
i

OOP in Python

ii

About the Tutorial

Python has been an object-oriented language since it existed. In this tutorial we will try to

get in-depth features of OOPS in Python programming.

Audience

This tutorial has been prepared for the beginners and intermediate to help them

understand the Python Oops features and concepts through programming.

Prerequisites

Understanding on basic of Python programming language will help to understand and learn

quickly. If you are new to programming, it is recommended to first go through “Python for

beginners” tutorials.

OOP in Python

Table of Contents

About the Tutorial ... ii

Audience.. ii

Prerequisites .. ii

OOP IN PYTHON – INTRODUCTION ... 1

Language Programming Classification Scheme .. 1

What is Object Oriented Programming? .. 2

Why to Choose Object-oriented programming?... 2

Procedural vs. Object Oriented Programming .. 2

Principles of Object Oriented Programming ... 3

Object-Oriented Python ... 5

Modules vs. Classes and Objects .. 5

OOP IN PYTHON – ENVIRONMENT SETUP ... 8

Prerequisites and Toolkits ... 8

Installing Python .. 8

Choosing an IDE ... 10

Pycharm... 10

Komodo IDE ... 11

Eric Python IDE .. 12

Choosing a Text Editor ... 13

Atom Text Editor ... 13

Screenshot of Atom text .. 14

Sublime Text Editor ... 14

Notepad ++ .. 15

OOP IN PYTHON – DATA STRUCTURES .. 17

Lists ... 17

OOP in Python

i

Accessing Items in Python List ... 18

Empty Objects ... 18

Tuples .. 19

Dictionary .. 21

Sets .. 24

OOP IN PYTHON – BUILDING BLOCKS .. 28

Class Bundles : Behavior and State .. 28

Creation and Instantiation ... 29

Instance Methods .. 30

Encapsulation .. 31

Init Constructor .. 33

Class Attributes .. 34

Working with Class and Instance Data ... 35

OOP IN PYTHON – OBJECT ORIENTED SHORTCUT ... 37

Python Built-in Functions ... 37

Default Arguments .. 42

OOP IN PYTHON – INHERITANCE AND POLYMORPHISM ... 44

Inheritance .. 44

Inheriting Attributes .. 44

Inheritance Examples... 45

Polymorphism (“MANY SHAPES”) .. 47

Overriding .. 48

Inheriting the Constructor ... 49

Multiple Inheritance and the Lookup Tree ... 50

Decorators, Static and Class Methods .. 54

OOP IN PYTHON –PYTHON DESIGN PATTERN.. 57

OOP in Python

ii

Overview ... 57

Why is Design Pattern Important? ... 57

Classification of Design Patterns .. 57

Commonly used Design Patterns ... 58

OOP IN PYTHON – ADVANCED FEATURES ... 60

Core Syntax in our Class design .. 60

Inheriting From built-in types .. 61

Naming Conventions .. 63

OOP IN PYTHON – FILES AND STRINGS .. 65

Strings.. 66

File I/O ... 71

OOP IN PYTHON – EXCEPTION AND EXCEPTION CLASSES.. 72

Identifying Exception (Errors) .. 72

Catching/Trapping Exception ... 73

Raising Exceptions ... 75

Creating Custom exception class .. 76

OOP IN PYTHON – OBJECT SERIALIZATION .. 80

Pickle ... 80

Methods .. 81

Unpickling .. 82

JSON .. 82

YAML ... 85

Installing YAML .. 85

PDB – The Python Debugger .. 89

Logging .. 91

Benchmarking .. 93

OOP in Python

iii

12. OOP IN PYTHON – PYTHON LIBRARIES .. 96

Requests: Python Requests Module .. 96

Making a GET Request ... 96

Making POST Requests .. 97

Pandas: Python Library Pandas .. 97

Indexing DataFrames ... 98

Pygame .. 99

Beautiful Soup: Web Scraping with Beautiful Soup .. 102

OOP in Python

1

Programming languages are emerging constantly, and so are different methodologies.

Object-oriented programming is one such methodology that has become quite popular

over past few years.

This chapter talks about the features of Python programming language that makes it an

object-oriented programming language.

Language Programming Classification Scheme

Python can be characterized under object-oriented programming methodologies. The

following image shows the characteristics of various programming languages. Observe the

features of Python that makes it object-oriented.

1. OOP in Python – Introduction

OOP in Python

2

What is Object Oriented Programming?

Object Oriented means directed towards objects. In other words, it means functionally

directed towards modelling objects. This is one of the many techniques used for modelling

complex systems by describing a collection of interacting objects via their data and

behavior.

Python, an Object Oriented programming (OOP), is a way of programming that focuses

on using objects and classes to design and build applications.. Major pillars of Object

Oriented Programming (OOP) are Inheritance, Polymorphism, Abstraction, ad

Encapsulation.

Object Oriented Analysis(OOA) is the process of examining a problem, system or task and

identifying the objects and interactions between them.

Why to Choose Object Oriented Programming?

Python was designed with an object-oriented approach. OOP offers the following

advantages:

 Provides a clear program structure, which makes it easy to map real world problems

and their solutions.

 Facilitates easy maintenance and modification of existing code.

 Enhances program modularity because each object exists independently and new

features can be added easily without disturbing the existing ones.

 Presents a good framework for code libraries where supplied components can be

easily adapted and modified by the programmer.

 Imparts code reusability

Procedural vs. Object Oriented Programming

Procedural based programming is derived from structural programming based on the

concepts of functions/procedure/routines. It is easy to access and change the data in

procedural oriented programming. On the other hand, Object Oriented Programming

(OOP) allows decomposition of a problem into a number of units called objects and then

build the data and functions around these objects. It emphasis more on the data than

procedure or functions. Also in OOP, data is hidden and cannot be accessed by external

procedure.

OOP in Python

3

The table in the following image shows the major differences between POP and OOP

approach.

Principles of Object Oriented Programming

Object Oriented Programming (OOP) is based on the concept of objects rather than

actions, and data rather than logic. In order for a programming language to be object-

oriented, it should have a mechanism to enable working with classes and objects as well

as the implementation and usage of the fundamental object-oriented principles and

concepts namely inheritance, abstraction, encapsulation and polymorphism.

OOP in Python

4

Let us understand each of the pillars of object-oriented programming in brief:

Encapsulation

This property hides unnecessary details and makes it easier to manage the program

structure. Each object’s implementation and state are hidden behind well-defined

boundaries and that provides a clean and simple interface for working with them. One way

to accomplish this is by making the data private.

Inheritance

Inheritance, also called generalization, allows us to capture a hierarchal relationship

between classes and objects. For instance, a ‘fruit’ is a generalization of ‘orange’.

Inheritance is very useful from a code reuse perspective.

Abstraction

This property allows us to hide the details and expose only the essential features of a

concept or object. For example, a person driving a scooter knows that on pressing a horn,

sound is emitted, but he has no idea about how the sound is actually generated on pressing

the horn.

Polymorphism

Poly-morphism means many forms. That is, a thing or action is present in different forms

or ways. One good example of polymorphism is constructor overloading in classes.

OOP in Python

5

Object-Oriented Python

The heart of Python programming is object and OOP, however you need not restrict

yourself to use the OOP by organizing your code into classes. OOP adds to the whole

design philosophy of Python and encourages a clean and pragmatic way to programming.

OOP also enables in writing bigger and complex programs.

Modules vs. Classes and Objects

Modules are like “Dictionaries”

When working on Modules, note the following points:

 A Python module is a package to encapsulate reusable code.

 Modules reside in a folder with a __init__.py file on it.

 Modules contain functions and classes.

 Modules are imported using the import keyword.

Recall that a dictionary is a key-value pair. That means if you have a dictionary with a

key EmployeID and you want to retrieve it, then you will have to use the following lines

of code:

employee = {“EmployeID”: “Employee Unique Identity!”}

print (employee [‘EmployeID])

You will have to work on modules with the following process:

 A module is a Python file with some functions or variables in it.

 Import the file you need.

 Now, you can access the functions or variables in that module with the ‘.’ (dot)

Operator.

Consider a module named employee.py with a function in it called employee. The code

of the function is given below:

this goes in employee.py

def EmployeID():

 print (“Employee Unique Identity!”)

Now import the module and then access the function EmployeID:

import employee

employee. EmployeID()

OOP in Python

6

You can insert a variable in it named Age, as shown:

def EmployeID():

 print (“Employee Unique Identity!”)

just a variable

Age = “Employee age is **”

Now, access that variable in the following way:

import employee

employee.EmployeID()

print(employee.Age)

Now, let’s compare this to dictionary:

Employee[‘EmployeID’] # get EmployeID from employee

Employee.employeID() # get employeID from the module

Employee.Age # get access to variable

Notice that there is common pattern in Python:

 Take a key = value style container

 Get something out of it by the key’s name

When comparing module with a dictionary, both are similar, except with the following:

 In the case of the dictionary, the key is a string and the syntax is [key].

 In the case of the module, the key is an identifier, and the syntax is .key.

Classes are like Modules

Module is a specialized dictionary that can store Python code so you can get to it with the

‘.’ Operator. A class is a way to take a grouping of functions and data and place them

inside a container so you can access them with the ‘.‘operator.

If you have to create a class similar to the employee module, you can do it using the

following code:

class employee(object):

 def __init__(self):

 self. Age = “Employee Age is ##”

 def EmployeID(self):

 print (“This is just employee unique identity”)

OOP in Python

7

Note: Classes are preferred over modules because you can reuse them as they are and

without much interference. While with modules, you have only one with the entire

program.

Objects are like Mini-imports

A class is like a mini-module and you can import in a similar way as you do for classes,

using the concept called instantiate. Note that when you instantiate a class, you get an

object.

You can instantiate an object, similar to calling a class like a function, as shown:

this_obj = employee() # Instantiatethis_obj.EmployeID() #

get EmployeId from the class

print(this_obj.Age) # get variable Age

You can do this in any of the following three ways:

dictionary style

Employee[‘EmployeID’]

module style

Employee.EmployeID()

Print(employee.Age)

Class style

this_obj = employee()

this_obj.employeID()

Print(this_obj.Age)

OOP in Python

8

This chapter will explain in detail about setting up the Python environment on your local

computer.

Prerequisites and Toolkits

Before you proceed with learning further on Python, we suggest you to check whether the

following prerequisites are met:

 Latest version of Python is installed on your computer

 An IDE or text editor is installed

 You have basic familiarity to write and debug in Python, that is you can do the

following in Python:

o Able to write and run Python programs.

o Debug programs and diagnose errors.

o Work with basic data types.

o Write for loops, while loops, and if statements

o Code functions

If you don’t have any programming language experience, you can find lots of beginner

tutorials in Python on TutorialsPoint.

Installing Python

The following steps show you in detail how to install Python on your local computer:

Step 1: Go to the official Python website https://www.Python.org/, click on the

Downloads menu and choose the latest or any stable version of your choice.

2. OOP in Python – Environment Setup

https://www.tutorialpoints.com/
https://www.python.org/

OOP in Python

9

Step 2: Save the Python installer exe file that you’re downloading and once you have

downloaded it, open it. Click on Run and choose Next option by default and finish the

installation.

Step 3: After you have installed, you should now see the Python menu as shown in the

image below. Start the program by choosing IDLE (Python GUI).

This will start the Python shell. Type in simple commands to check the installation.

OOP in Python

10

Choosing an IDE

An Integrated Development Environment is a text editor geared towards software

development. You will have to install an IDE to control the flow of your programming and

to group projects together when working on Python. Here are some of IDEs avaialable

online. You can choose one at your convenience.

 Pycharm IDE

 Komodo IDE

 Eric Python IDE

Note: Eclipse IDE is mostly used in Java, however it has a Python plugin.

Pycharm

Pycharm, the cross-platform IDE is one of the most popular IDE

currently available. It provides coding assistance and analysis with

code completion, project and code navigation, integrated unit

testing, version control integration, debugging and much more.

Download link

https://www.jetbrains.com/pycharm/download/

Languages Supported: Python, HTML, CSS, JavaScript, Coffee Script, TypeScript,

Cython,AngularJS, Node.js, template languages.

Screenshot

Why to Choose?

PyCharm offers the following features and benefits for its users:

 Cross platform IDE compatible with Windows, Linux, and Mac OS

 Includes Django IDE, plus CSS and JavaScript support

 Includes thousands of plugins, integrated terminal and version control

 Integrates with Git, SVN and Mercurial

https://www.jetbrains.com/pycharm/download/

OOP in Python

11

 Offers intelligent editing tools for Python

 Easy integration with Virtualenv, Docker and Vagrant

 Simple navigation and search features

 Code analysis and refactoring

 Configurable injections

 Supports tons of Python libraries

 Contains Templates and JavaScript debuggers

 Includes Python/Django debuggers

 Works with Google App Engine, additional frameworks and libraries.

