
CppCon 2018 | @stoyannk

OOP is dead, long live
Data-oriented design

Stoyan Nikolov

@stoyannk

CppCon 2018 | @stoyannk

Who am I?
● In the video games industry for 10+ years
● Software Architect at Coherent Labs
● Working on game development technology
● Last 6.5 years working on

○ chromium
○ WebKit
○ Hummingbird - in-house game UI & browser engine

● High-performance maintainable C++

Games using Coherent Labs technology
Images courtesy of Rare Ltd., PUBG Corporation

2

http://coherent-labs.com

CppCon 2018 | @stoyannk

Can a browser engine be successful with
data-oriented design?

3

CppCon 2018 | @stoyannk

CSS Animations with chromium (OOP)

DEMO

4

CppCon 2018 | @stoyannk

CSS Animations with Hummingbird (DoD)

DEMO

5

CppCon 2018 | @stoyannk

Yes

6

CppCon 2018 | @stoyannk

Agenda
● Basic issue with Object-oriented programming (OOP)
● Basics of Data-oriented design (DoD)
● Problem definition
● Object-oriented programming approach
● Data-oriented design approach
● Results & Analysis

7

CppCon 2018 | @stoyannk

What is so wrong with OOP?

8

CppCon 2018 | @stoyannk

OOP marries data with operations...
● ...it’s not a happy marriage
● Heterogeneous data is brought together by a “logical” black box object
● The object is used in vastly different contexts
● Hides state all over the place
● Impact on

○ Performance
○ Scalability
○ Modifiability
○ Testability

9

CppCon 2018 | @stoyannk

Data-oriented design
Data A
Field A[]
Field B[]
Field C[]

Data B
Field D[]
Field E[]
Field F[]

System α

System β

System γ

Data C
Field G[]

Data D
Field H[]

Logical Entity 0

Field A[0] Field D[0]

Field B[0] Field E[0]

Field C[0] Field F[0]

Logical Entity 1

Field A[1] Field D[1]

Field B[1] Field E[1]

Field C[1] Field F[1]

...
10

CppCon 2018 | @stoyannk

Data-oriented design - the gist
● Separates data from logic

○ Structs and functions live independent lives
○ Data is regarded as information that has to be transformed

● The logic embraces the data
○ Does not try to hide it
○ Leads to functions that work on arrays

● Reorganizes data according to it’s usage
○ If we aren’t going to use a piece of information, why pack it together?

● Avoids “hidden state”
● No virtual calls

○ There is no need for them

● Promotes deep domain knowledge
● References at the end for more detail 11

CppCon 2018 | @stoyannk

The system at hand

12

CppCon 2018 | @stoyannk

What is a CSS Animation?

DEMO

13

CppCon 2018 | @stoyannk

Animation definition
@keyframes example {

 from {left: 0px;}

 to {left: 100px;}

}

div {

width: 100px;

height: 100px;

background-color: red;

 animation-name: example;

animation-duration: 1s;

}

● Straightforward declaration
○ Interpolate some properties over a period of

time
○ Apply the Animated property on the right

Elements
● However at a second glance..

○ Different property types (i.e. a number and a
color)

○ There is a DOM API (JavaScript) that requires
the existence of some classes (Animation,
KeyframeEffect etc.)

14

CppCon 2018 | @stoyannk

Let’s try OOP

15

CppCon 2018 | @stoyannk

The OOP way (chromium 66)
● chromium has 2 Animation systems

○ We’ll be looking at the Blink system

● Employs some classic OOP
○ Closely follows the HTML5 standard and IDL
○ Running Animation are separate objects

● Study chromium - it’s an amazing piece of software, a lot to learn!

16

CppCon 2018 | @stoyannk

The flow
● Unclear lifetime semantics

17

CppCon 2018 | @stoyannk

The state
● Hidden state
● Branch mispredictions

18

CppCon 2018 | @stoyannk

The KeyframeEffect

● Cache misses
19

CppCon 2018 | @stoyannk

Updating time and values
● Jumping contexts
● Cache misses (data and instruction)
● Coupling between systems (animations and events)

20

CppCon 2018 | @stoyannk

Interpolate different types of values

● Dynamic type erasure - data and instruction cache misses
● Requires testing combinations of concrete classes

21

CppCon 2018 | @stoyannk

Apply the new value
● Coupling systems - Animations and Style solving
● Unclear lifetime - who “owns” the Element
● Guaranteed cache misses

Walks up the DOM tree!

