learning of binary
classifiers. The optimization problem in Eq. (3.12) is equivalent to the following problem:

argmax
λ

− cf?
(
−θt+λc

)
− g?t (λ) , (7.8)

where θt =
∑

i 6=t λ
t
i.

The focus of this section is on the case where gt(w) = [γ − 〈w,x〉]+, where γ > 0 and
x ∈ Rn. In this case, g?t (λ) = −γ α if λ = −αx for some α ∈ [0, 1] and otherwise g?(λ) = ∞
(see Section A.3.1). Therefore, the optimization problem is equivalent to the following:

argmax
α∈[0,1]

γ α− cf?
(
−θt−αx

c

)
. (7.9)
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The above problem is an optimization over a single variable over a small domain. Thus, it can be
easily solved using line search methods (see for example [8] page 723). In the following, we derive
analytical solutions for two important specific cases.

We start with the case in which f(w) = 1
2‖w‖

2
2. Thus, f?(θ) = 1

2‖θ‖
2
2 and Eq. (7.9) becomes

argmax
α∈[0,1]

γ α− 1
2 c‖ − θt + αx‖22 = argmax

α∈[0,1]
α
(
γ − 1

c 〈θt,x〉
)
− α2 ‖x‖22

2 c
. (7.10)

Denote the objective function of the above by Q(α) and note that Q is a concave parabola whose
maximum falls at the point

α′ =
c
(
γ − 1

c 〈θt,x〉
)

‖x‖22
.

The maximizer of Eq. (7.10) will be α′ if α′ ∈ [0, 1]. Otherwise, if α′ < 0 then the maximizer will
be 0 and if α′ > 1 then the maximizer will be 1. In summary, the solution of Eq. (7.10) is:

α = min

{
1 ,

c
[
γ − 1

c 〈θt,x〉
]
+

‖x‖22

}
. (7.11)

Next, we turn to the case in which f(w) = log(n) +
∑n

j=1wj log(wj) where S is the
probabilistic simplex. To devise an analytic solution, we further assume that x is a vector in
{−1, 0, 1}n. While this assumption seems restrictive, many text processing applications use
term appearances as features which distill to binary vectors. In this case the conjugate of f is
f?(θ) = log

(∑n
j=1 exp(θj)

)
− log(n). Omitting terms which do not depend on α, the objective

of the optimization problem given in Eq. (7.9) becomes

argmax
α∈[0,1]

γ α− c log

 n∑
j=1

exp(− θt,j
c ) exp(−α xj

c )

 . (7.12)

To find this optimal value we introduce the following variables,

θ+ =
∑
j:xj=1

exp(− θt,j
c ) , θ− =

∑
j:xj=−1

exp(− θt,j
c ) , θ0 =

∑
j:xj=0

exp(− θt,j
c ) .

We can thus rewrite Eq. (7.12) as

argmax
α∈[0,1]

γ α− c log
(
θ+ exp(−α

c ) + θ− exp(αc ) + θ0
)
. (7.13)

Taking the derivative of the above equation with respect to α and comparing the result to zero yields
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the following,

γ −
θ− exp(αc )− θ+ exp(−α

c )
θ+ exp(−α

c ) + θ− exp(αc ) + θ0
= 0 . (7.14)

Denote β = exp(αc ), the equation above is equivalent to the following equation in β,

γ
(
θ+β−1 + θ−β + θ0

)
= θ−β − θ+β−1

Multiplying both sides of the above equation by β and rearranging terms, we obtain the following
quadratic equation

(1− γ)θ−β2 − γθ0β − (1 + γ)θ+ = 0 ,

whose largest root is

β =
γθ0 +

√
γ2(θ0)2 + 4(1− γ2)θ+θ−

2(1− γ)θ−
. (7.15)

Since α must reside in [0, 1] we set α to be the minimum between c log(β) and 1, yielding,

α = min

{
1, c log

(
γθ0 +

√
γ2(θ0)2 + 4(1− γ2)θ+θ−

2(1− γ)θ−

)}
. (7.16)

7.3 Aggressive Updates for Label Ranking

In this section we describe an efficient procedure for performing the aggressive update rule given in
Eq. (7.8) when gt(w) is a loss function that is widely used in label ranking problems. A detailed
formal description of the label ranking task is given in Section 8.2. Here, we only give a short
definition of the loss function gt(w).

Let x be a vector in Rn, let k be an integer and let Y be a subset of [k]. In label ranking, the
parameter vector is grouped into k vectors in Rn and we denote it by w̄ = (w1, . . . ,wk) where
wi ∈ Rn for each i ∈ [k]. The loss function gt(w̄) takes the following form:

gt(w̄) = max
r∈Y,s/∈Y

[γ − (〈wr,x〉 − 〈ws,x〉)]+ , (7.17)

where γ > 0 is a scalar and [a]+ = max{a, 0}.
We now derive efficient procedures for performing the aggressive update rule given in Eq. (7.8)

when gt takes the form given in Eq. (7.17). For simplicity of our notation, from now on we omit the
index t. Let σ ∈ {±1}k be a vector such that σi = 1 for i ∈ Y and otherwise σi = −1. Define:

A = {α ∈ Rk
+ : ‖α‖1 ≤ 1 and

k∑
i=1

σiαi = 0} ,
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and let λ̄ = (λ1, . . . ,λk). In Lemma 20 we show that g?(λ̄) is∞ unless there exists a vectorα ∈ A
such that ∀i, λi = −σiαix. Let us also assume that the complexity function is decomposable, i.e.,
f̄(w̄) =

∑
i f(wi). Therefore, Eq. (7.8) can be rewritten as

argmax
α∈A

γ
2

∑
r∈Y

αr − c
k∑
i=1

f?
(
−θi−σi αixc

)
. (7.18)

In the following, we describe efficient procedures for solving Eq. (7.18). We start by deriving
a procedure for the case in which f(w) = 1

2‖w‖
2
2. In this case, we can find the exact solution

of Eq. (7.18) by extending ideas from Section 7.1. The complexity of the resulting procedure is
O(k log(k)). Next, we derive an efficient interior point method for the general case. The interior
point procedure reaches the optimal solution within accuracy ε in time O(k3/2 log(log(1

ε ))).

7.3.1 Exact solution for the Euclidean case:

When f(w) = 1
2‖w‖

2
2, the optimization problem in Eq. (7.18) becomes

argmax
α∈A

γ
2

∑
r∈Y

αr −
1

2 c

k∑
i=1

‖θi − σi αix‖2 . (7.19)

To make our notation easy to follow, we define p = |Y | and q = k − p and construct two vectors
µ ∈ Rp and ν ∈ Rq such that for each i ∈ Y there is an element ( c γ2 + 〈θi,x〉)/‖x‖2 in µ and for
each i /∈ Y there is an element−〈θi,x〉/‖x‖2 in ν. The problem in Eq. (7.19) can now be rewritten
as,

argmin
α∈Rp+,β∈Rq+

1
2
‖α− µ‖2 +

1
2
‖β − ν‖2

s.t.
p∑
i=1

αi =
q∑
j=1

βj ≤ 1 .

(7.20)

Note that the variables α and β are tied together through a single equality constraint ‖α‖1 =
‖β‖1. We represent this coupling of α and β by rewriting the optimization problem in Eq. (7.20)
as,

min
z∈[0,1]

g(z;µ) + g(z;ν) ,

where

g(z;µ) = min
α

1
2
‖α− µ‖2 s.t.

p∑
i=1

αi = z , αi ≥ 0 , (7.21)
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and similarly

g(z;ν) = min
β

1
2
‖β − ν‖2 s.t.

q∑
j=1

βj = z , βj ≥ 0 . (7.22)

The function g(z; ·) takes the same functional form whether we use µ or ν as the second argu-
ment. We therefore describe our derivation in terms of g(z;µ). Clearly, the same derivation is also
applicable to g(z;ν).

In Section 7.1 we have shown that the solution to the minimization problem on the right-hand
side of Eq. (7.21) is

αi =

 µi −
1

ρ(z,µ)

(
ρ∑
i=1

µi − z

)
i ≤ ρ(z,µ)

0 i > ρ(z,µ)

, (7.23)

where

ρ(z,µ) = max

{
j ∈ [p] : µj −

1
j

(
j∑
r=1

µr − z

)
> 0

}
.

Had we known the optimal value of z, i.e. the argument attaining the minimum of g(z;µ) +
g(z;ν) we could have calculated the optimal variables α and β by first finding ρ(z,µ) and ρ(z,ν)
and then findingα and β using Eq. (7.23). This is a classic chicken-and-egg problem: we can easily
calculate the optimal solution given some side information; however, obtaining the side information
seems as difficult as finding the optimal solution. One option is to perform a search over an ε-net of
values for z in [0, 1]. For each candidate value for z from the ε-net we can find α and β and then
choose the value which attains the lowest objective value (g(z;µ) + g(z;ν)). While this approach
may be viable in many cases, it is still quite time consuming. We are rescued by the fact that g(z;µ)
and g(z;ν) entertain a very special structure. Rather than enumerating over all possible values of
z we need to check at most k + 1 possible values for z. To establish the last part of our efficient
algorithm which performs this search for the optimal value of z we need the following lemma. The
lemma is stated with µ but, clearly, it also holds for ν .

Lemma 10 Let g(z;µ) be as defined in Eq. (7.21). For each i ∈ [p], define

zi =
i∑

r=1

µr − iµi .
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Then, for each z ∈ [zi, zi+1] the function g(z;µ) is equivalent to the following quadratic function,

g(z;µ) =
1
i

(
i∑

r=1

µr − z

)2

+
p∑

r=i+1

µ2
r .

Moreover, g is continuous, continuously differentiable, and convex in [0, 1].

The proof of this lemma is given in Section A.5. The good news that the theorem carries is that
g(z;µ) and g(z;ν) are convex and therefore their sum is also convex. Furthermore, the function
g(z; ·) is piecewise quadratic and the points where it changes from one quadratic function to another
are simple to compute. We refer to these points as knots. We next exploit the properties of the
function g to devise an efficient procedure for finding the optimal value of z and from there the road
to the optimal dual variables is clear and simple.

Due to the strict convexity of g(z;µ) + g(z;ν) its minimum is unique and well defined. There-
fore, it suffices to search for a seemingly local minimum over all the sub-intervals in which the
objective function is equivalent to a quadratic function. If such a local minimum point is found it
is guaranteed to be the global minimum. Once we have the value of z which constitutes the global
minimum we can decouple the optimization problems for α and β and quickly find the optimal so-
lution. However, there is one last small obstacle: the objective function is the sum of two piecewise
quadratic functions. We therefore need to efficiently go over the union of the knots derived from
µ and ν. We now summarize the full algorithm for finding the optimum of the dual variables and
wrap up with its pseudo-code.

Given µ and ν we find the sets of knots for each vector, take the union of the two sets, and sort
the set in an ascending order. Based on the theorems above, it follows immediately that each interval
between two consecutive knots in the union is also quadratic. Since g(z;µ) + g(z;ν) is convex, the
objective function in each interval can be characterized as falling into one of two cases. Namely,
the objective function is either monotone (increasing or decreasing) or it attains its unique global
minimum inside the interval. In the latter case the objective function clearly decreases, reaches the
optimum where its derivative is zero, and then increases. If the objective function is monotone in
all of the intervals then the minimum is obtained at one of the boundary points z = 0 or z = 1.
Otherwise, we simply need to identify the interval bracketing the global minimum and then find the
optimal value of z by finding the minimizer of the quadratic function associated with the interval.

We utilize the following notation. For each i ∈ [p], define the knots derived from µ

zi =
i∑

r=1

µr − iµi ,
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INPUT: instance x ∈ X ; set Y ⊂ [k]

current vectors θ1, . . . ,θk ; regularization parameter c

MARGINS:

µ = sort
{

( c γ2 + 〈θr,x〉)/‖x‖2 | r ∈ Y
}

ν = sort
{
−〈θr,x〉 /‖x‖2 | r /∈ Y

}
KNOTS:

∀i ∈ [p] : zi =
∑i

r=1 µr − iµi ∀j ∈ [q] : z̃j =
∑j

s=1 νs − jνj
Q = {zi : zi < 1} ∪ {z̃j : z̃j < 1} ∪ {1}

INTERVALS:

∀z ∈ Q : R(z) = |{zi : zi ≤ z}| ; S(z) = |{z̃j : z̃j ≤ z}|

∀z ∈ Q : N(z) = min{z′ ∈ Q : z′ > z} ∪ {1}

LOCAL MIN:

O(z) =

S(z)
R(z)∑
r=1

µr +R(z)
S(z)∑
r=1

νr

 / (R(z) + S(z))

GLOBAL MIN:

If (∃z ∈ Q s.t. O(z) ∈ [z,N(z)]) Then

z? = O(z) ; i? = R(z) ; j? = S(z)

Else If (µ1 + ν1 ≤ 0)

z? = 0 ; i? = 1 ; j? = 1

Else

z? = 1 ; i? = R(1) ; j? = S(1)

DUAL’S AUXILIARIES:

ζ1 =
1
i?

(
i?∑
r=1

µr − z?
)

; ζ2 =
1
j?

 j?∑
r=1

νr − z?


OUTPUT:

∀r ∈ Y : αr =
[
( c γ2 + 〈θr,x〉)/‖x‖2 − ζ1

]
+

∀r /∈ Y : αr =
[
−〈θr,x〉 /‖x‖2 − ζ2

]
+

Figure 7.4: Pseudo-code for solving Eq. (7.18) when f(w) = 1
2‖w‖

2.
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and similarly, for each j ∈ [q] define

z̃j =
j∑
r=1

νr − jνj .

From Lemma 10 we know that g(z;µ) is quadratic in each segment [zi, zi+1) and g(z;ν) is
quadratic in each segment [z̃j , z̃j+1). Therefore, as already argued above, the function g(z;µ) +
g(z;ν) is also piecewise quadratic in [0, 1] and its knots are the points in the set,

Q = {zi : zi < 1} ∪ {z̃j : z̃j < 1} ∪ {1} .

For each knot z ∈ Q, we denote by N(z) its consecutive knot in Q, that is,

N(z) = min
(
{z′ ∈ Q : z′ > z} ∪ {1}

)
.

We also need to know for each knot how many knots precede it. Given a knot z we define

R(z) = |{zi : zi ≤ z}| and S(z) = |{z̃i : z̃i ≤ z}| .

Using the newly introduced notation we can find for a given value z its bracketing interval, z ∈
[z′, N(z′)]. From Lemma 10 we get that the value of the dual objective function at z is,

g(z;µ) + g(z;ν) =

1
R(z′)

R(z′)∑
r=1

µr − z

2

+
p∑

r=R(z′)+1

µ2
r +

1
S(z′)

S(z′)∑
r=1

νr − z

2

+
p∑

r=S(z′)+1

ν2
r .

The unique minimum of the quadratic function above is attained at the point

O(z′) =

S(z′)
R(z′)∑
i=1

µi +R(z′)
S(z′)∑
i=1

νi

 /
(
R(z′) + S(z′)

)
.

Therefore, ifO(z′) ∈ [z′, N(z′)], then the global minimum of the dual objective function is attained
at O(z′). Otherwise, if no such interval exists, the optimum is either at z = 0 or at z = 1. The
minimum is achieved at z = 0 iff the derivative of the objective function at z = 0 is non-negative,
namely, −µ1 − ν1 ≥ 0. In this case, the optimal solution is α = 0 and β = 0 which implies
that λr = 0 for all r. If on the other hand −µ1 − ν1 < 0 then the optimum is attained at z = 1.
The skeleton of the pseudo-code for the fast projection algorithm is given in Figure 7.4. The most
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expensive operation performed by the algorithm is the sorting of µ and ν. Since the sum of the
dimensions of these vectors is k the time complexity of the algorithm is Θ(k log(k)).

7.3.2 Interior point method for the general case:

We now present an efficient primal-dual interior point algorithm (PDIP) for solving the optimization
problem given in Eq. (7.18), which is applicable to a larger family of complexity functions. We
describe the PDIP algorithm for a slightly more general optimization problem which still exploits
the structure of the problem and leads to a very efficient PDIP algorithm. Let {fr|fr : R→ R}dr=1

be a set of d twice differentiable functions and denote by {f ′r} and {f ′′r } their first and second
derivatives. Let p and q be two vectors in Rd, A be a 2 × d matrix, and b a two dimensional
vector over R. Instead of the original problem defined by Eq. (7.18), we work with the following
minimization problem,

min
α∈Rd

d∑
r=1

fr(αr) s.t. Aα = b, ∀r prαr ≤ qr . (7.24)

It is easy to verify that the problem defined by Eq. (7.18) can be reformatted and described as an
instance of the problem defined by Eq. (7.24).