 Has customizable UI, VIM emulation available

Komodo IDE
It is a polyglot IDE which supports 100+ languages and basically for

dynamic languages such as Python, PHP and Ruby. It is a commercial

IDE available for 21 days free trial with full functionality. ActiveState is

the software company managing the development of the Komodo IDE. It

also offers a trimmed version of Komodo known as Komodo Edit for

simple programming tasks.

This IDE contains all kinds of features from most basic to advanced level. If you are a

student or a freelancer, then you can buy it almost half of the actual price. However, it’s

completely free for teachers and professors from recognized institutions and universities.

It got all the features you need for web and mobile development, including support for all

your languages and frameworks.

Download link

The download links for Komodo Edit(free version) and Komodo IDE(paid version) are as

given here:

Komodo Edit (free)

https://www.activestate.com/komodo-edit

Komodo IDE (paid)

https://www.activestate.com/komodo-ide/downloads/ide

https://www.activestate.com/komodo-edit
https://www.activestate.com/komodo-ide/downloads/ide

OOP in Python

12

Screenshot

Why to Choose?

 Powerful IDE with support for Perl, PHP, Python, Ruby and many more.

 Cross-Platform IDE.

It includes basic features like integrated debugger support, auto complete, Document

Object Model(DOM) viewer, code browser, interactive shells, breakpoint configuration,

code profiling, integrated unit testing. In short, it is a professional IDE with a host of

productivity-boosting features.

Eric Python IDE

It is an open-source IDE for Python and Ruby. Eric is a full

featured editor and IDE, written in Python. It is based on the

cross platform Qt GUI toolkit, integrating the highly flexible

Scintilla editor control. The IDE is very much configurable and

one can choose what to use and what not. You can download Eric IDE from below link:

https://eric-ide.Python-projects.org/eric-download.html

Why to Choose

 Great indentation, error highlighting.

 Code assistance

 Code completion

 Code cleanup with PyLint

 Quick search

 Integrated Python debugger.

https://eric-ide.python-projects.org/eric-download.html

OOP in Python

13

Screenshot

Choosing a Text Editor

You may not always need an IDE. For tasks such as learning to code with Python or

Arduino, or when working on a quick script in shell script to help you automate some tasks

a simple and light weight code-centric text editor will do.

Also many text editors offer features such as syntax highlighting and in-program script

execution, similar to IDEs. Some of the text editors are given here:

 Atom

 Sublime Text

 Notepad++

Atom Text Editor

Atom is a hackable text editor built by the team of GitHub. It is a

free and open source text and code editor which means that all the

code is available for you to read, modify for your own use and even

contribute improvements. It is a cross-platform text editor

compatible for macOS, Linux, and Microsoft Windows with support

for plug-ins written in Node.js and embedded Git Control.

Download link

https://atom.io/

https://atom.io/

OOP in Python

14

Screenshot

Languages Supported

C/C++, C#, CSS, CoffeeScript, HTML, JavaScript, Java, JSON, Julia, Objective-C, PHP,

Perl, Python, Ruby on Rails, Ruby, Shell script, Scala, SQL, XML, YAML and many more.

Sublime Text Editor
Sublime text is a proprietary software and it offers you a free trial version

to test it before you purchase it. According to Stackoverflow’s 2018

developer survey, it’s the fourth most popular Development Environment.

Some of the advantages it provides is its incredible speed, ease of use and community

support. It also supports many programming languages and mark-up languages, and

functions can be added by users with plugins, typically community-built and maintained

under free-software licenses.

https://insights.stackoverflow.com/survey/2018#technology-development-environments
https://insights.stackoverflow.com/survey/2018#technology-development-environments

OOP in Python

15

Screenshot

Language supported

 Python, Ruby, JavaScript etc.

Why to Choose?

 Customize key bindings, menus, snippets, macros, completions and more.

 Auto completion feature

 Quickly Insert Text & code with sublime text snippets using snippets, field

markers and place holders

 Opens Quickly

 Cross Platform support for Mac, Linux and Windows.

 Jump the cursor to where you want to go

 Select Multiple Lines, Words and Columns

Notepad ++
It’s a free source code editor and Notepad replacement that supports

several languages from Assembly to XML and including Python. Running in

the MS windows environment, its use is governed by GPL license.

In addition to syntax highlighting, Notepad++ has some features that are

particularly useful to coders.

OOP in Python

16

Screenshot

Key Features

 Syntax highlighting and syntax folding

 PCRE (Perl Compatible Regular Expression) Search/Replace.

 Entirely customizable GUI

 Auto completion

 Tabbed editing

 Multi-View

 Multi-Language environment

 Launchable with different arguments.

Language Supported

 Almost every language (60+ languages) like Python, C, C++, C#, Java etc.

OOP in Python

17

Python data structures are very intuitive from a syntax point of view and they offer a large

choice of operations. You need to choose Python data structure depending on what the

data involves, if it needs to be modified, or if it is a fixed data and what access type is

required, such as at the beginning/end/random etc.

Lists

A List represents the most versatile type of data structure in Python. A list is a container

which holds comma-separated values (items or elements) between square brackets. Lists

are helpful when we want to work with multiple related values. As lists keep data together,

we can perform the same methods and operations on multiple values at once. Lists indices

start from zero and unlike strings, lists are mutable.

Data Structure - List

>>>

>>> # Any Empty List

>>> empty_list = []

>>>

>>> # A list of String

>>> str_list = ['Life', 'Is', 'Beautiful']

>>> # A list of Integers

>>> int_list = [1, 4, 5, 9, 18]

>>>

>>> #Mixed items list

>>> mixed_list = ['This', 9, 'is', 18, 45.9, 'a', 54, 'mixed', 99, 'list']

>>> # To print the list

>>>

>>> print(empty_list)

[]

>>> print(str_list)

['Life', 'Is', 'Beautiful']

>>> print(type(str_list))

<class 'list'>

>>> print(int_list)

[1, 4, 5, 9, 18]

3. OOP in Python – Data Structures

OOP in Python

18

>>> print(mixed_list)

['This', 9, 'is', 18, 45.9, 'a', 54, 'mixed', 99, 'list']

Accessing Items in Python List

Each item of a list is assigned a number – that is the index or position of that number.

Indexing always start from zero, the second index is one and so forth. To access items in

a list, we can use these index numbers within a square bracket. Observe the following

code for example:

>>> mixed_list = ['This', 9, 'is', 18, 45.9, 'a', 54, 'mixed', 99, 'list']

>>>

>>> # To access the First Item of the list

>>> mixed_list[0]

'This'

>>> # To access the 4th item

>>> mixed_list[3]

18

>>> # To access the last item of the list

>>> mixed_list[-1]

'list'

Empty Objects

Empty Objects are the simplest and most basic Python built-in types. We have used them

multiple times without noticing and have extended it to every class we have created. The

main purpose to write an empty class is to block something for time being and later extend

and add a behavior to it.

To add a behavior to a class means to replace a data structure with an object and change

all references to it. So it is important to check the data, whether it is an object in disguise,

before you create anything. Observe the following code for better understanding:

>>> #Empty objects

>>>

>>> obj = object()

>>> obj.x = 9

Traceback (most recent call last):

 File "<pyshell#3>", line 1, in <module>

obj.x = 9

AttributeError: 'object' object has no attribute 'x'

OOP in Python

19

So from above, we can see it’s not possible to set any attributes on an object that was

instantiated directly. When Python allows an object to have arbitrary attributes, it takes a

certain amount of system memory to keep track of what attributes each object has, for

storing both the attribute name and its value. Even if no attributes are stored, a certain

amount of memory is allocated for potential new attributes.

So Python disables arbitrary properties on object and several other built-ins, by default.

>>> # Empty Objects

>>>

>>> class EmpObject:

 pass

>>> obj = EmpObject()

>>> obj.x = 'Hello, World!'

>>> obj.x

'Hello, World!'

Hence, if we want to group properties together, we could store them in an empty object

as shown in the code above. However, this method is not always suggested. Remember

that classes and objects should only be used when you want to specify both data and

behaviors.

Tuples

Tuples are similar to lists and can store elements. However, they are immutable, so we

cannot add, remove or replace objects. The primary benefits tuple provides because of its

immutability is that we can use them as keys in dictionaries, or in other locations where

an object requires a hash value.

Tuples are used to store data, and not behavior. In case you require behavior to

manipulate a tuple, you need to pass the tuple into a function(or method on another

object) that performs the action.

As tuple can act as a dictionary key, the stored values are different from each other. We

can create a tuple by separating the values with a comma. Tuples are wrapped in

parentheses but not mandatory. The following code shows two identical assignments .

>>> stock1 = 'MSFT', 95.00, 97.45, 92.45

>>> stock2 = ('MSFT', 95.00, 97.45, 92.45)

>>> type (stock1)

<class 'tuple'>

>>> type(stock2)

<class 'tuple'>

>>> stock1 == stock2

True

>>>

OOP in Python

20

Defining a Tuple

Tuples are very similar to list except that the whole set of elements are enclosed in

parentheses instead of square brackets.

Just like when you slice a list, you get a new list and when you slice a tuple, you get a new

tuple.

>>> tupl = ('Tuple','is', 'an','IMMUTABLE', 'list')

>>> tupl

('Tuple', 'is', 'an', 'IMMUTABLE', 'list')

>>> tupl[0]

'Tuple'

>>> tupl[-1]

'list'

>>> tupl[1:3]

('is', 'an')

Python Tuple Methods

The following code shows the methods in Python tuples:

>>> tupl

('Tuple', 'is', 'an', 'IMMUTABLE', 'list')

>>> tupl.append('new')

Traceback (most recent call last):

 File "<pyshell#148>", line 1, in <module>

 tupl.append('new')

AttributeError: 'tuple' object has no attribute 'append'

>>> tupl.remove('is')

Traceback (most recent call last):

 File "<pyshell#149>", line 1, in <module>

 tupl.remove('is')

AttributeError: 'tuple' object has no attribute 'remove'

>>> tupl.index('list')

4

>>> tupl.index('new')

Traceback (most recent call last):

 File "<pyshell#151>", line 1, in <module>

 tupl.index('new')

OOP in Python

21

ValueError: tuple.index(x): x not in tuple

>>> "is" in tupl

True

>>> tupl.count('is')

1

From the code shown above, we can understand that tuples are immutable and hence:

 You cannot add elements to a tuple.

 You cannot append or extend a method.

 You cannot remove elements from a tuple.

 Tuples have no remove or pop method.

 Count and index are the methods available in a tuple.

Dictionary

Dictionary is one of the Python’s built-in data types and it defines one-to-one relationships

between keys and values.

Defining Dictionaries

Observe the following code to understand about defining a dictionary:

>>> # empty dictionary

>>> my_dict = {}

>>>

>>> # dictionary with integer keys

>>> my_dict = { 1:'msft', 2: 'IT'}

>>>

>>> # dictionary with mixed keys

>>> my_dict = {'name': 'Aarav', 1: [2, 4, 10]}

>>>

>>> # using built-in function dict()

>>> my_dict = dict({1:'msft', 2:'IT'})

>>>

>>> # From sequence having each item as a pair

>>> my_dict = dict([(1,'msft'), (2,'IT')])

>>>

>>> # Accessing elements of a dictionary

>>> my_dict[1]

OOP in Python

22

'msft'

>>> my_dict[2]

'IT'

>>> my_dict['IT']

Traceback (most recent call last):

 File "<pyshell#177>", line 1, in <module>

 my_dict['IT']

KeyError: 'IT'

>>>

From the above code we can observe that:

 First we create a dictionary with two elements and assign it to the variable

my_dict. Each element is a key-value pair, and the whole set of elements is

enclosed in curly braces.

 The number 1 is the key and msft is its value. Similarly, 2 is the key and IT is its

value.

 You can get values by key, but not vice-versa. Thus when we try my_dict[‘IT’] ,

it raises an exception, because IT is not a key.

Modifying Dictionaries

Observe the following code to understand about modifying a dictionary:

>>> # Modifying a Dictionary

>>>

>>> my_dict

{1: 'msft', 2: 'IT'}

>>> my_dict[2] = 'Software'

>>> my_dict

{1: 'msft', 2: 'Software'}

>>>

>>> my_dict[3] = 'Microsoft Technologies'

>>> my_dict

{1: 'msft', 2: 'Software', 3: 'Microsoft Technologies'}

From the above code we can observe that:

 You cannot have duplicate keys in a dictionary. Altering the value of an existing

key will delete the old value.

