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Abstract

In reinforcement learning, policy gradient algo-
rithms optimize the policy directly and rely on
sampling efficiently an environment. Nevertheless,
while most sampling procedures are based on direct
policy sampling, self-performance measures could
be used to improve such sampling prior to each pol-
icy update. Following this line of thought, we in-
troduce SAUNA1, a method where non-informative
transitions are rejected from the gradient update.
The level of information is estimated according
to the fraction of variance explained by the value
function Vex: a measure of the discrepancy be-
tween V and the empirical returns. In this work, we
use this criterion to select samples that are useful
to learn from, and we demonstrate that this selec-
tion can significantly improve the performance of
policy gradient methods. In this paper: (a) We de-
fine Vex and introduce the SAUNA method to filter
transitions. (b) We conduct experiments on a set of
benchmark continuous control problems. SAUNA
significantly improves performance. (c) We investi-
gate how Vex reliably selects samples with the most
positive impact on learning and study its improve-
ment on both performance and sample efficiency.

1 Introduction
Learning to control agents in simulated environments has
been a challenge for decades in reinforcement learning
(RL) [Werbos, 1989; Robinson and Fallside, 1989; Schmid-
huber and Huber, 1991] and has lately led to a lot of research
efforts in this direction [Silver et al., 2016; Ha and Schmid-
huber, 2018; Espeholt et al., 2018], notably in policy gradient
methods [Silver et al., 2014; Schulman et al., 2016; Haarnoja
et al., 2018]. Despite progress, policy gradient algorithms
still heavily suffer from sample inefficiency [Kakade, 2003;
Wang et al., 2017; Wu et al., 2017]. In particular, many of
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1Samples Are Useful? Not Always. Saunas help to release im-

purities [noisy samples] and improve cell regeneration [PG update].
Their temperatures could be fatal if not regulated by humidity [Vex].

those methods are subject to use as much experience as pos-
sible in the most efficient way. However, quantity is not qual-
ity: the quality of the sampling procedure also determines the
learning curve of the agent and its final performance. Hence,
we think that not all experiences are worth using in the gradi-
ent update. Indeed, some transitions may add noise to the gra-
dient update, diluting relevant signals, and hindering learning.
The central idea of SAUNA is to reject transitions that are not
informative.

Use of non-informative or misinformative transitions can
only mislead the learning process and waste computational
time. Amari’s natural gradient [Amari, 1998] concept con-
cerns the geometry of the search space related to the “value
of information”: this has been studied for long in RL
since [Kakade, 2002]. Our work focuses on a different notion
of value of information, and treats it differently: we evalu-
ate whether a transition conveys useful information and use
it only if it is considered beneficial to learning. For this pur-
pose, we use a measure of the discrepancy between the es-
timated state value and the observed returns. This discrep-
ancy is formalized with the notion of the fraction of vari-
ance explained Vex [Kvålseth, 1985]. Transitions for which
Vex is close to zero are those for which the correlation be-
tween the value function V and the observed returns is also
close to zero. SAUNA keeps transitions where there is ei-
ther a strong correlation or a lack of fit between V and the
returns while avoiding the dilution of useful information by
removing useless samples. We consider on-policy methods
for their unbiasedness and stability compared to off-policy
algorithms [Nachum et al., 2017]. However, our method can
be applied to off-policy methods as well, and we leave this
investigation open for future work.

In summary, in this paper:

1. We propose to move from a traditional policy-based
sampling procedure to a refined sample selection driven
by Vex. We explore how transition filtering simplifies
the underlying state space and affects performance.

2. We hypothesize that not all samples are useful for learn-
ing and that disturbing samples should be rejected to
avoid performance loss. We provide experimental evi-
dence corroborating this claim.

3. By combining (1) and (2), we obtain a learning algo-
rithm that is empirically effective in learning neural net-
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work policies for challenging control tasks. Our results
significantly improve the state of the art in using RL for
high-dimensional continuous control.

Section 2 recalls basic notions of policy gradient methods in
RL and the notion of “fraction of variance explained” drawn
from the statistics literature. Section 3 sets our contribution
within the RL domain. Section 4 introduces SAUNA. Section
5 provides experimental evidence of the benefit of using our
method, and also investigates various experimental aspects
of SAUNA. Section 6 further discusses the method. Finally,
Section 7 concludes and draws some lines of future research.