To motivate the derivation of the PDIP algorithm, let us first note that the dual of Eq. (7.24) is
the problem maxλ∈Rd+,ν∈R2 D(λ,ν) where D(λ,ν) is

min
α∈Rd

d∑
r=1

fr(αr) +
d∑
r=1

λr(prαr − qr) + 〈ν, (Aα− b)〉 . (7.25)

Denote by P (α) the objective function of the problem in Eq. (7.24). As the name implies, the
PDIP algorithm maintains strictly feasible primal (α) and dual (λ,ν) solutions at all times. (we
remind the reader that a strictly feasible solution of a given problem satisfies all the constraints of
the problem, where each inequality constraint holds with strict inequality.) Assume that we have
at hand a strictly feasible primal-dual solution (α,λ,ν). We now define the following function,
η(α,λ) =

∑d
r=1 λr(qr − prαr) . We next show that η(α,λ) is a lower bound on the duality gap

of our primal-dual solution. The definition of D(λ,ν) implies that,

D(λ,ν) ≤
d∑
r=1

(fr(αr) + λr(prαr − qr)) + 〈ν, Aα− b〉

= P (α) + η(α,λ) , (7.26)
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where the second equality is due to the fact that α is a feasible dual solution, thus Aα = b.
Therefore, the duality gap is bounded below by

P (α)−D(λ,ν) ≥ η(α,λ) . (7.27)

Moreover, if
∀r ∈ [d], f ′r(αr) + λrpr + ν1A1,r + ν2A2,r = 0 , (7.28)

then α attains the minimum of Eq. (7.25). Therefore, both Eq. (7.26) and Eq. (7.27) hold with
equality. In this case, η(α,λ) amounts to be the duality gap of the primal-dual solution (α,λ,ν).

The PDIP algorithm is an iterative procedure where on each iteration it finds a new strictly
feasible primal-dual solution. The primary goal of the update is to decrease the duality gap. To do
so, we use the fact that Eq. (7.27) establishes η(α,λ) as a lower bound on the duality gap. Thus,
the main goal of the update is to decrease η(α,λ) on each iteration while ensuring that the actual
duality gap, P (α)−D(λ,ν), stays close to η(α,λ) as much as possible. Additionally, we need to
make sure that the new primal-dual solution is also strictly feasible. We are now ready to describe
the core update of the PDIP algorithm. Let us denote by (α,λ,ν) the current primal-dual solution
of the algorithm. The new primal-dual solution is obtained from the current solution by finding
a step-size parameter, s ∈ (0, 1) for a triplet (∆α,∆λ,∆ν) and the update itself takes the form
α ← α + s∆α, λ ← λ + s∆λ, and ν ← ν + s∆ν. To compute the triplet (∆α,∆λ,∆ν) we
linearize each summand of η(α+ ∆α,λ+ ∆λ) using a first order Taylor approximation and get,

(λr + ∆λr) (qr − pr(αr + ∆αr)) ≈

(λr + ∆λr)(qr − prαr)− λrpr ∆αr .

We require that the value of η for the new solution is approximately a fraction of the value at the
current solution. This is achieved by solving the following set of linear equalities in ∆αr and ∆λr,

∀r ∈ [d], (λr + ∆λr)(qr − prαr)− λrpr ∆αr = 0.1 η(α,λ)
d . (7.29)

The choice of the contraction constant 0.1 was set empirically. Assuming that the above set of
equations hold, then η(α + ∆α,λ + ∆λ) ≈ 0.1 η(α,λ). To recap, solving the system of linear
equations given by Eq. (7.29) serves as a proxy for achieving a substantial decrease in η. Next, we
need to make sure that η at the new parameters provides a rather tight lower bound. We do so by
making sure that the linearization of the left hand side of Eq. (7.28) is approximately zero by casting
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the following set of linear equations, to Eq. (7.28),

∀r ∈ [d], f ′r(αr) + f ′′r (αr)∆αr + (λr + ∆λr)pr+

(ν1 + ∆ν1)A1,r + (ν2 + ∆ν2)A2,r = 0 .
(7.30)

Solving Eq. (7.30) helps us tighten the lower bound on the duality gap given in Eq. (7.26). Last, we
need to make sure that the new set of parameters is indeed a feasible primal solution by requiring the
equality A(α+ ∆α) = b to hold. The triplet (∆α,∆λ,∆ν) is thus found by finding the solution
of all the sets of linear equations described above.

What remains is to describe the choice of the step size s. We find s by using a backtracking
search while making sure that λ and α are strictly feasible. Since the set of linear equations is
overly constrained we cannot guarantee that Eq. (7.28) holds with equality. Instead, we choose the
step size s so that the overall approximation errors for the equations defined by Eq. (7.28) decreases
with respect to the previous primal-dual solution. For more details on the backtracking procedure
see for instance pp. 612-613 in [14].

There is both theoretical and empirical evidence that a PDIP algorithm reaches the optimal
solution (within accuracy ε) after O(

√
d log(log(1

ε ))) iterations [14, 48, 90]. On each iteration
we need to solve a set of 2d + 2 linear equations. A direct implementation would require O(d3)
operations for each iteration of the PDIP algorithm. However, as we now show, we can utilize the
structure of the problem to solve the set of linear equations in linear time. Thus, the complexity of
update III is O(d

√
d) = O(k

√
k). To obtain an efficient solver, we first eliminate the variables ∆λ

by rewriting Eq. (7.29) as

∀r, (λr + ∆λr) = λrpr
qr−prαr ∆αr + 0.1η(α,λ)

d(qr−prαr) , (7.31)

and substituting the above into Eq. (7.30). We now define ur = −f ′r(αr)−
0.1η(α,λ)
d(qr−prαr) − ν1A1,r −

ν2A2,r, and zr = f ′′r (αr) + λrpr/(qr − prαr), and rewrite Eq. (7.30)

∀r ∈ [d], zr ∆αr = ur +A1,r∆ν1 +A2,r∆ν2 . (7.32)

Finally, we rewrite the set of two equalities A(α + ∆α) = b as A∆α = 0. Substituing ∆αr
with the right hand side of Eq. (7.32) in the linear set of equalities A∆α = 0, we obtain a system
of 2 linear equations in 2 variables which can be solved in constant time. From the solution we
obtain ∆ν and then compute ∆α as described in Eq. (7.32). From ∆α we now compute ∆λ using
Eq. (7.31). The overall complexity of the procedure of assigning new values to the primal-dual
feasible solution is thus O(d).



CHAPTER 7. EFFICIENT IMPLEMENTATION 87

7.4 Aggressive Updates for the Max-of-Hinge loss function

In this section we describe an efficient procedure for performing the aggressive update rule given in
Eq. (7.8) when gt(w) is the max-of-hinge loss function. The max-of-hinge loss function is widely
used in complex prediction problems such as multiclass categorization and instance ranking (see
Section 5.3). Formally, let (a1, b1), . . . , (ak, bk), be a sequence of pairs such that for all i ∈ [k],
(ai, bi) ∈ Rn × R+. We assume that gt(w) takes the form:

gt(w) = max
i∈[k]

[bi − 〈w,ai〉]+ . (7.33)

The Fenchel conjugate of gt is (see Section A.3.1)

g?t (λ) =

−
∑k

i=1 αibi if λ ∈
{
−
∑k

i=1 αiai : α ∈ Rk
+ and ‖α‖1 ≤ 1

}
∞ otherwise

Therefore, Eq. (7.8) becomes

argmax
α∈Rk+:‖α‖1≤1

k∑
i=1

bi αi − cf?
(
−θt−

P
i αi ai
c

)
. (7.34)

If k is not very large, the above optimization problem can be solved using a generic numerical
solver based on, for instance, interior point methods. Alternatively, one can solve the above using a
gradient descent procedure with projections onto the set {α ∈ Rk

+ : ‖α‖1 ≤ 1}. The projections
can be performed using the ideas presented in Section 7.1.

In the following, we describe a simple and efficient iterative procedure for solving Eq. (7.34)
based on the logarithmic regret algorithmic framework described in Chapter 4. To do so, we first
note that Eq. (7.8) is the dual problem of the following primal minimization problem:

argmin
w∈S

c (f(w)− 〈θt,w〉) + gt(w) . (7.35)

The above can be proven based on Fenchel duality (see Section 3.2). Since the intersection of
the domains of f and gt is non-empty, strong duality holds (see for example [11]). Moreover, if
w? is the optimal solution of Eq. (7.35) then an optimal solution of Eq. (7.8) satisfies the relation
θt + λ∗ = c∇f(w?). Therefore, we can focus on the solution of Eq. (7.35).

For simplicity, we focus on the case f(w) = 1
2‖w‖

2
2 and S = Rn. A generalization to other

complexity functions can be done based on the ideas presented in Chapter 4. We first write z =
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PARAMETERS: Scalars γ1, . . . , γk ; Vectors a1, . . . ,ak ; Number of iterations T ; Scalar c

INITIALIZE: z1 = 0 ; U =
√

2
c maxi [γi]+

FOR t = 1, 2, . . . , T
Set i = arg maxj(γj − 〈zt,aj〉)
If γi > 〈zt,ai〉

Set vt = c zt − ai
Else

Set vt = c zt
Set z′t = zt − 1

c t vt
Set zt+1 = min{1 , U

‖z′t‖
} z′t

OUTPUT: 1
T

∑
t zt

Figure 7.5: An iterative procedure for solving Eq. (7.36).

w − θt and rewrite Eq. (7.35) as

θt + argmin
z∈Rn

(
c

2
‖z‖22 + max

i∈[k]
[γi − 〈ai, z〉]+

)
where γi = bi − 〈ai,θt〉 for all i ∈ [k]. Denote φ(z) = c

2‖z‖
2
2 + maxi [γi − 〈ai, z〉]+. An iterative

procedure for minimizing φ(z) is given in Figure 7.5.
To analyze the convergence properties of the procedure we make use of Theorem 5 from Chap-

ter 4. First note that 1
cφ is strongly convex with respect to f , while f is strongly convex with respect

to the Euclidean norm. Second, we have

φ(z∗) ≤ φ(0) = max
i

[γi]+ ⇒ ‖z∗‖2 ≤
√

2
c max

i
[γi]+ .

Therefore, the problem of minimizing φ(z) over Rn is equivalent to the problem

argmin
z

c

2
‖z‖22 + max

i
[γi − 〈ai, z〉]+ s.t. ‖z‖2 ≤

√
2
c max

i
[γi]+ (7.36)

This fact also implies that the norm of ‖vt‖ given in Figure 7.5 is at most
√

2 c maxi [γi]+ +
maxi ‖ai‖. Applying Theorem 5 and using the convexity of φ we obtain that

φ

(
1
T

∑
t

zt

)
≤ 1

T

∑
t

φ(zt) ≤ φ(z∗) +

(√
2 c maxi [γi]+ + maxi ‖ai‖

)2
(1 + log(T ))

2 c T
.
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We have thus shown that the procedure given in Figure 7.5 converges to the optimal solution of
Eq. (7.36) and the rate of convergence is O(log(T )/T ).

7.5 Bibliographic Notes

The basic technique for efficiently projecting onto the probabilistic simplex is described in [31, 105].
The algorithm given in Figure 7.4 was derived in [105] in the context of batch learning of label
ranking. There, it is called SOPOPO for Soft Projections onto Polyhedra. The adaptation of the
general primal-dual interior point method for label ranking is presented in [108]. Last, the algorithm
given in Figure 7.5 is a special case of the Pegasos algorithm described in [110].
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Chapter 8

Online Email Categorization

In this chapter we describe the applicability of our framework to online email categorization. We
cast the online categorization problem as a label ranking problem. Label ranking is the task of
ordering labels with respect to their relevance to an input instance. We tackle the label ranking task
based on our algorithmic framework for online learning described in previous chapters.

We demonstrate the potential of the algorithms we derived in Chapter 5 in a few experiments
with email categorization tasks. In particular, we use both the squared Euclidean norm and the rel-
ative entropy as complexity measures to derive efficient additive and multiplicative algorithms for
the label ranking task. We also use three dual ascending procedures which lead to three aggressive-
ness levels. Interestingly, our formal analysis is on a par with the experimental results, which gives
further validation to the formal results presented in previous chapters.

8.1 Label Ranking

Label ranking is concerned with the task of ordering labels which are associated with a given in-
stance in accordance to their relevance to the input instance. As an illustrative example consider an
email categorization task in which the instances are email messages. Most email applications allow
users to organize email messages into user-defined folders. For example, Google’s Gmail users can
tag each of their email messages with one or more labels. The set of labels is also user defined yet
it is finite and typically is made up of a few tens if not hundreds of different labels. The advantage
of this approach is the flexibility it gives users in categorizing emails, since an email may be asso-
ciated with multiple labels. This approach contrasts with traditional systems in which an email is
associated with a single physical folder. Users may browse all emails associated with a particular
label and can also use the labels to search through their emails. However, manually attaching the
relevant labels to each incoming email message can be an all-out effort. An online label ranking
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algorithm automatically learns how to rank-order labels in accordance with their relevance to each
of the incoming email messages.

8.2 Hypothesis class for label ranking

Let X ⊂ Rn be an instance domain and let Y = {1, . . . , k} be a predefined set of labels. On round
t the online algorithm first receives an instance xt ∈ X and is required to rank the labels in Y
according to their relevance to the instance xt. For simplicity, we assume that the predicted ranking
is given in the form of a vector ρt ∈ Rk, where ρt,r > ρt,s means that label r is ranked ahead of
label s. After the online learning algorithm has predicted the ranking ρt it receives as feedback a
subset of labels Yt ⊆ Y , which are mostly relevant to xt. We say that the ranking predicted by the
algorithm is correct if all the labels in Yt are at the top of the list. That is, if for all r ∈ Yt and s /∈ Yt
we have that ρt,r > ρt,s. Otherwise, if there exist r ∈ Yt and s /∈ Yt for which ρt,r ≤ ρt,s, we say
that the algorithm made a prediction mistake on round t. The ultimate goal of the algorithm is to
minimize the total number of prediction mistakes it makes along its run.

We assume that the prediction of the algorithm at each round is determined by a linear function
which is parameterized by k weight vectors, {wt

1, . . . ,w
t
k}. Namely, for all r ∈ Y , the value of

ρt,r is the inner product between wt
r and xt, that is, ρt,r = 〈wt

r,xt〉. We use the notation w̄t

as an abbreviation for the set {wt
1, . . . ,w

t
k}. To evaluate the performance of w̄t on the example

(xt, Yt) we check whether w̄t made a prediction mistake, by determining whether for all r ∈ Yt

and s /∈ Yt we have 〈wt
r,xt〉 > 〈wt

s,xt〉. Since the 0 − 1 loss function is not convex, we follow
the methodology described in Section 2.3 and use a generalization of the hinge-loss function as a
convex upper bound for the 0− 1 loss. Formally, we define:

gt(w̄) = `(w̄, (xt, Yt)) = max
r∈Yt,s/∈Yt

[γ − (〈wr,xt〉 − 〈ws,xt〉)]+ . (8.1)

The term 〈wr,xt〉 − 〈ws,xt〉 in the definition of the hinge-loss is a generalization of the notion of
margin from binary classification. The hinge-loss penalizes w̄ for any margin less than γ. Addition-
ally, if w̄ errs on (xt, Yt) then there exist r ∈ Yt and s /∈ Yt such that 〈wr,xt〉 − 〈ws,xt〉 ≤ 0 and
thus `γ(w̄, (xt, Yt)) ≥ γ. Thus, the cumulative hinge-loss suffered over a sequence of examples
upper bounds γM .

8.3 Algorithms

We derive 6 algorithms from the algorithmic framework given in Figure 3.1 by using 2 types of
complexity functions and 3 dual ascending procedures.
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8.3.1 Complexity functions

Recall that our hypotheses are parameterized by a sequence of k vectors w̄ = (w1, . . . ,wk), where
for each r ∈ [k], wr ∈ Rn. We denote the complexity function over w̄ by f̄ .

The first complexity function we use is the squared Euclidean norm,

f̄(w̄) =
1
2
‖w̄‖22 =

k∑
r=1

1
2
‖wr‖2 . (8.2)

This complexity function is strongly convex on Rn with respect to the Euclidean norm. The second
complexity function is obtained by summing the relative entropy, f(w) = log(n) +

∑
iwi log(wi),

over the k weight vectors:

f̄(w̄) =
k∑
r=1

(
log(n) +

n∑
i=1

wr,i log(wr,i)

)
. (8.3)

The relative entropy is strongly convex over the probabilistic simplex with respect to the norm ‖·‖1.
Therefore, the function f̄ satisfies the conditions stated in Lemma 18. Thus, the analysis given in
Lemma 1 can be repeated for f̄ where the only difference is that Eq. (3.15) is replaced with the
inequality given in Lemma 18.