 You can add new key-value pairs at any time.

OOP in Python

23

 Dictionaries have no concept of order among elements. They are simple unordered

collections.

Mixing Data types in a Dictionary

Observe the following code to understand about mixing data types in a dictionary:

>>> # Mixing Data Types in a Dictionary

>>>

>>> my_dict

{1: 'msft', 2: 'Software', 3: 'Microsoft Technologies'}

>>> my_dict[4] = 'Operating System'

>>> my_dict

{1: 'msft', 2: 'Software', 3: 'Microsoft Technologies', 4: 'Operating System'}

>>> my_dict['Bill Gates'] = 'Owner'

>>> my_dict

{1: 'msft', 2: 'Software', 3: 'Microsoft Technologies', 4: 'Operating System',

'Bill Gates': 'Owner'}

From the above code we can observe that:

 Not just strings but dictionary value can be of any data type including strings,

integers, including the dictionary itself.

 Unlike dictionary values, dictionary keys are more restricted, but can be of any type

like strings, integers or any other.

Deleting Items from Dictionaries

Observe the following code to understand about deleting items from a dictionary:

>>> # Deleting Items from a Dictionary

>>>

>>> my_dict

{1: 'msft', 2: 'Software', 3: 'Microsoft Technologies', 4: 'Operating System',

'Bill Gates': 'Owner'}

>>>

>>> del my_dict['Bill Gates']

>>> my_dict

{1: 'msft', 2: 'Software', 3: 'Microsoft Technologies', 4: 'Operating System'}

>>>

>>> my_dict.clear()

>>> my_dict

{}

OOP in Python

24

From the above code we can observe that:

 del lets you delete individual items from a dictionary by key.

 clear deletes all items from a dictionary.

Sets

Set() is an unordered collection with no duplicate elements. Though individual items are

immutable, set itself is mutable, that is we can add or remove elements/items from the

set. We can perform mathematical operations like union, intersection etc. with set.

Though sets in general can be implemented using trees, set in Python can be implemented

using a hash table. This allows it a highly optimized method for checking whether a specific

element is contained in the set

Creating a set

A set is created by placing all the items (elements) inside curly braces {}, separated by

comma or by using the built-in function set(). Observe the following lines of code:

>>> #set of integers

>>> my_set = {1,2,4,8}

>>> print(my_set)

{8, 1, 2, 4}

>>>

>>> #set of mixed datatypes

>>> my_set = {1.0, "Hello World!", (2, 4, 6)}

>>> print(my_set)

{1.0, (2, 4, 6), 'Hello World!'}

>>>

Methods for Sets

Observe the following code to understand about methods for sets:

>>> >>> #METHODS FOR SETS

>>>

>>> #add(x) Method

>>> topics = {'Python', 'Java', 'C#'}

>>> topics.add('C++')

>>> topics

{'C#', 'C++', 'Java', 'Python'}

>>>

>>> #union(s) Method, returns a union of two set.

OOP in Python

25

>>> topics

{'C#', 'C++', 'Java', 'Python'}

>>> team = {'Developer', 'Content Writer', 'Editor','Tester'}

>>> group = topics.union(team)

>>> group

{'Tester', 'C#', 'Python', 'Editor', 'Developer', 'C++', 'Java', 'Content

Writer'}

>>> # intersets(s) method, returns an intersection of two sets

>>> inters = topics.intersection(team)

>>> inters

set()

>>>

>>> # difference(s) Method, returns a set containing all the elements of

invoking set but not of the second set.

>>>

>>> safe = topics.difference(team)

>>> safe

{'Python', 'C++', 'Java', 'C#'}

>>>

>>> diff = topics.difference(group)

>>> diff

set()

>>> #clear() Method, Empties the whole set.

>>> group.clear()

>>> group

set()

>>>

Operators for Sets

Observe the following code to understand about operators for sets:

>>> # PYTHON SET OPERATIONS

>>>

>>> #Creating two sets

>>> set1 = set()

>>> set2 = set()

>>>

>>> # Adding elements to set

OOP in Python

26

>>> for i in range(1,5):

 set1.add(i)

>>> for j in range(4,9):

 set2.add(j)

>>> set1

{1, 2, 3, 4}

>>> set2

{4, 5, 6, 7, 8}

>>>

>>> #Union of set1 and set2

>>> set3 = set1 | set2 # same as set1.union(set2)

>>> print('Union of set1 & set2: set3 = ', set3)

Union of set1 & set2: set3 = {1, 2, 3, 4, 5, 6, 7, 8}

>>>

>>> #Intersection of set1 & set2

>>> set4 = set1 & set2 # same as set1.intersection(set2)

>>> print('Intersection of set1 and set2: set4 = ', set4)

Intersection of set1 and set2: set4 = {4}

>>>

>>> # Checking relation between set3 and set4

>>> if set3 > set4: # set3.issuperset(set4)

 print('Set3 is superset of set4')

elif set3 < set4: #set3.issubset(set4)

 print('Set3 is subset of set4')

else: #set3 == set4

 print('Set 3 is same as set4')

Set3 is superset of set4

>>>

>>> # Difference between set3 and set4

>>> set5 = set3 - set4

>>> print('Elements in set3 and not in set4: set5 = ', set5)

Elements in set3 and not in set4: set5 = {1, 2, 3, 5, 6, 7, 8}

>>>

>>> # Check if set4 and set5 are disjoint sets

>>> if set4.isdisjoint(set5):

OOP in Python

27

 print('Set4 and set5 have nothing in common\n')

Set4 and set5 have nothing in common

>>> # Removing all the values of set5

>>> set5.clear()

>>> set5 set()

OOP in Python

28

In this chapter, we will discuss object oriented terms and programming concepts in detail.

Class is a just a factory for an instance. This factory contains the blueprint which describes

how to make the instances. An instances or object are constructed from the class. In most

cases, we can have more than one instances of a class. Every instance has a set of attribute

and these attributes are defined in a class, so every instance of a particular class is

expected to have the same attributes.

Class Bundles : Behavior and State

A class will let you bundle together the behavior and state of an object. Observe the

following diagram for better understanding:

The following points are worth notable when discussing class bundles:

 The word behavior is identical to function – it is a piece of code that does

something (or implements a behavior)

 The word state is identical to variables – it is a place to store values within a

class.

 When we assert a class behavior and state together, it means that a class packages

functions and variables.

4. OOP in Python – Building Blocks

OOP in Python

29

Classes have methods and attributes

In Python, creating a method defines a class behavior. The word method is the OOP name

given to a function that is defined within a class. To sum up:

 Class functions is synonym for methods

 Class variables is synonym for name attributes.

 Class – a blueprint for an instance with exact behavior.

 Object – one of the instances of the class, perform functionality defined in the

class.

 Type – indicates the class the instance belongs to

 Attribute – Any object value: object.attribute

 Method – a “callable attribute” defined in the class

Observe the following piece of code for example:

var = “Hello, John”

print(type (var)) # < type ‘str’> or <class 'str'>

print(var.upper()) # upper() method is called, HELLO, JOHN

Creation and Instantiation

The following code shows how to create our first class and then its instance.

class MyClass(object):

 pass

Create first instance of MyClass

this_obj = MyClass()

print(this_obj)

Another instance of MyClass

that_obj = MyClass()

print (that_obj)

Here we have created a class called MyClass and which does not do any task. The

argument object in MyClass class involves class inheritance and will be discussed in later

chapters. pass in the above code indicates that this block is empty, that is it is an empty

class definition.

Let us create an instance this_obj of MyClass() class and print it as shown:

<__main__.MyClass object at 0x03B08E10>

<__main__.MyClass object at 0x0369D390>

OOP in Python

30

Here, we have created an instance of MyClass. The hex code refers to the address where

the object is being stored. Another instance is pointing to another address.

Now let us define one variable inside the class MyClass() and get the variable from the

instance of that class as shown in the following code:

class MyClass(object):

 var = 9

Create first instance of MyClass

this_obj = MyClass()

print(this_obj.var)

Another instance of MyClass

that_obj = MyClass()

print (that_obj.var)

Output

You can observe the following output when you execute the code given above:

9

9

As instance knows from which class it is instantiated, so when requested for an attribute

from an instance, the instance looks for the attribute and the class. This is called the

attribute lookup.

Instance Methods

A function defined in a class is called a method. An instance method requires an instance

in order to call it and requires no decorator. When creating an instance method, the first

parameter is always self. Though we can call it (self) by any other name, it is

recommended to use self, as it is a naming convention.

class MyClass(object):

 var=9

 def firstM(self):

 print("hello, World")

obj = MyClass()

print(obj.var)

obj.firstM()

OOP in Python

31

Output

You can observe the following output when you execute the code given above:

9

hello, World

Note that in the above program, we defined a method with self as argument. But we

cannot call the method as we have not declared any argument to it.

class MyClass(object):

 def firstM(self):

 print("hello, World")

 print(self)

obj = MyClass()

obj.firstM()

print(obj)

Output

You can observe the following output when you execute the code given above:

hello, World

<__main__.MyClass object at 0x036A8E10>

<__main__.MyClass object at 0x036A8E10>

Encapsulation

Encapsulation is one of the fundamentals of OOP. OOP enables us to hide the complexity

of the internal working of the object which is advantageous to the developer in the

following ways:

 Simplifies and makes it easy to understand to use an object without knowing the

internals.

 Any change can be easily manageable.

Object-oriented programming relies heavily on encapsulation. The terms encapsulation

and abstraction (also called data hiding) are often used as synonyms. They are nearly

synonymous, as abstraction is achieved through encapsulation.

Encapsulation provides us the mechanism of restricting the access to some of the object’s

components, this means that the internal representation of an object can’t be seen from

outside of the object definition. Access to this data is typically achieved through special

methods: Getters and Setters.

OOP in Python

32

This data is stored in instance attributes and can be manipulated from anywhere outside

the class. To secure it, that data should only be accessed using instance methods. Direct

access should not be permitted.

class MyClass(object):

 def setAge(self, num):

 self.age = num

 def getAge(self):

 return self.age

zack = MyClass()

zack.setAge(45)

print(zack.getAge())

zack.setAge("Fourty Five")

print(zack.getAge())

Output

You can observe the following output when you execute the code given above:

45

Fourty Five

The data should be stored only if it is correct and valid, using Exception handling

constructs. As we can see above, there is no restriction on the user input to setAge()

method. It could be a string, a number, or a list. So we need to check onto above code to

ensure correctness of being stored.

class MyClass(object):

 def setAge(self, num):

 self.age = num

 def getAge(self):

 return self.age

zack = MyClass()

zack.setAge(45)

OOP in Python

33

print(zack.getAge())

zack.setAge("Fourty Five")

print(zack.getAge())

Init Constructor
The __init__ method is implicitly called as soon as an object of a class is instantiated.

This will initialize the object.

x = MyClass()

The line of code shown above will create a new instance and assigns this object to the

local variable x.

The instantiation operation, that is calling a class object, creates an empty object. Many

classes like to create objects with instances customized to a specific initial state. Therefore,

a class may define a special method named ‘ __init__() ‘ as shown:

def __init__(self):

 self.data = []

Python calls __init__ during the instantiation to define an additional attribute that should

occur when a class is instantiated that may be setting up some beginning values for that

object or running a routine required on instantiation. So in this example, a new, initialized

instance can be obtained by:

x = MyClass()

The __init__() method can have single or multiple arguments for a greater flexibility. The

init stands for initialization, as it initializes attributes of the instance. It is called the

constructor of a class.

 class myclass(object):

 def __init__(self,aaa, bbb):

 self.a = aaa

 self.b = bbb

x = myclass(4.5, 3)

print(x.a, x.b)

Output

4.5 3

OOP in Python

34

Class Attributes

The attribute defined in the class is called “class attributes’ and the attributes defined in

the function is called ‘instance attributes’. While defining, these attributes are not prefixed

by self, as these are the property of the class and not of a particular instance.

The class attributes can be accessed by the class itself (className.attributeName) as well

as by the instances of the class (inst.attributeName). So, the instances have access to

both the instance attribute as well as class attributes.

>>> class myclass():

 age = 21

>>> myclass.age

21

>>> x = myclass()

>>> x.age

21

>>>

A class attribute can be overridden in an instance, even though it is not a good method to

break encapsulation.

There is a lookup path for attributes in Python. The first being the method defined within

the class, and then the class above it.