22

CppCon 2018 | @stoyannk

SetNeedsStyleRecalc

SetNeedsStyleRecalc

Miss!

Miss!

Miss!

Miss!

23

CppCon 2018 | @stoyannk

Recap
● We used more than 6 non-trivial classes
● Objects contain smart pointers to other objects
● Interpolation uses abstract classes to handle different property types
● CSS Animations directly reach out to other systems - coupling

○ Calling events
○ Setting the value in the DOM Element
○ How is the lifetime of Elements synchronized?

24

CppCon 2018 | @stoyannk

Let’s try data-oriented design

25

CppCon 2018 | @stoyannk

Back to the drawing board
● Animation data operations

○ Tick (Update) -> 99.9%
○ Add
○ Remove
○ Pause
○ …

● Animation Tick Input
○ Animation definition
○ Time

● Animation Tick Output
○ Changed properties
○ New property values
○ Who owns the new values

● Design for many animations
26

CppCon 2018 | @stoyannk

The AnimationController

AnimationController

Active Animations
AnimationState

AnimationState

AnimationState

Inactive Animations

AnimationState

AnimationState

Tick(time)

Animation Output

Left: 50px
Opacity: 0.2

Left: 70px
Right: 50px

Top: 70px

Elements

Element*

Element*

Element*
27

CppCon 2018 | @stoyannk

Go flat!

Note: Some read-only data gets duplicated across multiple instances
28

CppCon 2018 | @stoyannk

Avoid type erasure

Per-property vector for every Animation type!

Note: We know every needed type at compile time, the vector declarations are auto-generated

29

CppCon 2018 | @stoyannk

Ticking animations
● Iterate over all vectors

● Use implementation-level templates (in the .cpp file)

AnimationState<BorderLeft> AnimationState<BorderLeft> AnimationState<BorderLeft> AnimationState<BorderLeft>

AnimationState<Opacity> AnimationState<Opacity> AnimationState<Opacity>

AnimationState<Transform> AnimationState<Transform>

30

CppCon 2018 | @stoyannk

Avoiding branches
● Keep lists per-boolean “flag”

○ Similar to database tables - sometimes called that way in DoD literature

● Separate Active and Inactive animations
○ Active are currently running

■ But can be stopped from API
○ Inactive are finished

■ But can start from API

● Avoid “if (isActive)” !
● Tough to do for every bool, prioritize according to branch predictor chance

31

CppCon 2018 | @stoyannk

A little bit of code

32

CppCon 2018 | @stoyannk

Adding an API - Controlling Animations
● The API requires having an “Animation” object

○ play()
○ pause()
○ playbackRate()

● But we have no “Animation” object?!
● An Animation is simply a handle to a bunch of data!
● AnimationId (unsigned int) wrapped in a JS-accessible C++ object

Animation

- Play()
- Pause()
- Stop()
- …

AnimationId Id;

JS API

AnimationController

- Play(Id)
- Pause(Id)
- Stop(Id)
- …

33

CppCon 2018 | @stoyannk

Implementing the DOM API cont.
● AnimationController implements all the data modifications
● “Animation” uses the AnimationId as a simple handle

34

CppCon 2018 | @stoyannk

Analogous concepts between OOP and DoD

OOP DoD

blink::Animation inheriting 6 classes AnimationState templated struct

References to Keyframe data Read-only duplicates of the Keyframe data

List of dynamically allocated Interpolations Vectors per-property

Boolean flags for “activeness” Different tables (vectors) according to flag

Inherit blink::ActiveScriptWrappable Animation interface with Id handle

Output new property value to Element Output to tables of new values

Mark Element hierarchy (DOM sub-trees) for styling List of modified Elements

35

CppCon 2018 | @stoyannk

Key points
● Keep data flat

○ Maximise cache usage
○ No RTTI
○ Amortized dynamic allocations
○ Some read-only duplication improves performance and readability

● Existence-based predication
○ Reduce branching
○ Apply the same operation on a whole table

● Id-based handles
○ No pointers
○ Allow us to rearrange internal memory

● Table-based output
○ No external dependencies
○ Easy to reason about the flow 36

CppCon 2018 | @stoyannk

Analysis

37

CppCon 2018 | @stoyannk

Performance analysis

OOP DoD

Animation Tick time
average

6.833 ms 1.116 ms

DoD Animations are 6.12x faster

38

CppCon 2018 | @stoyannk

Scalability
● Issues multithreading OOP chromium Animations

○ Collections getting modified during iteration
○ Event delegates
○ Marking Nodes for re-style