8.3.2 Dual Ascending Methods

Since w̄ is a sequence of k vectors, each dual vector is also a sequence of k weight vector and we
denote it by λ̄ = (λ1, . . . ,λk). We adopt three dual ascending procedures which results in three
update schemes.

Update I: Conservative subgradient update The first update we use is an adaptation of the
Perceptron update rule for label ranking and is defined as follows. If on round t the algorithm did
not make a prediction mistake we do not change the dual variables at all. If there was a prediction
error we use the update given in Eq. (3.11); namely, we set the tth dual variable to be a subgradient
of gt at w̄t. In our case, a subgradient can be found as follows. Let,

(r′, s′) = argmin
r∈Yt,s/∈Yt

〈wt
r −wt

s,xt〉 . (8.4)

That is, the pair (r′, s′) designates the labels which mostly violate the required preference con-
straints. Since there was a prediction mistake, we get that 〈wt

r′ − wt
s′ ,xt〉 ≤ 0. Based on this

definition, a subgradient of gt at w̄t is a vector λ̄′ = (λ′1, . . . ,λ
′
k) where λ′r′ = −xt, λ′s′ = xt, and
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for all other r we have λ′r = 0.

Update II: Aggressive subgradient update The second update we consider sets the tth dual
variable to be α λ̄′, where α is a scalar and λ̄′ is a subgradient of gt at w̄t as described in the
previous update. The value of alpha is set so as to maximize the dual objective function. That is,

α = argmax
α′

D(λ̄1, . . . , λ̄t−1, α
′ λ̄
′
,0, . . . ,0) .

A closed-form solution for α can be obtained based on the derivation we presented in Section 7.2.

Update III: Optimal dual ascent The third update we use is the update given in Eq. (3.12). That
is, we find the value of λ̄t that maximizes the increase in the dual. In Section 7.3 we presented
efficient methods for implementing this update.

8.4 Experiments

In this section we present experimental results that demonstrate different aspects of our proposed
algorithms. Our experiments compare the 6 algorithms described in the previous section. Note that
using update I with the first complexity function yields an algorithm which was previously pro-
posed and studied in [30] whereas using update II with the same complexity function yields the
PA algorithm described in [28]. We experimented with the Enron email dataset (available from
http://www.cs.umass.edu/∼ronb/datasets/enron flat.tar.gz). The task is to automatically classify
email messages into user defined folders. Thus, the instances in this dataset are email messages
whereas the set of classes is the email folders. Note that our online setting naturally captures the
essence of this email classification task. We represented each email message as a binary vector
x ∈ {0, 1}n with a coordinate for each word, so that xi = 1 if the word corresponding to the index
i appears in the email message and zero otherwise. We ran the various algorithms on sequences of
email messages from 7 users. For update II we used the closed form solution derived in Section 7.2
and for update III we used the algorithms given in Section 7.3. We found in our experiments that
the number of iterations required by the interior point algorithm from Section 7.3 never exceeded
15. The performance of the different algorithms on the datasets is summarized in Table 8.1. It is
apparent that regardless of the complexity function used, update III consistently outperforms up-
date II which in turn consistently outperforms update I. However, the improvement of update II
over update I is more significant than the improvement of update III over update II. Comparing the
two complexity functions we note that regardless of the update used, the complexity function based
on the entropy consistently outperforms the complexity function based on the squared norm. Note
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Table 8.1: The average number of online mistakes for different algorithms on seven users from the Enron
datasets.

f̄(w̄) as in Eq. (8.2) f̄(w̄) as in Eq. (8.3)
username |Y| m update I update II update III update I update II update III
beck-s 101 1971 58.5 55.2 51.9 54.0 50.2 47.1
farmer-d 25 3672 29.5 23.3 22.7 27.6 22.6 22.0
kaminski-v 41 4477 50.2 44.5 41.9 46.7 42.9 40.0
kitchen-l 47 4015 48.2 41.9 40.4 41.9 38.3 36.0
lokay-m 11 2489 24.9 19.1 18.4 24.0 18.7 18.2
sanders-r 30 1188 31.7 28.3 27.2 28.3 24.2 23.4
williams-w3 18 2769 5.0 4.5 4.4 4.2 3.4 3.1

that when using update I with the squared norm as a complexity function we obtain an adaptation
of the Perceptron algorithm for the label ranking task whereas when using update I with the en-
tropy complexity function we obtain an adaptation of the EG algorithm [75]. The superiority of the
entropy-based complexity function over the squared norm was underscored in [75] for regression
and classification problems.

8.5 Bibliographic Notes

Quite a few learning algorithms have been devised for the category ranking problem such as a
multiclass version of AdaBoost called AdaBoost.MH [97], a generalization of Vapnik’s Support
Vector Machines to the multilabel setting by Elisseeff and Weston [45], and generalizations of the
Perceptron algorithm to category ranking [30, 28].

The category ranking hypotheses this work employs are closely related to the ones presented
and used in [45, 30, 32]. However, we depart from the standard paradigm which is confined to
a specific form of a complexity function and give a unified account for online learning for label
ranking problems.



Chapter 9

Speech-to-text and Music-to-score
Alignment

In this chapter we describe a new approach to learning to align an audio signal, with a given se-
quence of events associated with the signal. This approach is based on our algorithmic framework
for online convex programming. We focus on two applications of the alignment task: speech-
to-phoneme alignment and music-to-score alignment. In speech-to-phoneme alignment the events
are phonemes and the goal is to predict the start time of each phoneme in the spoken utterance. In
music-to-score alignment we are given a sequence of musical notes (extracted from a musical score)
along with a recording of the musical piece and the goal is to predict the start time of each note in
the recorded audio signal.

Our proposed method is based on the usage of online convex programming for structured output
learning (see Section 5.3.3). The alignment functions we devise are based on feature functions that
map the audio signal and the sequence of events along with the target event timing sequence into
an abstract vector-space. Based on this mapping, the alignment function distills to a classifier in the
vector-space, which is aimed at separating correct timing sequences from incorrect ones. Based on
our algorithmic framework for online convex programming, we derive a simple iterative algorithm
for learning the alignment function and discuss its formal properties.

9.1 The Alignment Problem

In the alignment problem, we are provided with a signal which is accompanied by a discrete se-
quence of symbols or events and the goal is to align each of the events in the tagging sequence with
its corresponding position in the signal. In speech-to-phoneme alignment, the events designate the
phoneme uttered in the signal. In music-to-score alignment, the events are the notes in the score
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accompanying the signal. The alignment problem is the task of finding the start time of each tagged
event in the input signal.

We represent a signal as a sequence of acoustic feature vectors x̄ = (x1, . . . ,xT ), where xt
is a d-dimensional vector. For brevity we denote the domain of the feature vectors by X ⊂ Rd.
Naturally, the length of the acoustic signal varies from one signal to another and thus T is not fixed.
We denote by X ∗ the set of all finite-length sequences over X . The sequence of events is denoted
by ē = (e1, . . . , eK), where ek ∈ E for all 1 ≤ k ≤ K and E is the domain of the events. We
assume that E is a finite set and we denote by E∗ the set of all finite-length sequences over E. In
summary, each input is a pair (x̄, ē) where x̄ is a sequence representing the acoustic signal and ē is
a sequence of events that occur in the signal. The alignment of the signal x̄ with the events ē is a
sequence of start-times ȳ = (y1, . . . ,yK) where yk ∈ {1, . . . , T} is the start-time of the event ek
in the acoustic signal. Our goal is to learn an alignment function, denoted h, which takes as input
the pair (x̄, ē) and returns an event timing sequence ȳ. That is, h is a function from X ∗ ×E∗ to the
set of finite-length sequences over the integers, N∗.

We focus on two applications of the above general setting: speech-to-phoneme alignment and
music-to-score alignment. In both problems, the acoustic representation x̄ is produced by dividing
the acoustic signal into frames of several milliseconds, and extracting a d dimensional feature vector
from each frame. In the speech-to-phoneme alignment problem the feature vector extracted from
each frame is the Mel-frequency cepstrum coefficients (MFCC) along with their first and second
derivatives. The sequence of events is a sequence of phoneme symbols from E, where E is the set
of 48 American English phoneme symbols as proposed by [79]. We assume that the acoustic signal
is an utterance of the phoneme sequence ē = (e1, . . . , eK) and our goal is to find the start time of
each phoneme in the utterance.

In the music-to-score alignment problem, each acoustic feature vector xt in the sequence x̄ is
produced by calculating the short time Fourier transform of the tth frame of the signal. E is a set
of “note-on” events. Formally, each “note-on” event is a pair ek = (pk, sk). The first element of
the pair, pk ∈ P = {0, 1, . . . , 127} is the note’s pitch value (coded using the MIDI standard). The
second element, s, is assumed to be a positive integer (sk ∈ N) as it measures the (theoretical) start
time of the note according to the musical score. Clearly, there are different ways to perform the
same musical score. Therefore, the actual (or observed) start times of the notes in the perceived
audio signal are very likely to be different from the symbolic start times. Our goal in the music
score alignment task is to find the actual start time of each note in the acoustic signal.
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9.2 Discriminative Supervised Learning

In this section we describe a discriminative supervised learning approach to learning an alignment
function h from a training set of examples. Each example in the training set is composed of an
acoustic signal, x̄, a sequence of events, ē, and the true event timing sequence, ȳ. Our goal is to find
an alignment function, h, which performs well on the training set as well as on unseen examples.
First, we define a quantitative assessment of alignment functions. Let (x̄, ē, ȳ) be an input example
and let h be an alignment function. We denote by ρ(ȳ, h(x̄, ē)) the cost of predicting the timing
sequence h(x̄, ē) where the true timing sequence is ȳ. Formally, ρ : N∗×N∗ → R is a function that
gets two timing sequences (of the same length) and returns a scalar which is the cost of predicting
the second timing sequence where the true timing sequence is the first. We assume that ρ(ȳ, ȳ′) ≥ 0
for any two timing sequences ȳ, ȳ′ and that ρ(ȳ, ȳ) = 0. An example for a cost function is

ρ(ȳ, ȳ′) =
|{i : |yi − y′i| > ε}|

|ȳ|
. (9.1)

In words, the above cost is the average number of times the absolute difference between the pre-
dicted timing sequence and the true timing sequence is greater than ε. Recall that our goal is to
find an alignment function h that achieves a low cost on unseen examples. Formally, let Q be any
(unknown) distribution over the domain of the examples, X ∗ × E∗ × N?. The goal of the learning
process is to minimize the risk of using the alignment function, defined as the expected cost of h on
the examples, where the expectation is taken with respect to the distribution Q,

risk(h) = E(x̄,ē,ȳ)∼Q [ρ(ȳ, h(x̄, ē))] .

To do so, we assume that the examples of our training set are identically and independently dis-
tributed (i.i.d.) according to the distribution Q. Note that we only observe the training examples
but we do not know the distribution Q. The training set of examples is used as a restricted window
through which we estimate the quality of alignment functions according to the distribution of unseen
examples in the real world, Q. In the next section we show how to use the training set in order to
find an alignment function, h, which achieves a low cost on unseen examples with high probability.

9.3 Hypothesis Class and a Learning Algorithm for Alignment

Recall that a supervised learning algorithm for alignment receives as an input a training set
{(x̄1, ē1, ȳ1), . . . , (x̄m, ēm, ȳm)} and returns an alignment function h ∈ H, where H is a fam-
ily of allowed alignment functions often called a hypothesis class. In this section we describe a
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parametric family of alignment functions.
To facilitate an efficient algorithm we confine ourselves to a restricted class of alignment

functions. Specifically, we assume the existence of a predefined alignment feature functions,
φ : X ∗ × E∗ × N∗ → Rn . The alignment feature function gets the acoustic representation, x̄,
and the sequence of events, ē, together with a candidate timing sequence, ȳ, and returns a vector
in Rn. Intuitively, each element of the output vector φ(x̄, ȳ, ē) represents a confidence value of
the suggested timing sequence ȳ. The construction of φ is task dependent. As an example, let us
briefly describe a single element of an alignment feature function for the speech-to-phoneme align-
ment task. This alignment feature sums a cepstral distance between the frames xyi+1 and xyi−1

over i = 1, 2, . . . , |ȳ|. For each i, if yi is indeed the correct start time of phoneme i, we expect
the distance between xyi+1 and xyi−1 to be large. On the other hand, if yi does not reflect a true
alignment point then the distance is likely to be small. Naturally, it is naive to assume that the
above alignment feature can be used alone to find the correct timing sequence. However, as our
experiments show, an appropriate combination of a few alignment features enables us to accurately
predict the correct timing sequence.

The alignment functions we use are of the form

h(x̄, ē) = argmax
ȳ

〈w,φ(x̄, ē, ȳ)〉 , (9.2)

where w ∈ Rn is a vector of importance weights that we need to learn. In words, h returns a
suggestion for a timing sequence by maximizing a weighted sum of the confidence scores returned
by each alignment feature function φj . Since h is parameterized by w we use the notation hw for
an alignment function h, which is defined as in Eq. (9.2). Note that the number of possible timing
sequences, ȳ, is exponentially large. Nevertheless, as we show later, under mild conditions on the
form of the alignment feature function, φ, the optimization problem in Eq. (9.2) can be efficiently
calculated using a dynamic programming procedure.

We now provide a simple iterative algorithm for learning an alignment function of the form given
in Eq. (9.2) based on a training set of examples {(x̄1, ē1, ȳ1), . . . , (x̄m, ēm, ȳm)}. Our iterative
algorithm first runs an online learning algorithm for structured output (see Section 5.3.3) on the
training set. The online learning algorithm produces a sequence of weight vectors w1, . . . ,wm+1.
Since our goal is to output a single weight vector that defines the output alignment function, we use
an online-to-batch conversion technique as given in Section B.3. In our experiments, we used the
algorithm given in Figure 5.4 and the “Last” conversion scheme described in Section B.3.
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9.4 Efficient evaluation of the alignment function

So far we have put aside the problem of evaluation time of the function h given in Eq. (9.2). Recall
that calculating h requires solving the following optimization problem,

h(x̄, ē) = argmax
ȳ

〈w,φ(x̄, ē, ȳ)〉 .

A direct search for the maximizer is not feasible since the number of possible timing sequences,
ȳ, is exponential in the number of events. Fortunately, as we show below, by imposing a few
mild conditions on the structure of the alignment feature functions the problem can be solved in
polynomial time.

For simplicity, we assume that each element of our feature function, φj , can be decomposed as
follows. Let ψj be any function from X ∗ × E∗ × N3 into the reals, which can be computed in a
constant time. That is, ψj receives as input the signal, x̄, the sequence of events, ē, and three time
points. Additionally, we use the convention y0 = 0 and y|ē|+1 = T + 1. Using the above notation,
we assume that each φj can be decomposed to be

φj(x̄, ē, ȳ) =
|ȳ|∑
i=1

ψj(x̄, ē, yi−1, yi, yi+1) . (9.3)

The alignment feature functions we derive in later sections for speech-to-phoneme and music-to-
score alignment can be decomposed as in Eq. (9.3).

We now describe an efficient algorithm for calculating the best timing sequence assuming that
φj can be decomposed as in Eq. (9.3). Similar algorithms can be constructed for any base feature
functions that can be described as a dynamic Bayesian network ([36, 113]). Given i ∈ {1, . . . , |ē|}
and two time indices t, t′ ∈ {1, . . . , T}, denote by D(i, t, t′) the score for the prefix of the events
sequence 1, . . . , i, assuming that their actual start times are y1, . . . , yi, where yi = t′ and assuming
that yi+1 = t. This variable can be computed efficiently in a similar fashion to the forward vari-
ables calculated by the Viterbi procedure in HMMs (see for instance [92]). The pseudo code for
computing D(i, t, t′) recursively is shown in Figure 9.1. The best sequence of actual start times, ȳ′,
is obtained from the algorithm by saving the intermediate values that maximize each expression in
the recursion step. The complexity of the algorithm is O(|ē| |x̄|3). However, in practice, we can
use the assumption that the maximal length of an event is bounded, t − t′ ≤ L. This assumption
reduces the complexity of the algorithm to be O(|ē| |x̄| L2).