>>> class myclass(object):

 classy = 'class value'

>>> dd = myclass()

>>> print (dd.classy) # This should return the string 'class value'

class value

>>>

>>> dd.classy = "Instance Value"

>>> print(dd.classy) # Return the string "Instance Value"

Instance Value

>>>

>>> # This will delete the value set for 'dd.classy' in the instance.

>>> del dd.classy

>>> >>> # Since the overriding attribute was deleted, this will print 'class

value'.

>>> print(dd.classy)

class value

>>>

OOP in Python

35

We are overriding the ‘classy’ class attribute in the instance dd. When it’s overridden, the

Python interpreter reads the overridden value. But once the new value is deleted with ‘del’,

the overridden value is no longer present in the instance, and hence the lookup goes a

level above and gets it from the class.

Working with Class and Instance Data

In this section, let us understand how the class data relates to the instance data. We can

store data either in a class or in an instance. When we design a class, we decide which

data belongs to the instance and which data should be stored into the overall class.

An instance can access the class data. If we create multiple instances, then these instances

can access their individual attribute values as well the overall class data.

Thus, a class data is the data that is shared among all the instances. Observe the code

given below for better undersanding:

class InstanceCounter(object):

 count = 0 # class attribute, will be accessible to all

instances

 def __init__(self, val):

 self.val = val

 InstanceCounter.count +=1 # Increment the value of class attribute,

accessible through class name

In above line, class ('InstanceCounter') act as an object

 def set_val(self, newval):

 self.val = newval

 def get_val(self):

 return self.val

 def get_count(self):

 return InstanceCounter.count

a = InstanceCounter(9)

b = InstanceCounter(18)

c = InstanceCounter(27)

for obj in (a, b, c):

 print ('val of obj: %s' %(obj.get_val())) # Initialized value (9, 18,

27)

 print ('count: %s' %(obj.get_count())) # always 3

OOP in Python

36

Output

val of obj: 9

count: 3

val of obj: 18

count: 3

val of obj: 27

count: 3

In short, class attributes are same for all instances of class whereas instance attributes is

particular for each instance. For two different instances, we will have two different instance

attributes.

class myClass:

 class_attribute = 99

 def class_method(self):

 self.instance_attribute = 'I am instance attribute'

print (myClass.__dict__)

Output

You can observe the following output when you execute the code given above:

{'__module__': '__main__', 'class_attribute': 99, 'class_method': <function

myClass.class_method at 0x04128D68>, '__dict__': <attribute '__dict__' of

'myClass' objects>, '__weakref__': <attribute '__weakref__' of 'myClass'

objects>, '__doc__': None}

The instance attribute myClass.__dict__ as shown:

>>> a = myClass()

>>> a.class_method()

>>> print(a.__dict__)

{'instance_attribute': 'I am instance attribute'}

OOP in Python

37

This chapter talks in detail about various built-in functions in Python, file I/O operations

and overloading concepts.

Python Built-in Functions

The Python interpreter has a number of functions called built-in functions that are readily

available for use. In its latest version, Python contains 68 built-in functions as listed in the

table given below:

BUILT-IN FUNCTIONS

abs() dict() help() min() setattr()

all() dir() hex() next() slice()

any() divmod() id() object() sorted()

ascii() enumerate() input() oct() staticmethod()

bin() eval() int() open() str()

bool() exec() isinstance() ord() sum()

bytearray() filter() issubclass() pow() super()

bytes() float() iter() print() tuple()

callable() format() len() property() type()

chr() frozenset() list() range() vars()

classmethod() getattr() locals() repr() zip()

compile() globals() map() reversed() __import__()

complex() hasattr() max() round()

delattr() hash() memoryview() set()

This section discusses some of the important functions in brief:

len() function
The len() function gets the length of strings, list or collections. It returns the length or

number of items of an object, where object can be a string, list or a collection.

>>> len(['hello', 9 , 45.0, 24])

4

5. OOP in Python – Object Oriented Shortcuts

OOP in Python

38

len() function internally works like list.__len__() or tuple.__len__(). Thus, note that

len() works only on objects that has a __len__() method.

>>> set1

{1, 2, 3, 4}

>>> set1.__len__()

4

However, in practice, we prefer len() instead of the __len__() function because of the

following reasons:

 It is more efficient. And it is not necessary that a particular method is written to

refuse access to special methods such as __len__.

 It is easy to maintain.

 It supports backward compatibility.

Reversed(seq)
It returns the reverse iterator. seq must be an object which has __reversed__() method

or supports the sequence protocol (the __len__() method and the __getitem__() method).

It is generally used in for loops when we want to loop over items from back to front.

>>> normal_list = [2, 4, 5, 7, 9]

>>>

>>> class CustomSequence():

 def __len__(self):

 return 5

 def __getitem__(self,index):

 return "x{0}".format(index)

>>> class funkyback():

 def __reversed__(self):

 return 'backwards!'

>>> for seq in normal_list, CustomSequence(), funkyback():

 print('\n{}: '.format(seq.__class__.__name__), end="")

 for item in reversed(seq):

 print(item, end=", ")

The for loop at the end prints the reversed list of a normal list, and instances of the two

custom sequences. The output shows that reversed() works on all the three of them, but

has a very different results when we define __reversed__.

OOP in Python

39

Output

You can observe the following output when you execute the code given above:

list: 9, 7, 5, 4, 2,

CustomSequence: x4, x3, x2, x1, x0,

funkyback: b, a, c, k, w, a, r, d, s, !,

Enumerate

The enumerate () method adds a counter to an iterable and returns the enumerate

object.

The syntax of enumerate () is:

enumerate(iterable, start=0)

Here the second argument start is optional, and by default index starts with zero (0).

>>> # Enumerate

>>> names = ['Rajesh', 'Rahul', 'Aarav', 'Sahil', 'Trevor']

>>> enumerate(names)

<enumerate object at 0x031D9F80>

>>> list(enumerate(names))

[(0, 'Rajesh'), (1, 'Rahul'), (2, 'Aarav'), (3, 'Sahil'), (4, 'Trevor')]

>>>

So enumerate() returns an iterator which yields a tuple that keeps count of the elements

in the sequence passed. Since the return value is an iterator, directly accessing it is not

much useful. A better approach for enumerate() is keeping count within a for loop.

>>> for i, n in enumerate(names):

 print('Names number: ' + str(i))

 print(n)

Names number: 0

Rajesh

Names number: 1

Rahul

Names number: 2

Aarav

Names number: 3

Sahil

Names number: 4

Trevor

OOP in Python

40

There are many other functions in the standard library, and here is another list of some

more widely used functions:

 hasattr, getattr, setattr and delattr, which allows attributes of an object to be

manipulated by their string names.

 all and any, which accept an iterable object and return True if all, or any, of the

items evaluate to be true.

 nzip, which takes two or more sequences and returns a new sequence of tuples,

where each tuple contains a single value from each sequence.

File I/O

The concept of files is associated with the term object-oriented programming. Python has

wrapped the interface that operating systems provided in abstraction that allows us to

work with file objects.

The open() built-in function is used to open a file and return a file object. It is the most

commonly used function with two arguments:

open(filename, mode)

The open() function calls two argument, first is the filename and second is the mode. Here

mode can be ‘r’ for read only mode, ‘w’ for only writing (an existing file with the same

name will be erased), and ‘a’ opens the file for appending, any data written to the file is

automatically added to the end. ‘r+’ opens the file for both reading and writing. The default

mode is read only.

On windows, ‘b’ appended to the mode opens the file in binary mode, so there are also

modes like ‘rb’, ‘wb’ and ‘r+b’.

>>> text = 'This is the first line'

>>> file = open('datawork','w')

>>> file.write(text)

22

>>> file.close()

In some cases, we just want to append to the existing file rather then over-writing it, for

that we could supply the value ‘a’ as a mode argument, to append to the end of the file,

rather than completely overwriting existing file contents.

>>> f = open('datawork','a')

>>> text1 = ' This is second line'

>>> f.write(text1)

20

>>> f.close()

OOP in Python

41

Once a file is opened for reading, we can call the read, readline, or readlines method to

get the contents of the file. The read method returns the entire contents of the file as a

str or bytes object, depending on whether the second argument is ‘b’.

For readability, and to avoid reading a large file in one go, it is often better to use a for

loop directly on a file object. For text files, it will read each line, one at a time, and we can

process it inside the loop body. For binary files however it’s better to read fixed-sized

chunks of data using the read() method, passing a parameter for the maximum number

of bytes to read.

>>> f = open('fileone','r+')

>>> f.readline()

'This is the first line. \n'

>>> f.readline()

'This is the second line. \n'

Writing to a file, through write method on file objects will writes a string (bytes for binary

data) object to the file. The writelines method accepts a sequence of strings and write

each of the iterated values to the file. The writelines method does not append a new line

after each item in the sequence.

Finally the close() method should be called when we are finished reading or writing the

file, to ensure any buffered writes are written to the disk, that the file has been properly

cleaned up and that all resources tied with the file are released back to the operating

system. It’s a better approach to call the close() method but technically this will happen

automatically when the script exists.

An alternative to method overloading

Method overloading refers to having multiple methods with the same name that accept

different sets of arguments.

Given a single method or function, we can specify the number of parameters ourself.

Depending on the function definition, it can be called with zero, one, two or more

parameters.

class Human:

 def sayHello(self, name=None):

 if name is not None:

 print('Hello ' + name)

 else:

 print('Hello ')

#Create Instance

OOP in Python

42

obj = Human()

#Call the method, else part will be executed

obj.sayHello()

#Call the method with a parameter, if part will be executed

obj.sayHello('Rahul')

Output

Hello

Hello Rahul

Default Arguments

Functions Are Objects Too

A callable object is an object can accept some arguments and possibly will return an object.

A function is the simplest callable object in Python, but there are others too like classes or

certain class instances.

Every function in a Python is an object. Objects can contain methods or functions but

object is not necessary a function.

def my_func():

 print('My function was called')

my_func.description = 'A silly function'

def second_func():

 print('Second function was called')

second_func.description = 'One more sillier function'

def another_func(func):

 print("The description:", end=" ")

 print(func.description)

 print('The name: ', end=' ')

 print(func.__name__)

 print('The class:', end=' ')

OOP in Python

43

 print(func.__class__)

 print("Now I'll call the function passed in")

 func()

another_func(my_func)

another_func(second_func)

In the above code, we are able to pass two different functions as argument into our third

function, and get different output for each one:

The description: A silly function

The name: my_func

The class: <class 'function'>

Now I'll call the function passed in

My function was called

The description: One more sillier function

The name: second_func

The class: <class 'function'>

Now I'll call the function passed in

Second function was called

callable objects

Just as functions are objects that can have attributes set on them, it is possible to create

an object that can be called as though it were a function.

In Python any object with a __call__() method can be called using function-call syntax.

OOP in Python

44

Inheritance and polymorphism – this is a very important concept in Python. You must

understand it better if you want to learn.

Inheritance

One of the major advantages of Object Oriented Programming is re-use. Inheritance is

one of the mechanisms to achieve the same. Inheritance allows programmer to create a

general or a base class first and then later extend it to more specialized class. It allows

programmer to write better code.

Using inheritance you can use or inherit all the data fields and methods available in your

base class. Later you can add you own methods and data fields, thus inheritance provides

a way to organize code, rather than rewriting it from scratch.

In object-oriented terminology when class X extend class Y, then Y is called

super/parent/base class and X is called subclass/child/derived class. One point to note

here is that only data fields and method which are not private are accessible by child

classes. Private data fields and methods are accessible only inside the class.

Syntax to create a derived class is:

class BaseClass:

 Body of base class

class DerivedClass(BaseClass):

 Body of derived class

Inheriting Attributes
Now look at the below example:

6. OOP in Python – Inheritance and Polymorphism

OOP in Python

45

Output

We first created a class called Date and pass the object as an argument, here-object is

built-in class provided by Python. Later we created another class called time and called

the Date class as an argument. Through this call we get access to all the data and

attributes of Date class into the Time class. Because of that when we try to get the

get_date method from the Time class object tm we created earlier possible.

Object.Attribute Lookup Hierarchy

 The instance

 The class

 Any class from which this class inherits

Inheritance Examples
Let’s take a closure look into the inheritance example:

Let’s create couple of classes to participate in examples:

 Animal: Class simulate an animal

 Cat: Subclass of Animal

 Dog: Subclass of Animal

In Python, constructor of class used to create an object (instance), and assign the value

for the attributes.

Constructor of subclasses always called to a constructor of parent class to initialize value

for the attributes in the parent class, then it start assign value for its attributes.

Object

Cat Dog

Animal

OOP in Python

46

Output

In the above example, we see the command attributes or methods we put in the parent

class so that all subclasses or child classes will inherits that property from the parent class.