2 Preliminaries
2.1 Notations
We consider a Markov Decision Process (MDP) with states
s ∈ S , actions a ∈ A, transition distribution st+1 ∼
P(st, at) and reward function rt ∼ R(st, at). Let π(a|s)
denote a stochastic policy and let the objective function be
the expected sum of discounted rewards:

J(π) , E
τ∼π

[ ∞∑
t=0

γtr (st, at)

]
, (1)

where γ ∈ [0, 1) is a discount factor [Puterman, 1994] and
τ = (s0, a0, r0, s1, a1, r1, . . . ) is a trajectory sampled from
the environment while the agent is following a given policy
π. Let us remind the notions of the value of a state in the
MDP framework. The value V π(s) of a state s while fol-
lowing a policy π starting in state s is defined by: V π(s) ,
E
τ∼π

[
∑∞
t=0 γ

tr (st, at) |s0 = s].
Closely related is the value (or quality) of a state-action

pair: the quality Qπ(s, a) of performing action a in state
s and then following policy π is defined by: Qπ(s, a) ,
E
τ∼π

[
∑∞
t=0 γ

tr (st, at) |s0 = s, a0 = a]. Finally, the advan-
tage function quantifies how an action a is better than the
average action in state s (following policy π): Aπ(s, a) ,
Qπ(s, a) − V π(s). MDP theory asserts that there exists an
optimal policy π∗ that maximizes J : we denote its value func-
tion V ∗. In practice, value functions are unknown; we denote
V , Q, and A their current estimates.

2.2 Policy Gradient Methods
Policy gradient methods aim at optimizing the policy di-
rectly [Williams, 1992]. The policy π is often implemented
with a function parameterized by θ: learning a policy boils
down to finding the best parameters. In the sequel, we use θ
to denote the parameters as well as the policy. In deep RL,
the policy is represented by a neural network (the policy net-
work) and is assumed to be continuously differentiable with
respect to its parameters θ. When the policy is represented by
such a parameterized function, hence by an approximation of
a policy, the MDP theory basically breaks down.

In this paper, we consider Proximal Policy Optimization
(PPO) [Schulman et al., 2017], an on-policy policy gradi-
ent method achieving state of the art performance on a suite
of benchmark tasks despite a relatively simple implementa-
tion. Very interestingly, PPO is an evolution of TRPO that

builds on the notion of natural gradient, hence Amari’s no-
tion of “value of information” mentioned above. PPO has
been shown to outperform TRPO experimentally. By build-
ing on PPO, this paper combines two different ideas related
to the notion of the value of information. At each episode,
PPO collects (st, at, rt) samples using its current policy θk.
After some episodes, using these collected transitions, PPO
updates its policy and gets a new one θk+1:

θk+1 ← argmax
θ

E
st,at∼πθk

[LPPO (st, at, θk, θ)] . (2)

We use the clipped version of PPO:

LPPO(st, at, θk, θ) = Clip(Aπθk (st, at),
πθ(at|st)
πθk(at|st)

, δ),

(3)

where Clip(A,α, δ) =

{
min (αA, (1 + δ)A), A ≥ 0
min (αA, (1− δ)A), A < 0.

A

is the advantage function introduced above. Clipping makes
the training updates more stable: it ensures that the gradient
steps do not lead the policy outside of the region of parameter
space where the samples collected are informative.

2.3 Vex: Fraction of Variance Explained
Now we introduce the key notion of this paper, namely the
fraction of variance explained, denoted by Vex. As shown
in this paper, a yet elementary use of this concept strikingly
improves the performance of policy gradient algorithms. In
general terms, Vex gives some information about the good-
ness of fit of a model. In statistics, it is also denoted R2,
which is a poor notation since this quantity can be negative
for non-linear models [Kvålseth, 1985] (also, in the context
of RL, R usually refers to the return). This quantity is also
known as the coefficient of determination. In a regression
setting, assume a model ŷ aims at predicting y from x, given
a set of N couples (xi, yi), Vex is defined by:

Vex , 1− MSE

VAR
(4)

where MSE is the mean squared error of the model measured
on theseN couples (MSE = 1

N

∑
i (yi − ŷ(xi))

2), and VAR
is the variance of the observed targets yi. Vex ≤ 1 and:

• Vex = 1 means that the model perfectly predicts the data
(MSE = 0).