● Solutions for the OOP case
○ Carefully re-work each data dependency

● Issues multithreading DoD Animations
○ Moving AnimationStates to “inactive” (table modification from multiple threads)
○ Building list of modified Nodes (vector push_back across multiple threads)

● Solutions in the DoD case
○ Each task/job/thread keeps a private table of modified nodes & new inactive anims
○ Join merges the tables
○ Classic fork-join

39

CppCon 2018 | @stoyannk

● The OOP case
○ Needs mocking the main input - animation definitions
○ Needs mocking at least a dozen classes
○ Needs building a complete mock DOM tree - to test the “needs re-style from animation logic”
○ Combinatorial explosion of internal state and code-paths
○ Asserting correct state is difficult - multiple output points

● The DoD case
○ Needs mocking the input - animation definitions
○ Needs mocking a list of Nodes, complete DOM tree is not needed
○ AnimationController is self-contained
○ Asserting correct state is easy - walk over the output tables and check

Testability analysis

40

CppCon 2018 | @stoyannk

Modifiability analysis
● OOP

○ Very tough to change base classes
■ Very hard to reason about the consequences

○ Data tends to “harden”
■ Hassle to move fields around becomes too big
■ Nonoptimal data layouts stick around

○ Shared object lifetime management issues
■ Hidden and often fragile order of destruction

○ Easy to do “quick” changes

● DoD
○ Change input/output -> requires change in System “before”/”after” in pipeline
○ Implementation changes - local

■ Can experiment with data layout
■ Handles mitigate potential lifetime issues

41

CppCon 2018 | @stoyannk

Downsides of DoD
● Correct data separation can be hard

○ Especially before you know the problem very well

● Existence-based predication is not always feasible (or easy)
○ Think adding a bool to a class VS moving data across arrays
○ Too many booleans is a symptom - think again about the problem

● “Quick” modifications can be tough
○ OOP allows to “just add” a member, accessor, call
○ More discipline is needed to keep the benefits of DoD

● You might have to unlearn a thing or two
○ The beginning is tough

● The language is not always your friend

42

CppCon 2018 | @stoyannk

What to keep from OOP?
● Sometimes we have no choice

○ Third-party libraries
○ IDL requirements

● Simple structs with simple methods are perfectly fine
● Polymorphism & Interfaces have to be kept under control

○ Client-facing APIs
○ Component high-level interface
○ IMO more convenient than C function pointer structs

● Remember - C++ has great facilities for static polymorphism
○ Can be done through templates
○ .. or simply include the right “impl” according to platform/build options

43

CppCon 2018 | @stoyannk

● Allow new memory layout schemes for object arrays
○ Structure Of Arrays (SOA) / Array Of Structures (AOS)
○ Components layout, preserving classic C++ object access semantics

■ Kinda doable now, but requires a lot of custom code
● We do it to awesome effect, but sooooo tough

○ Alas tough to get in core

● Ranges look really exciting
● Relax requirements for unordered_map/unordered_set (or define new ones)

○ Internal linked list does too many allocations & potential cache misses
○ Standard hashmap/set with open addressing

Changes in C++ to better support DoD

44

CppCon 2018 | @stoyannk

Object-oriented programming is not a silver
bullet..

45

..neither is data-oriented design..

..use your best judgement, please.

CppCon 2018 | @stoyannk

References
● “Data-Oriented Design and C++”, Mike Acton, CppCon 2014
● “Pitfalls of Object Oriented Programming”, Tony Albrecht
● “Introduction to Data-Oriented Design”, Daniel Collin
● “Data-Oriented Design”, Richard Fabian
● “Data-Oriented Design (Or Why You Might Be Shooting Yourself in The Foot

With OOP)”, Noel Llopis
● “OOP != classes, but may == DOD”, roathe.com
● “Data Oriented Design Resources”, Daniele Bartolini
● https://stoyannk.wordpress.com/

46

https://www.youtube.com/watch?v=rX0ItVEVjHc
https://www.slideshare.net/EmanWebDev/pitfalls-of-object-oriented-programminggcap09
https://www.dice.se/wp-content/uploads/2014/12/Introduction_to_Data-Oriented_Design.pdf
http://www.dataorienteddesign.com/dodmain/dodmain.html
http://gamesfromwithin.com/data-oriented-design
http://gamesfromwithin.com/data-oriented-design
https://roathe.wordpress.com/2010/03/22/oop-classes-but-may-dod/
https://github.com/dbartolini/data-oriented-design
https://stoyannk.wordpress.com/