If a subclass try to inherits methods or data from another subclass then it will through an

error as we see when Dog class try to call swatstring() methods from that cat class, it

throws an error(like AttributeError in our case).

OOP in Python

47

Polymorphism (“MANY SHAPES”)
Polymorphism is an important feature of class definition in Python that is utilized when

you have commonly named methods across classes or subclasses. This permits functions

to use entities of different types at different times. So, it provides flexibility and loose

coupling so that code can be extended and easily maintained over time.

This allows functions to use objects of any of these polymorphic classes without needing

to be aware of distinctions across the classes.

Polymorphism can be carried out through inheritance, with subclasses making use of base

class methods or overriding them.

Let understand the concept of polymorphism with our previous inheritance example and

add one common method called show_affection in both subclasses:

 From the example we can see, it refers to a design in which object of dissimilar type can

be treated in the same manner or more specifically two or more classes with method of

the same name or common interface because same method(show_affection in below

example) is called with either type of objects.

Output

So, all animals show affections (show_affection), but they do differently. The

“show_affection” behaviors is thus polymorphic in the sense that it acted differently

depending on the animal. So, the abstract “animal” concept does not actually

“show_affection”, but specific animals(like dogs and cats) have a concrete implementation

of the action “show_affection”.

OOP in Python

48

Python itself have classes that are polymorphic. Example, the len() function can be used

with multiple objects and all return the correct output based on the input parameter.

Overriding
In Python, when a subclass contains a method that overrides a method of the superclass,

you can also call the superclass method by calling

Super(Subclass, self).method instead of self.method.

Example

class Thought(object):

 def __init__(self):

 pass

 def message(self):

 print("Thought, always come and go")

class Advice(Thought):

 def __init__(self):

 super(Advice, self).__init__()

 def message(self):

 print('Warning: Risk is always involved when you are dealing with

market!')

OOP in Python

49

Inheriting the Constructor
If we see from our previous inheritance example, __init__ was located in the parent class

in the up ‘cause the child class dog or cat didn’t‘ve __init__ method in it. Python used the

inheritance attribute lookup to find __init__ in animal class. When we created the child

class, first it will look the __init__ method in the dog class, then it didn’t find it then looked

into parent class Animal and found there and called that there. So as our class design

became complex we may wish to initialize a instance firstly processing it through parent

class constructor and then through child class constructor.

Output

In above example- all animals have a name and all dogs a particular breed. We called

parent class constructor with super. So dog has its own __init__ but the first thing that

happen is we call super. Super is built in function and it is designed to relate a class to its

super class or its parent class.

In this case we saying that get the super class of dog and pass the dog instance to

whatever method we say here the constructor __init__. So in another words we are calling

parent class Animal __init__ with the dog object. You may ask why we won’t just say

Animal __init__ with the dog instance, we could do this but if the name of animal class

were to change, sometime in the future. What if we wanna rearrange the class hierarchy,

OOP in Python

50

so the dog inherited from another class. Using super in this case allows us to keep things

modular and easy to change and maintain.

So in this example we are able to combine general __init__ functionality with more specific

functionality. This gives us opportunity to separate common functionality from the specific

functionality which can eliminate code duplication and relate class to one another in a way

that reflects the system overall design.

Conclusion

 __init__ is like any other method; it can be inherited

 If a class does not have a __init__ constructor, Python will check its parent class

to see if it can find one.

 As soon as it finds one, Python calls it and stops looking

 We can use the super () function to call methods in the parent class.

 We may want to initialize in the parent as well as our own class.

Multiple Inheritance and the Lookup Tree
As its name indicates, multiple inheritance is Python is when a class inherits from multiple

classes.

For example, a child inherits personality traits from both parents (Mother and Father).

Python Multiple Inheritance Syntax
To make a class inherits from multiple parents classes, we write the the names of these

classes inside the parentheses to the derived class while defining it. We separate these

names with comma.

Below is an example of that:

>>> class Mother:

 pass

>>> class Father:

 pass

>>> class Child(Mother, Father):

 pass

>>> issubclass(Child, Mother) and issubclass(Child, Father)

True

Multiple inheritance refers to the ability of inheriting from two or more than two class. The

complexity arises as child inherits from parent and parents inherits from the grandparent

class. Python climbs an inheriting tree looking for attributes that is being requested to be

read from an object. It will check the in the instance, within class then

OOP in Python

51

parent class and lastly from the grandparent class. Now the question arises in what order

the classes will be searched - breath-first or depth-first. By default, Python goes with the

depth-first.

That’s is why in the below diagram the Python searches the dothis() method first in class

A. So the method resolution order in the below example will be

Mro- D->B->A->C

Look at the below multiple inheritance diagram:

OOP in Python

52

Let’s go through an example to understand the “mro” feature of an Python.

Output

OOP in Python

53

Example 3

Let’s take another example of “diamond shape” multiple inheritance.

Above diagram will be considered ambiguous. From our previous example understanding

“method resolution order” .i.e. mro will be D->B->A->C->A but it’s not. On getting the

second A from the C, Python will ignore the previous A. so the mro will be in this case will

be D->B->C->A.

OOP in Python

54

Let’s create an example based on above diagram:

Output

Simple rule to understand the above output is- if the same class appear in the method

resolution order, the earlier appearances of this class will be remove from the method

resolution order.

In conclusion:

 Any class can inherit from multiple classes

 Python normally uses a “depth-first” order when searching inheriting classes.

 But when two classes inherit from the same class, Python eliminates the first

appearances of that class from the mro.

Decorators, Static and Class Methods

Functions(or methods) are created by def statement.

OOP in Python

55

Though methods works in exactly the same way as a function except one point where

method first argument is instance object.

We can classify methods based on how they behave, like

 Simple method: defined outside of a class. This function can access class

attributes by feeding instance argument:

def outside_func(():

 Instance method:

def func(self,)

 Class method: if we need to use class attributes

 @classmethod

 def cfunc(cls,)

 Static method: do not have any info about the class

 @staticmethod

 def sfoo()

Till now we have seen the instance method, now is the time to get some insight into the

other two methods,

Class Method
The @classmethod decorator, is a builtin function decorator that gets passed the class it

was called on or the class of the instance it was called on as first argument. The result of

that evaluation shadows your function definition.

Syntax

class C(object):

 @classmethod

 def fun(cls, arg1, arg2, ...):

fun: function that needs to be converted into a class method

returns: a class method for function

OOP in Python

56

They have the access to this cls argument, it can’t modify object instance state.

That would require access to self.

 It is bound to the class and not the object of the class.

 Class methods can still modify class state that applies across all instances of the

class.

Static Method
A static method takes neither a self nor a cls(class) parameter but it’s free to accept an

arbitrary number of other parameters.

Syntax

class C(object):

 @staticmethod

 def fun(arg1, arg2, ...):

 ...

returns: a static method for function funself.

 A static method can neither modify object state nor class state.

 They are restricted in what data they can access.

When to use what

 We generally use class method to create factory methods. Factory methods return

class object (similar to a constructor) for different use cases.

 We generally use static methods to create utility functions.

OOP in Python

57

Overview
Modern software development needs to address complex business requirements. It also

needs to take into account factors such as future extensibility and maintainability. A good

design of a software system is vital to accomplish these goals. Design patterns play an

important role in such systems.

To understand design pattern, let’s consider below example-

 Every car’s design follows a basic design pattern, four wheels, steering wheel, the

core drive system like accelerator-break-clutch, etc.

So, all things repeatedly built/ produced, shall inevitably follow a pattern in its design.. it

cars, bicycle, pizza, atm machines, whatever…even your sofa bed.

Designs that have almost become standard way of coding some

logic/mechanism/technique in software, hence come to be known as or studied as,

Software Design Patterns.

Why is Design Pattern Important?
Benefits of using Design Patterns are:

 Helps you to solve common design problems through a proven approach

 No ambiguity in the understanding as they are well documented.

 Reduce the overall development time.

 Helps you deal with future extensions and modifications with more ease than

otherwise.

 May reduce errors in the system since they are proven solutions to common

problems.

Classification of Design Patterns
The GoF (Gang of Four) design patterns are classified into three categories namely

creational, structural and behavioral.

Creational Patterns

Creational design patterns separate the object creation logic from the rest of the system.

Instead of you creating objects, creational patterns creates them for you. The creational

patterns include Abstract Factory, Builder, Factory Method, Prototype and Singleton.

Creational Patterns are not commonly used in Python because of the dynamic nature of

the language. Also language itself provide us with all the flexibility we need to create in a

sufficient elegant fashion, we rarely need to implement anything on top, like singleton or

Factory.

Also these patterns provide a way to create objects while hiding the creation logic, rather

than instantiating objects directly using a new operator.

7. OOP in Python –Python Design Pattern

OOP in Python

58

Structural Patterns
Sometimes instead of starting from scratch, you need to build larger structures by using

an existing set of classes. That’s where structural class patterns use inheritance to build a

new structure. Structural object patterns use composition/ aggregation to obtain a new

functionality. Adapter, Bridge, Composite, Decorator, Façade, Flyweight and Proxy are

Structural Patterns. They offers best ways to organize class hierarchy.

Behavioral Patterns
Behavioral patterns offers best ways of handling communication between objects. Patterns

comes under this categories are: Visitor, Chain of responsibility, Command, Interpreter,

Iterator, Mediator, Memento, Observer, State, Strategy and Template method are

Behavioral Patterns.

Because they represent the behavior of a system, they are used generally to describe the

functionality of software systems.

Commonly used Design Patterns

Singleton
It is one of the most controversial and famous of all design patterns. It is used in overly

object-oriented languages, and is a vital part of traditional object-oriented programming.

The Singleton pattern is used for,

 When logging needs to be implemented. The logger instance is shared by all the

components of the system.

 The configuration files is using this because cache of information needs to be

maintained and shared by all the various components in the system.

 Managing a connection to a database.

Here is the UML diagram,

class Logger(object):

 def __new__(cls, *args, **kwargs):

 if not hasattr(cls, '_logger'):

Single

Singleton

+instance: static

+get_instance() : static

OOP in Python

59

 cls._logger = super(Logger, cls).__new__(cls, *args, **kwargs)

 return cls._logger

In this example, Logger is a Singleton.

When __new__ is called, it normally constructs a new instance of that class. When we

override it, we first check if our singleton instance has been created or not. If not, we

create it using a super call. Thus, whenever we call the constructor on Logger, we always

get the exact same instance.

>>>

>>> obj1 = Logger()

>>> obj2 = Logger()

>>> obj1 == obj2

True

>>>

>>> obj1

<__main__.Logger object at 0x03224090>

>>> obj2

<__main__.Logger object at 0x03224090>

OOP in Python

60

In this we will look into some of the advanced features which Python provide

Core Syntax in our Class design

In this we will look onto, how Python allows us to take advantage of operators in our

classes. Python is largely objects and methods call on objects and this even goes on even

when its hidden by some convenient syntax.

>>> var1 = 'Hello'

>>> var2 = ' World!'

>>> var1 + var2

'Hello World!'

>>>

>>> var1.__add__(var2)

'Hello World!'

>>> num1 = 45

>>> num2 = 60

>>> num1.__add__(num2)

105

>>> var3 = ['a', 'b']

>>> var4 = ['hello', ' John']

>>> var3.__add__(var4)

['a', 'b', 'hello', ' John']

So if we have to add magic method __add__ to our own classes, could we do that too.

Let’s try to do that.

We have a class called Sumlist which has a contructor __init__ which takes list as an

argument called my_list.

class SumList(object):

 def __init__(self, my_list):

 self.mylist = my_list

 def __add__(self, other):

8. OOP in Python – Advanced Features

OOP in Python

61

 new_list = [x + y for x, y in zip(self.mylist, other.mylist)]

 return SumList(new_list)

 def __repr__(self):

 return str(self.mylist)

aa = SumList([3,6, 9, 12, 15])

bb = SumList([100, 200, 300, 400, 500])

cc = aa + bb # aa.__add__(bb)

print(cc) # should gives us a list ([103, 206, 309, 412, 515])

Output

[103, 206, 309, 412, 515]

But there are many methods which are internally managed by others magic methods.

Below are some of them,

'abc' in var # var.__contains__('abc')

var == 'abc' # var.__eq__('abc')

var[1] # var.__getitem__(1)

var[1:3] # var.__getslice__(1, 3)

len(var) # var.__len__()

print(var) # var.__repr__()

Inheriting From built-in types
Classes can also inherit from built-in types this means inherits from any built-in and take

advantage of all the functionality found there.