To conclude this section we discuss the global complexity of our proposed method. In the
training phase, our algorithm performsm iterations, one iteration per each training example. At each
iteration the algorithm evaluates the alignment function once and updates the alignment function,
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INPUT: audio signal x̄, sequence of events ē ;

weight vector w ; maximal length of an event L

INITIALIZE: ∀(1 ≤ t ≤ L), D(0, t, 0) = 0

RECURSION:

For i = 1, . . . , |ē|

For t = 1, . . . , |x̄|

For t′ = t− L, . . . , t− 1

D(i, t, t′) = max
t′−L≤t′′<t′

D(i−1, t′, t′′) + 〈w,ψ(x̄, ē, t′′, t′, t)〉

TERMINATION: D? = max
t′

D(|ē|, T, t′)

Figure 9.1: An efficient procedure for evaluating the alignment function given in Eq. (9.2).

if needed. Each evaluation of the alignment function takes an order of O(|ē| |x̄| L2) operations.
Therefore the total complexity of our method becomes O(m |ē| |x̄| L2).

9.5 Speech-to-phoneme alignment

In this section we present the implementation details of our learning approach for the task of speech-
to-phoneme alignment. Recall that our construction is based on a set of base alignment functions,
{φj}nj=1, which maps an acoustic-phonetic representation of a speech utterance as well as a sug-
gested phoneme start time sequence into an abstract vector-space. All of our base alignment func-
tions are decomposable as in Eq. (9.3) and therefore it suffices to describe the functions {ψj}. We
start the section by introducing a specific set of base functions, which is highly adequate for the
speech-to-phoneme alignment problem. Next, we report experimental results comparing our algo-
rithm to alternative state-of-the-art approaches.

9.5.1 Base alignment functions

We utilize seven different base alignment functions (n = 7). These base functions are used for
defining our alignment function f(x̄, ē) as in Eq. (9.2).

Our first four base functions aim at capturing transitions between phonemes. These base func-
tions are based on the distance between frames of the acoustical signal at two sides of phoneme
boundaries as suggested by a phoneme start time sequence ȳ. The distance measure we employ,
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denoted by d, is the Euclidean distance between feature vectors. Our underlying assumption is that
if two frames, xt and xt′ , are derived from the same phoneme then the distance d(xt,xt′) should
be smaller than if the two frames are derived from different phonemes. Formally, our first 4 base
functions are defined as

ψj(x̄, ē, yi−1, yi, yi+1) = d(xyi−j ,xyi+j), j ∈ {1, 2, 3, 4} . (9.4)

If ȳ is the correct timing sequence then distances between frames across the phoneme change points
are likely to be large. In contrast, an incorrect phoneme start time sequence is likely to compare
frames from the same phoneme, often resulting small distances. Note that the first four base func-
tions described above only use the start time of the ith phoneme and does not use the values of yi−1

and yi+1.
The fifth base function we use is based on the framewise phoneme classifier described in [37].

Formally, for each phoneme event e ∈ P and frame x ∈ X , there is a confidence, denoted ge(x), that
the phoneme e is pronounced in the frame x. The resulting base function measures the cumulative
confidence of the complete speech signal given the phoneme sequence and their start-times,

ψ5(x̄, ē,yi−1,yi,yi+1) =
yi+1−1∑
t=yi

gei(xt) . (9.5)

The fifth base function use both the start time of the ith phoneme and the (i + 1)th phoneme but
ignores yi−1.

Our next base function scores timing sequences based on phoneme durations. Unlike the pre-
vious base functions, the sixth base function is oblivious to the speech signal itself. It merely
examines the length of each phoneme, as suggested by ȳ, compared to the typical length required
to pronounce this phoneme. Formally,

ψ6(x̄, ē,yi−1,yi,yi+1) = logN (yi+1 − yi; µ̂ei , σ̂ei) , (9.6)

where N is a Normal probability density function with mean µ̂e and standard deviation σ̂e. In our
experiments, we estimated µ̂e and σ̂e from the entire TIMIT training set, excluding SA1 and SA2
utterances.

Our last base function exploits assumptions on the speaking rate of a speaker. Intuitively, people
usually speak in an almost steady rate and therefore a timing sequence in which speech rate is
changed abruptly is probably incorrect. Formally, let µ̂e be the average length required to pronounce
the eth phoneme. We denote by ri the relative speech rate, ri = (yi+1 − yi)/µ̂e. That is, ri is the
ratio between the actual length of phoneme ei as suggested by ȳ to its average length. The relative
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Table 9.1: Percentage of correctly positioned phoneme boundaries, given a predefined tolerance on
the TIMIT corpus.

t ≤ 10ms t ≤ 20ms t ≤ 30ms t ≤ 40ms

TIMIT core test-set
Discrim. Alignment 79.7 92.1 96.2 98.1
Brugnara et al. [15] 75.3 88.9 94.4 97.1

Hosom [69] 92.57

TIMIT entire test-set
Discrim. Alignment 80.0 92.3 96.4 98.2
Brugnara et al. [15] 74.6 88.8 94.1 96.8

speech rate presumably changes slowly over time. In practice the speaking rate ratios often differ
from speaker to speaker and within a given utterance. We measure the local change in the speaking
rate as (ri − ri−1)2 and we define the base function ψ7 as the local change in the speaking rate,

ψ7(x̄, ē,yi−1,yi,yi+1) = (ri − ri−1)2 . (9.7)

Note that ψ7 relies on all three start-times it receives as an input, yi−1,yi,yi+1.

9.5.2 Experiments

To validate the effectiveness of the proposed approach we performed experiments with the TIMIT
corpus. We first divided the training portion of TIMIT (excluding the SA1 and SA2 utterances) into
two disjoint parts containing 500 and 3193 utterances, respectively. The first part of the training
set was used for learning the functions gei (Eq. (9.5)), which define the base function ψ5. These
functions were learned by the algorithm described in [37] using the MFCC+∆+∆∆ acoustic fea-
tures [46] and a Gaussian kernel (σ = 6.24 and C = 5.0). We ran our iterative alignment algorithm
on the remaining utterances in the training set. We used the cost function

ρ(ȳ, ȳ′) =
⌊

10 |{i : |yi − y′i| > ε}|
|ȳ|

⌋
.

where the value of ε was set to be 1 (i.e., 10 ms). That is, the output of ρ is in {0, 1, . . . , 10}.
We evaluated the learned alignment functions on both the core test set and the entire test set

of TIMIT. We compared our results to the results reported by Brugnara et al. [15] and the re-
sults obtained by Hosom [69]. The results are summarized in Table 9.1. For each tolerance value
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τ ∈ {10 ms, 20 ms, 30 ms, 40 ms}, we counted the number of predictions whose distance to the true
boundary, t = |yi − y′i|, is less than τ . As can be seen in the table our discriminative large margin
algorithm is comparable to the best results reported on TIMIT. Furthermore, we found in our exper-
iments that the same level of accuracy is obtained when using solely the first 50 utterances (rather
than the entire 3193 utterances that are available for training).

9.6 Music-to-score alignment

In this section we present the implementation details of our learning approach for the task of music-
to-score alignment. We start the section by introducing a specific set of base alignment functions
which is highly adequate for the music-to-score alignment problem. Next, we report experimental
results comparing our algorithm to an alternative generative method for score alignment.

9.6.1 Base alignment functions

We utilized ten different base alignment functions (n = 10). Recall that each note-on event in the
music-to-score alignment problem is a pair e = (p, s), where p is the pitch of the note and s is the
(theoretical) start time of the note. Our first nine base alignment functions ignore the value of s and
thus, for these features, ψj only depends on x̄, p̄, and ȳ. Intuitively, the first nine base alignment
functions measure the confidence that a pitch value pi starts at time index yi of the signal.

We now describe the specific form of each of the above base functions, starting with ψ1. The
function ψ1(x̄, ē,yi−1,yi,yi+1) measures the energy of the acoustic signal at the frame xyi and
the frequency corresponding to the pitch pi. Formally, let Fpi denotes a band-pass filter with a
center frequency at the first harmonic of the pitch pi and cut-off frequencies of 1/4 tone below and
above pi. Concretely, the lower cut-off frequency of Fpi is 440 · 2

pi−57−0.5

12 Hz and the upper cut-off
frequency is 440 · 2

pi−57+0.5

12 Hz, where pi ∈ P = {0, 1, . . . , 127} is the pitch value (coded using
the MIDI standard) and 440 · 2

pi−57

12 is the frequency value in Hz associated with the codeword pi.
Similarly, ψ2 and ψ3 are the output energies of band-pass filters centered at the second and third
pitch harmonics, respectively. All the filters were implemented using the fast Fourier transform.

The above three local templates {ψj}3j=1 measure energy values for each time yi. Since we
are interested in identifying note onset times, it is reasonable to compare energy values at time yi
with energy values at time yi − 1. However, the (discrete) first order derivative of the energy is
highly sensitive to noise. Instead, we calculate the derivatives of a fitted second-order polynomial
of each of the above local features. (This method is also a common technique in speech process-
ing systems [92].) Therefore, the next six local templates, {ψj}9j=4, measure the first and second
derivatives of the energy of the output signal of the three filters around the first three harmonics of
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pi.
While the first nine base alignment functions measure confidence of timing sequences based on

spectral properties of the signal, the last alignment feature captures the similarity between s̄ and ȳ.
Formally, let

ri =
yi+1 − yi
si+1 − si

(9.8)

be the ratio between the ith interval, according to ȳ, to the interval according to s̄. We also refer to ri
as the relative tempo. The sequence of relative tempo values is presumably constant in time, since s̄
and ȳ represent two performances of the same musical piece. However, in practice the tempo ratios
often differ from performance to performance and within a given performance. The local template
ψ10 measures the local change in the tempo,

ψ10(x̄, ē,yi−1,yi,yi+1) = (ri − ri−1)2 .

The relative tempo of Eq. (9.8) is ill-defined whenever si+1 − si is zero (or relatively small). Since
we are dealing with polyphonic musical pieces, very short intervals between notes are quite relevant.
Therefore, we define the tempo ri as in Eq. (9.8) but confine ourselves to indices i for which si+1−si
is greater than a predefined value τ (in our experiments we set τ = 60 ms). Thus, if si+1 − si ≤ τ

or si − si−1 ≤ τ , then we set ψ10 to be zero.

9.6.2 Experiments

We now describe experiments with our alignment algorithm for the task of score alignment of
polyphonic piano music pieces. Specifically, we compare our alignment algorithm to a genera-
tive method which is based on the Generalized Hidden Markov Model (GHMM). The details of
the GHMM approach can be found in [102]. This GHMM method is closely related to graphical
model approaches for score alignment, first proposed by Raphael [93, 94]. Note in passing that
more advanced algorithms for real-time score alignment have been suggested (see for example [25]
and the references therein). In our experiments we focus on the basic comparison between the dis-
criminative and generative approaches for score alignment. Recall that our alignment algorithm
uses a training set of examples to deduce an alignment function. We downloaded 12 musical pieces
from http://www.piano-midi.de/mp3.php where sound and MIDI were both recorded.
Here the sound serves as the acoustical signal x̄ and the MIDI is the actual start times ȳ. We also
downloaded other MIDI files of the same musical pieces from a variety of other web-sites and used
these MIDI files to create the sequence of events ē. The complete dataset we used is available from
http://www.cs.huji.ac.il/˜shais/alignment.

http://www.piano-midi.de/mp3.php
http://www.cs.huji.ac.il/~shais/alignment
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Table 9.2: Summary of the LOO loss (in ms) for different algorithms for music-to-score alignment.

GHMM-1 GHMM-3 GHMM-5 GHMM-7 Discrim.

1 10.0 188.9 49.2 69.7 8.9
2 15.3 159.7 31.2 20.7 9.1
3 22.5 48.1 29.4 37.4 17.1
4 12.7 29.9 15.2 17.0 10.0
5 54.5 82.2 55.9 53.3 41.8
6 12.8 46.9 26.7 23.5 14.0
7 336.4 75.8 30.4 43.3 9.9
8 11.9 24.2 15.8 17.1 11.4
9 11473 11206 51.6 12927 20.6
10 16.3 60.4 16.5 20.4 8.1
11 22.6 39.8 27.5 19.2 12.4
12 13.4 14.5 13.8 28.1 9.6

mean 1000.1 998.1 30.3 1106.4 14.4
std 3159 3078.3 14.1 3564.1 9.0

median 15.8 54.2 28.5 25.8 10.7

In the score alignment problem we report the average alignment error,

1
|ȳ|

|ȳ|∑
i=1

|yi − y′i| .

Since this dataset is rather small, we ran our iterative algorithm on the training set several times and
chose the alignment function which minimizes the error on the training set. We used the leave-one-
out (LOO) cross-validation procedure for evaluating the test results. In the LOO setup the algorithms
are trained on all the training examples except one, which is used as a test set. The error between
the predicted and true start times is computed for each of the algorithms. The GHMM approach
uses a Gaussian Mixture Model (GMM) for modeling some of the probabilities. The number of
Gaussians used by the GMM needs to be determined. We used the values of 1, 3, 5 and 7 as the
number of Gaussians and we denote by GHMM-n the resulting generative model with n Gaussians.
In addition, we used the EM algorithm to train the GMMs. The EM algorithm converges to a local
maximum, rather than to the global maximum. A common solution to this problem is to use a
random partition of the data to initialize the EM. In all our experiments with the GMM we used 15
random partitions of the data to initialize the EM and chose the one that led to the highest likelihood.
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The LOO results for each of the 12 musical pieces are summarized in Table 9.2. As seen from the
table, our discriminative learning algorithm outperforms all the variants of the GHMM method in
all of the experiments. Moreover, in all but two of the experiments the error of the discriminative
algorithm is less than 20 ms, which is the length of an acoustic frame in our experiments; thus it
is the best accuracy one can hope for at this time resolution. It can be seen that the variance of the
LOO loss obtained by the generative algorithms is rather high. This can be attributed to the fact that
the EM algorithm converges to a local maximum which depends on initialization of the parameters.

9.7 Bibliographic Notes

Most of the previous work on speech-to-phoneme and music-to-score alignment focused on a
generative model of the audio signal using Hidden Markov Models (HMM). See for example
[15, 69, 114, 101, 112] and the references therein. Despite their popularity, HMM-based approaches
have several drawbacks such as convergence of the EM procedure to local maxima and overfitting
effects due to the large number of parameters. In this chapter we proposed an alternative approach
to learning alignment functions that builds upon recent work on discriminative supervised learning.
The advantage of discriminative learning algorithms stems from the fact that the objective function
used during the learning phase is tightly coupled with the decision task one needs to perform. In
addition, there is both theoretical and empirical evidence that discriminative learning algorithms are
likely to outperform generative models for the same task (cf. [117, 33]). One of the best known dis-
criminative learning algorithms is the support vector machine (SVM), which has been successfully
applied in speech processing applications [96, 71, 81]. The classical SVM algorithm is designed for
simple decision tasks such as binary classification and regression. Hence, its exploitation in signal
processing systems so far has also been restricted to simple decision tasks such as phoneme classi-
fication and music genre classification. The alignment problem is more involved, since we need to
predict a sequence of event timings rather than a single number. The main challenge is therefore to
extend the notion of discriminative learning to the complex task of alignment.

Our proposed method is based on recent advances in kernel machines and large margin clas-
sifiers for sequences [23, 113, 115], which in turn build on the pioneering work of Vapnik and
colleagues [117, 33]. The learning algorithm we present shares similarities with the SVM method
for structured output prediction [113, 115]. However, the weight vector generated by our method
is not identical to the one obtained by directly solving the SVM optimization problem. It is worth
noting that by applying our regret bounds from Section 5.3 along with the risk bounds given in
Section B.3 we obtain generalization bounds which are comparable to the generalization bounds
derived for the SVM method (see for example [113]). The major advantage of our method over
directly solving the SVM problem is its simplicity and efficiency.
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Discussion

In this dissertation we presented a new framework for the design and analysis of online convex
programming algorithms. We illustrated the applicability of the framework to online learning and
boosting. Our framework yields the tightest known bounds for existing algorithms and also paves
the way for the design of new algorithms.

The main idea behind our derivation is the connection between regret bounds and Fenchel dual-
ity. This connection leads to a reduction from online convex programming to the task of incremen-
tally ascending the dual objective function. The analysis of our algorithms makes use of the weak
duality theorem. Despite the generality of this framework, the resulting analysis is more distilled
than earlier analyses. The strongly convex property we employ both simplifies the analysis and
enables more intuitive conditions in our theorems.

