

ONSITE WATER REUSE WORKSHOP

July 23rd, 2019 Austin Water Staff

OUTLINE

Austin

Water Forward Austin's Integrated Water Resource Plan

- Austin Water-led interdepartmental effort to develop a 100 year water plan that:
 - Reflects our community's values
 - Ensures a diversified, sustainable, and resilient water future
 - Places strong emphasis on conservation
- Council-appointed Task Force met monthly
- Plan approved by Council in November 2018, with planned updates on a five year cycle

Water Forward Plan Strategies

Demand Management

Implement Advanced Metering Infrastructure (AMI)

Enhance distribution system water loss control

Provide customer water use benchmarking information and implement water budgets

Transform to regionally appropriate landscapes

Expand irrigation efficiency incentives

Water Supply

Store water for drought via Aquifer Storage and Recovery and a new Off Channel Reservoir

Bring on additional supplies via Brackish Groundwater Desalination

Expand the Centralized Reclaimed Water System

Use Indirect Potable Reuse as a deep drought strategy

Capture local inflows to Lady Bird Lake

Use on-site and neighborhood scale alternative water sources for non-potable end uses Rainwater, Stormwater, Wastewater, Graywater, and AC Condensate

Decentralized

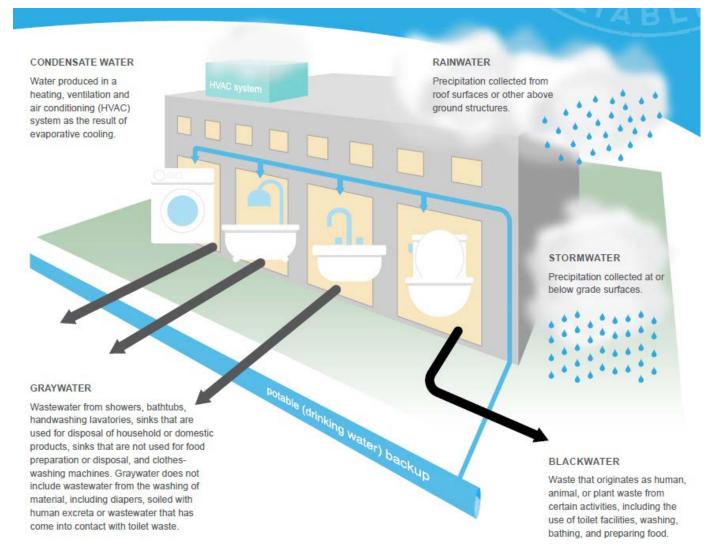
Direction from Council 5/2/19

"To ensure that the Land Development Codes and permitting process are streamlined to the greatest extent possible upon adoption of any revision to the Land Development Code, the regulatory requirements adopted as part of Water Forward, Austin's 100-year integrated water resource plan, that are related to the Land Development Code and are able to be accelerated and implemented this year should be codified and implemented as part of this comprehensive land development code revision process.

The staff should report back at least on the following areas if they were not able to accelerate and implement this year (<u>especially as concerns commercial buildings larger than 250,000 square feet</u>): water benchmarking, dual plumbing, landscape transformation, and alternative water."

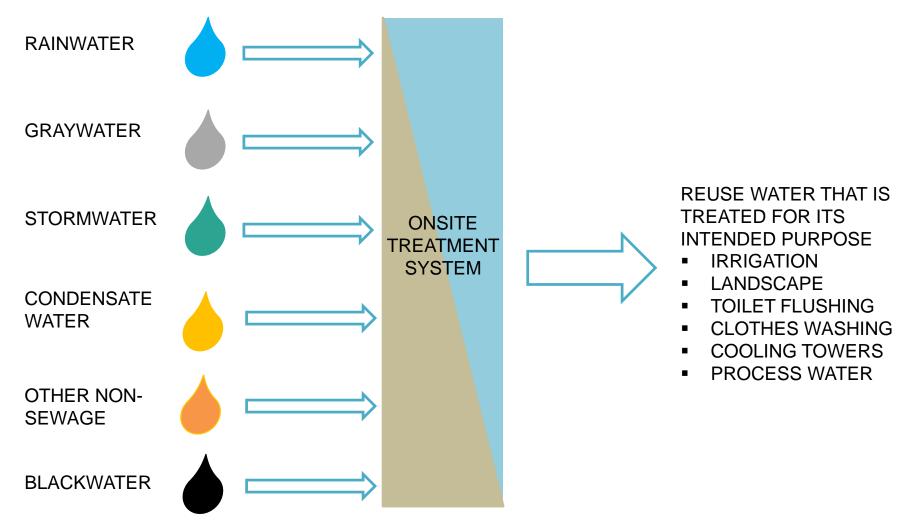
OUTLINE

AUSTIN WATER AND THE BLUE RIBBON COMMISSION



National Blue Ribbon Commission for Onsite Non-potable Water Systems

The National Blue Ribbon Commission advances best management practices to support the use of onsite non-potable water systems within individual buildings or at the local scale. We are committed to protecting public health and the environment, and sustainably managing water—now and for future generations.



DEFINITIONS: ALTERNATIVE WATER SOURCES

DEFINITIONS: ONSITE WATER REUSE SYSTEMS

VARYING STANDARDS ACROSS THE U.S.

	Graywater Use to Flush Toilets						
	BOD ₅ (mg L ⁻¹)	TSS (mg L ⁻¹)	Turbidity (NTU)	Total Coliform (cfu/ 100ml)	<i>E. Coli</i> (cfu/ 100ml)	Disinfection	
California	10	10	2	2.2	2.2	0.5 – 2.5 mg/L residual chlorine	
New Mexico	30	30	-	-	200	-	
Oregon	10	10	-	-	2.2	-	
Georgia	-	-	10	500	100	-	
Texas	-	-	-	-	20	-	
Massachusetts	10	5	2	-	14	-	
Wisconsin	200	5	-	-	-	0.1 – 4 mg L ⁻¹ residual chlorine	
Colorado	10	10	2	-	2.2	0.5 – 2.5 mg/L residual chlorine	
Typical Graywater	80 - 380	54 -280	28-1340	10 ^{7.2} -10 ^{8.8}	10 ^{5.4} -10 ^{7.2}	N/A	

LACKING GUIDANCE ON HOW TO MEET STANDARDS

NSF/ANSI 350 and 350-1: Onsite Water Reuse

AR-1530 EPA/600/R-12/618 | September 2012

Austin

MATER

LEADERS IN ADVANCING INNOVATIVE WATER SOLUTIONS

NBRC FRAMEWORK FOR DEVELOPING A LOCAL PROGRAM

Blueprint for Onsite Systems: A Step-by-Step Guide for Developing a Local Program to Manage Onsite Water Systems (2014)

Having a consistent policy framework across cities and states is one of the best ways that we can integrate onsite systems in a way that protects public health and meets our water needs.

ESTABLISHED WATER QUALITY STANDARDS FOR ONSITE NON-POTABLE REUSE SYSTEMS

Risk-Based Framework for the Development of Public Health Guidance for Decentralized Non-Potable Water Systems

March 2017: This panel report provides a risk-based framework to develop public health guidance for decentralized non-potable water systems. More >

Final Report

Risk-Based Framework for the Development of Public Health Guidance for Decentralized Non-Potable Water Systems

GUIDEBOOK, MODEL ORDINANCE, AND RULESET

A Guidebook for Developing and Implementing Regulations for Onsite Non-potable Water Systems (2017) To help develop water quality criteria and standards for ONWS and present pathways for implementation and management of these systems at the local and/or state level.

Model Local Ordinance for Onsite Non-Potable Water Programs (2017) Provides template local ordinance for establishing regulatory programs for ONWS. To be used with the Guidebook.

Model Program Rules for Onsite Non-potable Water Systems (2017) Provides specific details on implementation of an ONWS, including system design criteria, permitting, crossconnection control, reporting, notification, and enforcement. To be used with the Guidebook.

Guidance Manual for Engineers, Operators, Utilities and Regulators (Anticipated 2019) Provides recommendations for how to implement the NBRC's public health recommendations in an Onsite Non-potable Water Systems program.