In below example we are inheriting from dictionary but then we are implementing one of

its method __setitem__. This (setitem) is invoked when we set key and value in the

dictionary. As this is a magic method, this will be called implicitly.

OOP in Python

62

class MyDict(dict):

 def __setitem__(self, key, val):

 print('setting a key and value!')

 dict.__setitem__(self, key, val)

dd = MyDict()

dd['a'] = 10

dd['b'] = 20

for key in dd.keys():

 print('{0}={1}'.format(key, dd[key]))

 Output:

setting a key and value!

setting a key and value!

a=10

b=20

Let’s extend our previous example, below we have called two magic methods called

__getitem__ and __setitem__ better invoked when we deal with list index.

Mylist inherits from 'list' object but indexes from 1 instead for 0!

class Mylist(list): # inherits from list

 def __getitem__(self, index):

 if index == 0:

 raise IndexError

 if index > 0:

 index = index - 1

 return list.__getitem__(self, index) # this method is called

when

we access a value with subscript like x[1]

 def __setitem__(self, index, value):

 if index == 0:

 raise IndexError

 if index > 0:

 index = index - 1

OOP in Python

63

 list.__setitem__(self, index, value)

x = Mylist(['a', 'b', 'c']) # __init__() inherited from builtin list

print(x) # __repr__() inherited from builtin list

x.append('HELLO'); # append() inherited from builtin list

print(x[1]) # 'a' (Mylist.__getitem__ cutomizes list superclass

 # method. index is 1, but reflects 0!

print (x[4]) # 'HELLO' (index is 4 but reflects 3!

Output

['a', 'b', 'c']

a

HELLO

In above example, we set a three item list in Mylist and implicitly __init__ method is called

and when we print the element x, we get the three item list ([‘a’,’b’,’c’]). Then we append

another element to this list. Later we ask for index 1 and index 4. But if you see the output,

we are getting element from the (index-1) what we have asked for. As we know list

indexing start from 0 but here the indexing start from 1 (that’s why we are getting the

first item of the list).

Naming Conventions

In this we will look into names we’ll used for variables especially private variables and

conventions used by Python programmers worldwide. Although variables are designated

as private but there is not privacy in Python and this by design. Like any other well

documented languages, Python has naming and style conventions that it promote although

it doesn’t enforce them. There is a style guide written by “Guido van Rossum” the

originator of Python, that describe the best practices and use of name and is

called PEP8. Here is the link for this,

https://www.Python.org/dev/peps/pep-0008/

PEP stands for Python enhancement proposal and is a series of documentation that

distributed among the Python community to discuss proposed changes. For example it is

recommended all,

https://www.python.org/dev/peps/pep-0008/

OOP in Python

64

 Module names : all_lower_case

 Class names and exception names: CamelCase

 Global and local names: all_lower_case

 Functions and method names: all_lower_case

 Constants: ALL_UPPER_CASE

These are just the recommendation, you can vary if you like. But as most of the developers

follows these recommendation so might me your code is less readable.

Why conform to convention?

We can follow the PEP recommendation we it allows us to get,

 More familiar to the vast majority of developers

 Clearer to most readers of your code.

 Will match style of other contributers who work on same code base.

 Mark of a professional software developers

 Everyone will accept you.

Variable Naming: ‘Public’ and ‘Private’

In Python, when we are dealing with modules and classes, we designate some variables

or attribute as private. In Python, there is no existence of “Private” instance variable which

cannot be accessed except inside an object. Private simply means they are simply not

intended to be used by the users of the code instead they are intended to be used

internally. In general, a convention is being followed by most Python developers i.e. a

name prefixed with an underscore for example. _attrval (example below) should be treated

as a non-public part of the API or any Python code, whether it is a function, a method or

a data member. Below is the naming convention we follow,

 Public attributes or variables (intended to be used by the importer of this module

or user of this class): regular_lower_case

 Private attributes or variables (internal use by the module or class):

_single_leading_underscore

 Private attributes that shouldn’t be subclassed: __double_leading_underscore

 Magic attributes: __double_underscores__ (use them, don’t create them)

class GetSet(object):

 instance_count = 0 # public

 __mangled_name = 'no privacy!' # special variable

OOP in Python

65

 def __init__(self, value):
 self._attrval = value # _attrval is for internal use only

 GetSet.instance_count += 1

 @property

 def var(self):

 print('Getting the "var" attribute')

 return self._attrval

 @var.setter

 def var(self, value):

 print('setting the "var" attribute')

 self._attrval = value

 @var.deleter

 def var(self):

 print('deleting the "var" attribute')

 self._attrval = None

cc = GetSet(5)

cc.var = 10 # public name

print(cc._attrval)

print(cc._GetSet__mangled_name)

Output

setting the "var" attribute

10

no privacy!

9. OOP in Python – Files and Strings

OOP in Python

66

Strings
Strings are the most popular data types used in every programming language. Why?

Because we, understand text better than numbers, so in writing and talking we use text

and words, similarly in programming too we use strings. In string we parse text, analyse

text semantics, and do data mining – and all this data is human consumed text.

The string in Python is immutable.

String Manipulation

In Python, string can be marked in multiple ways, using single quote (‘), double quote(

“) or even triple quote (‘’’) in case of multiline strings.

>>> # String Examples

>>> a = "hello"

>>> b = ''' A Multi line string,

Simple!'''

>>> e = ('Multiple' 'strings' 'togethers')

String manipulation is very useful and very widely used in every language. Often,

programmers are required to break down strings and examine them closely.

Strings can be iterated over (character by character), sliced, or concatenated. The syntax

is the same as for lists.

The str class has numerous methods on it to make manipulating strings easier. The dir

and help commands provides guidance in the Python interpreter how to use them.

Below are some of the commonly used string methods we use.

METHODS DESCRIPTION

isalpha() Checks if all characters are Alphabets

isdigit() Checks Digit Characters

isdecimal() Checks decimal Characters

isnumeric() checks Numeric Characters

find() Returns the Highest Index of substrings.

istitle() Checks for Titlecased strings

join() Returns a concatenated string.

lower() returns lower cased string

upper() returns upper cased string

partion() Returns a tuple

bytearray() Returns array of given byte size.

OOP in Python

67

enumerate() Returns an enumerate object.

isprintable() Checks printable character.

Let’s try to run couple of string methods,

>>> str1 = 'Hello World!'

>>> str1.startswith('h')

False

>>> str1.startswith('H')

True

>>> str1.endswith('d')

False

>>> str1.endswith('d!')

True

>>> str1.find('o')

4

>>> #Above returns the index of the first occurence of the character/substring.

>>> str1.find('lo')

3

>>> str1.upper()

'HELLO WORLD!'

>>> str1.lower()

'hello world!'

>>> str1.index('b')

Traceback (most recent call last):

 File "<pyshell#19>", line 1, in <module>

 str1.index('b')

ValueError: substring not found

>>> s = ('hello How Are You')

>>> s.split(' ')

['hello', 'How', 'Are', 'You']

>>> s1=s.split(' ')

>>> '*'.join(s1)

'hello*How*Are*You'

>>> s.partition(' ')

('hello', ' ', 'How Are You')

OOP in Python

68

>>>

String Formatting

In Python 3.x formatting of strings has changed, now it more logical and is more flexible.

Formatting can be done using the format() method or the % sign(old style) in format

string.

The string can contain literal text or replacement fields delimited by braces {} and each

replacement field may contains either the numeric index of a positional argument or the

name of a keyword argument.

Syntax

str.format(*args, **kwargs)

Basic Formatting

>>> '{} {}'.format('Example', 'One')

'Example One'

>>> '{} {}'.format('pie', '3.1415926')

'pie 3.1415926'

Below example allows re-arrange the order of display without changing the arguments.

>>> '{1} {0}'.format('pie', '3.1415926')

'3.1415926 pie'

Padding and aligning strings

A value can be padded to a specific length.

>>> #Padding Character, can be space or special character

>>> '{:12}'.format('PYTHON')

'PYTHON '

>>> '{:>12}'.format('PYTHON')

' PYTHON'

>>> '{:<{}s}'.format('PYTHON',12)

'PYTHON '

>>> '{:*<12}'.format('PYTHON')

'PYTHON******'

OOP in Python

69

>>> '{:*^12}'.format('PYTHON')

'***PYTHON***'

>>> '{:.15}'.format('PYTHON OBJECT ORIENTED PROGRAMMING')

'PYTHON OBJECT O'

>>> #Above, truncated 15 characters from the left side of a specified string

>>> '{:.{}}'.format('PYTHON OBJECT ORIENTED',15)

'PYTHON OBJECT O'

>>> #Named Placeholders

>>> data = {'Name':'Raghu', 'Place':'Bangalore'}

>>> '{Name} {Place}'.format(**data)

'Raghu Bangalore'

>>> #Datetime

>>> from datetime import datetime

>>> '{:%Y/%m/%d.%H:%M}'.format(datetime(2018,3,26,9,57))

'2018/03/26.09:57'

Strings are Unicode

Strings as collections of immutable Unicode characters. Unicode strings provide an

opportunity to create software or programs that works everywhere because the Unicode

strings can represent any possible character not just the ASCII characters.

Many IO operations only know how to deal with bytes, even if the bytes object refers to

textual data. It is therefore very important to know how to interchange between bytes and

Unicode.

Converting text to bytes

Converting a strings to byte object is termed as encoding. There are numerous forms

of encoding, most common ones are: PNG; JPEG, MP3, WAV, ASCII, UTF-8 etc. Also

this(encoding) is a format to represent audio, images, text, etc. in bytes.

This conversion is possible through encode(). It take encoding technique as argument.

By default, we use ‘UTF-8’ technique.

>>> # Python Code to demonstrate string encoding

>>>

>>> # Initialising a String

>>> x = 'TutorialsPoint'

>>>

>>> #Initialising a byte object

>>> y = b'TutorialsPoint'

OOP in Python

70

>>>

>>> # Using encode() to encode the String

>>> # encoded version of x is stored in z using ASCII mapping

>>> z = x.encode('ASCII')

>>>

>>> # Check if x is converted to bytes or not

>>>

>>> if(z==y):

 print('Encoding Successful!')

else:

 print('Encoding Unsuccessful!')

Encoding Successful!

Converting bytes to text

Converting bytes to text is called the decoding. This is implemented through decode(). We

can convert a byte string to a character string if we know which encoding is used to encode

it.

So Encoding and decoding are inverse processes.

>>>

>>> # Python code to demonstrate Byte Decoding

>>>

>>> #Initialise a String

>>> x = 'TutorialsPoint'

>>>

>>> #Initialising a byte object

>>> y = b'TutorialsPoint'

>>>

>>> #using decode() to decode the Byte object

>>> # decoded version of y is stored in z using ASCII mapping

>>> z = y.decode('ASCII')

>>>

OOP in Python

71

>>> #Check if y is converted to String or not

>>> if (z == x):

 print('Decoding Successful!')

else:

 print('Decoding Unsuccessful!')

Decoding Successful!

>>>

File I/O

Operating systems represents files as a sequence of bytes, not text.

A file is a named location on disk to store related information. It is used to permanently

store data in your disk.

In Python, a file operation takes place in the following order.

 Open a file

 Read or write onto a file (operation).

 Close the file.

Python wraps the incoming (or outgoing) stream of bytes with appropriate decode (or

encode) calls so we can deal directly with str objects.

Opening a file

Python has a built-in function open() to open a file. This will generate a file object, also

called a handle as it is used to read or modify the file accordingly.

>>> f = open(r'c:\users\rajesh\Desktop\index.webm','rb')

>>> f

<_io.BufferedReader name='c:\\users\\rajesh\\Desktop\\index.webm'>

>>> f.mode

'rb'

>>> f.name

'c:\\users\\rajesh\\Desktop\\index.webm'

For reading text from a file, we only need to pass the filename into the function. The file

will be opened for reading, and the bytes will be converted to text using the platform

default encoding.

OOP in Python

72

In general, an exception is any unusual condition. Exception usually indicates errors but

sometimes they intentionally puts in the program, in cases like terminating a procedure

early or recovering from a resource shortage. There are number of built-in exceptions,

which indicate conditions like reading past the end of a file, or dividing by zero. We can

define our own exceptions called custom exception.

Exception handling enables you handle errors gracefully and do something meaningful

about it. Exception handling has two components: “throwing” and ‘catching’.

Identifying Exception (Errors)

Every error occurs in Python result an exception which will an error condition identified by

its error type.