The connection between online learning and optimization was first derived by us in [106, 107].
There, we focused on the problem of binary classification with the hinge loss, and used the Lagrange
duality. The generalization of the framework beyond the specific setting of online learning with the
hinge-loss to the general setting of online convex programming appears in [104]. This generalization
enables us to automatically utilize well known online learning algorithms, such as the EG and p-
norm algorithms [76, 62], in the setting of online convex programming. The self-tuned algorithmic
framework we presented in Section 3.5 has never been published. The online-to-batch conversion
schemes described in Chapter B are partially based on the analysis of stochastic gradient descents
described in [110]. The analysis of boosting algorithms based on our framework is an improvement
over the analysis in [104]. Some of the algorithms that appear in Chapter 7 as well as the application
to online email categorization were published in [105, 108]. The application of music-to-score and
text-to-speech alignment was published in [102, 73, 72].

There are various possible extensions of the work that we did not pursue here due to lack of
space. For instance, our framework can naturally be used for the analysis of other settings such as

108
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repeated games (see [55, 123]). The reduction from online learning to dual incrementing algorithms
may enable us to apply algorithms proposed in convex analysis to online learning (see for example
[16]). We also conjecture that our primal-dual view of boosting will lead to new methods for reg-
ularizing boosting algorithms, thus improving their generalization capabilities. Another interesting
direction is the applicability of our framework to settings where the target hypothesis is not fixed
but rather drifts with the sequence of examples. Finally, we believe that the proposed framework
will be useful in deriving additional online learning algorithms for various prediction problems.
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Appendix A

Convex Analysis

In this chapter we recall a few definitions from convex analysis and derive several tools used
throughout this dissertation. For a more thorough introduction see for example [11, 14].

A.1 Convex sets and functions

A set S is convex if for any two vectors w1,w2 in S, all the line between w1 and w2 is also within
S. That is, for any α ∈ [0, 1] we have that αw1 + (1 − α)w2 ∈ S. A set S is open if every point
in S has a neighborhood lying in S. A set S is closed if its complement is an open set. A function
f : S → R is closed and convex if for any scalar α ∈ R, the level set {w : f(w) ≤ α} is closed
and convex. Throughout this paper we work solely with functions that are close.

A.2 Gradients, Subgradients, and Differential Sets

A vector λ is a sub-gradient of a function f at v if

∀u ∈ S, f(u)− f(v) ≥ 〈u− v,λ〉 .

The differential set of f at v, denoted ∂f(v), is the set of all sub-gradients of f at v. A function f
is convex iff ∂f(v) is non-empty for all v ∈ S. If f is convex and differentiable at v then ∂f(v)
consists of a single vector which amounts to the gradient of f at v and is denoted by ∇f(v). As a
consequence we obtain that a differential function f is convex iff for all v,u ∈ S we have that

f(u)− f(v)− 〈u− v,∇f(v)〉 ≥ 0 .
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If f is differentiable at w then ∂f(w) consists of a single vector which amounts to the gradient of
f at w and is denoted by∇f(w).

We conclude this section with some basic rules that help us to claculate subgradients.

• Scaling: For α > 0 we have ∂(αf) = α∂f .

• Addition: ∂(f1 + f2) = ∂f1 + ∂f2.

• Affine transformation: If g(x) = f(Ax + b) for a matrix A and a vector b then ∂g(x) =
At∂f(Ax+ b), where At is the transpose of A.

• Pointwise Maximum: If f = maxi∈[m] fi then ∂f at a vector x is the convex hull of the
union of ∂fi at x over i ∈ {j : fj(x) = f(x)}.

A.3 Fenchel Conjugate

The Fenchel conjugate of a function f : S → R is defined as

f?(θ) = sup
w∈S
〈w,θ〉 − f(w) . (A.1)

Since f? is defined as a supremum of linear functions it is convex. If f is closed and convex then
the Fenchel conjugate of f? is f itself. The Fenchel-Young inequality states that for any w and θ
we have that f(w) + f?(θ) ≥ 〈w,θ〉.

Sub-gradients play an important role in the definition of Fenchel conjugate. In particular, the
following lemma states that if λ ∈ ∂f(w) then Fenchel-Young inequality holds with equality.

Lemma 11 Let f be a closed and convex function and let ∂f(w′) be its differential set at w′. Then,
for all λ′ ∈ ∂f(w′) we have, f(w′) + f?(λ′) = 〈λ′,w′〉 .

Proof Sinceλ′ ∈ ∂f(w′), we know that f(w)−f(w′) ≥ 〈λ′,w−w′〉 for all w ∈ S. Equivalently

〈λ′,w′〉 − f(w′) ≥ sup
w∈S

(
〈λ′,w〉 − f(w)

)
.

The right-hand side of the above equals to f?(λ′) and thus,

〈λ′,w′〉 − f(w′) ≥ f?(λ′) ⇒ 〈λ′,w′〉 − f?(λ′) ≥ f(w′) . (A.2)

The assumption that f is closed and convex implies that f is the Fenchel conjugate of f?. Thus,

f(w′) = sup
λ

(
〈λ,w′〉 − f?(λ)

)
≥ 〈λ′,w′〉 − f?(λ′) .
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Combining the above with Eq. (A.2) gives,

〈λ′,w′〉 − f?(λ′) ≥ f(w′) and f(w′) ≥ 〈λ′,w′〉 − f?(λ′) .

Therefore, each of the two inequalities above must hold with equality which concludes the proof.

The next lemma shows that conjugate functions preserve order.

Lemma 12 Let f1, f2 be two functions and assume that for all w ∈ S, f1(w) ≤ f2(w). Then, for
all θ we have f?1 (θ) ≥ f?2 (θ).

Proof
f?2 (θ) = sup

w
〈w,θ〉 − f2(w) ≤ sup

w
〈w,θ〉 − f1(w) = f?1 (θ) .

A.3.1 Some Fenchel Conjugate Pairs

We now describe a few useful Fenchel-conjugate pairs.

Half Norm Squared: Let ‖ · ‖ be any norm on Rn and let f(w) = 1
2‖w‖

2 with S = Rn. Then
f?(θ) = 1

2‖θ‖
2
∗ where ‖ · ‖∗ is the dual norm of ‖ · ‖. The domain of f? is also Rn. For example, if

f(w) = 1
2‖w‖

2
2 then f?(θ) = 1

2‖θ‖
2
2 since the `2 norm is dual to itself. For a proof see pp. 93-94

in [14].

Hinge-loss: Let f(w) = [γ − 〈w,x〉]+ where γ ∈ R+ and x ∈ Rn with S = Rn. Then, the
conjugate of f is,

f?(θ) =

{
−γ α ifθ ∈ {−αx : α ∈ [0, 1]}
∞ otherwise

.

The above is a special case of the max-of-hinge function below.

Max-of-hinge: Let f(w) = maxi∈[k] [bi − 〈w,xi〉]+ where for all i ∈ [k], bi ∈ R+ and xi ∈ Rn.
The conjugate of f is,

f?(θ) =

−
∑k

i=1 αibi if θ ∈
{
−
∑k

i=1 αixi : α ∈ Rk
+ and ‖α‖1 ≤ 1

}
∞ otherwise

(A.3)
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To show the above, we rewrite f(w) as follows:

f(w) = min
ξ≥0

(
ξ +

k∑
i=1

max
αi≥0

αi(bi − 〈w,xi〉 − ξ)

)
= min

ξ≥0
max
α∈Rk+

ξ(1−
∑
i

αi) +
∑
i

αi(bi − 〈w,xi〉)

= max
α∈Rk+

min
ξ≥0

ξ(1−
∑
i

αi) +
∑
i

αi(bi − 〈w,xi〉)

= max
α∈Rk+:‖α‖1≤1

∑
i

αi(bi − 〈w,xi〉) .

The third equality above follows from the strong max-min property that clearly holds for bilinear
functions (see [14] page 115). Therefore, using the definition of f?(θ) we get that

f?(θ) = max
w

(〈θ,w〉 − f(w))

= max
w

(
〈θ,w〉 − max

α∈Rk+:‖α‖1≤1

∑
i

αi(bi − 〈w,xi〉)

)

= max
w

min
α∈Rk+:‖α‖1≤1

(
−
∑
i

αibi + 〈w,θ +
∑
i

αixi〉

)

= min
α∈Rk+:‖α‖1≤1

max
w

(
−
∑
i

αibi + 〈w,θ +
∑
i

αixi〉

)

= min
α∈Rk+:‖α‖1≤1

(
−
∑
i

αibi + max
w
〈w,θ +

∑
i

αixi〉

)
.

The fourth equality above again follows from the strong max-min property. Finally, we note that for
any α, the value of maxw 〈w,θ +

∑
i αixi〉 is zero if θ +

∑
i αixi = 0 and otherwise the value is

∞. This fact clearly implies that Eq. (A.3) holds.

Relative Entropy and Logarithm of Sum of Exponentials: Let S = {w ∈ Rn
+ :
∑n

i=1wi = 1}
and let

f(w) =
n∑
i=1

wi log
(
wi

1/n

)
.

Then, the Fenchel conjugate of f is,

f?(θ) = log

(
1
n

n∑
i=1

exp(θi)

)
. (A.4)
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For a proof see p. 93 in [14].

Binary-entropy and Logistic-loss: Let S = {w ∈ Rn : ∀i ∈ [n], wi ∈ [0, 1]} and let

f(w) = −
n∑
i=1

(wi log(wi) + (1− wi) log(1− wi)) .

Then, the Fenchel conjugate of f is,

f?(θ) =
n∑
i=1

log(1 + eθi) . (A.5)

The above Fenchel-pair correspondence can be shown by using the fact that for differentiable func-
tions we have that∇f(w) is the inverse of the function∇f?(θ).

Effect of Scaling and Shifting: We conclude this section with the following useful property of
conjugate pairs. Let f be a function and let f? be its Fenchel conjugate. For a > 0 and b ∈ R, the
Fenchel conjugate of g(w) = af(w) + b is g?(θ) = af?(θ/a)− b. For a proof see page 95 in [14].

A.4 Strongly Convex Functions

Definition 4 A continuous function f is strongly convex over a convex set S with respect to a norm
‖ · ‖ if S is contained in the domain of f and for all v,u ∈ S and α ∈ [0, 1] we have

f(αv + (1− α) u) ≤ α f(v) + (1− α) f(u)− 1
2
α (1− α) ‖v − u‖2 . (A.6)

The following lemma gives an alternative definition for strong convexity.

Lemma 13 f is strongly convex iff for all u,v ∈ S we have

∀θ ∈ ∂f(u), 〈θ,v − u〉 ≤ f(v)− f(u)− 1
2
‖v − u‖2 . (A.7)

Proof Assume f satisfies Eq. (A.6). Rearranging, we get,

f(u + α(v − u))− f(u)
α

≤ f(v)− f(u)− 1
2

(1− α)‖v − u‖2 .

Taking α→ 0 we obtain,

f ′(u; v − u) ≤ f(v)− f(u)− 1
2
‖v − u‖2 ,
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where f ′(u; ·) is the directional derivative of f at u (see [11], page 15). Next, using Proposition
3.1.6 in [11] we obtain that

∀θ ∈ ∂f(u), 〈θ,v − u〉 ≤ f ′(u; v − u) ,

and therefore Eq. (A.7) holds. Now assume that Eq. (A.7) holds. Take two points u1 and u2 and set
v = αu1 + (1− α)u2. Take some θ ∈ ∂f(v). We have,

〈θ,u1 − v〉 ≤ f(u1)− f(v)− 1
2
‖v − u1‖2

〈θ,u2 − v〉 ≤ f(u2)− f(v)− 1
2
‖v − u2‖2 .

Summing the above two equations with coefficients α and (1− α) we obtain

0 ≤ αf(u1) + (1− α)f(u2)− f(v)− 1
2
(
α‖v − u1‖2 + (1− α)‖v − u2‖2

)
Using the definition of v and rearranging terms we obtain

f(αu1 + (1− α)u2) ≤ αf(u1) + (1− α)f(u2)− 1
2
α(1− α)‖u1 − u2‖2 ,

and therefore Eq. (A.6) holds.

The following lemma gives useful tools for proving strong convexity.

Lemma 14 Assume that f is differentiable. Then f is strongly convex iff

〈∇f(u)−∇f(v),u− v〉 ≥ ‖u− v‖2 . (A.8)

Additionally, if f is twice differentiable then a sufficient condition for strong convexity of f is

∀w,x, 〈∇2f(w) x , x〉 ≥ ‖x‖2 . (A.9)

Proof Assume f is strongly convex. Then, from Lemma 13 we have

〈∇f(u),v − u〉 ≤ f(u)− f(v)− 1
2
‖u− v‖2

〈∇f(v),u− v〉 ≤ f(v)− f(u)− 1
2
‖v − u‖2
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Adding these two inequalities we obtain Eq. (A.8). Assume now that Eq. (A.8) holds. Define
h(α) = f(v + α(u− v)), and denote w = v + α(u− v). Then,

h′(α)− h′(0) = 〈∇f(w)−∇f(v),u− v〉 =
1
α
〈∇f(w)−∇f(v),w − v〉 .

Using Eq. (A.8) we obtain that

h′(α)− h′(0) ≥ 1
α
‖w − v‖2 = α‖u− v‖2 .

Therefore,

f(u)− f(v)− 〈∇f(v),u− v〉 = h(1)− h(0)− h′(0) =
∫ 1

0
(h′(α)− h′(0))dα ≥ 1

2
‖u− v‖2 ,

and thus f is strongly convex.
Finally assume that f is twice differentiable and Eq. (A.9) holds. Then,

h′′(α) = 〈∇2f(v + α(u− v)) (u− v) , (u− v)〉 ≥ ‖u− v‖2 .

Since there exists φ ∈ [0, 1] such that h(1) = h(0) + h′(0) + h′′(φ)/2 we obtain that

f(u) = h(1) = h(0) + h′(0) +
1
2
h′′(φ) ≥ f(v) + 〈∇f(v),u− v〉+

1
2
‖u− v‖2 ,

which implies that f is strongly convex (based on Lemma 13).

Strongly convex functions play an important role in our analysis primarily due to the following
lemma.

Lemma 15 Let f be a closed and strongly convex function over S with respect to a norm ‖ · ‖. Let
f? be the Fenchel conjugate of f . Then,

1. f? is differentiable

2. ∇f?(θ) = arg maxw∈S 〈w,θ〉 − f(w)

3. ∀θ1,θ2, ‖∇f?(θ1)−∇f?(θ2)‖ ≤ ‖θ1 − θ2‖? , where ‖ · ‖? is the norm dual to ‖ · ‖

4. ∀θ,λ ∈ Rn, f?(θ + λ)− f?(θ) ≤ 〈∇f?(θ),λ〉+ 1
2‖λ‖

2
?.

5. If f is differentiable then ∀θ ∈ Rn, ∀u ∈ S, 〈u−∇f?(θ),θ −∇f(∇f?(θ))〉 ≤ 0
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Proof
1-2. Since f is strongly convex the maximizer of maxw∈S〈w,θ〉 − f(w) exists and is unique

(see [11] page 19). Denote it by π(θ). Since f? is a convex function, to prove the lemma it suffices
to show that ∂f?(θ) = {π(θ)}. From the definition of π(θ) we clearly have that

∀u ∈ S, 〈π(θ),θ〉 − f(π(θ)) ≥ 〈u,θ〉 − f(u) ,

and thus θ ∈ ∂f(π(θ)). Therefore, using Lemma 11 we obtain that

〈π(θ),θ〉 = f(π(θ)) + f?(θ) . (A.10)

Let λ be an arbitrary vector and to simplify our notation denote w = π(θ) and u = π(λ). Based
on Eq. (A.10) we have that,

f?(λ)− f?(θ) = 〈u,λ〉 − f(u)− 〈w,θ〉+ f(w)

= f(w)− f(u)− 〈w − u,λ〉+ 〈w,λ− θ〉

≥ 〈w,λ− θ〉 ,

which implies that w ∈ ∂f?(θ). Finally, we show that w is the only element in ∂f?(θ) and thus
w = ∇f?(θ). Let w0 ∈ ∂f?(θ). Thus f?(θ) = 〈w0,θ〉 − f(w0) = 〈w,θ〉 − f(w). But the
uniqueness of the solution of maxw∈S〈w,θ〉 − f(w) implies that w0 = w.

3. Let θ1,θ2 be two vectors and let α ∈ (0, 1). Denote w1 = π(θ1), w2 = π(θ2), and
wα = αw1 + (1− α)w2. As we have shown before, θ1 ∈ ∂f(w1) and θ2 ∈ ∂f(w2). Therefore,
using Lemma 13 we have

f(wα)− f(w1)− 〈θ1,wα −w1〉 ≥
1
2
‖wα −w1‖2

f(wα)− f(w2)− 〈θ2,wα −w2〉 ≥
1
2
‖wα −w2‖2 .