OUTLINE

THE NBRC FRAMEWORK IS A PARADIGM SHIFT

CURRENT REGULATORY FRAMEWORK & WATER QUALITY STANDARDS FOR ON-SITE NON-POTABLE WATER SYSTEMS

WATER SOURCE	STATE REVIEW	LOCAL REVIEW	END USES	WATER QUALITY LIMITS	MONITORING
RAINWATER STORMWATER CONDENSATE WATER GRAYWATER OTHER NON-SEWAGE	NONE	BUILDING/PLUMBING DESIGN, CROSS- CONNECTION CONTROL	Toilet/Urinal Flushing Clothes Washing Cooling Makeup Irrigation & Landscape	TOTAL SUSPENDED SOLIDS E. COLI	MONTHLY E. COLI TESTING WITHOUT REPORTING
BLACKWATER	TREATMENT SYSTEM DESIGN & SOLIDS DISPOSAL PLAN	BUILDING/PLUMBING DESIGN, CROSS- CONNECTION CONTROL	Toilet/Urinal Flushing Clothes Washing Cooling Makeup Irrigation & Landscape	BOD TOTAL SUSPENDED SOLIDS ENTEROCCOCI & E. COLI TURBIDITY PH	TWICE PER WEEK TESTING WITH MONTHLY REPORTING TO TCEQ

NATIONAL BLUE RIBBON COMMISSION RISK-BASED FRAMEWORK FOR ON-SITE NON-POTABLE WATER SYSTEMS

WATER SOURCE	STATE REVIEW	LOCAL REVIEW	END USES	WATER QUALITY LIMITS	MONITORING
RAINWATER STORMWATER CONDENSATE WATER GRAYWATER OTHER NON-SEWAGE	NONE (EXCEPT TCEQ HAS REGULATORY AUTHORITY OVER BLACKWATER)	TREATMENT SYSTEM DESIGN, BUILDING/PLUMBING DESIGN, CROSS- CONNECTION CONTROL	TOILET/URINAL FLUSHING CLOTHES WASHING COOLING MAKEUP IRRIGATION & LANDSCAPE	LOG REDUCTION TARGETS: VIRUS PROTOZOA BACTERIA	CONTINUOUS MONITORING OF SURROGATE PARAMETERS WITH ANNUAL REPORTING TO CITY OF AUSTIN

STEPS TO DEVELOP A LOCAL PROGRAM

Convene a Working Group

Establish a small working group to guide the development of the local program.

Select the Types of Alternate Water Sources

Narrow the specific types of alternate water sources covered in the program.

Identify End Uses

Classify specific non-potable end uses for your program.

Establish Water Quality Standards

Establish water quality standards for each alternate water source and/or end use.

Identify and Supplement Local Building Practices Integrate your program into local construction requirements and building permit processes.

Establish Monitoring and Reporting Requirements Establish water quality monitoring and reporting requirements for ongoing operations.

Prepare an Operating Permit Process

Establish the permit process for initial and ongoing operations for onsite water systems.

Implement Guidelines and the Program

Publicize the program to provide clear direction for project sponsors and developers.

Evaluate the Program

Promote best practices for onsite water systems.

Grow the Program

Explore opportunities to expand and encourage onsite water systems.

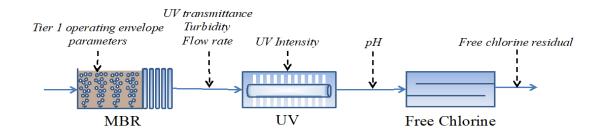
RISKS ASSOCIATED WITH PROGRAM IMPLEMENTATION

Examples of Risk-Based Considerations for Identifying the Management Category of the ONWS

Example	Number of Persons Exposed	Likelihood of Malfunction	Management Category and Considerations	Health Agency Role
Single-owner occupied system using roof runoff for irrigation	Small user base (<~20 pe/d¹)	Low—low pathogen content—simple process	Low Risk—Building owner serves as the Responsible Management Entity (RME) with full responsibility	Provides educational information to building owners and issues permit
Single-owner occupied system using graywater for toilet flushing and irrigation	Small user base (<~20 pe/d¹)	Moderate—equipment maintenance required	Low Risk—Building owner serves as RME with full responsibility	Requires manufacturer certification of equipment, operation and maintenance (0&M) manual and issues permit
Single-owner occupied system using roof runoff and treated wastewater for toilet flushing, laundry, and subsurface irrigation	Small user base (<~20 pe/d¹)	Considerable—complex equipment requires routine O&M by trained staff	Moderate Risk— Independent registered service agent provides 0&M	Registers/licenses service agent, defines reporting of data and issues permit
Multi-user building with roof runoff system for irrigation	Moderate user base (20–100 pe/d¹)	Low—low pathogen content—simple process	Low Risk—Building owner or HOA serves as RME with full responsibility	Registers/licenses service agent, defines performance reporting and issues permit
Multi-user system using treated graywater for toilet flushing and irrigation	Large user base (100–1,000 pe/d¹)	Moderate—equipment and distribution system requires trained O&M staff oversight	High Risk—Qualified full service RME with financial security and routine reporting	Establishes RME qualifica- tions, ensures financial guaranty, requires data reporting, and issues permit
District/multi-user system serving mixed uses, collecting roof runoff and treated wastewater sources for toilet flushing, laundry, cooling, and irrigation	Large user base (100–5,000 pe/d¹)	Significant—Complex process and distribution system requiring skilled O&M	High Risk—Qualified full service RME with financial security and routine reporting	Establishes RME qualifica- tions, ensures financial guaranty, requires data reporting, and issues permit

ONSITE WATER REUSE WORKSHOP

July 23rd, 2019


Austin

IATER

THE NBRC FRAMEWORK ENSURES ONSITE TREATMENT SYSTEMS ARE ACHIEVING PUBLIC HEALTH GOALS

	Pa	athoge	ns	Water Quality			
Unit Process	Virus	Protozoa	Bacteria	Particulates	Organics	Removal / Inactivation Mechanisms	
Biolo	gical Ti	reatme	ent	· ·			
Non-membrane options						Biodegradation, adsorption, predation	
MBR						Same as above plus size exclusion	
	Filtrat	ion					
Granular media filter						Physical removal (e.g., size exclusion, interception, diffusion)	
Cartridge filter						exclusion, interception, unrusion)	
Membrane filter						Physical removal (e.g., size	
Reverse osmosis						exclusion)	
L	Disinfection						
UV						Physical degradation	
Free chlorine						Chemical inactivation and	
Chloramine						oxidation	
Ozone						oxidation	

SPECIFIC GUIDANCE ON MEETING WATER QUALITY STANDARDS

Table 1

Log reduction targets for 10⁻⁴ per person per year benchmarks for ONWS using blackwater, graywater, or roof runoff

Water Use Scenario	Enteric Viruses	Parasitic Protozoa	Enteric Bacteria
Domestic Wastewater or Blackwater			
Unrestricted Irrigation	8.0	7.0	6.0
Indoor Use	8.5	7.0	6.0
Graywater			
Unrestricted Irrigation	5.5	4.5	3.5
Indoor Use	6.0	4.5	3.5
Roof runoff			
Unrestricted Irrigation	Not applicable ¹	No data ¹	3.5
Indoor Use	Not applicable ¹	No data ¹	3.5

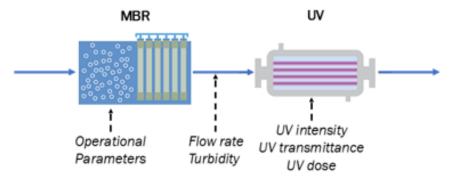
Notes:

1. States and/or local regulators can define the LRTs for virus and protozoa for roof runoff systems using one of the following suggested options:

- Assign LRT values based on stormwater LRTs
- Conduct research on the presence of virus and protozoa in roof runoff and assign LRT values based on research

Source: Adapted from Sharvelle et al., 2017 (Table 3-3, page 26).

Table 3


Example Treatment Process Log₁₀ Reduction Credits

Treatment Process	Log ₁₀ Reduction Credits Virus/Protozoa/Bacteria	Example Information to be Included in an Engineering Report
Microfiltration or Ultrafiltration	0/4/0	Manufacturer's informational sheet indicating ability to detect 0.3µm breach
Membrane Biological Reactor (MBR)	1.5/2/4	Operation with the Tier 1 operating envelope as defined in the AWRCE 2016, <i>Membrane bio-reactor</i> , WaterVal validation protocol ²
Reverse Osmosis	Up to 2/2/2	Manufacturer's informational sheet indicating ability to reject sodium chloride. Allow pathogen removal credit with continuous monitoring of either electrical conductivity or total organic carbon
Ultraviolet (UV) Light Disinfection	Up to 6/6/6 (dose dependent)	UV reactor's Validation Report following state-approved procedures ³ or NSF/ANSI 55 Class A validated.
Chlorine Disinfection	Up to 5/0/5 (CT dependent)	Calculations demonstrating log inactivation using CT disinfection, where CT = Concentration of Chlorine x Contact Time
Ozone Disinfection	Up to 4/3/0 (CT dependent)	Calculations demonstrating log inactivation using CT disinfection, where CT = Concentration of Ozone x Contact Time