• Vex = 0 means that the model performs as always pre-
dicting the average (MSE = VAR).

• Vex < 0 means that the model performs worse than
merely predicting the mean value (MSE > VAR).

3 Related Work
Our method integrates three key ideas: (a) function approx-
imation with a neural network combining or separating the
actor and the critic with an on-policy setting, (b) transition
filtering reducing information/signal dilution in the gradient
update while simplifying the underlying MDP, and (c) using
Vex as a measure of correlation between the value function
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and the returns to allow better sampling and more efficient
learning. Below, we consider previous work building on some
of these approaches.

Actor-critic algorithms essentially use the value function
to alternate between policy evaluation and policy improve-
ment [Andrew et al., 1983; Sutton and Barto, 2018]. In or-
der to update the actor, many methods adopt the on-policy
formulation [Peters and Schaal, 2008; Mnih et al., 2016;
Schulman et al., 2017]. However, despite their important suc-
cesses, these methods suffer from sample complexity.

In the literature, research has also been conducted in pri-
oritization sampling. While [Schaul et al., 2016] makes the
learning from experience replay more efficient by using the
TD error as a measure of these priorities in an off-policy
setting, our method directly selects the samples on-policy.
[Schmidhuber, 1991] is related to our method in that it calcu-
lates the expected improvement in prediction error, but with
the objective to maximize the intrinsic reward through arti-
ficial curiosity. Instead, our method estimates the expected
fraction of variance explained and filters out some of the sam-
ples to improve the learning efficiency.
Vex has already been used in [Flet-Berliac and Preux,

2019] as one of the auxiliary tasks for self-assessment of
performance. Finally, motion control in physics-based en-
vironments is a long-standing and active research field. In
particular, there are many prior work on continuous ac-
tion spaces [Levine and Abbeel, 2014; Heess et al., 2015;
Lillicrap et al., 2016; Schulman et al., 2016] that demonstrate
how locomotion behavior and other skilled movements can
emerge as the outcome of optimization problems.

4 SAUNA: Dynamic Transition Filtering
We introduce a general method to filter transitions that con-
tain useful information for policy gradient updates. In this pa-
per, we detail how to couple SAUNA with PPO, an on-policy
gradient algorithm achieving state of the art performance.
We refer to this combination as PPO+SAUNA. SAUNA can
be coupled with other algorithms, especially with non-policy
methods such as DQN: we leave this for future work. Below
we detail how to adapt the notion of Vex to RL.

4.1 Vex applied to RL
The fraction of variance that the current estimate of the value
function explains about the observed returns corresponds to
the proportion of the variance in the dependent variable V
that is predictable from st. We define Vexτ as the fraction of
variance explained for a trajectory τ :

Vexτ , 1−
∑
t∈τ (Rt − V (st))

2∑
t∈τ (Rt − 〈R〉τ )

2 , (5)

where Rt =
∑
k≥0 γ

krt+k, rt is the immediate reward col-
lected at timestep t, V (st) is the current estimate of the value
of state st, and 〈R〉τ is the average of the Rt in trajectory
τ . This definition can be extended from a trajectory τ to a
batch B of sampled transitions VexB . In the RL context, the
interpretation of VexB is:

• VexB = 1: V perfectly explains the observed returns.

• VexB = 0: V corresponds to a simple average prediction.
• VexB < 0: V provides a worse prediction than the aver-

age of the returns.
The intuition is that VexB close to 1 corresponds to well-

predicted returns. VexB < 0 corresponds to a rather large pre-
diction error of the value function, meaning that these sam-
ples are useful because the agent has something to learn from.
On the other hand, VexB close to 0 means that the samples do
not provide any valuable information to improve the value
estimates. We will demonstrate that Vex is indeed a relevant
indicator for assessing self-performance in RL.

4.2 Estimating Vex
While sampling the environment, SAUNA rejects transitions
for which V (st) is not correlated with returns that have
followed st. Therefore, VexB should be estimated at each
timestep and we define Vexθ (st) as the prediction of VexB with
parameters θ at state st ∈ B. In addition, for shared param-
eters configurations, an error term on the value estimation is
added to the objective. The final objective function becomes:

LSAUNA(st, at, θold, θ) = LPPO(st, at, θold, θ)− (6)

c1 (Vθ(st)−Rt)2− (7)

c2 (Vexθ (st)− VexB )
2
, (8)

where c1 and c2 are the coefficients for the squared-error
losses of respectively the value function and the fraction of
variance explained function. Note that only the term (8) is
specific to SAUNA. (6) and (7) come from PPO. When the
network is not shared between the policy and the value func-
tion, SAUNA embeds VexB to the value function network us-
ing a single hidden layer. The rest of the network is un-
changed, making our method very easy to use without signifi-
cantly increasing the complexity of the underlying algorithm.

4.3 SAUNA Algorithm
Algorithm 1 shows the pseudocode of SAUNA when coupled
with PPO. Overall, the resulting algorithm visits a set of tra-
jectories along which it collects useful samples in the sense
explained above, assessed with regards to Vex. The mecha-
nism may be viewed as analogous to the method of dropout in
deep learning [Srivastava et al., 2014; Freeman et al., 2019]
although here dropout happens in the state space of the un-
derlying MDP and is directed by Vex. Once a batch B of T
such useful samples is collected, SAUNA performs the usual
gradient update following the PPO template.

The gradient update concerns the three quantities estimated
by SAUNA: the policy parameters θ, line 12, the value esti-
mation parameters φ, line 13, and the Vex estimation param-
eters ψ, line 14. The if statement filters the useful samples:
Ṽexψk(s0:t−1) denotes the median of Vexψk between timesteps 0
and t − 1, ε0 is a Laplace estimator (set to 10−8), and ρ is
the filtering threshold. One may legitimately ask why not use
directly |Vexψk(st)| in the predicate. The rationale is practical:
the ratio is a standardized measure as the agent learns, stabi-
lized by the median, more robust to outliers than the mean.
For better legibility, Algorithm 1 does not share parameters
between the π, V and Vex networks. A version where these
parameters would be partially shared is straightforward.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2713



Algorithm 1 SAUNA coupled with PPO.

1: Initialize policy parameters θ0, value function parame-
ters φ0 and Vex function parameters ψ0

2: for k = 0, 1, 2, . . . do
3: s0 ← initial state
4: batch B ← ∅
5: while size(B) ≤ T do
6: at ∼ πθk(st)
7: execute action at and observe rt+1 and st+1

8: if
|Vexψk (st)|

|Ṽexψk (s0:t−1)|+ε0
≥ ρ then

9: add
(
st, at, rt, Vφk(st), st+1,Vexψk(st)

)
to B

10: if st+1 is a final state then
11: st+1 ← initial state
12: θk+1 ← argmax

θ

∑
t∈B LPPO (st, at, θk, θ)

13: φk+1 ← argmin
φ

∑
t∈B (Vφ (st)−Rt)

2

14: ψk+1 ← argmin
ψ

∑
t∈B

(
Vexψ (st)− VexB

)2

5 Experiments
We have forked the stable-baselines repository [Hill et al.,
2018] and minimally modified the code to incorporate our
method. Unless otherwise stated, the policy network used for
all tasks is a fully-connected multi-layer perceptron with 2
hidden layers of 64 units. Moreover, the architecture for the
Vex function head is the same as for the value function head.

5.1 SAUNA in the Continuous Domain
To assess SAUNA, we compare PPO+SAUNA against its nat-
ural baseline PPO. We use six simulated robotic deterministic
tasks from OpenAI Gym [Brockman et al., 2016] using Mu-
JoCo [Todorov et al., 2012]. The two hyperparameters re-
quired by our method (ρ = 0.3 from Eq. 5 and c2 = 0.5 from
Eq. 8) and all the others (identical to those in [Schulman et
al., 2017]) are exactly the same for all tasks.

We made the choice of not tuning the hyperparameters for
each algorithm and for each task to have a tougher assess-
ment of SAUNA: only SAUNA-specific hyperparameters ρ
and c2 have been tuned by grid-search. Hence, the perfor-
mance we report for SAUNA is not necessarily the best that
could be obtained with parameter tuning. The graphs reported
in Fig. 1 show that our method outperforms PPO on all con-
sidered continuous control tasks.