>>> #Exception

>>> 1/0

Traceback (most recent call last):

 File "<pyshell#2>", line 1, in <module>

 1/0

ZeroDivisionError: division by zero

>>>

>>> var=20

>>> print(ver)

Traceback (most recent call last):

 File "<pyshell#5>", line 1, in <module>

 print(ver)

NameError: name 'ver' is not defined

>>> #Above as we have misspelled a variable name so we get an NameError.

>>>

>>> print('hello)

SyntaxError: EOL while scanning string literal

>>> #Above we have not closed the quote in a string, so we get SyntaxError.

>>>

>>> #Below we are asking for a key, that doen't exists.

10. OOP in Python – Exception and Exception Classes

OOP in Python

73

>>> mydict = {}

>>> mydict['x']

Traceback (most recent call last):

 File "<pyshell#15>", line 1, in <module>

 mydict['x']

KeyError: 'x'

>>> #Above keyError

>>>

>>> #Below asking for a index that didn't exist in a list.

>>> mylist = [1,2,3,4]

>>> mylist[5]

Traceback (most recent call last):

 File "<pyshell#20>", line 1, in <module>

 mylist[5]

IndexError: list index out of range

>>> #Above, index out of range, raised IndexError.

Catching/Trapping Exception

When something unusual occurs in your program and you wish to handle it using the

exception mechanism, you ‘throw an exception’. The keywords try and except are used to

catch exceptions. Whenever an error occurs within a try block, Python looks for a matching

except block to handle it. If there is one, execution jumps there.

Syntax:

try:

 #write some code

 #that might throw some exception

except <ExceptionType>:

 # Exception handler, alert the user

The code within the try clause will be executed statement by statement.

If an exception occurs, the rest of the try block will be skipped and the except clause will

be executed.

try:

 some statement here

except:

 exception handling

OOP in Python

74

Let’s write some code to see what happens when you not use any error handling

mechanism in your program.

number = int(input('Please enter the number between 1 & 10: '))

print('You have entered number',number)

Above programme will work correctly as long as the user enters a number, but what

happens if the users try to puts some other data type(like a string or a list).

Please enter the number between 1 & 10: 'Hi'

Traceback (most recent call last):

 File "C:/Python/Python361/exception2.py", line 1, in <module>

 number = int(input('Please enter the number between 1 & 10: '))

ValueError: invalid literal for int() with base 10: "'Hi'"

Now ValueError is an exception type. Let’s try to rewrite the above code with exception

handling.

import sys

print('Previous code with exception handling')

try:

 number = int(input('Enter number between 1 & 10: '))

except(ValueError):

 print('Error..numbers only')

 sys.exit()

print('You have entered number: ',number)

If we run the program, and enter a string (instead of a number), we can see that we get

a different result.

Previous code with exception handling

Enter number between 1 & 10: 'Hi'

Error..numbers only

OOP in Python

75

Raising Exceptions

To raise your exceptions from your own methods you need to use raise keyword like this

raise ExceptionClass(‘Some Text Here’)

Let’s take an example

def enterAge(age):

 if age<0:

 raise ValueError('Only positive integers are allowed')

 if age % 2 ==0:

 print('Entered Age is even')

 else:

 print('Entered Age is odd')

try:

 num = int(input('Enter your age: '))

 enterAge(num)

except ValueError:

 print('Only positive integers are allowed')

Run the program and enter positive integer.

Expected Output

Enter your age: 12

Entered Age is even

But when we try to enter a negative number we get,

Expected Output

Enter your age: -2

Only positive integers are allowed

OOP in Python

76

Creating Custom exception class

You can create a custom exception class by Extending BaseException class or subclass of

BaseException.

From above diagram we can see most of the exception classes in Python extends from the

BaseException class. You can derive your own exception class from BaseException class

or from its subclass.

Create a new file called NegativeNumberException.py and write the following code.

class NegativeNumberException(RuntimeError):

 def __init__(self, age):

 super().__init__()

 self.age = age

Above code creates a new exception class named NegativeNumberException, which

consists of only constructor which call parent class constructor using super()__init__() and

sets the age.

OOP in Python

77

Now to create your own custom exception class, will write some code and import the new

exception class.

from NegativeNumberException import NegativeNumberException

def enterage(age):

 if age < 0:

 raise NegativeNumberException('Only positive integers are allowed')

 if age % 2 == 0:

 print('Age is Even')

 else:

 print('Age is Odd')

try:

 num = int(input('Enter your age: '))

 enterage(num)

except NegativeNumberException:

 print('Only positive integers are allowed')

except:

 print('Something is wrong')

Output:

Enter your age: -2

Only positive integers are allowed

Another way to create a custom Exception class.

class customException(Exception):

 def __init__(self, value):

 self.parameter = value

 def __str__(self):

 return repr(self.parameter)

try:

 raise customException('My Useful Error Message!')

except customException as instance:

 print('Caught: ' + instance.parameter)

OOP in Python

78

Output

Caught: My Useful Error Message!

Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException

+-- SystemExit

+-- KeyboardInterrupt

+-- GeneratorExit

+-- Exception

+-- StopIteration

+-- StopAsyncIteration

+-- ArithmeticError

| +-- FloatingPointError

| +-- OverflowError

| +-- ZeroDivisionError

+-- AssertionError

+-- AttributeError

+-- BufferError

+-- EOFError

+-- ImportError

+-- LookupError

| +-- IndexError

| +-- KeyError

+-- MemoryError

+-- NameError

| +-- UnboundLocalError

+-- OSError

| +-- BlockingIOError

| +-- ChildProcessError

| +-- ConnectionError

| | +-- BrokenPipeError

| | +-- ConnectionAbortedError

| | +-- ConnectionRefusedError

| | +-- ConnectionResetError

| +-- FileExistsError

| +-- FileNotFoundError

| +-- InterruptedError

| +-- IsADirectoryError

| +-- NotADirectoryError

| +-- PermissionError

| +-- ProcessLookupError

| +-- TimeoutError

+-- ReferenceError

+-- RuntimeError

| +-- NotImplementedError

| +-- RecursionError

+-- SyntaxError

| +-- IndentationError

OOP in Python

79

| +-- TabError

+-- SystemError

+-- TypeError

+-- ValueError

| +-- UnicodeError

| +-- UnicodeDecodeError

| +-- UnicodeEncodeError

| +-- UnicodeTranslateError

+-- Warning

+-- DeprecationWarning

+-- PendingDeprecationWarning

+-- RuntimeWarning

+-- SyntaxWarning

+-- UserWarning

+-- FutureWarning

+-- ImportWarning

+-- UnicodeWarning

+-- BytesWarning

+-- ResourceWarning

OOP in Python

80

In the context of data storage, serialization is the process of translating data structures or

object state into a format that can be stored (for example, in a file or memory buffer) or

transmitted and reconstructed later.

In serialization, an object is transformed into a format that can be stored, so as to be able

to deserialize it later and recreate the original object from the serialized format.

Pickle

Pickling is the process whereby a Python object hierarchy is converted into a byte stream

(usually not human readable) to be written to a file, this is also known as Serialization.

Unpickling is the reverse operation, whereby a byte stream is converted back into a

working Python object hierarchy.

Pickle is operationally simplest way to store the object. The Python Pickle module is an

object-oriented way to store objects directly in a special storage format.

What can it do?

 Pickle can store and reproduce dictionaries and lists very easily.

 Stores object attributes and restores them back to the same State.

What pickle can’t do?

 It does not save an objects code. Only it’s attributes values.

 It cannot store file handles or connection sockets.

In short we can say, pickling is a way to store and retrieve data variables into and out

from files where variables can be lists, classes, etc.

To Pickle something you must:

 import pickle

 Write a variable to file, something like

pickle.dump(mystring, outfile, protocol),

where 3rd argument protocol is optional

To unpickling something you must:

Import pickle

Write a variable to a file, something like

myString = pickle.load(inputfile)

11. OOP in Python – Object Serialization

OOP in Python

81

Methods

The pickle interface provides four different methods.

 dump() : The dump() method serializes to an open file (file-like object).

 dumps(): Serializes to a string

 load(): Deserializes from an open-like object.

 loads() : Deserializes from a string.

Based on above procedure, below is an example of “pickling”.

Output

My Cat pussy is White and has 4 legs

Would you like to see her pickled? Here she is!

b'\x80\x03c__main__\nCat\nq\x00)\x81q\x01}q\x02(X\x0e\x00\x00\x00number_of_legs

q\x03K\x04X\x05\x00\x00\x00colorq\x04X\x05\x00\x00\x00Whiteq\x05ub.'

So, in the example above, we have created an instance of a Cat class and then we’ve

pickled it, transforming our “Cat” instance into a simple array of bytes.

This way we can easily store the bytes array on a binary file or in a database field and

restore it back to its original form from our storage support in a later time.

Also if you want to create a file with a pickled object, you can use the dump() method (

instead of the dumps*()* one) passing also an opened binary file and the pickling result

will be stored in the file automatically.

[….]

binary_file = open(my_pickled_Pussy.bin', mode='wb')

my_pickled_Pussy = pickle.dump(Pussy, binary_file)

binary_file.close()

OOP in Python

82

Unpickling

The process that takes a binary array and converts it to an object hierarchy is called

unpickling.

The unpickling process is done by using the load() function of the pickle module and

returns a complete object hierarchy from a simple bytes array.

Let’s use the load function in our previous example.

Output

MeOw is black

Pussy is white

JSON

JSON(JavaScript Object Notation) has been part of the Python standard library is a

lightweight data-interchange format. It is easy for humans to read and write. It is easy to

parse and generate.

Because of its simplicity, JSON is a way by which we store and exchange data, which is

accomplished through its JSON syntax, and is used in many web applications. As it is in

human readable format, and this may be one of the reasons for using it in data

transmission, in addition to its effectiveness when working with APIs.

An example of JSON-formatted data is as follow:

{"EmployID": 40203, "Name": "Zack", "Age":54, "isEmployed": True}

Python makes it simple to work with Json files. The module sused for this purpose is the

JSON module. This module should be included (built-in) within your Python installation.

So let’s see how can we convert Python dictionary to JSON and write it to a text file.

OOP in Python

83

JSON to Python

Reading JSON means converting JSON into a Python value (object). The json library parses

JSON into a dictionary or list in Python. In order to do that, we use the loads() function

(load from a string), as follow:

Output

Below is one sample json file,

data1.json

{"menu": {

 "id": "file",

 "value": "File",

 "popup": {

 "menuitem": [

 {"value": "New", "onclick": "CreateNewDoc()"},

 {"value": "Open", "onclick": "OpenDoc()"},

 {"value": "Close", "onclick": "CloseDoc()"}

]

 }

}}

Above content (Data1.json) looks like a conventional dictionary. We can use pickle to store

this file but the output of it is not human readable form.

JSON(Java Script Object Notification) is a very simple format and that’s one of the reason

for its popularity. Now let’s look into json output through below program.

OOP in Python

84

Output

Above we open the json file (data1.json) for reading, obtain the file handler and pass on

to json.load and getting back the object. When we try to print the output of the object, its

same as the json file. Although the type of the object is dictionary, it comes out as a

Python object. Writing to the json is simple as we saw this pickle. Above we load the json

file, add another key value pair and writing it back to the same json file. Now if we see out

data1.json, it looks different .i.e. not in the same format as we see previously.

To make our output looks same (human readable format), add the couple of arguments

into our last line of the program,

json.dump(conf, fh, indent=4, separators = (‘,’, ‘: ‘))

Similarly like pickle, we can print the string with dumps and load with loads. Below is an

example of that,

OOP in Python

85

YAML

YAML may be the most human friendly data serialization standard for all programming

languages.

Python yaml module is called pyaml

YAML is an alternative to JSON:

 Human readable code: YAML is the most human readable format so much so that

even its front-page content is displayed in YAML to make this point.

 Compact code: In YAML we use whitespace indentation to denote structure not

brackets.

 Syntax for relational data: For internal references we use anchors (&) and aliases

(*)

 One of the area where it is used widely is for viewing/editing of data structures: for

example configuration files, dumping during debugging and document headers.

Installing YAML

As yaml is not a built-in module, we need to install it manually. Best way to install yaml

on windows machine is through pip. Run below command on your windows terminal to

install yaml,

pip install pyaml (Windows machine)

sudo pip install pyaml (*nix and Mac)

On running above command, screen will display something like below based on what’s the

current latest version.

Collecting pyaml

OOP in Python

86

Using cached pyaml-17.12.1-py2.py3-none-any.whl

Collecting PyYAML (from pyaml)

Using cached PyYAML-3.12.tar.gz

Installing collected packages: PyYAML, pyaml

Running setup.py install for PyYAML ... done

Successfully installed PyYAML-3.12 pyaml-17.12.1

To test it, go to the Python shell and import the yaml module,

import yaml, if no error is found, then we can say installation is successful.