DESIGNING A MULTIPLE BARRIER TREATMENT SYSTEM

Graywater System for Toilet Flushing and Irrigation

Pathogen	Unit Process Pathogen Credits		Total Log	LRT for
	MBR	UV	Removal	Graywater
Virus	1.5	6.0	7.5	6.0
Protozoa	2.0	6.0	8.0	4.5
Bacteria	4.0	6.0	10.0	3.5

ROLES & RESPONSIBILITIES MUST BE CLEARLY DEFINED

PROJECT TEAM	REGULATOR	DEVELOPMENT REVIEW
	INITIAL PROJECT DEVELOPMENT	
Prepare Project Application/Water Balance		
	PRELIMINARY DESIGN	
Preliminary designEngineering Report (Preliminary)		
FINAL DESIG	IN, CONSTRUCTION AND INITIAL I	NSPECTIONS
 100% Design Engineering Report (Final) Operations & Maintenance Plan including Commissioning Plan Construction Cross-connection Inspection 		
Commissioning	PROJECT STARTUP	
ON	GOING MONITORING AND REPORT	TING
On-going monitoring and reporting		

BUILDING A PROGRAM FROM SCRATCH REQUIRES INVOLVEMENT FROM MANY STAKEHOLDERS

Onsite Reuse System Professionals

The General Public/Users of Buildings

OUTLINE

THE SFPUC ORDINANCE APPROACH

AUSTIN WATER ORDINANCE APPROACH

	Program & Grant Development	Program Implemented with Incentive	Mandate Implemented
•	Establishes new rules/regulatory framework for Onsite Water Reuse Systems Grant program developed to incentivize systems under new rules	 All new Onsite Systems required to meet new rules & obtain permit from Austin Water Grants issued to large projects to incentivize program participation for non- mandated systems 	 All new developments >250,000 square feet must incorporate Onsite Water Reuse & obtain permit from Austin Water
	Mandatory	Water Balance Submittal	
	• >250,000	lopments submit water balance with site plan app square feet developments meet with AW staff to program until mandate takes effect	
	Water bala	nce submittal and in-person staff meetings planne	d to

coincide with opening of City's new Planning and Development Center (anticipated May/June 2020)

AUSTIN WATER ORDINANCE APPROACH

	•	
Program & Grant Development	Program Implemented with Incentive	Mandate Implemented
 Establishes new rules/regulatory framework for Onsite Water Reuse Systems Grant program developed to incentivize systems under new rules 	 All new Onsite Systems required to meet new rules & obtain permit from Austin Water Grants issued to large projects to incentivize program participation for non- mandated systems 	 All new developments >250,000 square feet must incorporate Onsite Water Reuse & obtain permit from Austin Water
Mandatory V	Vater Balance Submittal	
• >250,000 s	opments submit water balance with site plan ap square feet developments meet with AW staff to program until mandate takes effect	
coincide with	ce submittal and in-person staff meetings planne n opening of City's new Planning and Developme May/June 2020)	

Existing A/C Condensate Recovery Rules for Cooling Towers

- New facilities with 100 tons or more cooling capacity must offset at least 10% of make-up water with alternative water
- New facilities with 200 tons or more cooling capacity must reuse A/C condensate onsite

OUTLINE

REVIEW THREE EXAMPLE PROJECTS

Mixed Use w/ Ground Floor Retail

Multi-family Suburban Complex

Commercial Office High-rise

- 3 groups working through the projects together at one station
- 30 minutes for each project with a 15-minute break after projects 2 & 3
- Report out and discussion on the ordinance approach at the end of workshop

BREAKOUT SESSION FORMAT

- 1. Identify code applicability for each of the projects
- 2. Walk through the subsequent permitting steps for projects
- 3. Highlight and discuss any foreseeable issues to address with the ordinance approach

Questions?