Summing these two inequalities with coefficients α and (1 − α), using the definition of wα, and
rearranging terms we obtain

f(wα)− (αf(w1) + (1− α)f(w2)) + α(1− α)〈θ2 − θ1,w2 −w1〉

≥ α(1− α)
1
2
‖w1 −w2‖2 .

(A.11)

Since f is strongly convex we have that f(wα)−(αf(w1) + (1− α)f(w2)) ≤ −α(1−α)1
2‖w1−

w2‖2. In addition, using Holder inequality we get that 〈θ2−θ1,w2−w1〉 ≤ ‖θ2−θ1‖? ‖w2−w1‖.
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Combining the above two inequalities with Eq. (A.11) and rearranging terms yield that

‖w1 −w2‖ ≤ ‖θ1 − θ2‖? .

4. Let T be an arbitrary positive integer and for all t ∈ {0, 1, . . . , T} define αt = t/T . We
have:

f?(θ + λ)− f?(θ) = f?(θ + αT λ)− f?(θ + α0 λ)

=
T−1∑
t=0

(f?(θ + αt+1 λ)− f?(θ + αt λ)) (A.12)

Since f? is convex we have that for all t,

f?(θ + αt+1 λ)− f?(θ + αt λ) ≤ 〈∇f?(θ + αt+1 λ), (αt+1 − αt)λ〉

=
1
T
〈f?(θ + αt+1 λ),λ〉 .

(A.13)

In addition, using Holder inequality and claim 3 of the lemma we get that

〈∇f?(θ + αt+1 λ),λ〉 = 〈∇f?(θ),λ〉+ 〈∇f?(θ + αt+1λ)−∇f?(θ),λ〉

≤ 〈∇f?(θ),λ〉+ ‖∇f?(θ + αt+1λ)−∇f?(θ)‖ ‖λ‖?
≤ 〈∇f?(θ),λ〉+ ‖αt+1 λ‖? ‖λ‖?
= 〈∇f?(θ),λ〉+ αt+1‖λ‖2? .

Combining the above with Eq. (A.13) and Eq. (A.12) we obtain

f?(θ + λ)− f?(θ) ≤ 〈∇f?(θ),λ〉+ ‖λ‖2?
1
T

T−1∑
t=0

αt+1

= 〈∇f?(θ),λ〉+
T + 1
2T

‖λ‖2? .

Taking T →∞ concludes our proof.
5. Denote v = ∇f?(θ) and note that

v = argmax
w∈S

〈w,θ〉 − f(w) .

Denote the objective of the maximization problem above by P (w). The assumption that f is
differentiable implies that P is also differentiable with ∇P (w) = θ − ∇f(w). Finally, the
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optimality of v implies that for all u ∈ S 〈u− v,∇P (v)〉 ≤ 0, which concludes our proof.

Several notable examples of strongly convex functions which we use are as follows.

Example 3 The function f(w) = 1
2‖w‖

2
2 is strongly convex over S = Rn with respect to the

Euclidean norm. Its conjugate function is f?(θ) = 1
2‖θ‖

2
2.

Example 4 The function f(w) =
∑n

i=1wi log(wi/ 1
n) is strongly convex over the probabilistic

simplex, S = {w ∈ Rn
+ : ‖w‖1 = 1}, with respect to the `1 norm (see Lemma 16 below). Its

conjugate function is f?(θ) = log( 1
n

∑n
i=1 exp(θi)).

Example 5 For q ∈ (1, 2), the function f(w) = 1
2(q−1)‖w‖

2
q is strongly convex over S = Rn with

respect to the `q norm (see Lemma 17 below). Its conjugate function is f?(θ) = 1
2(p−1)‖θ‖

2
p, where

p = (1− 1/q)−1.

Lemma 16 The function f(w) = log(n)+
∑n

i=1wi log(wi) is strongly convex over the probabilis-
tic simplex, S = {w ∈ Rn

+ : ‖w‖1 = 1}, with respect to the `1 norm.

Proof Based on Lemma 14, it suffices to show that for all u,v ∈ S we have

〈∇f(u)−∇f(v),u− v〉 ≥ ‖u− v‖2 . (A.14)

The i’th element of∇f(u) is log(ui) + 1 and thus we need to show that∑
i

(log(ui)− log(vi))(ui − vi) ≥ ‖u− v‖21 .

Let xi = (log(ui)− log(vi))(ui − vi) and note that xi ≥ 0. Denote I = {i ∈ [n] : xi > 0}. Based
on the Cauchy-Schwartz inequality, we can bound the right-hand side of the above as follows

‖u− v‖21 =

(∑
i

|ui − vi|

)2

≤

(∑
i∈I

√
xi
|ui − vi|√

xi

)2

≤
∑
i∈I

xi
∑
i∈I

|ui − vi|2

xi

=
∑
i∈I

(log(ui)− log(vi)) (ui − vi)
∑
i∈I

ui − vi
log(ui)− log(vi)

.

Therefore, to prove that Eq. (A.14) holds it is left to show that∑
i∈I

ui − vi
log(ui)− log(vi)

≤ 1. (A.15)
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To do so, we show in the sequel that for all i

ui − vi
log(ui)− log(vi)

≤ ui + vi
2

, (A.16)

which immediately implies that Eq. (A.15) holds. The left-hand side of the above is positive and
thus we can assume w.l.g. that ui ≥ vi. Fix vi and consider the function

φ(u) = 2(u− vi)− (u+ vi)(log(u)− log(vi)) .

Clearly, φ(vi) = 0. In addition, the derivative of φ is negative,

φ′(u) = 2− log(u)− u+ vi
u

+ log(vi) = log(
vi
u

)− vi
u
≤ 0 ,

where in the last inequality we used log(a) ≤ a − 1. Thus, φ monotonically decreases and thus
φ(u) ≤ 0 in (vi, 1]. Therefore, Eq. (A.16) holds and our proof is concluded.

Lemma 17 For q ∈ (1, 2), the function f(w) = 1
2(q−1)‖w‖

2
q is strongly convex over Rn with

respect to the `q norm.

Proof f is twice differentiable and therefore, based on Lemma 14, it suffices to show that for any
w and x we have

〈∇2f(w) x , x〉 ≥ ‖x‖2q .

Let us rewrite f(w) = Ψ(
∑

i φ(wi)) where Ψ(a) = a2/q

2(q−1) and φ(a) = |a|q. Note that the first and
second derivatives of Ψ are

Ψ′(a) =
1

q (q − 1)
a

2
q
−1

, Ψ′′(a) =
1

q (q − 1)

(
2
q
− 1
)
a

2
q
−2

.

Similarly, the first and second derivatives of φ are

φ′(a) = q sign(a) |a|q−1 , φ′′(a) = q (q − 1) |a|q−2 .

Denote H = ∇2f(w). The value of the element (i, j) of H for i 6= j is,

Hi,j(w) = Ψ′′
(

n∑
r=1

φ(wr)

)
φ′(wi)φ′(wj) ,
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and the i’th diagonal element of H is,

Hi,i(w) = Ψ′′
(

n∑
r=1

φ(wr)

)(
φ′(wi)

)2 + Ψ′
(

n∑
r=1

φ(wr)

)
φ′′(wi) .

Therefore,

〈H x,x〉 = Ψ′′
(

n∑
r=1

φ(wr)

)(∑
i

φ′(wi)xi

)2

+ Ψ′
(

n∑
r=1

φ(wr)

)∑
i

φ′′(wi)x2
i .

The first term above is non-negative since we assume that q ∈ (1, 2). Unraveling the second term
we obtain that,

〈H x,x〉 ≥ ‖w‖
q( 2
q
−1)

q

q(q − 1)

∑
i

q(q − 1)|wi|q−2x2
i = ‖w‖2−qq

∑
i

|wi|q−2 x2
i . (A.17)

We next show that the right-hand side of the above upper bounds ‖x‖2q . Denote yi = |wi|(2−q)
q
2 .

Using Holder inequality with the dual norms 2
q and 2

2−q we obtain that

‖x‖2q =

(∑
i

xqi

) 2
q

=

(∑
i

yi
xqi
yi

) 2
q

≤

(∑
i

y
2

2−q
i

) 2−q
2
(∑

i

x2
i

y
2/q
i

) q
2


2
q

=

(∑
i

|wi|q
) 2−q

q
(∑

i

|wi|q−2 x2
i

)
= ‖w‖2−qq

∑
i

|wi|q−2 x2
i .

Comparing the above with Eq. (A.17) we get that 〈H x,x〉 ≥ ‖x‖2q , which concludes our proof.

We conclude this section with an extension of Lemma 18 to cases in which the same strongly
convex function is concatenated.

Lemma 18 Let f be a closed and strongly convex function over S ⊆ Rn with respect to a norm
‖ · ‖. Let f? be the Fenchel conjugate of f . Let k be an integer and denote S̄ = Sk. Define a
function f̄ : S̄ → R such that for w̄ = (w1, . . . ,wk) ∈ S̄k we have

f̄(w̄) =
k∑
i=1

f(wi) .

Let f̄? be the Fenchel conjugate of f̄ . Then,
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1. f̄? is differentiable

2. If λ̄ = ∇f̄?(θ̄) then λi = arg maxwi∈S 〈wi,θi〉 − f(wi)

3. ∀ θ̄, λ̄ ∈ Rn, f̄?(θ̄+ λ̄)− f̄?(θ̄) ≤ 〈∇f̄?(θ̄), λ̄〉+ 1
2

∑k
i=1 ‖λi‖2?, where ‖ · ‖? is the norm

dual to ‖ · ‖

Proof The definition of f̄ implies that

f̄?(θ̄) = max
w̄
〈w̄, θ̄〉 − f̄(w̄) =

k∑
i=1

max
wi

〈wi,θi〉 − f(wi) =
k∑
i=1

f?(θi) .

The claims now follow directly from the fact that f is strongly convex.

A.5 Technical lemmas

Lemma 19 Let x, b, c ∈ R+ and assume that x− b
√
x− c ≤ 0. Then, x ≤ c+ b2 + b

√
c.

Proof Denote Q(y) = y2 − b y − c and note that Q is a convex parabola. Thus, Q(
√
x) ≤ 0

whenever
√
x is between the two roots of Q(y),

r1,2 =
1
2
b±

√
(
1
2
b)2 + c .

In particular,
√
x is smaller than the larger root of Q(y), and thus

√
x ≤ 1

2
b+

√
(
1
2
b)2 + c .

Since both sides of the above are non-negative we obtain that

x ≤

(
1
2
b+

√
(
1
2
b)2 + c

)2

=
1
2
b2 + c+ b

√
(
1
2
b)2 + c ≤ c+ b2 + b

√
c .
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Lemma 20 Let k be an integer, Y ⊂ [k], and x ∈ Rn. Let w̄ = (w1, . . . ,wk) where for all i ∈ [k],
wi ∈ Rn. Let γ > 0 and define

g(w̄) = max
r∈Y,s/∈Y

[γ − 〈wr −ws,x〉]+ .

Define A = {α ∈ Rk
+ : ‖α‖1 ≤ 1 and

∑
r∈Y αr =

∑
s/∈Y αs}. Then, for any λ̄ = (λ1, . . . ,λk)

we have

g?(θ) =

−
γ
2

∑
r∈Y αr if ∃α ∈ A, s.t. ∀r ∈ Y, λr = −αrx, ∀s /∈ Y, λs = αsx

∞ otherwise
(A.18)

Proof Denote Ȳ = [k] \ Y and let E = Y × Ȳ . We start be rewriting g(w̄) as the solution of a
minimization problem:

g(w̄) = min
ξ≥0

ξ s.t. ∀(r, s) ∈ E, γ − 〈wr −ws,x〉 ≤ ξ . (A.19)

The core idea for deriving the conjugate function is to show that the optimization problem on the
right-hand side of Eq. (A.19) is equivalent to the more compact optimization problem defined as
follows,

min
b,ξ≥0

ξ s.t. ∀r ∈ Y, 〈wr,x〉 ≥ b+ γ/2− ξ/2 ; ∀s ∈ Ȳ , 〈ws,x〉 ≤ b− γ/2 + ξ/2 . (A.20)

Since the objective function of Eq. (A.20) and Eq. (A.19) are identical and b has no effect on the
objective function, but rather on the constraints, it suffices to show that for any feasible solution ξ
of Eq. (A.20) there exists a feasible solution (b, ξ) of Eq. (A.19) and vice versa.

Let (b, ξ) be a feasible solution of Eq. (A.20). Then, for any pair of labels r ∈ Y and s ∈ Ȳ we
get that,

〈wr −ws,x〉 ≥ γ/2 + b− ξ/2− (b− γ/2 + ξ/2) = γ − ξ .

Therefore, ξ is a feasible solution of Eq. (A.19). Proving that if ξ is a feasible solution of Eq. (A.19)
then there exists b such that (b, ξ) is a feasible solution of Eq. (A.20) is a bit more complex to show.
We do so by first defining the following two variables

b̄ = min
r∈Y
〈wr,x〉 − γ/2 + ξ/2 ;

b = max
s 6∈Y
〈ws,x〉+ γ/2− ξ/2 .

(A.21)
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Let j and l denote the indices of the labels which attain, respectively, the minimum and maximum
of the problems defined by Eq. (A.21). Then, by construction we get that,

b̄− b = 〈wj −wl,x〉 − γ + ξ ≥ 0 ,

where the last inequality is due to feasibility of the solution ξ with respect to the problem defined by
Eq. (A.19). We now define b = (b̄+ b)/2 which immediately implies that b ≤ b ≤ b̄. We therefore
get that for any label r ∈ Y the following inequality hold,

〈wr,x〉 ≥ 〈wj ,x〉 ≥ b̄+ γ/2− ξ/2

≥ b+ γ/2− ξ/2 ,

and similarly for any label s ∈ Ȳ we get,

〈ws,x〉 ≤ 〈wl,x〉 ≤ b− γ/2 + ξ/2

≤ b− γ/2 + ξ/2 .

We have thus established a feasible solution (b, ξ) as required.
Based on the equivalence between Eq. (A.19) and Eq. (A.20) we can rewrite g(w) as follows:

g(w̄) = min
b,ξ≥0

max
α≥0

ξ +
∑
r∈Y

αr

(
b+ γ

2 −
ξ
2 − 〈wr,x〉

)
+
∑
s∈Ȳ

αs

(
〈ws,x〉 − b+ γ

2 −
ξ
2

)
= max

α≥0
min
b,ξ≥0

ξ +
∑
r∈Y

αr

(
b+ γ

2 −
ξ
2 − 〈wr,x〉

)
+
∑
s∈Ȳ

αs

(
〈ws,x〉 − b+ γ

2 −
ξ
2

)
= max

α≥0

(∑
r∈Y

αr
(γ

2 − 〈wr,x〉
)

+
∑
s∈Ȳ

αs
(γ

2 + 〈ws,x〉
)

+ min
ξ≥0

ξ
(
1−

∑
i

αi
)

+ min
b

b
(∑
r∈Y

αr −
∑
s∈Ȳ

αs
) )

= max
α∈A

γ
2

∑
r∈Y

αr −
∑
r∈Y

αr〈wr,x〉+
∑
s∈Ȳ

αs〈ws,x〉 ,

where A = {α ∈ Rk
+ : ‖α‖1 ≤ 1 and

∑
r∈Y αr =

∑
s∈Ȳ αs}. The second equality above

follows from the strong max-min property that clearly holds for bilinear functions (see [14] page
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115). Therefore, using the definition of g?(λ̄) we get that

g?(λ̄) = max
w̄

(
〈λ̄, w̄〉 − g(w̄)

)
= max

w̄

∑
i

〈λi,wi〉 −max
α∈A

γ
2

∑
r∈Y

αr −
∑
r∈Y

αr〈wr,x〉+
∑
s∈Ȳ

αs〈ws,x〉


= max

w̄
min
α∈A

−γ
2

∑
i

αi +
∑
r∈Y
〈wr,λr + αrx〉+

∑
s∈Ȳ

〈ws,λs − αsx〉


= min

α∈A
max

w̄

−γ
2

∑
i

αi +
∑
r∈Y
〈wr,λr + αrx〉+

∑
s∈Ȳ

〈ws,λs − αsx〉


= min

α∈A
− γ

2

∑
i

αi + max
w̄

∑
r∈Y
〈wr,λr + αrx〉+

∑
s∈Ȳ

〈ws,λs − αsx〉 .

The fourth equality above again follows from the strong max-min property. Finally, we note that
for any α, the maximum over w̄ equals to 0 if λr = −αrx for r ∈ Y and λs = αsx for s ∈ Ȳ .
Otherwise, the maximum is∞. This concludes our proof.

Proof of Lemma 7
Throughout the proof we assume that the elements of the vector µ are sorted in a non-ascending
order, namely, µ1 ≥ µ2 ≥ . . . ≥ µp. Recall that the definition of ρ(z,µ) is,

ρ(z,µ) = max

{
j ∈ [p] : µj −

1
j

(
j∑
r=1

µr − z

)
> 0

}
.

For brevity, we refer to ρ(z,µ) simply as ρ. Denote by α? the optimal solution of the constrained
optimization problem of Eq. (7.1) and let

ρ? = max{j : α?j > 0} .

From Eq. (7.3) we know that α?r = µr − θ? > 0 for r ≤ ρ? where

θ? =
1
ρ?

 ρ?∑
j=1

µj − z

 ,

and therefore ρ ≥ ρ?. We thus need to prove that ρ = ρ?. Assume by contradiction that ρ > ρ?. Let
us denote by α the vector induced by the choice of ρ, that is, αr = 0 for r > ρ and αr = µr − θ for
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r ≤ ρ, where,

θ =
1
ρ

 ρ∑
j=1

µj − z

 .

From the definition of ρ, we must have that αρ = µρ − θ > 0. Therefore, since the elements of
µ are sorted in a non-ascending order, we get that αr = µr − θ > 0 for all r ≤ ρ. In addition,
the choice of θ implies that ‖α‖1 = z. We thus get that α is a feasible solution as it satisfies the
constraints of Eq. (7.1). Examining the objective function attained at α we get that,

‖α− µ‖2 =
ρ?∑
r=1

θ2 +
ρ∑

r=ρ?+1

θ2 +
p∑

r=ρ+1

µ2
r

<

ρ?∑
r=1

θ2 +
ρ∑

r=ρ?+1

µ2
r +

p∑
r=ρ+1

µ2
r

=
ρ?∑
r=1

θ2 +
p∑

r=ρ?+1

µ2
r ,

where to derive the inequality above we used the fact that µr− θ > 0 for all r ≤ ρ. We now need to
analyze two cases depending on whether θ? is greater than θ or not. If θ? ≥ θ than we can further
bound ‖α− µ‖2 from above as follows,

‖α− µ‖2 <

ρ?∑
r=1

θ2 +
p∑

r=ρ?+1

µ2
r ≤

ρ?∑
r=1

(θ?)2 +
p∑

r=ρ?+1

µ2
r = ‖α? − µ‖2 ,

which contradicts the optimality of α?. We are thus left to show that the case θ > θ? also leads to a
contradiction. We do so by constructing a vector α̃ from α?. We show that this vector satisfies the
constraints of Eq. (7.1) hence it is a feasible solution. Finally, we show that the objective function
attained by α̃ is strictly smaller than that of α?. We define the vector α̃ ∈ Rk as follows,

α̃r =


α?ρ? − ε r = ρ?

ε r = ρ? + 1
α?r otherwise

,

where ε = 1
2(µρ?+1 − θ?). Since we assume that θ > θ? and ρ > ρ? we know that αρ?+1 =

µρ?+1 − θ > 0 which implies that

α̃ρ?+1 =
1
2

(µρ?+1 − θ?) >
1
2

(µρ?+1 − θ) =
1
2
αρ?+1 > 0 .
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Furthermore, we also get that,

α̃ρ? = µρ? −
1
2
µρ?+1 −

1
2
θ? >

1
2

(µρ?+1 − θ) =
1
2
αρ?+1 > 0 .

In addition, by construction we get that the rest of components of α̃ are also non-negative. Our
construction also preserves the norm, that is ‖α̃‖1 = ‖α?‖1 = z. Thus, the vector α̃ is also a
feasible solution for the set of constraints defined by Eq. (7.1). Alas, examining the difference in
the objective functions attained by α̃ and α? we get,

‖α? − µ‖2 − ‖α̃− µ‖2 = (θ?)2 + µ2
ρ?+1 −

(
(θ? + ε)2 + (µρ?+1 − ε)2

)
= 2ε(µρ?+1 − θ?︸ ︷︷ ︸

=2ε

)− 2ε2 = 2 ε2 > 0 .

We thus obtained the long desired contradiction which concludes the proof.

Proof of Lemma 10
Plugging the value of the optimal solution α from Eq. (7.23) into the objective ‖α−µ‖2 and using
Lemma 7 give that,

g(z;µ) =
1

ρ(z;µ)

ρ(z;µ)∑
r=1

µr − z

2

+
∑

r=ρ(z;µ)+1

µ2
r ,

where, to remind the reader, the number of strictly positive α’s is,

ρ(z;µ) = max

{
ρ : µρ −

1
ρ

(
ρ∑
r=1

µr − z

)
≥ 0

}
.

Throughout the proof µ is fixed and known. We therefore abuse our notation and use the shorthand
ρ(z) for ρ(z;µ). Recall that µ is given in a non-ascending order, µi+1 ≤ µi for i ∈ [p − 1].
Therefore, we get that

zi+1 =
i+1∑
r=1

µr − (i+ 1)µi+1 =
i∑

r=1

µr + µi+1 − µi+1 − i µi+1

=
i∑

r=1

µr − i µi+1 ≥
i∑

r=1

µr − i µi = zi .
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Thus, the sequence z1, z2, . . . , zp is monotonically non-decreasing and the intervals [zi, zi+1) are
well defined. The definition of ρ(z) implies that for all z ∈ [zi, zi+1) we have ρ(z) = ρ(zi) = i.
Hence, the value of g(z;µ) for each z ∈ [zi, zi+1) is,

g(z;µ) =
1
i

(
i∑

r=1

µr − z

)2

+
p∑

r=i+1

µ2
r .

We have thus established the fact that g(z;µ) is a quadratic function in each interval (zi, zi+1) and
in particular it is continuous in each such sub-interval. To show that g is continuous in [0, C] we
need to examine all of its knots zi. Computing the left limit and the right limit of g at each knot we
get that,

lim
z↓zi

g(z;µ) = lim
z↓zi

1
i

(
i∑

r=1

µr − z

)2

+
p∑

r=i+1

µ2
r

=
1
i

(
i∑

r=1

µr −
i∑

r=1

µr + iµi

)2

+
p∑

r=i+1

µ2
r

= iµ2
i +

p∑
r=i+1

µ2
r ,

and

lim
z↑zi

g(z;µ) = lim
z↑zi

1
i− 1

(
i−1∑
r=1

µr − z

)2

+
p∑
r=i

µ2
r

=
1

i− 1

(
i−1∑
r=1

µr −
i∑

r=1

µr + iµi

)2

+
p∑
r=i

µ2
r

= (i− 1)µ2
i +

p∑
r=i

µ2
r = iµ2

i +
p∑

r=i+1

µ2
r .

Therefore, limz↓zi g(z;µ) = limz↑zi g(z;µ) and g is indeed continuous. The continuity of the
derivative of g is shown by using the same technique of examining the right and left limits at each
knot zi for the function,

g′(z;µ) =
2
i

(
z −

i∑
r=1

µr

)
.



APPENDIX A. CONVEX ANALYSIS 139

Finally, we use the fact that a continuously differentiable function is convex iff its derivative
is monotonically non-decreasing. Since g is quadratic in each segment [zi, zi+1], g′ is in-
deed monotonically non-decreasing in each segment. Furthermore, from the continuity of g′ we
get that g′ is monotonically non-decreasing on the entire interval [0, 1]. Thus, g is convex on [0, 1].



Appendix B

Using Online Convex Programming for
PAC learning

In this chapter we outline the applicability of our algorithmic framework from the previous chapter
to Probably Approximately Correct (PAC) learning [116]. The PAC setting is also referred to as
batch learning. We start this chapter with a short introduction to PAC learning. Next, in Section B.2
we relate two important notions of learnability: the notion of mistake bound in online learning
and the notion of VC dimension used in PAC learning. Based on this comparison, we demonstrate
that online learning is more difficult than PAC learning. Despite this disparity, as we have shown
in previous chapters, many classes of hypotheses can be efficiently learned in the online model.
In Section B.3 we derive several simple conversions from the online setting to the batch setting.
The end result is that the existence of a good online learner implies the existence of good batch
learning algorithms. These online-to-batch conversions are general and do not necessarily rely on
our specific algorithms for online learning.

B.1 Brief Overview of PAC Learning

In this section we briefly define the PAC model of learning from examples. Similar to the online
model, we have a set of questions (or instances) X and a set of answers (or targets) Y . We also
have a class of hypotheses H = {h : X → Y}; namely, each hypothesis h ∈ H is a question
answering mechanism. In contrast to the online model, in the PAC learning model we also have
a joint distribution Q over X × Y . The input of the learning algorithm is a batch of T training
examples {(x1, y1), . . . , (xT , yT )}. Based on these examples, the learner needs to find an output
hypothesis ho ∈ H. We assess the quality of the output hypothesis using its expected loss, where
expectation is taken with respect to Q. Formally, let ` : H× (X ×Y)→ R+ be a loss function and

140
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define the risk of using a hypothesis h to be

risk(h) = E(x,y)∼Q[`(h, (x, y))] . (B.1)

In words, the risk of h is its loss on a randomly sampled example from X × Y , where sampling is
based on the distribution Q.

To achieve this goal, we assume that the input examples the learner receives are identically and
independently distributed (i.i.d.) according to the distribution Q. Note that we only observe the
training examples but we do not know the distribution Q. The training set of examples is used
as a restricted window through which we estimate the quality of a hypothesis according to the
distribution of unseen examples in the real world, Q.

Clearly, if the learning algorithm is “unlucky” the training set of examples might not correctly
reflect the underlying distribution Q. We therefore must give the learning algorithm some slack.
In the PAC model, we require the algorithm to be probably approximately correct. By “probably”
correct we mean that there is a small probability that the learning algorithm will fail and by “ap-
proximately” correct we mean that the risk of the output hypothesis can be slightly larger than that
of the optimal hypothesis in H. Formally, assume that the minimum risk is achievable and denote
by h? a hypothesis s.t. risk(h?) = minh∈H risk(h). We are interested in risk bounds of the form

P [risk(ho)− risk(h?) ≥ ε] ≤ δ , (B.2)

where ε > 0 is the “approximately” parameter and δ ∈ (0, 1) is the “probably” parameter. The
probability above is over the choice of the input training examples.1

A natural question is what values of ε and δ are plausible. Intuitively, since the training set is our
“window” through which we observe the world, increasing the size of the training set should yield
more accurate output hypotheses. The theory of sample complexity relates the values of ε and δ to
the size of the training set and to a measure of complexity of H. One classical complexity measure
is the so-called VC dimension.

The VC dimension was originally designed for binary hypotheses (i.e. Y = {+1,−1}) and is
defined as follows:

V C(H) = sup{ d ∈ N : ∃x1, . . . ,xd s.t. ∀y1, . . . , yd, ∃h ∈ H, s.t. ∀i ∈ [d], yi = h(xi) } .

In words, the VC dimension of H is the maximal size of a set of instances that can be shattered
by H, that is, any labeling of the instances can be explained by H. The basic VC theorem tells us

1 Note that risk(ho) depends on the input training examples and thus it is a random variable. In contrast, while
risk(h?) is unknown to us, it does not constitute a random variable.
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that a class H can be learned based on a finite training set if and only if its VC dimension is finite.
Intuitively, if the VC dimension of H is larger than d, then it can perfectly explain any training set
of size d and thus we gain no information from the specific training set at hand.

B.2 Mistake bounds and VC dimension

In the previous section we described the PAC learning model and outlined the basic VC theorem.
Littlestone [82] proposed the mistake bound model which is another learnability criterion for a class
of hypotheses H. Formally, a class H is M -learnable in the mistake bound model if there exists an
online learning algorithm that makes at most M prediction mistakes on any sequence of examples
of the form (x1, h

?(y1)), . . . , (xT , h?(yT )) for some h? ∈ H.
The following theorem, whose proof is given in [82], relates the two notions of learnability.

Theorem 8 Let H be a set of hypotheses and assume that H is M -learnable in the mistake bound
model. Then, VC(H) ≤M .

The converse is not true as the following example demonstrates.

Example 6 Let X = [n], Y = {+1,−1}, and letH = {hi(x) = [[x ≤ i]] : i ∈ [n]}, where [[π]] = 1
if the predicate π holds and −1 otherwise. Let us assume for simplicity that n is a power of 2. It is
easy to verify that VC(H) = 1. In contrast, we prove in the following that for any online learning
algorithm we can construct a sequence of T = log2(n) examples such that the online algorithm errs
on all of them. In other words, for any M < log2(n) the set H is not M -learnable in the mistake
bound model. To construct a worst case sequence we initialized l = 1 and r = n. We now present
the instance xt = (r − l + 1)/2 + 1 to the online algorithm. If the prediction of the algorithm is
+1 we provide the feedback −1 and re-assign r = xt. Otherwise, we provide the feedback +1 and
re-assign l = xt + 1. We can repeat this process log2(n) times, which concludes the construction
of our worst case sequence.

B.3 Online-to-Batch Conversions

In this section we show that an online algorithm that attains low regret can be converted into a batch
learning algorithm that attains low risk. Such online-to-batch conversions are interesting both from
the practical as from the theoretical perspective. First, from the practical perspective, the simplicity
and efficiency of online learning algorithms along with online-to-batch conversions automatically
yield efficient batch learning algorithms. Second, from the theoretical perspective, the regret bounds
we derive in previous chapters yield the best known risk bounds for batch learning. The analysis,
however, is much simpler.
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Recall that in this chapter we assume that the sequence of examples are independently and
identically distributed according to an unknown distribution Q over X × Y . To emphasize the
above fact and to simplify our notation, we denote by Zt the tth example in the sequence and use
the shorthand

Zj1 = (Z1, . . . , Zj) = ((x1, y1), . . . , (xj , yj)) .

We denote the tth hypothesis that the online learning algorithm generates by ht. Note that ht is a
function of Zt−1

1 and thus it is a random variable. We denote the average loss of the online algorithm
by

MT (ZT1 ) =
1
T

T∑
t=1

`(ht, Zt) . (B.3)

We often omit the dependence of MT on ZT1 and use the shorthand MT for denoting MT (ZT1 ).
The rest of this section is organized as follows. In Section B.3.1 we show that the expected value

ofMT equals the expected value of 1
T

∑T
t=1 risk(ht). Thus, the online loss is an un-biased estimator

for the average risk of the ensemble (h1, . . . , hT ). Next, in Section B.3.2 we underscore that regret
bounds (i.e., bounds on MT ) can yield bounds on the average risk of (h1, . . . , hT ). Therefore, there
must exist at least one hypothesis in the ensemble (h1, . . . , hT ) whose risk is low. Since our goal
in batch learning is to output a single hypothesis (with low risk), we must find a way to choose a
single good hypothesis from the ensemble. In Section B.3.3, we discuss several simple procedures
for choosing a single good hypothesis from the ensemble.

B.3.1 Online loss and ensemble’s risk

Our first theorem shows that the expected value of MT equals the expected value of the risk of the
ensemble (h1, . . . , hT ).

Theorem 9 Let Z1, . . . , ZT be a sequence of independent random variables, each of which is dis-
tributed according to a distribution Q over X × Y . Let h1, . . . , hT be the sequence of hypotheses
generated by an online algorithm when running on the sequence Z1, . . . , ZT , and let risk(h) be as
defined in Eq. (B.1). Then,

EZ1,...,ZT

[
1
T

T∑
t=1

risk(ht)

]
= EZ1,...,ZT

[
1
T

T∑
t=1

`(ht, Zt)

]
.

Proof Using the linearity of expectation and the fact that ht only depends on Zt−1
1 we have,

EZT1 [
1
T

T∑
t=1

`(ht, Zt)] =
1
T

T∑
t=1

EZT1 [`(ht, Zt)] =
1
T

T∑
t=1

EZt1 [`(ht, Zt)] . (B.4)
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Recall that the law of total expectation implies that for any two random variables R1, R2, and a
function f , ER1 [f(R1)] = ER2ER1 [f(R1)|R2]. Setting R1 = Zt1 and R2 = Zt−1

1 we get that

EZt1 [`(ht, Zt)] = EZt−1
1

[EZt1 [`(ht, Zt)|Zt−1
1 ]] = EZt−1

1
[risk(ht)] = EZT1 [risk(ht)] .

Combining the above with Eq. (B.4) concludes our proof.

The above theorem tells us that in expectation, the online loss equals the average risk of the
ensemble of hypotheses generated by the online algorithm. The next step is to use our regret bounds
from previous chapters to derive bounds on the online loss.

B.3.2 From Regret Bounds to Risk Bounds

In the previous section we analyzed the risks of the hypotheses generated by an online learning
algorithm based on the average online loss, MT . In the previous chapter we analyzed the regret of
online algorithms by bounding the online loss,MT , in terms of the loss of any competing hypothesis
inH. In particular, the bound holds for the hypothesis inHwhose risk is minimal. Formally, assume
that the minimum risk is achievable and denote by h? a hypothesis s.t. risk(h?) = minh∈H risk(h).
In this section, we derive bounds on MT in terms of risk(h?).

We encountered two forms of regret bounds. In the simplest form of regret bounds, there exists
a deterministic function B : N→ R such that

∀h ∈ H, 1
T

T∑
t=1

`(ht, Zt) ≤
1
T

T∑
t=1

`(h, Zt) +
B(T )
T

. (B.5)

For example, the regret bounds given in Corollary 1 and Corollary 3 can be written in the form given
in Eq. (B.5) with B(T ) = O(

√
T ).

In the second form of regret bounds, the functionB depends on the actual sequence of examples
the online algorithm receives. Formally, the function B is defined as follows

B(ZT1 ) = min
h∈H

T∑
t=1

`(h, (xt, yt)) . (B.6)

We derived regret bounds of the form

∀h ∈ H, 1
T

T∑
t=1

`(ht, (xt, yt)) ≤
B(ZT1 ) + µ

√
B(ZT1 ) + ν

T
, (B.7)
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where µ, ν are positive constants. For example, the regret bound we derived in Corollary 4 can be
written in the form given in Eq. (B.7), where using the notation given in Corollary 4, µ = 3.4

√
LU

and ν = 3.4
√
LU β1 + 11.4LU .

In the rest of this section we assume that the online algorithm satisfies either the regret bound
given in Eq. (B.5) or the regret bound given in Eq. (B.7). Based on this assumption, we derive risk
bounds for the hypotheses generated by the online algorithm.

We start by deriving a bound on the average risk of the ensemble of hypotheses that the online
algorithm generates.

Theorem 10 Assume that the condition stated in Theorem 9 holds and that the online algorithm
satisfies Eq. (B.5). Then,

EZT1

[
1
T

T∑
t=1

risk(ht)

]
≤ risk(h?) +

B(T )
T

.

Proof Taking expectation of the inequality given in Eq. (B.5) we obtain

EZT1
[
1
T

T∑
t=1

`(ht, Zt)] ≤ EZT1 [
1
T

T∑
t=1

`(h?, Zt)] +
B(T )
T

. (B.8)

Since h? does not depend on the choice of ZT1 , we have,

EZT1 [
1
T

T∑
t=1

`(h?, Zt)] =
1
T

T∑
t=1

EZT1 [`(h?, Zt)] =
1
T

T∑
t=1

EZt [`(h?, Zt)] = risk(h?) . (B.9)

Combining the above with Eq. (B.8) and Theorem 9 we conclude our proof.

Next, we turn to deriving risk bounds, assuming that the online algorithm satisfies the regret
bound given in Eq. (B.7). In contrast to the previous form of regret bounds, it is now more compli-
cated to analyze the expected value of the bound given in Eq. (B.7), due to the sqrt root of B(ZT1 ).
We thus take a different course and first derive a bound on B(ZT1 ) based on risk(h?) that holds
with high probability. Next, we bound MT with high probability and finally we use these bounds to
analyze the expected value of MT .

Lemma 21 Let B(ZT1 ) be as defined in Eq. (B.6) and assume that the range of ` is [0, 1]. Let



APPENDIX B. USING OCP FOR PAC LEARNING 146

h? ∈ arg minh∈H risk(h). Then, for any δ ∈ (0, 1), with a probability of at least 1− δ we have

1
TB(ZT1 ) ≤ risk(h?) +

√
2 ln

(
1
δ

)
risk(h?)
T

+
2 ln

(
1
δ

)
3T

.

Proof We prove the lemma using Bernstein’s inequality.2 Since `(h?, Zt) ∈ [0, 1] we obtain that
Var[`(h?, Zt)] ≤ E[`(h?, Zt)] = risk(h?). Therefore, Bernstein’s inequality implies that

P[ 1
T

T∑
t=1

`(h?, Zt)− risk(h?) ≥ ε] ≤ exp
(
− T ε2

2(risk(h?) + ε/3)

)
.

Denote by δ the right-hand side of the above. Thus,

T ε2 − 2
3 ln

(
1
δ

)
ε− 2 ln

(
1
δ

)
risk(h?) = 0 .

Solving for ε (while using the fact that ε > 0) we obtain that

ε =
1
3 ln

(
1
δ

)
+
√

(1
3 ln

(
1
δ

)
)2 + 2T ln

(
1
δ

)
risk(h?)

T
≤

√
2 ln

(
1
δ

)
risk(h?)
T

+
2
3 ln

(
1
δ

)
T

.

Therefore, with a probability of at least 1− δ we have that

1
T

T∑
t=1

`(h?, Zt) ≤ risk(h?) +

√
2 ln

(
1
δ

)
risk(h?)
T

+
2
3 ln

(
1
δ

)
T

.

The bound in the lemma follows from the above by noticing that 1
TB(ZT1 ) ≤ 1

T

∑T
t=1 `(h

?, Zt).

Lemma 22 Assume that the conditions stated in Lemma 21 hold and that the online algorithm
satisfies the regret bound given in Eq. (B.7). Then, with a probability of at least 1− δ we have

MT ≤ risk(h?) + µ1

√
risk(h?)

T
+
µ2

T
,

where µ1 =
√

2 (µ+
√

ln
(

1
δ

)
) and µ2 = ν + 3 ln

(
1
δ

)
+ µ

√
3 ln

(
1
δ

)
.

2To remind the reader, we state the inequality (see for example Theorem 3 in [12]). Let X1, . . . , XT be a sequence
of independent random variables with zero mean, and assume that Xt ≤ 1 with probability 1. Let σ2 = 1

T

P
t Var[Xt].

Then, for any ε > 0, P[
P
tXt ≥ ε] ≤ exp(− T ε2

2(σ2+ε/3)
).
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Proof First, assume that risk(h?) ≤ 2 ln(1/δ)
T . In this case, Lemma 21 implies that

B(ZT1 )
T

≤ risk(h?) +
3 ln

(
1
δ

)
T

.

Combining the above with Eq. (B.7) we obtain

MT ≤ risk(h?) + µ

√
risk(h?) + 3 ln

(
1
δ

)
/T

T
+
ν + 3 ln

(
1
δ

)
T

≤ risk(h?) + µ

√
risk(h?)

T
+
ν + 3 ln

(
1
δ

)
+ µ

√
3 ln

(
1
δ

)
T

.

(B.10)

Next, assume that risk(h?) > 2 ln(1/δ)
T . Thus, Lemma 21 implies that

B(ZT1 )
T

≤ risk(h?) +

√
2 ln

(
1
δ

)
risk(h?)
T

+
2
3 ln

(
1
δ

)
T

< 2 risk(h?) +
2
3 ln

(
1
δ

)
T

.

Combining the above with Eq. (B.7) we obtain

MT ≤ B(ZT1 )
T

+
µ√
T

√
B(ZT1 )
T

+
ν

T

≤ risk(h?) +

√
2 ln

(
1
δ

)
risk(h?)
T

+
2
3 ln

(
1
δ

)
T

+
µ√
T

√2risk(h?) +

√
2
3 ln

(
1
δ

)
T

+
ν

T

≤ risk(h?) +

√
2 risk(h?)

T

(√
ln
(

1
δ

)
+ µ

)
+
ν + 2

3 ln
(

1
δ

)
+ µ

√
2
3 ln

(
1
δ

)
T

.

Combining the above with Eq. (B.10) we conclude our proof.

We are now ready to derive a risk bound from the regret bound given in Eq. (B.7).

Theorem 11 Assume that the condition stated in Theorem 9 holds and that the online algorithm
satisfies Eq. (B.7). Additionally, assume that the range of the loss function, `, is [0, 1] and let
h? ∈ arg minh∈H risk(h). Then,

EZT1

[
1
T

T∑
t=1

risk(ht)

]
≤ risk(h?) + (µ+ e)

√
2 risk(h?)

T
+
ν + e(

√
3µ+ 3)
T

.
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Proof Using Theorem 9, the left-hand side of the bound equals E[MT ]. Define the random variable

R = MT − risk(h?)− µ
√

2 risk(h?)
T

− ν

T
.

Additionally, let α1 = µ
√

3 /T +
√

2 risk(h?)/T and α2 = 3/T and for all s = 0, 1, 2, . . . define
ts = α1

√
s+ α2 s. Based on Lemma 22 we have that P[R ≥ ts] ≤ e−s. Therefore,

E[R] ≤
∫ ∞

0
xP[R = x]dx ≤

∞∑
s=1

tsP[R ≥ ts−1] ≤ α1

∞∑
s=1

√
s e−(s−1) + α2

∞∑
s=1

s e−(s−1)

≤ (α1 + α2)
∞∑
s=1

s e−(s−1) ≤ e (α1 + α2) ,

where the last inequality can be proven by bounding the tail
∑∞

s=4 s e
−(s−1) with the integral∫∞

5 xe−(x−1)dx. Our proof follows by plugging the definitions of R, α1, and α2 into the above.

B.3.3 Choosing a hypothesis from the ensemble

In the previous section we showed that regret bounds yield bounds on the average risk of
(h1, . . . , hT ). The goal of this section is two-fold. First, we need to output a single hypothesis
and thus we must choose a single good hypothesis from (h1, . . . , hT ). Second, the analysis in the
previous section focuses on the expected value of the risk whereas in practice we have a single train-
ing set. Therefore, we must analyze the concentration properties of our online-to-batch conversion
schemes.

Last (with random stopping time)

The simplest conversion scheme runs the online algorithm on a sequence of r examples and re-
turns the last hypothesis hr. To analyze the risk of hr we assume that r is chosen uniformly at
random from [T ], where T is a predefined integer. The following lemma shows that the bounds on
E[ 1

T

∑
t risk(ht)] we derived in the previous section can be transformed into a bound on risk(hr).

Lemma 23 Assume that the conditions stated in Theorem 9 hold. Let h? be a hypothesis in H
whose risk is minimal and let δ ∈ (0, 1). Assume that there exists a scalar α such that

EZT1

[
1
T

T∑
t=1

risk(ht)

]
≤ risk(h?) + α .



APPENDIX B. USING OCP FOR PAC LEARNING 149

Let r ∈ [T ] and assume that r is uniformly chosen at random from [T ]. Then, with a probability of
at least 1− δ over the choices of ZT1 and r we have

risk(hr) ≤ risk(h?) +
α

δ
.

Proof Let R be the random variable (risk(hr) − risk(h?)). From the definition of h? as the mini-
mizer of risk(h) we clearly have that R is a non-negative random variable. In addition, the assump-
tion in the lemma implies that E[R] ≤ α. Thus, from the Markov inequality

P[R ≥ a] ≤ E[R]
a
≤ α

a
.

Setting α
a = δ we conclude our proof.

Combining the above lemma with Theorem 10 and Theorem 11 we obtain the following:

Corollary 8 Assume that the conditions stated in Theorem 10 hold. Let h? be a hypothesis in H
whose risk is minimal and let δ ∈ (0, 1). Then, with a probability of at least 1− δ over the choices
of (Z1, . . . , ZT ) and the index r we have that

risk(hr) ≤ risk(h?) +
B(T )
δ T

.

Similarly, if the conditions stated in Theorem 11 hold then with a probability of at least 1 − δ we
have that

risk(hr) ≤ risk(h?) +
µ+ e

δ

√
2 risk(h?)

T
+
ν + e(

√
3µ+ 3)

δ T
.

Corollary 8 implies that by running the online algorithm on the first r examples and outputting
hr we obtain a batch learning algorithm with a guaranteed risk bound. However, the concentration
bound given in Corollary 8 depends linearly on 1/δ, where δ is the confidence parameter. Our next
conversion scheme is preferable when we are aiming for very high confidence.

Validation

In the validation conversion scheme, we first pick a subset of hypotheses from h1, . . . , hT and
then use a fresh validation set to decide which hypothesis to output. We start by using a simple
amplification technique (a.k.a. boosting the confidence), to construct a few candidate hypotheses
such that with confidence 1− δ the risk of at least one of the hypotheses is low.

Theorem 12 Assume that the conditions stated in Corollary 8 hold. Let s be a positive integer.
Assume that we reset the online algorithm after each block of T/s examples. Let h′1, . . . , h

′
s be a
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sequence of hypotheses where for each i ∈ [s], the hypothesis h′i is picked uniformly at random from
{hi s+1, . . . , hi s+s}. If the conditions stated in Theorem 10 hold, then with a probability of at least
1− e−s, there exists i ∈ [s] such that

risk(h′i) ≤ risk(h?) +
e sB(T/s)

T
.

Similarly, if the conditions stated in Theorem 10 hold then

risk(h′i) ≤ risk(h?) + e

(
(µ+ e)

√
2 risk(h?) s

T
+

(ν + e(
√

3µ+ 3))s
T

)
.

Proof Using Corollary 8 with a confidence value of 1/e, we know that for all i ∈ [s], with a
probability of at least 1− 1/e we have that

risk(h′i)− risk(h?) ≤ e α(T/s) (B.11)

where α(k) = B(k)/k if the conditions stated in Theorem 10 hold and α(k) =

(µ + e)
√

2 risk(h?)
k + ν+e(

√
3µ+3)
k if the conditions stated in Theorem 11 hold. Therefore,

the probability that for all blocks the above inequality does not hold is at most e−s. Hence, with a
probability of at least 1− e−s, at least one of the hypotheses h′i satisfies Eq. (B.11).

The above theorem tells us that there exists at least one hypothesis hg ∈ {h′1, . . . , h′s} such
that risk(hg) is small. To find such a good hypothesis we can use a validation set and choose the
hypothesis whose loss on the validation set is minimal. Formally, let Z ′1, . . . , Z

′
m be a sequence of

random variables that represents a fresh validation set and let ho be the hypothesis in {h′1, . . . , h′s}
whose loss over Z ′1, . . . , Z

′
m is minimal. Applying standard generalization bounds (e.g. Eq. (21) in

[13]) on the finite hypothesis class {h′1, . . . , h′s} we obtain that there exists a constant C such that

risk(ho)− risk(hg) ≤ C

√risk(hg)
log(s) log(m) + ln

(
1
δ

)
m

+
log(s) log(m) + ln

(
1
δ

)
m

 .
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Averaging

If the set of hypotheses is convex and the loss function, `, is convex with respect to h then the risk
function is also convex with respect to h. Therefore, Jensen’s inequality implies that

risk

(
1
T

T∑
t=1

ht

)
≤ 1

T

T∑
t=1

risk(ht) .

We can use the above inequality in conjunction with Theorem 10 and Theorem 11 to derive
bounds on the expected risk of the averaged hypothesis h̄ = 1

T

∑T
t=1 ht. In particular, the bounds

we derived in Corollary 8 hold for h̄ as well. If we want to have very high confidence, we can use
the amplification technique described in the previous conversion scheme. Alternatively, we can use
the following theorem, which follows from Theorem 3 in [122]. A similar bound was derived in
[18].

Theorem 13 Assume that the conditions stated in Theorem 9 hold. In addition, assume that H is
a convex set and that ` is a convex function with respect to its first argument whose range is [0, 1].
Then, for any δ ∈ (0, 1) the following holds with a probability of at least 1− δ:

risk

(
1
T

T∑
t=1

ht

)
≤ 1

T

T∑
t=1

risk(ht) ≤ MT +
3 ln

(
T+3
δ

)
+ 2
√
T MT ln

(
T+3
δ

)
T

.

The above bound can be combined with our concentration bound on MT given in Lemma 22,
to yield a bound on risk(h̄) in terms of risk(h?).

B.4 Bibliographic Notes

The PAC learning model was introduced by Valiant [116]. The VC dimension was put forward by
Vapnik and Chervonenkis [118]. For a more detailed overview of PAC learning and generalization
bounds see for example [70, 117, 43, 13].

Littlestone [83] initiated the study of online to batch conversions. Freund and Schapire [53]
demonstrated that using the Perceptron algorithm along with the voting online-to-batch tech-
nique [67] yields an efficient replacement for Support Vector Machines [117, 33, 100]. Concen-
tration bounds on the risk of the ensemble that rely on the online loss were derived by Zhang [122]
and Cesa-Bianchi et al [18, 17]. The bounds are based on concentration inequalities for martin-
gales, such as the Azuma inequality [7] and a Bernstein-like inequality for martingales described
by Freedman [51]. Our presentation relies on expectations and on the basic Markov inequality and
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is thus much simpler. Nevertheless, the bounds we obtain for the validation scheme share the same
form as the bounds of the conversions scheme described in [122, 17, 18].
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