We then experiment with the more difficult, high-
dimensional continuous domain environment of Ro-
boschool [Klimov and Schulman, 2017] with various neural
network sizes. In Fig. 2a, the same fully-connected network
as for the previous MuJoCo experiments (2 hidden layers
each with 64 neurons) is used. In Fig. 2b, the network is
composed of a deeper and wider 3 hidden layers with 512,
256 and 128 neurons. We trained those agents with 32
parallel actors. In both experiments, PPO+SAUNA performs
better and learns faster at the beginning. The gap closes with
a larger network and our method does as well as PPO. As
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Figure 1: Performance of PPO+SAUNA (red) relative to PPO (blue)
on 6 MuJoCo environments averaged across 6 seeds. X-axis: num-
ber of environment steps. Y-axis: total undiscounted return. Shaded
areas: standard deviation.

resources are limited in terms of the number of parameters
and models become less complex, it seems natural that
filtering samples according to their expected informational
value helps to reduce noise in the gradient update and to
speed up learning.
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Figure 2: Performance of PPO+SAUNA (red) relative to PPO (blue)
on the Roboschool environment averaged across 6 seeds. X-axis:
number of environment steps. Y-axis: total undiscounted return.
Shaded areas: standard deviation.

5.2 Learning with SAUNA
The Advantages of Filtering
We further study the impact of filtering out noisy samples
by conducting additional experiments in predicting Vex while
omitting the filtering step: the if statement (Line 8 of Algo-
rithm 1) is removed and all transitions are kept in the batch
B. Indeed, SAUNA may improve the agent’s performance by
simply training the shared network to optimize the Vex head
as an auxiliary task. Fig. 3 demonstrates the positive effects
of filtering out the samples. In addition, we studied the num-
ber of filtered out samples per task and its evolution along the
training. On average, SAUNA rejects 5-10% of samples at
the beginning of training, 2-6% near the end.
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Figure 3: Performance of PPO+SAUNA (red) relative to PPO (blue) and PPO with the prediction of Vex but without the filtering out of noisy
samples (orange) on 3 MuJoCo environments averaged across 6 seeds. X-axis: number of environment steps. Y-axis: total undiscounted
return. Shaded areas: standard deviation.

The Impact of SAUNA on the Gradients

Prior to the gradient update, SAUNA removes the useless
transitions. By so doing, we hypothesized that information
signals from samples with large Vex would be less diluted
by filtering out samples. Fig. 4 shows that SAUNA filtering

(a) (b)

Figure 4: Gradients L1-norm from the (a) first layer and (b) last
layer of the shared parameters network for PPO and PPO coupled
with SAUNA. Task: HalfCheetah-v2.

leads to larger gradients. As a result, policy updates make
bigger steps, which ultimately translates into better perfor-
mance. It is questionable why performance is not negatively
affected, since larger gradients could hinder learning. Expe-
rience shows that gradients contain more useful information:
as the relevant signals are less diluted, the gradients are more
qualitative and have been partially denoised.

HalfCheetah: Qualitative Study

In HalfCheetah, a well-known behavior [Lapan, 2018] is that
for multiple seeds PPO is stuck in a local minimum in which
the agent moves on its back. However, we observed that
SAUNA made it possible to leave from, or at least to avoid
these local minima. This is illustrated in Fig. 5a where we
see still frames of two agents trained with PPO+SAUNA for
106 timesteps on identically seeded environments. Their be-
havior is entirely different. Looking at Vex in Fig. 5b, we can
see that the graphs differ quite interestingly. The orange agent
seems to find very quickly a local minimum on its back while
the blue agent’s Vex varies much more. This seems to allow
the latter to explore more states than the former and finally
to find a better optimum. Supported by the previous study,
we can infer that agents trained with SAUNA are better able
to explore interesting states while exploiting with confidence
the value given to the states observed so far.

(a)

(b)

Figure 5: (a) Example of PPO getting trapped in a local minimum
(top row) while PPO+SAUNA reaches a better optimum (bottom
row). (b) Vex score for PPO (orange) and PPO+SAUNA (blue).

6 Discussion
Intuitively, for the policy update, our method will only use
qualitative samples that provide the agent with (a) reliable and
exercised behavior (high Vex) and (b) challenging states from
the point of view of correctly predicting their value (low Vex).
SAUNA algorithm keeps samples with high learning impact,
rejecting other noisy samples from the gradient update.

6.1 Filtering Policy Gradient Updates and the
Policy Gradient Theorem

Policy gradient algorithms are backed by the policy gradi-
ent theorem [Sutton et al., 2000]. As long as the asymptotic
stationary regime is not reached, it is not reasonable to as-
sume the sampled states to be independent and identically dis-
tributed (i.i.d.). Therefore, it seems intuitively better to ignore
some of the samples for a certain period, to allow the most
efficient use of information. One can understand SAUNA as
making gradient updates more robust through filtering, espe-
cially when the update is low and the noise can be dominant.
Besides, filtering out disturbing samples reduces the bias in
the state distribution.
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6.2 Learning Vex and the Shared Network
Parameters

SAUNA network predicts Vex in conjunction with the value
function and the policy. Therefore, as its parameters are up-
dated through gradient ascent, they converge to one of the ob-
jective function minima (hopefully, a global minimum). This
parameter configuration integrates Vex, predicting how much
the value function has fitted the observed samples, or infor-
mally speaking how well the value function is doing for state
st. This new objective tends to lead the network to adjust
predicting a quantity relevant for the task. Instead of using
domain knowledge for the task, the method rather introduces
problem knowledge by constraining the parameters directly.

6.3 Additional Experimental Results
We also compare SAUNA to A2C, a synchronous variant
of [Mnih et al., 2016] and a weaker version of PPO. As ex-
pected, we observe a 15% increase in performance. We do not
present the complete results in this version of the article due
to space limitations. Below is a discussion about additional
experimental results, which we think contribute interestingly
to the study.

Mean of Vex. Although Ṽex, the median of Vex, is more ex-
pensive to calculate, we observe that it gives better results
than if we use its mean in the if statement of Algorithm 1.
Using the median helps [Kvålseth, 1985] because the distri-
bution of Vex is not normal and includes outliers that will
potentially produce misleading results.
Non-empirical Vex. We also experimented with using the
empirical values of Vex in Line 8 of Algorithm 1 when calcu-
lating Ṽex, instead of the predicted ones. This has yielded less
positive results, and it is likely that this is due to the differ-
ence between the predicted and actual values at the beginning
of learning, which has the effect of distorting the ratio in the
if statement.
Adjusting state count. In order to stay in line with the pol-
icy gradient theorem [Sutton et al., 2000], we have worked
to adjust the distribution of states dπ to what it truly is, since
some states visited by the agent are not included in the batch.
We adjusted it using the ratio between the number of states
visited and the actual number of transitions used in the gradi-
ent update, but this did not improve the learning, and instead,
we observed a decrease in performance.
Adjusted Vex. The definition of Vex is biased. An unbiased
estimator does exist (known in statistics as the adjusted R2).
We performed the same set of experiments using such an ad-
justed Vex: it did not change the experimental performance
significantly.
Random filtering. We experimented with dropping out at
random, and before each gradient update, a number of sam-
ples corresponding to the same average number of samples
that SAUNA drops. This resulted in a decrease in perfor-
mance compared to PPO, as one can expect.
Atari domain. We tested our method on the Atari 2600 do-
main [Bellemare et al., 2013] without observing any improve-
ment in learning: some of the tasks were best performed by
one method and others by the other.

7 Conclusion
Policy gradient methods optimize the policy directly through
gradient ascent. We have introduced a new, lightweight and
agnostic method applicable to any policy gradient algorithm.
The central idea of this paper is that Vex is a useful mea-
sure to filter out samples that are perturbing the policy up-
date. Those non-informative or misinformative samples are
ignored by SAUNA with a mechanism controlled by the es-
timated fraction of variance explained by the value function
at each state. The relevant signals being less diluted, this im-
proved sampling results in a denoising effect on the gradients,
improving the learning curve, ultimately leading to improved
performance.

We demonstrated the effectiveness of our method when ap-
plied to PPO, a commonly used state of the art policy gradi-
ent method, on a set of benchmark high-dimensional environ-
ments. We also established that samples can be removed from
the gradient update without hindering learning but, on the op-
posite, can improve it. We further studied the positive im-
pacts that such a modification in the sampling procedure has
on learning. Several open topics warrant future study. Our re-
sults suggest that the influence of SAUNA on the distribution
of states has beneficial effects: in order to gauge the theoreti-
cal implications of transition dropout in the MDP, our method
might be formulated using the options framework [Sutton et
al., 1999; Precup, 2000] where holes in a trajectory result in
the appearance of options. Moreover, we are studying other
ways to use Vex in the context of RL.
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