After installing pyaml, let’s look at below code,

script_yaml1.py

Above we created three different data structure, dictionary, list and tuple. On each of the

structure, we do yaml.dump. Important point is how the output is displayed on the screen.

Output

OOP in Python

87

Dictionary output looks clean .ie. key: value.

White space to separate different objects.

List is notated with dash (-)

Tuple is indicated first with !!Python/tuple and then in the same format as lists.

Loading a yaml file

So let’s say I have one yaml file, which contains,

An employee record

name: Raagvendra Joshi

job: Developer

skill: Oracle

employed: True

foods:

 - Apple

 - Orange

 - Strawberry

 - Mango

languages:

 Oracle: Elite

 power_builder: Elite

 Full Stack Developer: Lame

education:

 4 GCSEs

 3 A-Levels

 MCA in something called com

Now let’s write a code to load this yaml file through yaml.load function. Below is code for

the same.

OOP in Python

88

As the output doesn’t looks that much readable, I prettify it by using json in the end.

Compare the output we got and the actual yaml file we have.

Output

OOP in Python

89

One of the most important aspect of software development is debugging. In this section

we’ll see different ways of Python debugging either with built-in debugger or third party

debuggers.

PDB – The Python Debugger

The module PDB supports setting breakpoints. A breakpoint is an intentional pause of the

program, where you can get more information about the programs state.

To set a breakpoint, insert the line

pdb.set_trace()

Example

pdb_example1.py

import pdb

x=9

y=7

pdb.set_trace()

total = x + y

pdb.set_trace()

We have inserted a few breakpoints in this program. The program will pause at each

breakpoint (pdb.set_trace()). To view a variables contents simply type the variable name.

c:\Python\Python361>Python pdb_example1.py

> c:\Python\Python361\pdb_example1.py(8)<module>()

-> total = x + y

(Pdb) x

9

(Pdb) y

7

(Pdb) total

*** NameError: name 'total' is not defined

(Pdb)

Press c or continue to go on with the programs execution until the next breakpoint.

(Pdb) c

--Return--

> c:\Python\Python361\pdb_example1.py(8)<module>()->None

-> total = x + y

(Pdb) total

OOP in Python

90

16

Eventually, you will need to debug much bigger programs – programs that use

subroutines. And sometimes, the problem that you’re trying to find will lie inside a

subroutine. Consider the following program.

import pdb

def squar(x, y):

 out_squared = x^2 + y^2

 return out_squared

if __name__ == "__main__":

 #pdb.set_trace()

 print (squar(4, 5))

Now on running the above program,

c:\Python\Python361>Python pdb_example2.py

> c:\Python\Python361\pdb_example2.py(10)<module>()

-> print (squar(4, 5))

(Pdb)

We can use ? to get help, but the arrow indicates the line that’s about to be executed. At

this point it’s helpful to hit s to s to step into that line.

(Pdb) s

--Call--

> c:\Python\Python361\pdb_example2.py(3)squar()

-> def squar(x, y):

This is a call to a function. If you want an overview of where you are in your code, try l:

(Pdb) l

 1 import pdb

 2

 3 def squar(x, y):

 4 -> out_squared = x^2 + y^2

 5

 6 return out_squared

 7

 8 if __name__ == "__main__":

 9 pdb.set_trace()

 10 print (squar(4, 5))

[EOF]

OOP in Python

91

(Pdb)

You can hit n to advance to the next line. At this point you are inside the out_squared

method and you have access to the variable declared inside the function .i.e. x and y.

(Pdb) x

4

(Pdb) y

5

(Pdb) x^2

6

(Pdb) y^2

7

(Pdb) x**2

16

(Pdb) y**2

25

(Pdb)

So we can see the ^ operator is not what we wanted instead we need to use ** operator

to do squares.

This way we can debug our program inside the functions/methods.

Logging

The logging module has been a part of Python’s Standard Library since Python version 2.3.

As it’s a built-in module all Python module can participate in logging, so that our application

log can include your own message integrated with messages from third party module. It

provides a lot of flexibility and functionality.

Benefits of Logging

 Diagnostic logging: It records events related to the application’s operation.

 Audit logging: It records events for business analysis.

Messages are written and logged at levels of “severity”:

 DEBUG (debug()): diagnostic messages for development.

 INFO (info()): standard “progress” messages.

 WARNING (warning()): detected a non-serious issue.

 ERROR (error()): encountered an error, possibly serious

 CRITICAL (critical()): usually a fatal error (program stops)

Let’s looks into below simple program,

logging1.py

OOP in Python

92

import logging

logging.basicConfig(level=logging.INFO)

logging.debug('this message will be ignored') # This will not print

logging.info('This should be logged') # it'll print

logging.warning('And this, too') # It'll print

Above we are logging messages on severity level. First we import the module, call

basicConfig and set the logging level. Level we set above is INFO. Then we have three

different statement: debug statement, info statement and a warning statement.

Output of logging1.py

INFO:root:This should be logged

WARNING:root:And this, too

As the info statement is below debug statement, we are not able to see the debug

message. To get the debug statement too in the output terminal, all we need to change is

the basicConfig level.

logging.basicConfig(level=logging.DEBUG)

And in the output we can see,

DEBUG:root:this message will be ignored

INFO:root:This should be logged

WARNING:root:And this, too

Also the default behavior means if we don’t set any logging level is warning. Just comment

out the second line from the above program and run the code.

#logging.basicConfig(level=logging.DEBUG)

Output

WARNING:root:And this, too

Python built in logging level are actually integers.

>>> import logging

>>>

>>> logging.DEBUG

10

>>> logging.CRITICAL

OOP in Python

93

50

>>> logging.WARNING

30

>>> logging.INFO

20

>>> logging.ERROR

40

>>>

We can also save the log messages into the file.

logging.basicConfig(level=logging.DEBUG, filename = 'logging.log')

Now all log messages will go the file (logging.log) in your current working directory instead

of the screen. This is a much better approach as it lets us to do post analysis of the

messages we got.

We can also set the date stamp with our log message.

logging.basicConfig(level=logging.DEBUG, format = '%(asctime)s

%(levelname)s:%(message)s')

Output will get something like,

2018-03-08 19:30:00,066 DEBUG:this message will be ignored

2018-03-08 19:30:00,176 INFO:This should be logged

2018-03-08 19:30:00,201 WARNING:And this, too

Benchmarking

Benchmarking or profiling is basically to test how fast is your code executes and where

the bottlenecks are? The main reason to do this is for optimization.

timeit

Python comes with a in-built module called timeit. You can use it to time small code

snippets. The timeit module uses platform-specific time functions so that you will get the

most accurate timings possible.

So, it allows us to compare two shipment of code taken by each and then optimize the

scripts to given better performance.

The timeit module has a command line interface, but it can also be imported.

There are two ways to call a script. Let’s use the script first, for that run the below code

and see the output.

import timeit

OOP in Python

94

print ('by index: ', timeit.timeit(stmt = "mydict['c']", setup="mydict =

{'a':5, 'b':10, 'c':15}", number = 1000000))

print ('by get: ', timeit.timeit(stmt = 'mydict.get("c")', setup = 'mydict =

{"a":5, "b":10, "c":15}', number = 1000000))

Output

by index: 0.1809192126703489

by get: 0.6088525265034692

Above we use two different method .i.e. by subscript and get to access the dictionary key

value. We execute statement 1 million times as it executes too fast for a very small data.

Now we can see the index access much faster as compared to the get. We can run the

code multiply times and there will be slight variation in the time execution to get the better

understanding.

Another way is to run the above test in the command line. Let’s do it,

c:\Python\Python361>Python -m timeit -n 1000000 -s "mydict = {'a': 5, 'b':10,

'c':15}" "mydict['c']"

1000000 loops, best of 3: 0.187 usec per loop

c:\Python\Python361>Python -m timeit -n 1000000 -s "mydict = {'a': 5, 'b':10,

'c':15}" "mydict.get('c')"

1000000 loops, best of 3: 0.659 usec per loop

Above output may vary based on your system hardware and what all applications are

running currently in your system.

Below we can use the timeit module, if we want to call to a function. As we can add multiple

statement inside the function to test.

import timeit

def testme(this_dict, key):

 return this_dict[key]

print (timeit.timeit("testme(mydict, key)", setup ="from __main__ import

testme; mydict = {'a':9, 'b':18, 'c':27}; key='c'", number=1000000))

Output

OOP in Python

95

0.7713474590139164

OOP in Python

96

Requests: Python Requests Module

Requests is a Python module which is an elegant and simple HTTP library for Python. With

this you can send all kinds of HTTP requests. With this library we can add headers, form

data, multipart files and parameters and access the response data.

As Requests is not a built-in module, so we need to install it first.

You can install it by running the following command in the terminal:

pip install requests

Once you have installed the module, you can verify if the installation is successful by typing

below command in the Python shell.

import requests

If the installation has been successful, you won’t see any error message.

Making a GET Request

As a means of example we’ll be using the “pokeapi”

12. 12. OOP in Python – Python Libraries

OOP in Python

97

Output:

Making POST Requests

The requests library methods for all of the HTTP verbs currently in use. If you wanted to

make a simple POST request to an API endpoint then you can do that like so:

req = requests.post(‘http://api/user’, data=None, json=None)

This would work in exactly the same fashion as our previous GET request, however it

features two additional keyword parameters:

 data which can be populated with say a dictionary, a file or bytes that will be passed

in the HTTP body of our POST request.

 json which can be populated with a json object that will be passed in the body of

our HTTP request also.

Pandas: Python Library Pandas

Pandas is an open-source Python Library providing high-performance data manipulation

and analysis tool using its powerful data structures. Pandas is one of the most widely used

Python libraries in data science. It is mainly used for data munging, and with good reason:

Powerful and flexible group of functionality.

Built on Numpy package and the key data structure is called the DataFrame. These

dataframes allows us to store and manipulate tabular data in rows of observations and

columns of variables.

There are several ways to create a DataFrame. One way is to use a dictionary. For

example:

OOP in Python

98

Output:

From the output we can see new brics DataFrame, Pandas has assigned a key for each

country as the numerical values 0 through 4.

If instead of giving indexing values from 0 to 4, we would like to have different index

values, say the two letter country code, you can do that easily as well:

 Adding below one lines in the above code, gives

brics.index = ['BR', 'RU', 'IN', 'CH', 'SA']

Output

Indexing DataFrames

OOP in Python

99

Output

Pygame

Pygame is the open source and cross-platform library that is for making multimedia

applications including games. It includes computer graphics and sound libraries designed

to be used with the Python programming language. You can develop many cool games

with Pygame.’

Overview

Pygame is composed of various modules, each dealing with a specific set of tasks. For

example, the display module deals with the display window and screen, the draw module

provides functions to draw shapes and the key module works with the keyboard. These

are just some of the modules of the library.

The home of the Pygame library is at http://pygame.org.

To make a Pygame application, you follow these steps:

http://pygame.org/

OOP in Python

100

Import the Pygame library

import pygame

Initialize the Pygame library

pygame.init()

Create a window.

screen = Pygame.display.set_mode((560,480))

Pygame.display.set_caption(‘First Pygame Game’)

Initialize game objects

In this step we load images, load sounds, do object positioning, set up some state

variables, etc.

Start the game loop.

It is just a loop where we continuously handle events, checks for input, move

objects, and draw them. Each iteration of the loop is called a frame.

OOP in Python

101

Let’s put all the above logic into one below program,

Pygame_script.py

OOP in Python

102

Output

Beautiful Soup: Web Scraping with Beautiful Soup

The general idea behind web scraping is to get the data that exists on a website, and

convert it into some format that is usable for analysis.

It’s a Python library for pulling data out of HTML or XML files. With your favourite parser

it provide idiomatic ways of navigating, searching and modifying the parse tree.

As BeautifulSoup is not a built-in library, we need to install it before we try to use it. To

install BeautifulSoup, run the below command

$ apt-get install Python-bs4 # For Linux and Python2

$ apt-get install Python3-bs4 # for Linux based system and Python3.

$ easy_install beautifulsoup4 # For windows machine,

Or

$ pip instal beatifulsoup4 # For window machine

Once the installation is done, we are ready to run few examples and explores Beautifulsoup

in details,

OOP in Python

103

Output

Below are some simple ways to navigate that data structure:

OOP in Python

104

One common task is extracting all the URLs found within a page’s <a> tags:

OOP in Python

105

Another common task is extracting all the text from a page:

