
VisualAge® C++ Professional for AIX®

IBM® Open Class™: Text and
Internationalization
Version 5.0

���

Edition Notice

This edition applies to Version 5.0 of IBM VisualAge C++ and to all subsequent releases and modifications until
otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

© Copyright International Business Machines Corporation 1998, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under “Notices” on page v.

Contents

Notices v
Programming Interface Information vii
Trademarks and Service Marks vii
Industry Standards viii

About This Book. ix

Chapter 1. International Framework . . . 1
Locales in Internationalization 2

Locale Classes 3
Locale Names 5
Set the Locale 5
Get a Key for a Locale 6
Get an Object from the Current Default Locale . . 6
Get an Object from a Specific Locale 7
Iterate through Available Locales 7

Collation Classes 8
Instantiate a Collation Object 11
Perform Case-Insensitive String Comparison . . 11
Perform Language-Sensitive String Comparison 12
Perform Bitwise String Comparison 13
Use the ICollation::transform Function 14
Iterate through Available Collation Objects . . . 15

Transcoding Classes 15
Transcoder Names 20
Instantiate a Transcoder 21
Convert Text from Character Format to Unicode 22
Convert Text from Unicode to Character Format 23
Process Line-Breaking Characters 24
Convert with ANSI C++ Compatible Transcoding
Functions 25
Iterate through Available Transcoders. 26
Verify Transcoding Results 26

Date and Time Classes. 27
Dates and Calendars 27
Information Functions for IDate Objects 28
Create an IDate Object. 29
Change an IDate Object 29
Compare and Test IDate Objects 30
Time. 31
Information Functions for ITime Objects 31
Create an ITime Object 32
Change an ITime Object 32
Compare ITime Objects 33
Write an ITime Object to an Output Stream. . . 34
Time Stamps 35
Information Functions for ITimeStamp Objects. . 35
Create an ITimeStamp Object 36
Change an ITimeStamp Object 37
Compare ITimeStamp Objects 37

National Language Support and Double-Byte
Character Sets 38

National Language Support 38
Add National Language Support 39

Double-Byte Character Set Support 39
DBCS and National Language Support 40

Troubleshoot International Objects 40

Chapter 2. Text Framework 43
Text Creation and Manipulation 43
Text Boundaries 44
Text Storage 45
Strings and Buffers 46
String Formats 49
Comparison of IText and IString 51
Work with IText Objects 52

Create an IText Object from char or IString Data 52
Create a Styled Text String 52
Edit Character Data in an IText Object 53
Extract char* Data from an IText Object 54
Text and Style Run Iteration 54
Iterate through Characters in an IText Object . . 56
Iterate through Style Runs in an IText Object . . 57
Query and Modify Styles in an IText Object . . 57

Work with IString Objects 59
Create Strings 59
Copy Strings 60
Concatenate Strings. 61
Extend Strings 62
Format Strings 63
Determine String Lengths and Word Counts . . 64
Do String Input and Output 65
Find Words or Substrings within Strings. . . . 66
Replace, Insert, and Delete Substrings 67
Test the Characteristics of Strings 69
Convert between Strings and Numeric Data . . 71
Convert between Strings and Different Base
Notations 72

Styles 73
Styles and Style Sets 73
Style Classes 74
Style Propagation 76
Character Data 78

Text Display 79
Display Text Strings as Graphics 80
Apply Graphic Transformations to a Text Graphic 81

Summary of Text Framework Classes 82

Chapter 3. The Unicode Standard . . . 85
Create a Unicode Application 87
Unicode Support and the IUnicode Class 88
Character Values 91
Character Properties 93

Identify a Character’s Properties 93
Identify a Character’s Script 94
Find Characters with Specific Properties 94

Summary of Unicode Support Classes 95

© Copyright IBM Corp. 1998, 2000 iii

iv IBM Open Class: Text and Internationalization

Notices

Note to U.S. Government Users Restricted Rights -- use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1998, 2000 v

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2000. All rights reserved.

vi IBM Open Class: Text and Internationalization

Programming Interface Information
Programming interface information is intended to help you create application
software using this program.

General-use programming interface allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification, and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and Service Marks
The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

AIX
AS/400
DB2
CICS
C Set ++
IBM
Network Station
Object Connection
OS/2
OS/390
OS/400
Open Class
Operating System/2
Operating System/400
PowerPC 403
PowerPC 601
PowerPC 603
PowerPC 604
Presentation Manager
RS/6000
S/390
SAA
Systems Application Architechture
TeamConnection
VisualAge
WebSphere
Workplace Shell

Lotus, Lotus Notes, and Domino are trademarks or registered trademarks of the
Lotus Development Corporation in the United States, or other countries, or both.

Tivoli Management Environment, TME 10, and Tivoli Module Designer are
trademarks of Tivoli Systems Inc. in the United States, or other countries, or both.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation
in the United States, or other countries, or both.

Notices vii

Microsoft, Win32, Windows, Windows NT, and the Windows logo are trademarks
or registered trademarks of Microsoft Corporation in the United States, or other
countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries licensed exclusively
through X/Open Company Limited.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks or registered
trademarks of Intel Corporation in the United States, or other countries, or both.

C-bus is a registered trademark of Corollary, Inc.

PC Direct is a registered tradmark of Ziff Communicatoins Company and is used
by IBM Corporation under license

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

Industry Standards
VisualAge C++ Professional for AIX, Version 5.0 supports the following standards:
v The C language is consistent with the International Standard C (ANSI/ISO-IEC

9899–1990 [1992]). This standard has officially replaced American National
standard for Information Systems-Programming Language C (X3.159–1989) and
is technically equivalent to the ANSI C standard. VisualAge C++ supports the
changes adopted into the C Standard by ISO/IEC 9899:1990/Amendment 1:1994.

v The IBM Systems Application Architecture (SAA) C Level 2 language definition.
v The C++ language is consistent with the International Standard for Information

Systems-Programming Language C++ (ISO/IEC 14882:1998).
v The ISO/IEC 9945–1:1990/IEEE POSIX 1003.-1990 standard.
v The X/Open Common Applications Environment Specifications, System

Interfaces and Headers, Issue 4.

viii IBM Open Class: Text and Internationalization

About This Book

The information in this PDF document is also available in the online help.

To find this information, or any topics listed in this document as Related Concepts,
Related Tasks, or Related References, simply type the topic title into the search bar
in the top frame of your browser in the online help.

For some topics, the suggested references may already be contained in this
document. In such cases, there is a cross-reference to the page on which the related
topic appears.

© Copyright IBM Corp. 1998, 2000 ix

x IBM Open Class: Text and Internationalization

Chapter 1. International Framework

The International Framework provides classes for creating international
applications and manipulating international text. International applications are
those that can be localized for different languages and geographic regions without
accessing the source code. International text may consist of translated text strings
as well as different character sets.

Locales
A locale is typically defined by a combination of language and geographical
region, but other elements, such as date, time, currency, and number formats, may
also help to form the locale definition.

The locale mechanism provides access for localizable resources. Localizable
resources include any objects—such as transcoders, collation objects, number
formatters, date formatters, and time zones—that might change to support
different languages or geographic regions. For example, collation ordering rules for
text sorting are associated with particular languages, while date, time, and
currency formats are more closely associated with particular regions.

ILocaleKey lets you access both host-specific and portable resources associated
with a particular locale. Neither ILocaleKey nor the particular locale in question
owns the objects associated with it.

Collation
Collation classes enable both language-sensitive and language-insensitive string
comparison. For language-sensitive comparison of Unicode text strings, the
collation classes use the alphabetical ordering rules of a natural language instead of
the numeric values of the character encoding system.

Transcoding
Using a set of mapping rules to convert text data between two character encoding
standards is called transcoding. The Open Class transcoding classes enable
conversion of Unicode character data to and from other character encoding
systems, including ASCII and the code pages used in Microsoft® environments.
The transcoding classes also handle the conversion of special characters.

The LOCPATH environment variable identifies the location of international
resources on your system. You must define this environment vairable so that the C
runtime can find the locale data files.

“Locales in Internationalization” on page 2
“Locale Classes” on page 3
“Collation Classes” on page 8
Transcoding Classes
“Transcoder Names” on page 20

© Copyright IBM Corp. 1998, 2000 1

Locales in Internationalization
Locales provide the mechanism for organizing and accessing localizable
resources—any objects that might change to support different languages or
geographic regions. Such objects can include transcoders, collation objects, number
formatters, data formatters, and time zones, among others.

Object Portability
Localized objects fall into one of two categories:
v Host objects are specific to a particular platform implementation. You cannot

typically build or modify them programmatically, nor can you stream them to
other systems. They are usually tied to a specific locale, and you construct them
using the key for that locale.

v Portable objects are not host-dependent. You can typically build them
programmatically from data, edit them, and stream them to other systems. You
can also construct them using a locale key if they have been associated with that
locale. Portable objects can be shared between locales, but they are not required
to be associated with any locale.

No locale owns the objects associated with it; the locale simply provides a way to
access those objects.

Names of International Objects
The locale mechanism allows each locale and each object associated with that
locale to have a set of displayable names. At a minimum, each object has a name
for its locale in the default language and in English. Objects can also have names
in other languages for display to end users, as illustrated in this figure:

“Chapter 1. International Framework” on page 1
“Locale Classes” on page 3
“Collation Classes” on page 8
Transcoding Classes
“Transcoder Names” on page 20
“Date and Time Classes” on page 27
“DBCS and National Language Support” on page 40

“Get a Key for a Locale” on page 6
“Get an Object from the Current Default Locale” on page 6
“Get an Object from a Specific Locale” on page 7
“Iterate through Available Locales” on page 7

2 IBM Open Class: Text and Internationalization

Locale Classes
The locale classes consist of ILocaleKey, which gives you access to the resources
associated with a particular locale, and ILocaleKeyIterator, which lets you iterate
through the locally installed locales.

VisualAge C++ provides national language support using the XPG/4 programming
model, and using the locale-sensitive functions of the C runtime library.

The IBM Open Class uses the C runtime locale across all platforms.

This figure illustrates how locales can be grouped by language (as for English) or
by geographical location (as for Switzerland):

Access to Locale Resources
The primary class you use to work with locales is ILocaleKey. ILocaleKey acts as
an identifier for a specific locale and is used as a parameter for functions that
create a particular type of localizable object. For example, the
ICollation::createCollation function takes an ILocaleKey object that indicates what
language the collation should reflect. On the other hand, the
ILocaleKey::displayName function lets you display the locale name in any
language for which a name is provided. Each type of international object should
provide a displayName function, such as ICollation::displayName.

When you need a localized object, create an ILocaleKey object to define the locale
with which to associate the object. A given object can be associated with more than
one locale. Thus, a collation object for English could be associated with many, or
even all, English-speaking locales (United States, Canada, United Kingdom,
Jamaica, and so on). The set of objects associated with a locale can be open-ended;
you are free to associate new objects with the locale.

Use ILocaleKey to identify the locale for which you want to access localized
resources. You can use ILocaleKey to specify a particular locale (such as U.S.
English) or to specify the default locale on the current host. ILocaleKey gives you
access to both host-specific and portable objects associated with a given locale.

ILocaleKey supports two ways to describe a specific locale:
v Using the host locale ID (an unsigned long value) for the current platform. For

example, on Win32 platforms the locale identifier for United States English is
0x0409.

v Using the portable POSIX identifier. This has three parts:
– A two-character language identifier, for example, “EN” for English or “ZH”

for Chinese.

Chapter 1. International Framework 3

– A two-character region identifier, for example, “US” for the United States or
“TW” for Taiwan.

– A single-character extension used in a few cases where the standard
“language_region” POSIX identifier maps to multiple, distinctive locales. For
example, the “NO_NO” identifier maps to both the BokmÔl Norwegian and
Nynorsk Norwegian locales. An extension lets you provide a unique identifier
for each.

When you use a locale key to obtain an object for a given locale, the system does
the following:
1. If there is a corresponding host object for that locale, the system returns it.
2. If there is no corresponding host object for that locale, the system looks for an

object that corresponds to the same language.
3. If there are no corresponding host objects, the system looks for a corresponding

portable object.
4. If there is no corresponding portable object, the system throws an exception.

The following chart describes the interface for ILocaleKey:

Member function Description

languageID and setLanguageID Let you access the language identifier
portion of the locale ID. Two special
language identifiers, “C” and “POSIX,”
indicate the POSIX C locale. If you specify
one of these language identifiers, the region
and extension are set to null. If you set the
language identifier to a null string, the locale
key is set to the default host locale.

regionID and setRegionID Let you access the region identifier portion
of the locale ID.

extension and setExtension Let you access the extension used to
uniquely identify locales whose
POSIX IDs map to more than one locale.

posixID and setPosixID Let you access the entire POSIX identifier
string. This string has the format
“fLanguageID_fRegionIDfExtension,” for
example, “ES_ESM.”

hostID and setHostID Let you access the host identifier. These
functions allow you to create a locale object
using Windows LCID identifiers.

isCLocale Indicates whether the locale key references
the C (POSIX) locale.

defaultLocale A static function that returns a locale key for
the current default locale.

4 IBM Open Class: Text and Internationalization

Member function Description

displayName Returns a localized, displayable name for the
locale. You specify the locale in which to
display the name and a lookup strategy for
finding the name:

v kExactLocale: Return the display name
only for the exact locale specified.

v kExactLanguage: If there is no name for
the exact locale specified, return the name
from another locale with the same
language identifier.

v kAnyLanguage: If there is no name in the
specified locale or language, return the
name in the default locale and language.
This is the default option.

Locale Iteration
Use ILocaleKeyIterator to iterate through the locales available on the current hosts.
Because ILocaleKeyIterator iterates through currently installed locales (rather than
all locales supported by the locale mechanism), it may not reflect the full set of
supported locales. You do not need to initialize an ILocaleKeyIterator object; when
constructed, it automatically references the first locale key in the list.

“Chapter 1. International Framework” on page 1
“Locales in Internationalization” on page 2
“Collation Classes” on page 8
Transcoding Classes
“Transcoder Names” on page 20

“Get a Key for a Locale” on page 6
“Get an Object from the Current Default Locale” on page 6
“Get an Object from a Specific Locale” on page 7
“Iterate through Available Locales” on page 7

Locale Names

For each fileset you want to use, you must explicitly install the corresponding
fileset.

“Locale Classes” on page 3
“Chapter 1. International Framework” on page 1

Set the Locale
To use national language support you must set the locale for your program, using
the setlocale function:

setlocale(LC_ALL,“”);

Chapter 1. International Framework 5

The setlocale function call should be the first call in main(), before any IString
variables are defined.

“Locale Classes” on page 3

“Get a Key for a Locale”
“Get an Object from the Current Default Locale”
“Get an Object from a Specific Locale” on page 7

Get a Key for a Locale
When you create a locale key, you generally want a key either for the current
default locale or for a specific locale. To get the key for the current default locale,
use the ILocaleKey::defaultLocale function. For example:

ILocaleKey key(ILocaleKey::defaultLocale());

To get a key for a specific locale, use the locale ID. Each locale has a portable ID
defined by POSIX consisting of a language identifier, a region identifier, and a
host-specific ID defined by the particular platform. For example, to create a locale
key for the German-speaking part of Switzerland:

ILocaleKey *key = new ILocaleKey(“DE”, “CH”);

“Locale Classes” on page 3
“Locale Names” on page 5

“Set the Locale” on page 5
“Get an Object from the Current Default Locale”
“Get an Object from a Specific Locale” on page 7

Get an Object from the Current Default Locale
Many classes that are instantiated into localized objects provide static functions for
creating the object for a particular locale. To get the object for the current default
locale, you can do the following:
1. Call the localizable object’s create function without specifying a locale:

// Call the createCollation function
ICollation *coll = ICollation::createCollation();

2. Call the static function ILocaleKey::defaultLocale to get a locale key for the
current default and pass that key to the localizable object’s create function:

// Create a key for the current default locale
ILocaleKey defaultKey(ILocaleKey::defaultLocale());
// Call the createCollation function
ICollation

*coll = ICollation::createCollation(defaultKey);

“Locale Classes” on page 3
“Locale Names” on page 5

6 IBM Open Class: Text and Internationalization

“Set the Locale” on page 5
“Get a Key for a Locale” on page 6
“Get an Object from a Specific Locale”

Get an Object from a Specific Locale
To get an object from a specific locale, you need to know either the POSIX
identifier or the host identifier for that locale. You then create a locale key from
that identifier and use the key to instantiate the correct object.

If using POSIX identifiers, you need to specify either the language identifier or
both the language and region identifiers. Certain locales also require an extension
to distinguish them (for example, Modern and Traditional Spanish Sort).

To get a localized object from a specific locale:
1. Create an ILocaleKey for the locale and pass in the identifier for it.
2. Call the localized object class’s create function and pass in the key for the

specific locale.

For example, this code shows how to get the collation object for the French
Canadian locale:

// Get the collation object for the
// French Canadian locale
try
{

ICollation
*coll = ICollation::createCollation

(ILocaleKey(“FR”, “CA”));
}
catch (IException&)
{

// If it isn't available,
// use the collation for the default
locale coll = ICollation::createCollation();

}

“Locale Classes” on page 3
“Locale Names” on page 5

“Set the Locale” on page 5
“Get a Key for a Locale” on page 6
“Get an Object from the Current Default Locale” on page 6

Iterate through Available Locales
Use ILocaleKeyIterator to iterate through the available locales. ILocaleKeyIterator
iterates through the locales currently installed on the system, not the complete set
of supported locales.

The following steps show how to use ILocaleKeyIterator:
1. Instantiate an ILocaleKeyIterator.
2. Use operator++ or operator— to move forward or backward through the list of

installed locales.

Chapter 1. International Framework 7

3. Use operator* to return a key for the locale currently referenced by the iterator
or use operator-> to return a constant pointer to the key.

For example, this code shows how to iterate through the available locales, printing
out the English name for each locale:

// Create the iterator
ILocaleKeyIterator iter;
// Create a key for an English locale
ILocaleKey english(“EN”);
while (iter)
{

// Get the name of the current locale
IText name = (*iter).displayName(english);
cout << name << “/n”;
cout.flush();
// Increment the iterator to the next
// locale in the list
iter++;

}

“Locale Classes” on page 3
“Locale Names” on page 5

“Iterate through Available Collation Objects” on page 15
“Iterate through Available Locales” on page 7
“Iterate through Available Transcoders” on page 26

Collation Classes
Overview of Collation Classes
In most cases, the ordering of Unicode values does not produce correct ordering
results. For example, in the ASCII-based character sets, Z is ordered before a, and z
is ordered before ±. Open Class collation classes, however, support collation objects
that compare strings based not on the Unicode values of each character, but on the
rules of a natural language. This is what enables language-sensitive string
comparison.

Each International Framework collation object is based on a set of rules that define
the results for alphabetizing and comparing text in a particular natural language.
These rules define not only a ranking (such as a < b < c) but three levels of priority
within the ranking.

For many European languages, the difference between two base letters (a and b) is
a primary difference, the difference between an unaccented and an accented base
letter (õ and a) is secondary, and the difference between an uppercase and
lowercase letter (A and a) is tertiary. These distinctions allow you to set the level of
comparison for more sophisticated sorting and searching.

The ICollation interface is based on the protocols in the ANSI C++ standard library
collate class, which provides string comparison and hashing functions. The
ICollation comparison functions take two strings or substrings and return a value
that indicates whether the source string is greater than (later in the alphabet), less
than (earlier in the alphabet), or equal to the target string. You can specify the
ordering strength of the comparison to control how differences such as case and
accents are handled.

8 IBM Open Class: Text and Internationalization

You can compare styled text in an IText object, but styling information is ignored.

Collation Subclasses
The collation classes include the abstract base class ICollation, which defines the
protocol for language-sensitive string comparison and several concrete subclasses,
and ICollationIterator, which lets you iterate through the list of available localized
collation objects. The following chart describes some of the collation classes that
are available:

Class Description

IBitwiseCollation Provides bitwise, language-insensitive string
comparison.

ICollation Provides access to a host-specific collation
for a given language as available. Primary
class for language-sensitive string
comparison.

ICollationIterator Lets you iterate through the available
collation objects.

ICollation provides the protocols you use to create both language-sensitive and
language-insensitive collation objects. The ICollation interface is a superset of the
interface of the ANSI C++ Standard collate class. Based on the locale you specify,
the ICollation::createCollation function can return:
v A host-specific collation object for the specified language or locale
v An IBitwiseCollation object that performs language-insensitive collation
v To request that createCollation return an IBitwiseCollation object, specify the

POSIX locale (“POSIX” or “C”).

The following chart describes the interface for ICollation:

Member function Description

createCollation A static function that returns the collation
object for a specified locale. If you don’t
specify a locale, the function returns the
collation object for the default locale.
createCollation also lets you specify a
comparison level. The default is
ICollation::kTertiaryDifference.

compare Returns the result of comparing two strings.
The result is returned as an enum value:
kSourceEqual, kSourceLess, or
kSourceGreater.

strength and setStrength Strength and setStrength provide access to
the collation object’s current ordering
strength (primary, secondary, or tertiary).

isEqual, isGreaterThan, and isLessThan Convenience functions that return a bool
value indicating the comparison result of
two strings.

transform Converts an IText into another IText that is
compared lexicographically with the original
text. Comparing two transformed IText
objects returns the same results as
comparing the same strings before
transformation.

Chapter 1. International Framework 9

Member function Description

localeKey Returns an ILocaleKey indicating the locale
the collation object is associated with.

displayName Returns a displayable name for the object for
a specified locale.

Collation Iteration
Use ICollationIterator to iterate through the list of international collation objects
currently available on the system.

Ordering Strength
The correct collation for each language or script is determined by a set of rules that
define a ranking, from least to greatest, for each character. To allow more
comparison options, each character is assigned an ordering priority within the
ranking: primary, secondary, or tertiary. For example, in an English collation:
v Base letters represent a primary difference (“a” and “b”)
v Diacritical marks on the same base letter represent a secondary difference (“a”

and “Ô”)
v Uppercase and lowercase versions of the same base letter represent a tertiary

difference (“a” and “A”)

In English, then, you can implement case-insensitive comparison by setting the
ordering strength to kSecondaryDifference. Primary and secondary differences are
considered but any tertiary (case) differences are ignored-thus, “pat,” “Pat,” and
“PAT” would be considered equivalent strings.

When you create a collation object, you specify an ordering strength that
determines whether all differences, both primary and secondary differences, or
only primary differences are considered. The types of differences that are
considered primary, secondary, and tertiary may vary based on the language you
are working with.

This table shows the results for English strings compared with different ordering
strengths:

Source Target Ordering strength Comparison result

abc abc kPrimaryDifference kSourceEqual

õbc abc kSecondaryDifference kSourceEqual

Abc abc kTertiaryDifference kSourceEqual

abc def kPrimaryDifference kSourceLess

abc õbc kSecondaryDifference kSourceLess

abc Abc kTertiaryDifference kSourceLess

def abc kPrimaryDifference kSourceGreater

õbc abc kSecondaryDifference kSourceGreater

Abc abc kTertiaryDifference kSourceGreater

When you are using the collation object for the POSIX locale specifying an
ordering strength has no effect.

10 IBM Open Class: Text and Internationalization

“Chapter 1. International Framework” on page 1
“Locales in Internationalization” on page 2
“Locale Classes” on page 3
Transcoding Classes
“Transcoder Names” on page 20

Instantiate a Collation Object
ICollation is an abstract class that provides the standard interfaces for all collation
operations. Subclasses of ICollation provide host-specific collation objects for
specific natural languages. IBitwiseCollation is a special portable collation object
that provides simple, language-insensitive comparison of Unicode values.

By using the collation classes in conjunction with the locale mechanism, you can
implement text sorting and searching features that will work correctly in any user’s
natural language without needing to know the specific requirements of that
language. To create a language-sensitive collation object, call the
ICollation::createCollation function. You pass in the locale key corresponding to the
language (or more specific locale) of the text you want to collate. For example, you
would code the following to get the standard collation for English:

ICollation* order =
ICollation::createCollation(ILocaleKey(“EN”));

If you use the locale key, createCollation returns the best collation object:
v If the locale key is a valid host locale key, it creates a host-specific collation

object.
v If the locale key doesn’t represent a valid host or portable locale, the function

throws an exception.
v If you don’t specify a locale key, the function returns the default collation object

for the current locale.

“Collation Classes” on page 8
“Locale Names” on page 5

“Instantiate a Transcoder” on page 21

Perform Case-Insensitive String Comparison
To perform case-insensitive comparison of strings, set the ordering strength of the
ICollation object to ignore the level of difference represented by a case difference.
Generally cases represent a tertiary difference, although this may differ between
languages. This means you set the collation object to consider only primary and
secondary differences and ignore tertiary differences.
1. Create the collation object by calling ICollation::createCollation, specifying the

desired locale and ordering strength (ICollation::kSecondaryDifference).
2. Call the compare function or one of the helper functions isEqual,

isGreaterThan, or isLessThan to compare the two strings.

For example, this code shows how to do case-insensitive comparison of two
strings, text1 and text2, using the collation object for U.S. English:

// Create a locale key for the U.S. English locale
ILocaleKey usLoc(“EN”, “US”);
// Create the collation object
ICollation*

Chapter 1. International Framework 11

order = ICollation::createCollation
(usLoc,
ICollation::kSecondaryDifference);

int result = order->compare(text1, text2);
if (result == ICollation::kSourceEqual)
{

// strings are equal
// or only have case differences

}
else
{

// strings are not equal
}
delete order;

“Locale Classes” on page 3
“Locale Names” on page 5
“Collation Classes” on page 8
Ordering Strength

“Perform Language-Sensitive String Comparison”
“Perform Bitwise String Comparison” on page 13
“Use the ICollation::transform Function” on page 14

Perform Language-Sensitive String Comparison
Use ICollation to perform language-sensitive comparison of two Unicode strings.
You can use the collation object for the language of the current default locale, or
you can specify a particular language or locale.
1. Call ICollation::createCollation to get the collation object for the locale you

want. You can indicate both a specific locale and an ordering strength for the
collation object. If you don’t specify a locale, the functions returns the collation
object for the current default locale. If you don’t specify an ordering strength,
the default is ICollation::kTertiaryDifference.

2. Call ICollation::compare to compare the two strings. The compare function
returns an enum value indicating the results of the comparison: kSourceLess
(-1), kSourceEqual (0), or kSourceGreater (1). You can also use the functions
isEqual, isGreaterThan, or isLessThan. These return a bool.

For example, this code shows how to compare two strings, text1 and text2, using
the collation object for the French locale:

// Create a locale key for the French locale
ILocaleKey french((IText(“FR_FR”));
// Create the collation object,
// using the default ordering strength
ICollation*

order = ICollation::createCollation(french);
// Compare the strings
ICollation::ETextComparisonResult
result = order->compare(text1, text2);
if (result == ICollation::kSourceEqual)
{

// strings are equal
}
else if (result == ICollation::kSourceLess)
{

// text1 is less than text2
}

12 IBM Open Class: Text and Internationalization

else
{

// text1 is greater than text2
}
delete order;

This code shows how to use isEqual to compare the strings, using the collation
order for the default locale:

ICollation* order = ICollation::createCollation();
if (order->isEqual(text1, text2))
{

// strings are equal
}
delete order;

“Locale Classes” on page 3
“Locale Names” on page 5
“Collation Classes” on page 8
Ordering Strength

“Perform Case-Insensitive String Comparison” on page 11
“Perform Bitwise String Comparison”
“Use the ICollation::transform Function” on page 14

Perform Bitwise String Comparison
IBitwiseCollation performs bitwise (language-insensitive) string comparison,
directly comparing the Unicode double-byte character values. Double-byte
character sets are used for handling languages such as Japanese, Chinese, and
Korean, which contain more symbols than can be represented by the 256 characters
of the single-byte character set.

The following steps show you how to perform a bitwise comparison:
1. Create an IBitwiseCollation object. You can either create the IBitwiseCollation

object directly from the IBitwiseCollation constructor, or call
ICollation::createCollation, passing in the POSIX (“C”) locale.

2. Use compare or one of the helper functions isEqual, isGreaterThan, or
isLessThan to compare the strings.

The following code extract performs a bitwise string comparison between the IText
objects text1 and text2:

// Create a locale key for the POSIX locale
ILocaleKey cLocale(“C”);
// Create the IBitwiseCollation object
ICollation*

order = ICollation::createCollation
(cLocale);

if (order->isEqual(text1, text2))
{

// strings are equal
}
else
{

// strings are not equal
}
delete order;

Chapter 1. International Framework 13

Specifying an ordering strength has no effect on the comparison results when
using IBitwiseCollation.

“Locale Classes” on page 3
“Locale Names” on page 5
“Collation Classes” on page 8
Ordering Strength
“DBCS and National Language Support” on page 40
“Double-Byte Character Set Support” on page 39

“Perform Case-Insensitive String Comparison” on page 11
“Perform Language-Sensitive String Comparison” on page 12
“Use the ICollation::transform Function”

ILocaleKey

Use the ICollation::transform Function
You may want to use the transform function when you are going to compare one
string with many other strings, for example, when creating the index for a
database.

The result of comparing two transformed strings should be the same as the result
of comparing the original strings. For example:

ILocaleKey locale(“EN”, “UK”);
ICollation* order = ICollation::createCollation(locale);
xfmSource = order->transform(sourceString);
xfmTarget = order->transform(targetString);
int oldResult = order->compare(sourceString, targetString);
int newResult = xfmSource.compare(xfmTarget);
if (oldResult == newResult)

{
cout << “Transform succeeded.\n”;
}

else

{
cout << “Transform did not succeed. \n”;
}
delete order

“Locales in Internationalization” on page 2
“Locale Classes” on page 3
“Locale Names” on page 5
“Collation Classes” on page 8

“Perform Case-Insensitive String Comparison” on page 11
“Perform Language-Sensitive String Comparison” on page 12
“Perform Bitwise String Comparison” on page 13

14 IBM Open Class: Text and Internationalization

ICollation
ILocaleKey

Iterate through Available Collation Objects
Use ICollationIterator to iterate through the available collation objects. You may
only iterate through host objects; you may not iterate through portable objects.
ICollationIterator provides a create function that returns the collation object
currently referenced by the iterator.

Follow these steps to use ICollationIterator:
1. Instantiate an ICollationIterator object.
2. Use operator++ to move forward through the list of available collation objects.
3. Use create to get the collation object referenced by the iterator at a given point.

For example, this code shows how to iterate through the available collation objects
and instantiate a collation object for French, if it is available:

ICollationIterator iter;
bool notFound = true;
ILocaleKey key;
while (notFound && iter)
{

key.setPOSIXID(iter.localePOSIXID());
if (key.languageID == “FR”)
{

ICollation* order = iter.create();
notFound = false;

}
else
{

iter++;
}

}
delete order;

“Collation Classes” on page 8

“Iterate through Available Collation Objects”
“Iterate through Available Locales” on page 7
“Iterate through Available Transcoders” on page 26

ILocaleKey

Transcoding Classes
Overview of Transcoding Classes
Transcoding is the process of converting text data between two coded character
sets using mapping rules.

The goal of the Open Class libraries is for all text to be encoded in Unicode and
manipulated according to the Unicode character encoding standard. Any text you

Chapter 1. International Framework 15

import from or export to a system that uses a different character encoding scheme
must be transcoded so that the text can be manipulated directly on the target
system.

The Open Class transcoding classes support conversion of character data to and
from Unicode, and a wide variety of other encoding sets and encoding schemes,
including ASCII and other ISO standards, This support enables you to import and
export text data between Open Class applications and other environments. The
Open Class transcoders use the ioc::unichar_t datatype to represent Unicode
characters in IText objects and the char datatype to represent non-Unicode
characters in IString objects.

The transcoding classes also provide mechanisms for handling characters that do
not have obvious mappings between Unicode and another character set. These
mechanisms handle both line-breaking characters, which differ between platforms,
and exception characters. Exception characters are characters that can often be
transcoded but do not have a one-to-one mapping. These may include ligature
characters, foreign characters, or composed characters.

The following table describes the transcoding classes:

Class Description

ITranscoder Primary class defining protocols for
transcoding character data between Unicode
and any other character encoding standard

ILineBreakConverter Simple class used to postprocess
line-breaking conventions after character
data is transcoded into Unicode, or
preprocess line-breaking characters before
Unicode data is transcoded into char-based
data

ICharacterSetIterator Lets you iterate through the character sets
for which transcoders are available

Transcoders
ITranscoder provides the abstract protocol for all transcoders supported by the
Open Class system. You create a transcoder by specifying a character set to
ITranscoder::createTranscoder, which returns an instance of the ITranscoder
subclass supporting that character set.

ITranscoder is currently the only public transcoder class. You access all concrete
subclasses through the ITranscoder interfaces.

ITranscoder provides both a simple, high-level interface, which converts between
IText and IString instances, and a low-level interface, based on the ANSI C++

16 IBM Open Class: Text and Internationalization

Standard codecvt interface, which takes pointers to char and ioc::unichar_t arrays.
The high-level functions take two parameters, a char-based IString object and an
ioc::unichar_t-based IText object, and convert either to or from Unicode data.

The low-level pointer-based functions let you manipulate char and ioc::unichar_t
strings directly. Some of the low-level functions are identical to the interfaces
provided by the ANSI C++ standard library codecvt class. They allow you to
specify exact ranges of text to transcode and to provide error-recovery
mechanisms.

The following table describes the ITranscoder interface:

Member function Description

createTranscoder Returns a transcoder for the character
encoding set you specify. See the topic
Transcoder Names for a list of supported
transcoder names. If you don’t specify a
name, the function returns a transcoder for
the current host character set.

toUnicode and fromUnicode Provide conversion between char and
ioc::unichar_t data. Overloads of these
functions take IString or char* and IText or
ioc::unichar_t*.

result Returns an enum value that indicates
whether the conversion was fully converted,
partially converted, or stopped due to an
error. This value is also returned by
toUnicode and fromUnicode.

unmappedBehavior and
setUnmappedBehavior

Let you determine how the transcoder
handles exception characters.

setCharSubstitute Lets you specify a character to be used as a
substitute for characters that do not have a
mapping from Unicode to the specified
character set. The default character is
UASCII::kSubstitute (0x1A).

uniCharSubstitute Returns the character used as a substitute
for characters that do not have a mapping
from the source character set into Unicode.

characterEncoding Returns an IText containing the name of the
character encoding supported by the
transcoder.

characterSet Returns an IText containing the name of the
default encoding for a specified locale.

resetState Resets the state of the transcoder to ASCII.

Storage query functions Let you get information about storage
requirements so you can manage storage
allocation for transcoding operations
efficiently.

Line-Breaking Conversion
ILineBreakConverter is a simple class that you use to ensure that line breaking
characters are transcoded correctly between Unicode and the target character set.
You can use ILineBreakConverter to postprocess strings just converted into
Unicode, or preprocess strings before converting them into char data.

Chapter 1. International Framework 17

The following table describes the ILineBreakConverter interface:

Member function Description

convertInPlace and convert Process the line breaks in an IText object
according to a specified line-breaking
convention.

hostConvention Returns the line-breaking convention for the
current host.

ILineBreakConverter uses the enum ELineBreakConvention to describe different
line-breaking conventions. The following describes the current line-breaking
conventions:

Constant Description Code

kUnicode Unicode convention UGeneralPunctuation
::kParagraphSeparator (U+2029)

kCRLF Windows®, DOS,
OS/2® convention

CR LF sequence

kLF UNIX® convention LF

kCR Macintosh System 7
convention

CR

kCRLF_VT Microsoft Word/Rich
Edit convention

CR LF or VT

kHost Indicates the current
host’s convention

ILineBreakConverter uses the following rules to convert between various host
line-breaking conventions and Unicode:

Host
Line-breaking
convention

Unicode text with
host convention Unicode convention

Win32, OS/2, DOS CR LF sequence 0x000D 0x000A U+2029

AIX LF 0x000A U+2029

Macintosh CR 0x000D U+2029

Word/RichEdit CR LF sequence 0x000D 0x000A U+2029

Word/RichEdit VT 0x000B U+2028

Character Set Iteration
Use ICharacterSetIterator to iterate through the list of character encoding sets for
which transcoders are available on the current system. ICharacterSetIterator returns
IText objects that contain the names of supported character sets.

Special Characters
The ITranscoder transcoding functions provide special handling for both line-break
and exception characters.

The class ILineBreakConverter provides for conversion between the Unicode
paragraph-separator character (U+2029 or
UGeneralPunctuation::kParagraphSeparator) and the appropriate line-break

18 IBM Open Class: Text and Internationalization

character for a given character set or host. You can use this class to postprocess
transcoded strings after conversion into Unicode or to preprocess strings before
conversion into char-based formats.

ITranscoder also lets you control how exception characters are handled. Exception
characters are characters that do not have a single-character equivalent or that do
not exist in the target character set. For example, Greek characters may be used in
some environments where they are not part of the native character set, and ligature
characters, which by definition combine two characters, are often mapped to a
sequence of their individual components. The following table shows some typical
cases:

Unicode Name
Unicode
sequence Display

May be mapped
to Control code

LATIN SMALL
LIGATURE FI

FB01 [fi] 0066 [f] +
0069 [i]

\xde

GREEK
CAPITAL
LETTER DELTA

0394 D ² or other \xc6

GREEK SMALL
LETTER PI

03C0 p * or ¼ or other \xb9

To specify how you want exception characters to be handled, call the
ITranscoder::setUnmappedBehavior function. You can specify a substitution
character, in either Unicode or the target character set, or you can specify that the
transcoder either skip exception characters or stop the transcoding operation when
it reaches one.

By default, transcoders substitute UGeneralFunction::kReplacementCharacter
(U+FFFD) for Unicode characters with no mapping, and the ASCII substitution
character (UASCII::kSubstitute, or 0x1A) for char characters with no mapping.

Exception Characters
The transcoders let you specify how you want exception characters to be handled.
Exception characters are characters for which there are no one-to-one mappings
between Unicode and the target character set. Use the EUnmappedBehavior enum
to specify one of the following:

kUseSub Substitutes an equivalent representation in
the target character set for characters with
no exact mapping

kStop Stops transcoding when an exception
character is detected

kOmit Skips any exception characters detected

If you don’t specify behavior for exception character handling, the transcoder uses
EUnmappedBehavior::kUseSub as the default. The substitute characters that are
used are:
v UGeneralPunctuation::kReplacementCharacter (U+FFFD) for characters that

cannot be transcoded into Unicode
v UASCII::kSubstitute (0x1A) for characters that cannot be transcoded out of

Unicode, that is, into the target char-based character set

Chapter 1. International Framework 19

You can set the char substitute character to another character with the ITranscoder
function setCharSubstitute. Whether to display these characters as glyphs or as text
strings is left to the host operating system.

Mapping Proximity
When you create a transcoder for a specific character set, you can specify how
close the mapping proximity must be between Unicode and the target character
set. Use the EMappingProximity enum to specify one of the following:

kExactMapping Create a transcoder with an exact mapping
to the specified character set

kSupersetMapping Create a transcoder with a character set that
is a superset of the specified character set

kCloseMapping Create a transcoder with a character set as
close to the specified character set as
possible

If you don’t specify a mapping proximity, the transcoder uses
EMappingProximity::kSupersetMapping as the default.

Transcoder Names

Instantiate a Transcoder
Iterate through Available Transcoders
Process Line-Breaking Characters
Verify Transcoding Results

Transcoder Names
This table lists the transcoder name for each character encoding set currently
supported by the transcoding classes and their corresponding names on various
platforms. Use the name listed in the “Open Class Transcoder Name” column to
create a transcoder for a particular character encoding set.

Character set

Open Class
Transcoder
Name

WinNT code
page OS/2 code page AIX code page

ASCII US-ASCII 1252 IBM-1252 ISO8859-1

Latin 1/ANSI ISO-8859-1 1252 IBM-1252 ISO8859-1

EasternEurope ISO-8859-2 1250 - close IBM-1250 ISO8859-2

Microsoft
Eastern Europe

MSCP-1250 1250 n/a n/a

Other Latin Set ISO-8859-3 n/a n/a ISO8859-3

Other Latin Set ISO-8859-4 n/a n/a ISO8859-4

ISO Cyrillic ISO-8859-5 n/a IBM-1251 ISO8859-5

Microsoft
Cyrillic

MSCP-1252 1251 n/a n/a

ISO Arabic ISO-8859-6 n/a IBM-1256 ISO8859-6

Microsoft Arabic MSCP-1256 1256 n/a n/a

20 IBM Open Class: Text and Internationalization

Character set

Open Class
Transcoder
Name

WinNT code
page OS/2 code page AIX code page

ISO Greek ISO-8859-7 1253 - close IBM-1253 ISO8859-7

Microsoft Greek MSCP-1253 1253 n/a n/a

ISO Hebrew ISO-8859-8 1255 - close IBM-1255 ISO8859-8

Microsoft
Hebrew

MSCP-1255 1255 n/a n/a

ISO Turkish ISO-8859-9 1254 - superset IBM-1254 ISO8859-9

Microsoft
Turkish

MSCP-1254 1254 n/a n/a

IBM Shift JIS Shift-JIS n/a n/a IBM-932

Microsoft
Shift JIS

Shift-JIS 932 - superset n/a n/a

IBM EUC EUC n/a n/a IBM-eucJP

IBM Simplified
Chinese

GB-2312.1980 n/a n/a IBM-eucCN

IBM Korean KSC-5601 n/a IBM-949 IBM-eucKR

IBM Traditional
Chinese

CNS-11643.1986 n/a IBM-950 IBM-eucTW

8-bit UTF UTF-8 UTF-8 UTF-8 UTF-8

Macintosh
Roman

MSCP-10000 10000 n/a n/a

MS-DOS US MSCP-437 437 n/a n/a

DOS US IBM-437 n/a IBM-437 IBM-437

MS-DOS
Multilingual

MSCP-850 850 n/a n/a

DOS
Multilingual

IBM-850 n/a IBM-850 IBM-850

“Chapter 1. International Framework” on page 1
“Locales in Internationalization” on page 2
“Locale Classes” on page 3
“Collation Classes” on page 8
Transcoding Classes

Instantiate a Transcoder
ITranscoder is an abstract class that provides the standard interfaces for all
transcoding operations. Transcoders for each character set are implemented in
subclasses of ITranscoder. To create a transcoder, call the static function
ITranscoder::createTranscoder with a parameter specifying the name of the
character set you want to transcode text to or from.

For example, to create a transcoder for the standard Latin1 ISO 8859 character set,
you would do the following:

ITranscoder* transcoder =
ITranscoder::createTranscoder(“ISO-8859-1”);

Chapter 1. International Framework 21

If you don’t specify a character set name, the function returns the default
transcoder for the current host character set. For example, on a Japanese Windows
NT® host, you will get a Shift-JIS transcoder.

Transcoding Classes
“Transcoder Names” on page 20

“Instantiate a Collation Object” on page 11

Convert Text from Character Format to Unicode
Use ITranscoder to convert text data from a char-based format (either char* or
IString) to Unicode (either ioc::unichar_t* or IText).

To use ITranscoder to convert from char text data into Unicode text:
1. Call ITranscoder::createTranscoder to create a transcoder for the desired

character set. See Transcoder Names for a transcoder name to use. You can also
specify a mapping proximity. ITranscoder::kSupersetMapping is the default.

2. Set the behavior for handling exception characters if you want the transcoder to
do something other than use substitution characters. You can use
ITranscoder::setUnmappedBehavior to specify exception handling behavior.

3. Transcode the text using the toUnicode function.
4. Postprocess the line-breaking characters by calling

ILineBreakConverter::convertInPlace or convert.

For example, this code shows how to transcode text from the Microsoft ShiftJIS
character set (charText) into Unicode:

// From character format to Unicode
#include <itrancod.hpp>
#include <iostream.h>
#include <iexcept.hpp>
void main()
{

try
{

// Create the transcoder
ITranscoder*

transcoder = ITranscoder::createTranscoder
(“Shift-JIS”,
ITranscoder::kExactMapping);

// Transcode the string
IText unicodeText;
char* charText = “Transcode me!”;
ITranscoder::result

res = transcoder->toUnicode(charText, unicodeText);
if (res == codecvt_base::ok)
{

cout << “Successful transcoding ” << endl
}
else
{

cout << “Couldn't transcode” << endl;
}
// Postprocess any line-breaking characters
ILineBreakConverter::convertInPlace(unicodeText);
delete transcoder;

}

22 IBM Open Class: Text and Internationalization

catch (IException &ie)
{

cout << “Type of exception is: ” << ie.name() << endl
<< ie.text() << endl;

}
}

The member function ITranscoder::createTranscoder will throw an exception if it is
unable to create a new transcoder object. For example, if you have not installed the
Japanese locale and you execute this example, you will see output similar to the
following:
Type of exception is: IObjectNotFound
Could not create metafile resource.

Transcoder Names

Convert Text from Unicode to Character Format
Process Line-Breaking Characters
Convert with ANSI C++ Compatible Transcoding Functions
Verify Transcoding Results

Convert Text from Unicode to Character Format
To convert text data from Unicode to another character encoding standard, use
ITranscoder. The Unicode data can be either an ioc::unichar_t* or an IText object.
The char data can be either a char* or an IString object.

To convert text from Unicode into another character format:
1. Call ITranscoder::createTranscoder to create a transcoder for the desired

character set. See the topic Transcoder Names for the transcoder name to use.
You can also specify a mapping proximity. ITranscoder::kSupersetMapping is
the default.

2. Set the behavior for handling exception characters if you want the transcoder to
do something other than use substitution characters. You can specify the
behavior using ITranscoder::setUnmappedBehavior. You can also set specific
substitution characters using setCharSubstitute.

3. Preprocess the line-breaking characters by calling
ILineBreakConverter::convertInPlace or convert. You must specify the
line-breaking convention to use for the non-Unicode text.

4. Transcode the text using the fromUnicode function.

For example, this code shows how to transcode text from Unicode (unicodeText)
into the ISO-8859-1 (Latin) character set:

// From Unicode to character format
#include <itrancod.hpp>
#include <iostream.h>
#include <iexcept.hpp>
void main()
{

try
{

IText unicodeText(“Transcode me!”);
// Create the transcoder
ITranscoder*

transcoder = ITranscoder::createTranscoder

Chapter 1. International Framework 23

(“ISO-8859-1”);
// Preprocess any line breaking characters
ILineBreakConverter::convertInPlace

(unicodeText, ILineBreakConverter::kHost);
// Transcode the string
IString asciiText;
ITranscoder::result
res = transcoder->fromUnicode

(unicodeText,asciiText);
if (res == codecvt_base::ok)
{

cout << “Successful transcoding” << endl
<< unicodeText << endl;

}
else
{

cout << “Couldn't transcode” << endl;
}
delete transcoder;

}
catch (IException &ie)
{

cout << “Type of exception is: ” << ie.name() << endl;
<< ie.text() << endl;

}
}

The member function ITranscoder::createTranscoder will throw an exception if it
cannot create a new transcoder object.

Transcoder Names

Convert Text from Character Format to Unicode
Process Line-Breaking Characters
Convert with ANSI C++ Compatible Transcoding Functions
Verify Transcoding Results

Process Line-Breaking Characters
To ensure that line-break characters are correctly transcoded between Unicode and
a host character set, use the ILineBreakConverter class, either to preprocess strings
before converting them to a host character set or to postprocess strings after
converting them into Unicode.

The following steps show how to use ILineBreakConverter:
1. Call the static function convert or convertInPlace. The function convert returns

a new IText with the converted string. The function convertInPlace operates
directly on the IText that you passed.

2. When preprocessing strings for conversion to a non-Unicode character set, you
must specify the convention to use. You can specify a particular convention or
ILineBreakConverter::kHost, which uses the convention for the current host.

For example, this code excerpt shows how to postprocess line breaks after
conversion into Unicode, then preprocess for conversion back to the original
character set:

// Transcode into Unicode
transcoder->toUnicode(hostText, unicodeText);
// After transcoding, postprocess the line breaks.

24 IBM Open Class: Text and Internationalization

ILineBreakConverter::convertInPlace(unicodeText);
// Operate on unicodeText
// ...
// Before transcoding out of Unicode,
// preprocess the line breaks
ILineBreakConverter::convertInPlace

(unicodeText,
ILineBreakConverter::kHost);

transcoder->fromUnicode(unicodeText, hostText);

Transcoding Classes
“Transcoder Names” on page 20

Convert Text from Character Format to Unicode
Convert Text from Unicode to Character Format
Convert with ANSI C++ Compatible Transcoding Functions
“Verify Transcoding Results” on page 26

Convert with ANSI C++ Compatible Transcoding Functions
Instead of transcoding directly between IText and IString objects, you can use
pointer-based functions, based on the ANSI C++ Standard codecvt functions, that
directly manipulate char* and ioc::unichar_t* data. The following steps describe
how to convert from char* data into Unicode:
1. Call ITranscoder::createTranscoder to create a transcoder for the source

character set.
2. Establish the range of the source char array to transcode and create a pointer to

iterate through the char array during transcoding.
3. Allocate an ioc::unichar_t array to hold the transcoded data and ioc::unichar_t*

variables to use as pointers when iterating through the array during
transcoding.

4. Transcode using the toUnicode function.

For example, this code shows how to transcode a char string into Unicode:
const char* ansiText1 = “An ISO-8859-1 string.”;
ITranscoder*

transcoder = ITranscoder::createTranscoder
(“ISO-8859-1”);

ioc::unichar_t unicodeText[BUFSIZE];
char* ansiText1_next = NULL;
ioc::unichar_t* unicodeText_end = unicodeText+BUFSIZE;
ioc::unichar_t* unicodeText_next = NULL;
// Transcode the string
ITranscoder::result
res = transcoder->toUnicode

(ansiText1,
ansiText1+strlen(ansiText1),
ansiText1_next,
unicodeText,
unicodeText_end,
unicodeText_next);

if (res == std::codecvt_base::ok)
{

// Transcoding was successful
}
delete transcoder;

Chapter 1. International Framework 25

Transcoding Classes
Transcoder Names

Convert Text from Character Format to Unicode
Convert Text from Unicode to Character Format
Process Line-Breaking Characters
Verify Transcoding Results

Iterate through Available Transcoders
Use ICharacterSetIterator to iterate through the character sets for which transcoders
are available. The iterator returns an IText object containing the name of the
character set supported by each transcoder.

The following steps show how to use ICharacterSetIterator:
1. Instantiate an ICharacterSetIterator.
2. Use operator++ to move forward through the list of transcoders.

For example, this code shows how to search through the character sets for which
transcoders are available to determine whether a transcoder for for the ISO-8859-7
character set is provided:

IText greek(“ISO-8859-7”);
ICharacterSetIterator iter;
while (iter && *iter != greek)
{

iter++;
}
if (iter)
{

// If the iterator was found, construct it
ITranscoder*

transcoder = ITranscoder::createTranscoder(iter*);
}

Transcoding Classes
“Transcoder Names” on page 20

“Iterate through Available Collation Objects” on page 15
“Iterate through Available Locales” on page 7
“Iterate through Available Transcoders”

ITranscoder

Verify Transcoding Results
The ITranscoder transcoding functions return an enum value that indicates how
well the transcoder was able to convert the data to the target character set. The
following chart describes the possible values:

26 IBM Open Class: Text and Internationalization

Value Description

ok The conversion was completed.

partial The source characters were only partially
converted.

error The source contained characters that could
not be converted.

noconv No conversion was needed.

Transcoding Classes

Convert Text from Character Format to Unicode
Convert Text from Unicode to Character Format
“Process Line-Breaking Characters” on page 24
Convert with ANSI C++ Compatible Transcoding Functions

Date and Time Classes
The IDate and ITime classes are independent classes that provide you with data
types to store and manipulate date and time information. Because the IDate and
ITime classes are independent, when an ITime object’s time passes 23:59:59
(24-hour format) or 11:59:59 (12-hour format), it has no effect on the value of any
IDate object.

The ITimeStamp class provides you with a data type to store and manipulate
timestamp information, where a timestamp represents a specific point in time; for
example, combined date and time.

With these classes, you can create date, time, and timestamp objects, and use
member functions to do the following:
v Write date, time, or timestamp objects to an output stream
v Access detailed information about dates, times, or timestamps
v Compare dates, times, or timestamps
v Test the characteristics of date or time objects
v Add or subtract days from a date object
v Add or subtract hours, minutes, or seconds from a time or timestamp object
v Convert between date formats or between time formats.

“Dates and Calendars”
Information Functions for IDate Objects
“Time” on page 31
“Information Functions for ITime Objects” on page 31
“Time Stamps” on page 35
“Information Functions for ITimeStamp Objects” on page 35

Dates and Calendars
The IDate class uses Gregorian calendar dates. The Gregorian calendar is in
general use and consists of the 12 months, January to December.

Chapter 1. International Framework 27

IDate also supports the Julian date format, which contains the year in positions 1
and 2, and the day of the year in positions 3 through 5. If the day of the year is
less than three digits, zeros are added on the left to increase the size to three digits.
For example, February 14, 1965 is 65045 as a Julian date. (February 14 is the 45th
day of the year.)

The IDate class returns the names of the days and months in the language defined
by the current locale. For information on defining the locale, see the standard C
library function setlocale().

“Date and Time Classes” on page 27
Information Functions for IDate Objects
“Time” on page 31
“Information Functions for ITime Objects” on page 31
“Time Stamps” on page 35
“Information Functions for ITimeStamp Objects” on page 35

“Create an IDate Object” on page 29
“Change an IDate Object” on page 29
“Compare and Test IDate Objects” on page 30

Information Functions for IDate Objects
The IDate class defines information functions that you can use to obtain specifics
about an IDate object. For example, you can find out what day of the week,
month, or year an IDate object’s date falls on, or what the name of the day or
month is for the current locale. You can also find out what today’s date is. The
following example shows some of the IDate information functions:

// Information functions for IDate class

#include <iostream.h>
#include <istring.hpp>
#include <idate.hpp>

void main ()
{

IDate Day1(27,IDate::May,1964);
cout << Day1.dayName() << “ ”

<< Day1.monthName() << “ ”
<< Day1.dayOfMonth() << “ out of ”
<< IDate::daysInMonth(Day1.monthOfYear(), Day1.year()) << “ days in month, ”
<< IDate::daysInYear(Day1.year()) << “ days in year ”
<< Day1.year() <<'.' << endl;

}

This program produces the following output:
Wednesday May 27 out of 31 days in month, 366 days in year 1964.

“Dates and Calendars” on page 27
“Date and Time Classes” on page 27
“Time” on page 31
“Information Functions for ITime Objects” on page 31
“Time Stamps” on page 35
“Information Functions for ITimeStamp Objects” on page 35

28 IBM Open Class: Text and Internationalization

Create an IDate Object
You can create an IDate object using different IDate constructors:

// Month, day, year
IDate OneDay(IDate::June,30,1994);
// Day, month, year
IDate AnotherDay(23,IDate::April,1961);
// Julian date format
IDate SomeDay(940616);
// Year, day of year
IDate Yesterday(1994,177);

The constructors accepting a month use the IDate enumeration Month, whose
members are named January through December (the months of the year in
English).

“Date and Time Classes” on page 27
“Dates and Calendars” on page 27

“Create an ITime Object” on page 32
“Change an ITime Object” on page 32
“Compare ITime Objects” on page 33
“Write an ITime Object to an Output Stream” on page 34
“Create an ITimeStamp Object” on page 36
“Change an ITimeStamp Object” on page 37
“Compare ITimeStamp Objects” on page 37
“Change an IDate Object”
“Compare and Test IDate Objects” on page 30

Change an IDate Object
You can add days to, or subtract days from, an IDate object. You can also subtract
one date from another, in which case the result is the number of days between the
two dates. The following example code changes various IDate objects:

IDate Day1, Day2;
int NumDays;
Day1=IDate::today();
// Day2 is one day after Day1
Day2=Day1+1;
// Day2 is now three days after Day1
Day2+=2;
// NumDays=3
NumDays=Day2-Day1;

You cannot add two IDate objects together because such an addition does not
make sense. However, you can add two ITime objects together.

“Date and Time Classes” on page 27
“Dates and Calendars” on page 27

“Create an ITime Object” on page 32
“Change an ITime Object” on page 32

Chapter 1. International Framework 29

“Compare ITime Objects” on page 33
“Write an ITime Object to an Output Stream” on page 34
“Create an ITimeStamp Object” on page 36
“Change an ITimeStamp Object” on page 37
“Compare ITimeStamp Objects” on page 37
“Create an IDate Object” on page 29
“Compare and Test IDate Objects”

Compare and Test IDate Objects
You can compare two IDate objects to determine whether they are equal, or
whether one is later than the other. The following operators are defined: ==, !=, <,
<=, >, >=. For example, the following if-statement evaluates true:

IDate Day1(IDate::January,1,1994);
IDate Day2(IDate::June,3,1968);
IDate Day3(IDate::July,12,1941);
if ((Day1 > Day 2) && (Day1 != Day3))
{

// This if-statement evaluates to true
}

You can also check whether a particular year is a leap year, or whether a particular
combination of day, month, and year is valid. The isLeapYear() function returns
true if its integer argument is a leap year.

The isValid() function accepts combinations of day, month, and year (or day of
year and year), and returns true if the provided date is valid. For example, the first
call to isValid() returns true for the first date below, and the second returns false:

if (IDate::isValid(IDate::June, 30, 1990))
{

// This call to isValid() returns true
}
if (IDate::isValid(1965,366))
{

// ...
}
else
{

// This call to isValid returns false.
// There is no day number 366 in 1965.

}

“Date and Time Classes” on page 27
“Dates and Calendars” on page 27

“Create an ITime Object” on page 32
“Change an ITime Object” on page 32
“Compare ITime Objects” on page 33
“Write an ITime Object to an Output Stream” on page 34
“Create an ITimeStamp Object” on page 36
“Change an ITimeStamp Object” on page 37
“Compare ITimeStamp Objects” on page 37
“Create an IDate Object” on page 29
“Change an IDate Object” on page 29

30 IBM Open Class: Text and Internationalization

Time
The ITime class refers to time in the 24-hour format by specifying time units
(hours, minutes, seconds) past midnight.

To display an ITime object, use either the asString function to convert the ITime
object to an IString, or the asText function to convert to an IText object.

To display ITime objects in the 12-hour format, use the asString function with a
char* argument of “%r”. (This argument is a format string. All format specifiers of
the strftime() function of the standard C library are supported by the IString
conversion function.)

To display ITime objects in the 12-hour format with an IText object, use the asText
function with a Unicode argument of “%r”. For example:

ITime time;
time.asText(IText(“%r”));

Note that objects of the ITime class are precise only up to the nearest second, and
cannot be used for more precise timings.

“Dates and Calendars” on page 27
“Date and Time Classes” on page 27
Information Functions for IDate Objects
“Information Functions for ITime Objects”
“Time Stamps” on page 35
“Information Functions for ITimeStamp Objects” on page 35

“Create an ITime Object” on page 32
“Change an ITime Object” on page 32
“Compare ITime Objects” on page 33
“Write an ITime Object to an Output Stream” on page 34

Information Functions for ITime Objects
Three of the information functions return an ITime’s hour, minute, or second
settings; the other information function returns the current time, as determined by
the system clock. For example:

ITime Time1(ITime::now());
cout << Time1.hours() << “ o'clock occurred ”

<< Time1.minutes() << “ minutes and ”
<< Time1.seconds() << “ seconds ago.” << endl;

This displays a result such as the following:
12 o'clock occurred 16 minutes and 23 seconds ago.

“Dates and Calendars” on page 27
“Date and Time Classes” on page 27
Information Functions for IDate Objects
“Time”
“Time Stamps” on page 35
“Information Functions for ITimeStamp Objects” on page 35

Chapter 1. International Framework 31

Create an ITime Object
You can create an ITime object and initialize it to a number of seconds past or
before midnight, or to a number of hours, minutes, and optionally seconds past
midnight. The following examples create ITime objects.

// 09:19:16
// 33556 = 9 hours (32400 seconds),
// 19 minutes (1140 seconds),
// 16 seconds (adds up to 33556)
ITime Time1(33556);
// 14:40:44
// (9 hours, 19 minutes and
// 16 seconds BEFORE midnight)
ITime Time2(-33556);
// 12:00:00 (noon)
ITime Time3(12,00);
// 03:03:03
ITime Time4(3,3,3);

The constructors translate incorrect times into valid ITime objects using modulo
arithmetic. For the seconds past midnight format, any number whose absolute
value is greater than or equal to 86400 is divided by 86400, and the remainder is
used to calculate the time. For the hours, minutes, and optional seconds format,
excess minutes and seconds are added to the hours and minutes values,
respectively, and if the hour exceeds 23 it is divided by 24 and the remainder is
taken. The following examples show how ITime translates incorrect times into
valid ITime objects:

// 13:05:56
// (133556 - 86400 = 47156 seconds after midnight)
ITime Time1(133556);
// 10:54:04
// (133556 - 86400 = 47156 seconds BEFORE midnight)
ITime Time2(-133556);
// 12:00:00 (noon)
// (10 hours plus 119 minutes plus 60 seconds)
ITime Time3(10,119,60);
// 09:33:00
// (33 hours - 24 hours = 9 hours)
ITime Time4(33,33);

“Date and Time Classes” on page 27
“Time” on page 31

“Change an ITime Object”
“Compare ITime Objects” on page 33
“Write an ITime Object to an Output Stream” on page 34
“Create an ITimeStamp Object” on page 36
“Change an ITimeStamp Object” on page 37
“Compare ITimeStamp Objects” on page 37
“Create an IDate Object” on page 29
“Change an IDate Object” on page 29
“Compare and Test IDate Objects” on page 30

Change an ITime Object
You can add or subtract two times. Four operators are provided: +, +=, -, and -=.
The following example shows the use of these operators:

32 IBM Open Class: Text and Internationalization

ITime Start(12:00), Duration(2:00);
// Done=14:00
ITime Done = Start + Duration;
// Start=12:00 still
Start = Done - Duration;
// Start=14:00
Start += Duration;
// Start=12:00 again
Start -= Duration;

“Date and Time Classes” on page 27
“Time” on page 31

“Create an ITime Object” on page 32
“Compare ITime Objects”
“Write an ITime Object to an Output Stream” on page 34
“Create an ITimeStamp Object” on page 36
“Change an ITimeStamp Object” on page 37
“Compare ITimeStamp Objects” on page 37
“Create an IDate Object” on page 29
“Change an IDate Object” on page 29
“Compare and Test IDate Objects” on page 30

Compare ITime Objects
Functions are defined to let you compare ITime objects for equality, inequality, or
relative position in time. The following operators are defined: ==, !=, <, <=, >, >=.
In the following example, a message is displayed if enough time elapses between
the first and second calls to the now() member function:

#include <itime.hpp>
#include <iostream>
ITime First(ITime::now());
void main()
{

ITime Second=ITime::now();
if (First < Second)
{

// Some time has passed
std::cout << “You must be debugging me!”

<< std::endl;
}

}

This message usually does not print when the program is run outside of a
debugging session. However, if you debug the program and step through each line
slowly, the message may be displayed, because the first ITime object is initialized
during program initialization (before main is called) while the second ITime object
is initialized within main.

“Date and Time Classes” on page 27
“Time” on page 31

Chapter 1. International Framework 33

“Create an ITime Object” on page 32
“Change an ITime Object” on page 32
“Write an ITime Object to an Output Stream”
“Create an ITimeStamp Object” on page 36
“Change an ITimeStamp Object” on page 37
“Compare ITimeStamp Objects” on page 37
“Create an IDate Object” on page 29
“Change an IDate Object” on page 29
“Compare and Test IDate Objects” on page 30

Write an ITime Object to an Output Stream
ITime defines an output operator that writes an ITime object to an output stream in
the format hh:mm:ss. If you want to write the object out in a different format, you
should convert the object to an IString using the asString member function. This
member function accepts a char* argument containing a format specifier. The
format specifier is the same one as used by the C library function strftime. The
following program displays some valid specifiers and the output they produce:

// Examples of ITime output

#include <istring.hpp>
#include <itime.hpp>
#include <iostream>
// needed for setw()
// to set output stream width
#include <iomanip>
void main() {

char* FormatStrings[]={
“%H : %M and %S seconds”,
“%r”,
“%T”,
“%T %Z”,
“%1M past %1I %p”

};
// %H, %M, %S - 2 digits for hrs/mins/secs
// %r - standard 12-hour clock with am/pm
// %T - standard 24 hour clock
// %Z - local time zone code
// %1... - One digit for hour/minute
// %p - am/pm
// Left-justify output
sdd::cout.setf(std::ios::left, std::ios::adjustfield);
// Title text
std::cout << std::setw(30) << “Format String”

<< setw(40) << “Formatted ITime object”
<< std::endl;

// Show each time
for (int i=0;i<5;i++)
{

IString
Formatted=ITime::now().asString(FormatStrings[i]);

std::cout << std::setw(30) << FormatStrings[i]
<< std::setw(40) << Formatted << std::endl;

}
}

The program produces output that looks like the following:
Format String Formatted ITime object
%H : %M and %S seconds 16 : 13 and 04 seconds
%r 04:13:04 PM
%T 16:13:04
%T %Z 16:13:04 EST
%1M past %1I %p 13 past 4 PM

34 IBM Open Class: Text and Internationalization

“Date and Time Classes” on page 27
“Time” on page 31

“Create an ITime Object” on page 32
“Change an ITime Object” on page 32
“Compare ITime Objects” on page 33
“Create an ITimeStamp Object” on page 36
“Change an ITimeStamp Object” on page 37
“Compare ITimeStamp Objects” on page 37
“Create an IDate Object” on page 29
“Change an IDate Object” on page 29
“Compare and Test IDate Objects” on page 30

Time Stamps
An ITimeStamp object can be created from an IDate object, an IDate and ITime
object, or a value that represents the number of seconds from the reference date
01/01/2000 00:00:00. If the time stamp is referring to a point in time before the
reference date, a negative value must be used.

“Dates and Calendars” on page 27
“Date and Time Classes” on page 27
Information Functions for IDate Objects
“Time” on page 31
“Information Functions for ITime Objects” on page 31
“Information Functions for ITimeStamp Objects”

“Create an ITimeStamp Object” on page 36
“Change an ITimeStamp Object” on page 37
“Compare ITimeStamp Objects” on page 37

Information Functions for ITimeStamp Objects
The ITimeStamp class defines information functions that you can use to obtain
specific information about an ITimeStamp object. For example, you can determine
the number of seconds separating the ITimeStamp object from the reference date
(01/01/2000 00:00:00). You can also find out what the current timestamp is.

Conversion operators have been provided that allow you to convert an existing
ITimeStamp object to an IDate object or an ITime object. Once the object has been
converted, the IDate or ITime information functions may be then be used.

The following example shows some of the ITimeStamp information functions:
// ITimeStamp example
#include <istring.hpp>
#include <itmstamp.hpp>
#include <idate.hpp>
#include <itime.hpp>
int main()
{

IString::enableInternationalization();

Chapter 1. International Framework 35

ITimeStamp RefDate;
ITimeStamp TmStamp = ITimeStamp::currentTimeStamp();
IDate ADate = TmStamp;
ITime ATime = TmStamp;
cout << TmStamp << “ is ” << TmStamp.asSeconds()

<< “ seconds apart from” << endl;
cout << RefDate << endl;
cout << ATime.hours() << “:” << ATime.minutes() << “:”;
cout << ATime.seconds() << “,” << ADate.dayOfYear();
cout << “ days into the year ” << ADate.year() << endl;
return 0;

}

This example produces the following output:
09/13/1999 17:23:09 is -9.44141e+06 seconds apart from
01/01/2000 00:00:00
17:23:9,256 days into the year 1999

The call to IString::enableInternationalization will cause dates to display with 4
digit years.

“Dates and Calendars” on page 27
“Date and Time Classes” on page 27
Information Functions for IDate Objects
“Time” on page 31
“Information Functions for ITime Objects” on page 31
“Time Stamps” on page 35

Create an ITimeStamp Object
You can create an ITimeStamp object using different ITimeStamp constructors:

// Create an IDate object
IDate ADate(IDate::December, 5, 1963);
// Create an ITime object
ITime ATime(10, 11, 12);
// 12/05/1963 midnight
ITimeStamp TmStamp1(ADate);
// 12/05/1963 10:11:12 am
ITimeStamp TmStamp2(ADate, ATime);
// 01/01/2000 01:06:40 am
ITimeStamp TmStamp3(4000.0);
// 12/31/1999 22:53:20 pm
ITimeStamp TmStamp4(-4000.0);
// same as ITimeStamp TmStamp5(0.0);
// 01/01/2000 00:00:00 am
ITimeStamp TmStamp5;

“Date and Time Classes” on page 27
“Time Stamps” on page 35

“Create an ITime Object” on page 32
“Change an ITime Object” on page 32
“Compare ITime Objects” on page 33
“Write an ITime Object to an Output Stream” on page 34
“Change an ITimeStamp Object” on page 37
“Compare ITimeStamp Objects” on page 37

36 IBM Open Class: Text and Internationalization

“Create an IDate Object” on page 29
“Change an IDate Object” on page 29
“Compare and Test IDate Objects” on page 30

Change an ITimeStamp Object
You can add seconds to, or subtract seconds from, an ITimeStamp object. You can
also subtract one ITimeStamp object from another, in which case the result is the
number of seconds between the two timestamps. The following example code
changes various ITimeStamp objects:

ITimeStamp TmStamp1, TmStamp2;
double diff;
TmStamp1 = ITimeStamp::currentTimeStamp();
// 4000.0 seconds after TmStamp1
TmStamp2 = TmStamp1 + 4000.0;
// go back 1000.0 seconds
TmStamp2 -= 1000.0;
// should be 3000.0 seconds different
// (if there is no rounding error)
diff = TmStamp2 - TmStamp1;

You cannot add two ITimeStamp objects together, as such an addition does not
make sense. Also, all the operations are done using floating point arithmetic. As a
result, some error due to rounding may occur.

“Date and Time Classes” on page 27
“Time” on page 31

“Create an ITime Object” on page 32
“Change an ITime Object” on page 32
“Compare ITime Objects” on page 33
“Write an ITime Object to an Output Stream” on page 34
“Create an ITimeStamp Object” on page 36
“Compare ITimeStamp Objects”
“Create an IDate Object” on page 29
“Change an IDate Object” on page 29
“Compare and Test IDate Objects” on page 30

Compare ITimeStamp Objects
You can compare two ITimeStamp objects to determine whether they are equal, or
whether one is later than the other. The following operators are defined: ==, !=, <,
<=, >, and >=.

Since all the operations are done using floating point arithmetic, be aware that
some rounding error may occur.

The following example illustrates this point:
ITimeStamp TmStamp1(12345.54321);
ITimeStamp TmStamp2 = TmStamp1 + 9753.6802 - 9753.6802;
if (TmStamp1 == TmStamp2)
{

printf(“TmStamp1 == TmStamp2\n”);
printf(“TmStamp1 = %30.20f\n”, TmStamp1.asSeconds());
printf(“TmStamp2 = %30.20f\n', TmStamp2.asSeconds());

}

Chapter 1. International Framework 37

else
{

printf(”TmStamp1 != TmStamp2\n“);
printf(”TmStamp1 = %30.20f\n“, TmStamp1.asSeconds());
printf(”TmStamp2 = %30.20f\n“, TmStamp2.asSeconds());

}

This example displays the following output:
TmStamp1 != TmStamp2
TmStamp1 = 12345.54321000000000000000
TmStamp2 = 12345.54320999999800000000

“Date and Time Classes” on page 27
“Time” on page 31

“Create an ITime Object” on page 32
“Change an ITime Object” on page 32
“Compare ITime Objects” on page 33
“Write an ITime Object to an Output Stream” on page 34
“Create an ITimeStamp Object” on page 36
“Change an ITimeStamp Object” on page 37
“Create an IDate Object” on page 29
“Change an IDate Object” on page 29
“Compare and Test IDate Objects” on page 30

National Language Support and Double-Byte Character Sets

National Language Support
VisualAge C++ provides national language support using the XPG/4 programming
model, and using the locale-sensitive functions of the C runtime library.

National Language Support (NLS) is enabled by default. As a result, member
functions of the IString, IDate, ITime, and ITimeStamp classes become locale
sensitive, in both single-byte character set (SBCS) and double-byte character set
(DBCS) environments. The classes provide the following capabilities:

Class Description

IString Character string handling in SBCS and
DBCS environments.

IDate Date formatting and manipulation functions.

ITime Time formatting and manipulation functions.

ITimeStamp Date and time formatting and manipulation
functions.

You can explicitly disable NLS by calling IString::disableInternationalization.

While the interfaces of these classes do not change when you enable NLS, the
underlying semantics change to reflect locale requirements. For example, the
compare family of IString functions no longer perform bitwise comparisons, but
instead perform comparisons based on the string collation sequence defined by the
current locale.

38 IBM Open Class: Text and Internationalization

“Double-Byte Character Set Support”
“DBCS and National Language Support” on page 40

“Add National Language Support”
“Set the Locale” on page 5

Add National Language Support
To turn on the national language support, use the ICLUI_I18N environment
variable:

SET ICLUI_I18N=ON

export ICLUI_I18N=ON

The following statements turn off the national language support:

SET ICLUI_I18N=OFF

export ICLUI_I18N=OFF

The support is on by default.

You can also use the IString class to turn national language support on or off from
within your program. The IString class provides three member functions that allow
you to programmatically turn internationalization on or off, and test for
internationalization:
static void enableInternationalization(Boolean enable = true);
static void disableInternationalization();
static bool isInternationalized();

“Set the Locale” on page 5

Double-Byte Character Set Support
Objects of the IString class and the I0String class can contain a mixture of
single-byte characters and double-byte characters. All member functions allow for
the mixture. The searching functions will not match a single-byte character with
the second or subsequent byte of a double-byte character. Functions that return
substrings will never separate the bytes of a double-byte character.

Although the double-byte characters are supported, you must be careful not to
alter the contents of a string in a way that would corrupt the data. For example,
the statement:

IString[n]='x';

would be an error if the nth byte of the IString was part of a double-byte character.

Chapter 1. International Framework 39

“National Language Support” on page 38
“DBCS and National Language Support”

DBCS and National Language Support
The Data Type and Exception Class Library provides double-byte character set
(DBCS) support and national language support (NLS). You can use one source file
for your application code and provide DBCS and NLS support by using separate
resource files for the languages you support. The benefits of this organization
include the following:
v The application is easy to maintain, because a single version of the application is

used. This reduces the cost of maintaining your code.
v The application is easy to upgrade because only the source code is upgraded

and then linked to the separate language files for different languages. This
reduces the time and cost of upgrading your code because different language
versions can be generated at the same time.

Because message strings are defined in either resource files or message catalogs,
they can be translated easily to your local language without changes to the source
code.

You should note the following when creating a DBCS-enabled application:
v String manipulation is DBCS-enabled. The string classes support mixed strings

that contain both SBCS and DBCS characters. Use the string testing functions to
determine if a character is single byte or double byte.

v The IDBCSBuffer class ensures that the search functions do not match the second
or any subsequent bytes of a DBCS character and that the bytes of a DBCS
character will not be split.

“National Language Support” on page 38
“Double-Byte Character Set Support” on page 39

“Add National Language Support” on page 39
“Set the Locale” on page 5

Troubleshoot International Objects
If your code throws IInvalidException instances when you try to access
international objects, verify that your LOCPATH variable is set correctly. This
environment variable identifies the location of international resources on AIX and
OS/2 systems, and on Windows systems if the POSIX locales are installed.

If text data you translate into or out of Unicode and then back to the original
character set does not look the same as the original data, be aware that some
Win32 code pages do not correspond exactly to the Unicode ISO 8859 mapping
tables. When transcoding between Unicode and Microsoft code pages, create the
transcoder using the following:
v The Microsoft transcoder names provided in “Transcoder Names”
v The mapping proximity ITranscoder::kExactMapping

40 IBM Open Class: Text and Internationalization

“Locale Names” on page 5
“Transcoder Names” on page 20
Transcoding Classes

ITranscoder

Chapter 1. International Framework 41

42 IBM Open Class: Text and Internationalization

Chapter 2. Text Framework

The classes that are part of the Open Class Text Framework enable the creation,
storage, querying, and modification of text strings.

The primary classes provided by the Text Framework are as follows:

Class Description

IText A variable-length styled string class you can
use for storing styled or unstyled
international text. The IText class is
optimized for text of any length, from short
strings to large text data segments. The
length of an IText string is limited by
hardware and operating system constraints.
For ease of use and consistency, IText stores
style data along with character data so that
you can use styled characters throughout the
Open Class environment.

The IText class represents a 2 byte character
string. Use this class to create Unicode
enabled applications.

ITextBoundary Implements methods for locating boundaries
of characters, words, lines, and sentences.

IString Can be useful when you do not require the
style and international text capabilities
provided by IText. The IString represents a
single or multibyte string.

Style classes Can be applied to individual characters,
ranges of characters, or paragraphs.

Iterator classes Provide access to the character data in IText
objects.

Text Creation and Manipulation
Text Boundaries
“Text Storage” on page 45
Strings and Buffers
String Formats
Text and Style Run Iteration
“Summary of Text Framework Classes” on page 82

Text Creation and Manipulation
The primary interfaces you need to create and manipulate Unicode text strings,
whether styled or unstyled, are provided by IText. It gives you access to the
storage mechanism and provides a complete set of protocols for accessing and
manipulating both the character and the style data. IText is designed so that you
can use it to store unstyled text without the reduction in performance or increase
in memory requirements that may be associated with the styling mechanism.

© Copyright IBM Corp. 1998, 2000 43

You can create an IText object from another IText, from an IString, or from an array
of char or ioc::unichar_t.

IText stores the char-based data internally and transcodes it to Unicode data on
demand. At that point, IText assumes that the char-based data is encoded with the
character code set of the current locale.

The IText interface parallels the API provided by the ANSI C++ class basic_string.
It includes functions for converting between string formats, for manipulating
styles, and for working efficiently with the IText storage mechanism.

IText also supports the basic_string interfaces for simple searching and comparison.
These functions perform simple bitwise comparisons, and ignore styling
information. For language-sensitive comparison of IText strings, use the
International Framework’s collation classes.

Text Framework
Text Boundaries
Text Storage
Strings and Buffers
String Formats
Text and Style Run Iteration
Summary of Text Framework Classes
Collation Classes
Transcoding Classes
Identifying Text Boundaries

Text Boundaries
Identifying Text Boundaries
The ITextBoundary class implements methods for finding the location of
boundaries in text. ITextBoundary is an abstract base class. Instances of
ITextBoundary maintain a current position and scan over text returning the index
of characters where boundaries occur.

Character Boundaries
Character boundary analysis allows users to interact with characters as they expect
to, for example, when moving the cursor through a text string. Character boundary
analysis provides correct navigation through strings regardless of how a character
is represented. For example, an accented character might be stored as a base
character and a diacritical mark, or a single combined character. What users
consider to be a character can differ between languages.

Word Boundaries
Word boundary analysis is used by search and replace functions, as well as within
text editing applications that allow the user to select words with a double click.
Word selection provides correct interpretation of punctuation marks within and
following words. Characters that are not part of a word, such as symbols or
punctuation marks, have word breaks on both sides.

Line Boundaries
Line boundary analysis determines where a text string can be broken when
line-wrapping. The mechanism correctly handles punctuation and hyphenated
words.

44 IBM Open Class: Text and Internationalization

Sentence Boundaries
Sentence boundary analysis allows selection with correct interpretation of periods
within numbers and abbreviations, and trailing punctuation marks such as
quotation marks and parentheses.

“Chapter 2. Text Framework” on page 43
Text Creation and Manipulation
“Text Storage”
Strings and Buffers
String Formats
Text and Style Run Iteration
“Summary of Text Framework Classes” on page 82

Text Storage
IText is the basic mechanism for storing and manipulating Unicode text strings
throughout the Open Class libraries and frameworks. IText encapsulates Unicode
characters and any associated styling information, and fully supports mixed style
runs. IText keeps the styles with the characters, so you can pass text strings
between objects and applications without loss of styling information.

IText is the primary string format supported by the Open Class International
Framework. It is suitable for strings of any length, from a few characters to
document-length strings. IText was also designed so that you can use it for
unstyled strings without incurring the overhead in object size or performance
associated with the styling mechanism.

Many IText functions take a range that specifies the subset of characters to operate
on. The range is defined by an offset and a character count, where the offset of the
first character in the object is 0. To specify an insertion position, specify the offset
of the character immediately following the position where the new text will be
inserted.

Storage Mechanism
IText manages its own storage. The characters and styles are stored in separate
objects that the IText mechanism creates, deletes, and shares transparently. When
an IText object is constructed with a char-based format, it stores the char-based
data internally and transcodes it to Unicode on demand. IText itself is very small
and has very fast copy performance. This allows you to do the following:
v Include IText objects directly as data members in other objects. Your classes

should have pointers or references to IText objects only if you want several
objects to all see a change to a particular IText object.

Chapter 2. Text Framework 45

v Pass IText parameters to functions as values rather than references, unless the
IText object is owned by another object.

v Return IText objects from functions as return values rather than with fill-in
parameters, unless the IText object is owned by another object.

v Use IText objects as local variables—that is, do not use the new and delete
operators.

The underlying storage object can be shared by multiple IText instances. It is
reference counted and uses copy-on-write semantics. For example, when an IText
object is copied, the actual storage is not duplicated—the reference count is simply
increased. Note that even while they share storage, two IText objects behave as two
distinct objects. They stop sharing storage when one is modified. This is
guaranteed to be true even in multithreaded situations.

The framework manages this mechanism for you. However, you should be aware
of it when using classes such as IFastTextIterator, which do not consider the
underlying storage mechanism.

The storage mechanism handles both short and large strings efficiently. The storage
allocation strategy changes dynamically as appropriate for the size of the string.
For small strings, the characters are stored in a single, contiguous, heap-allocated
array, resized only when necessary. Longer strings are broken up into
non-contiguous storage blocks, or chunks, as illustrated in this figure:

The IText function storage_chunk provides access to these chunks of text. You
specify a character offset, and the function returns a pointer to the chunk of
storage containing that offset. If the string is stored in a single contiguous block,
the function returns a pointer to that block.

“Chapter 2. Text Framework” on page 43
Text Creation and Manipulation
Text Boundaries
Strings and Buffers
String Formats
Text and Style Run Iteration
“Summary of Text Framework Classes” on page 82

Strings and Buffers
Overview of Strings and Buffers
You can store and manage strings using the string and buffer classes. There are
two type of string classes, two types of buffer classes, and two support classes. The
two string classes, IString and I0String, are the main classes. The buffer and
support classes are used to implement the string classes.

The IString class provides a wide range of string handling capabilities. Many of the
IString operators and functions are overloaded to support both IStrings and arrays
of characters as return types and arguments. For example, the comparison

46 IBM Open Class: Text and Internationalization

operators (==, >, <, >=, <=, !=) all support either two IString operands or one
IString and one array of characters operand. The array of characters operand can
be on either side of the comparison operator.

If you are using the string classes, DBCS support is nearly automatic and
transparent. C-runtime style DBCS support is turned on by default. To disable it on
Windows, you have to explicitly call disableInternationalization.

The support classes, IStringEnum and IStringTest, provide data types and testing
functions that are used in the string and buffer classes.

String Buffers
When you create an object of a string class, the actual characters that make up the
string are not stored in the string object. Instead, the characters are stored in an
object of a buffer class.

The use of a buffer object is transparent to you when using the string classes. A
correctly sized buffer is automatically created when you create a string object. The
buffer is destroyed when a string object is destroyed. When you manipulate or edit
a string, you are actually manipulating and editing the buffer object that contains
the characters of the string.

String Classes
The string classes define a data type for strings and provide member functions that
let you perform a variety of data manipulation and management activities. They
provide capabilities far beyond those available with standard C strings and the
string.h library functions.

The string classes have the following capabilities:
v String buffers are handled automatically.
v Strings can contain both SBCS and DBCS (including UTF-8) characters.
v Strings can be indexed by character or by word.
v Strings can contain null characters. (There are no restrictions on the contents of a

string object.)

Member functions of the string classes allow you to do the following:
v Use strings in input and output
v Access information about strings
v Compare strings
v Test the characteristics of strings
v Search for characters or words within a string
v Manipulate and edit strings
v Convert strings to and from numeric types
v Format strings by adding or removing white space

The two string classes, IString and I0String, are identical except for the method
each uses to index its characters. The characters of an IString object are indexed
beginning at 1. I0String characters are indexed beginning at 0. The string class you
should use depends on which indexing scheme you prefer or find easier to
implement.

Objects of IString and objects of I0String can be freely intermixed in a program.
Objects of one class can be assigned objects of the other. Arguments that require an

Chapter 2. Text Framework 47

object of one will accept objects of the other. You will only notice a difference
between an IString and an I0String when you are using functions that use or
return a character index value.

Each IString function has a corresponding I0String function with the same name.
The I0String version of each function accepts the same arguments and has the
same return type as the IString version except that all parameters of type IString
become I0String.

String Comparison
The IStringTest class lets you define the matching function used in the searching
and testing functions of the string and buffer classes. When a search string is
passed to a searching or testing function, the search string and the string object are
compared on a character-by-character basis. The characters are considered to match
if they are identical. The IStringTest class allows you to define when characters are
considered to match.

For example, you can implement a string test that locates a given occurrence of a
particular character in a string:

//Using the IStringTest class

#include <istring.hpp>
#include <iostream.h>

class Nth : public IStringTest

{
char key; // Specifies the character to look for
unsigned count; // Specifies which occurrence to find
public:

//
// Construct an Nth object as follows:
// 1. Create an IStringTest instance whose function type is user,
// with a null character to start;
// 2. Initialize the count to n
// 3. Initialize the key to c
//
Nth(char c, unsigned n)
: IStringTest(user,0), count(n), key(c) {}

//
// test function: accepts an int (the character to look for)
// checks if the character matches the key
// if so, decrements count
// eventually, count will equal zero if enough matches are found,
// so “return !count” will return true (-1)
// otherwise, “return !count” will return a value other than -1

virtual boolean test (int c) const
{
if (c == key) // if it matches,
((Nth*)this)->count—; // decrement count
return !count; // return complement of count

// will be true (-1) if count==0
}

};

void main()

{
IString text=“this is a test string”;
cout << “The fourth appearance of the letter t in the string:\n”

<< text << '\n' << “is at position ”
<< text.indexOf(Nth('t',4)) << endl;

}

This program produces the following output:

48 IBM Open Class: Text and Internationalization

The fourth appearance of the letter t in the string:
this is a test string
is at position 17

A derived template class, IStringTestMemberFn, is provided to support the use of
the IStringTest class with any function that accepts its objects as an argument.

A constructor for IStringTest accepts a pointer to a C function. The C function must
accept an integer as an argument and return a boolean. Such functions can be used
anywhere an IStringTest can be used. Note that this is the type of the standard C
library functions that check the type of C characters, for example, isalpha() and
isupper().

String Indexes
Objects of the string classes are arrays of characters. There are two types of indexes
used with the arrays. The first is a character index. Each character is numbered
from left to right starting at the number 1 in the IString class and the number 0 in
the I0String class. Therefore, in the IString “The dog is brown”, the letter “i” has
an index value of 9. In the I0String “The dog is brown”, the letter “i” has an index
value of 8.

The second type of index is the word index. In the word index, each
white-space-delimited word is numbered from left to right starting at the
number 1. The word index is the same for IString objects and I0String objects.
Therefore in the IString “The dog is brown”, the word “is” has an index value
of 3. In the I0String “The dog is brown”, the word “is” also has an index value
of 3.

The only difference between objects of the IString class and objects of the I0String
class is the starting value for the character index.

To optimize the IString+= operation, the IBuffer/IDBCSBuffer class now allocates
memory in 32 bytes chunk(s). To turn this optimization off, you can set the static
bool IBuffer::is32BytesAligned to false. By default, if IBuffer::setDefaultBuffer() is
called,
the bool is set to false unconditionally.

“Chapter 2. Text Framework” on page 43
Text Creation and Manipulation
Text Boundaries
“Text Storage” on page 45
String Formats
Text and Style Run Iteration
“Summary of Text Framework Classes” on page 82
“DBCS and National Language Support” on page 40

String Formats
IText provides full interoperability with the char-based string formats char* and
IString, allowing you to do the following:
v Construct IText objects from null-terminated char arrays and from IString objects

(IText also provides constructors that take both null-terminated-terminated with
UUnicodeSpecial::kNull-and non-terminated ioc::unichar_t arrays)

v Return the characters in an IText as a char array or an IString object

Chapter 2. Text Framework 49

v Use IText where char* or IString is called for
v Use char* or IString where IText is called for

IText uses the transcoding facility provided by the International Framework to
convert data between char and Unicode data. IText assumes the char-based format
is the default character encoding set for the host. This varies based on the platform
and any locale settings for the system.

String Size and Capacity
IText follows the ANSI convention of using size_t (generally equivalent to
unsigned long) to represent text lengths and offsets. IText defines two typedefs
equivalent to size_t:

Type definition Description

length_type Represents a character count. length_type
values always represent the number of
characters, not the number of bytes. IText
also uses a special length_type value, npos,
to represent the number of characters
between a specified starting offset and the
end of the string. For example, a starting
offset of 0 and a length of npos refers to the
whole string.

offset_type Represents the position of a character,
zero-based from the first character in the
string-that is, the position of the first
character is at offset_type value 0, and so on.

The following table describes some of the IText functions you can use to access the
string’s size and storage capacity for the object:

Member function Description

length and size Equivalent functions that return a
length_type value representing the number
of characters currently in the string.

max_size Returns the maximum number of characters
that can be stored in an IText object,
currently equivalent to npos - 1.

resize Lets you reset the size of the string to a
specified number of characters, either
deleting characters or padding the end of
the string as necessary. The default padding
character is UUnicodeSpecial::kNull.

capacity Returns the number of characters for which
the IText object has currently allocated
storage.

reserve Can be used to indicate that a specified
number of characters are about to be added
to the string. The function will preallocate
storage if needed and if memory conditions
permit it.

empty Indicates whether the text object contains
any character data.

50 IBM Open Class: Text and Internationalization

Member function Description

c_str and data Return ioc::unichar_t arrays containing the
same number of characters as the IText
object. c_str always returns a null-terminated
array-data may not.

Text Framework
Text Creation and Manipulation
Text Boundaries
Text Storage
Strings and Buffers
Text and Style Run Iteration
Summary of Text Framework Classes

Comparison of IText and IString
IString is the the IBM Open Class primary char-based string class, while IText is
the primary ioc::unichar_t (or 2-byte Unicode) based string class. Therefore, one
string class is not meant to replace the other. Although IText is usually a better
choice, the differences are summarized here:

Use IText:
v if you need to store styled text
v if you want to store international (non-ASCII) text
v if you want powerful language-sensitive comparison
v if you want to store really long runs of text

Note that IText has:
v ties to the IBM Open Class Localization and 2D Graphics Frameworks

Use IString:
v if the object is going to be used with a lot of char*-based system calls, which

would force IText to create unnecessary overhead by transcoding repeatedly

Note that IString:
v is used by User Interface Classes

Text Framework
Locales in Internationalization
2D Graphics Overview

Create an IText Object from char or IString Data
Create Strings
Create a Unicode Application

Chapter 2. Text Framework 51

Work with IText Objects

Create an IText Object from char or IString Data
IText provides constructors that initialize IText objects from null-terminated char
arrays and from IString objects. The text is transcoded from char data into Unicode
data. The framework assumes that the char data is encoded using the default
encoding system for the current host.

To create an IText from char* or IString data, simply pass the char data to the IText
constructor:

char* string = “Hello World!”;
IText unicodeString(string);

“Chapter 2. Text Framework” on page 43

“Create a Styled Text String”
“Edit Character Data in an IText Object” on page 53
“Extract char* Data from an IText Object” on page 54
“Iterate through Characters in an IText Object” on page 56
“Iterate through Style Runs in an IText Object” on page 57
“Query and Modify Styles in an IText Object” on page 57

Create a Styled Text String
To add styles to characters or paragraphs in an IText object, create the appropriate
styles with the correct values and apply them to a specific character range:
1. Instantiate a style object for the style you want to apply, passing in an

appropriate value.
2. (Optional) Add the styles to a style set.
3. Call the IText::addStyles function, specifying the range of characters to apply

the styles to.

For example:
IText styledString(“Hello World!”);
// Create a style set
ITextStyleSet stylesToAdd;
// Add styles to the style set
stylesToAdd.add(ITextPointSizeStyle(12));
stylesToAdd.add(ITextTypefaceStyle(“Courier”);
stylesToAdd.add(ITextUnderlineStyle(true));
// Apply styles to the entire string
styledString.addStyles(stylesToAdd, 0, IText::npos);
// Apply another style only to the first word
styledString.addStyles(ITextUnderlineStyle(true), 0, 5);

You apply paragraph styles the same way, except you don’t have to specify the
character range exactly. Specify one or more characters in the paragraph you want
to apply styles to, or specify a character range extending across multiple
paragraphs. IText automatically extends the paragraph styles to apply to all
paragraphs that contain any character offsets you specify. For example:

IParagraphJustificationStyle
pstyle(IParagraphJustificationStyle::kCenter);

styledString.addStyles(pstyles, 0, 1);

52 IBM Open Class: Text and Internationalization

“Chapter 2. Text Framework” on page 43

“Create an IText Object from char or IString Data” on page 52
“Edit Character Data in an IText Object”
“Extract char* Data from an IText Object” on page 54
“Iterate through Characters in an IText Object” on page 56
“Iterate through Style Runs in an IText Object” on page 57
“Query and Modify Styles in an IText Object” on page 57

IParagraphJustificationStyle
ITextPointSizeStyle
ITextStyleSet
ITextTypefaceStyle
ITextUnderlineStyle

Edit Character Data in an IText Object
IText provides a set of functions for character editing: append and operator+=,
insert, insert_and_propagate_styles, replace, and erase. The functions that add
characters take either styled or unstyled text. The text that is added maintains its
character styling information (raw Unicode characters are considered to be
unstyled). Paragraph styles are propagated according to the mechanism described
in “Style Propagation” on page 76.

The exception is that characters inserted with the insert_and_propagate_styles
function take on the styles of the text they are inserted into.

For example, this code demonstrates some simple text editing functions:
IText string(“Now is the time for all men to come swiftly to the
aid of the party.”);
// Delete “swiftly”
string.erase(36, 8);
// Add “good” before “men”
string.insert(24, IText(“good”));
// Change “the party” to “their country”
string.replace(58, 6, IText(“ir country”));
// Create a copy of a substring of the text and append more
characters
IText newString = string.substr(0, 15);
newString += IText (“for me to go!”);

“Chapter 2. Text Framework” on page 43
“Style Propagation” on page 76

“Create an IText Object from char or IString Data” on page 52
“Create a Styled Text String” on page 52
“Extract char* Data from an IText Object” on page 54
“Iterate through Characters in an IText Object” on page 56
“Iterate through Style Runs in an IText Object” on page 57
“Query and Modify Styles in an IText Object” on page 57

Chapter 2. Text Framework 53

Extract char* Data from an IText Object
IText provides simple conversion operators that can convert character data in an
IText object into a null-terminated char array or an IString object. The text is
transcoded from Unicode data into char data. The framework assumes that you
want the char data to be encoded in the default encoding system for the current
host.

To extract char data from an IText object, simply assign it to a variable of the type
you want (char* or IString):

IText unicodeString(“Hello World!”);
const char* charData;
charData = unicodeString;

When you extract char data from an IText object, keep in mind that the IText
conversion functions return a pointer to an internal storage object. The IText object
maintains ownership of this storage, which is why the functions return a const
char array. The return value is only guaranteed to be good until the underlying
data in the IText is modified. You should not allocate storage to receive the
character data, nor should you cast away the const and modify the characters.

If you need a modifiable copy of the character data, allocate your own storage and
copy the characters:

IText unicodeString(“Hello World!”);
char* modifiableCharData = new char[unicodeString.length()];
strcpy(modifiableCharData, unicodeString);
// Can modify the char data without affecting the underlying

IText storage
modifiableCharData[0] = ′J';
const char* moreCharData;
// The underlying IText still contains “Hello World!”
moreCharData = unicodeString;

“Chapter 2. Text Framework” on page 43

“Create an IText Object from char or IString Data” on page 52
“Create a Styled Text String” on page 52
“Edit Character Data in an IText Object” on page 53
“Iterate through Characters in an IText Object” on page 56
“Iterate through Style Runs in an IText Object” on page 57
“Query and Modify Styles in an IText Object” on page 57

Text and Style Run Iteration
Unicode Text Framework provides a set of iterators for accessing the character data
in an IText object. These iterators all have the properties of a random-access
iterator as described by most recent version of the C++ standard.

Character Iteration
The framework provides five iterators for iterating through the characters in an
IText object. These iterators are compatible with the iterator classes provided by the
C++ Standard Library:

54 IBM Open Class: Text and Internationalization

Class Description

ITextIterator Provides iteration through the characters in
an IText object.

IReverseTextIterator Provides backwards iteration through the
characters in an IText object.

IConstTextIterator A variation on ITextIterator that doesn’t
allow you to modify the characters.

IReverseConstTextIterator A variation on IReverseTextIterator that
doesn’t allow you to modify the characters.

IFastTextIterator Provides faster iteration than the iterators
listed above but fewer safety assurances. For
example, the iterator is not guaranteed to
stay valid if the underlying text is modified.

These iterators all follow the protocol for random-access iterators. You can start the
iteration at any position in the IText object and iterate forward, backward, and so
on. With the exception of IFastTextIterator, you should not construct iterators
directly, but use the IText iterator functions begin, end, rbegin, and rend.

The iterators use the class ICharacterReference to return non-const references to
ioc::unichar_t values. This ensures that both the reference-counting mechanism
used for IText storage and the paragraph style propagation are not disturbed.

If you want to use IFastTextIterator, construct it from another text iterator.
IFastTextIterator is different than the other text iterators in that it doesn’t consider
the styling mechanism or the shared storage mechanism. You can use
IFastTextIterator when you want faster iteration. However, if you want to modify
characters while using an IFastTextIterator, you need to ensure that the IText you
are iterating over does not share storage with another IText. When using an
IFastTextIterator:
v Do not initialize another IText object from the IText under iteration or assign the

IText to another IText while the IFastTextIterator is in effect.
v Do not call non-const functions on the IText under iteration while the

IFastTextIterator is in effect.
v Keep in mind that IFastTextIterator ignores styles when iterating over styled

text. Paragraph styles will not be repropagated, and character styles will not be
manipulated with their associated characters.

v Set the willWrite parameter to false if you want to use the iterator for read-only
access of characters.

Style Run Iteration
The framework provides an additional iterator, ITextStyleRunIterator, that lets you
iterate over the style runs in a styled IText object. A style run is a range of
characters with identical styling information—that is, the same set of style objects
with the same values. For example, the text string shown here has four style runs:

Chapter 2. Text Framework 55

When using ITextStyleRunIterator, you can specify whether to iterate over
character styles, paragraph styles, or both. The iterator considers both types of
styles by default.

When you construct the iterator, it points to the first style run.

Text Framework
Text Creation and Manipulation
Text Boundaries
Text Storage
Strings and Buffers
String Formats
Summary of Text Framework Classes

Iterate through Characters in an IText Object
Iterate through Style Runs in an IText Object
Query and Modify Styles in an IText Object

Iterate through Characters in an IText Object
The Unicode Text Framework provides a full set of classes for iterating over
characters in an IText object. Use ITextIterator or IConstTextIterator to iterate
forwards, or IReverseTextIterator or IReverseConstTextIterator to iterate backwards
through the characters in an IText object. You can also use IFastTextIterator when
you want faster performance and don’t need as many safety checking mechanisms
to guarantee the validity of the iterator.

The following steps describe how to use a text iterator:
1. Call IText::begin (or other IText iterator functions as appropriate) to instantiate

the iterator.
2. Use the iterator operators ++ and — to iterate forwards and backwards through

the characters.

When creating an IConstTextIterator from a non-const IText, do not call ((const
IText)txt).begin() or you will get an invalid iterator (due to the temporary IText
created by the compiler). Instead,
call ((const IText&)txt).begin() or better yet, use const_cast(text).begin().

For example, this code shows how to use an iterator to strip whitespace characters
from the beginning of a text object called someText:

ITextIterator iter;
// IUnicode::isASpace(*iter) checks whether the
// character currently pointed to by the iterator is
// a space character (a space, tab, and so on).
for (iter = someText.begin();

iter < someText.end() &&
!IUnicode::isASpace(*iter);

++iter)
{

someText.erase(someText.begin(), iter);
}

“Chapter 2. Text Framework” on page 43

56 IBM Open Class: Text and Internationalization

“Create an IText Object from char or IString Data” on page 52
“Create a Styled Text String” on page 52
“Edit Character Data in an IText Object” on page 53
“Extract char* Data from an IText Object” on page 54
“Iterate through Style Runs in an IText Object”
“Query and Modify Styles in an IText Object”

Iterate through Style Runs in an IText Object
The Unicode Text Framework provides ITextStyleRunIterator for iterating through
the style runs in an IText object. To use ITextStyleRunIterator:
1. To create the ITextStyleRunIterator, pass the constructor the IText object you

want to iterate over.
2. Use the iterator operators ++ and — to move forward and backward through

style runs.
3. Extract the styles on the current style run. The iterator’s operator-> lets you call

the ITextStyleSet::extract function for the current style run’s style set.
4. Use the ITextStyleRunIterator functions runStart and runLength to get the

extent of the current style run.

For example, this code shows how to use an iterator to modify the point size for
each style run, or add a point-size style if there is none:

ITextPointSizeStyle size;
ITextStyleRunIterator iter(someText);
for (; iter; ++iter)
{
if (iter->extract(size))
size.setPointSize(size.pointSize() + 3);
else
size.setPointSize(6);
someText.addStyles(size, iter.runStart(), iter.runLength());
}

“Chapter 2. Text Framework” on page 43

“Create an IText Object from char or IString Data” on page 52
“Create a Styled Text String” on page 52
“Edit Character Data in an IText Object” on page 53
“Extract char* Data from an IText Object” on page 54
“Iterate through Characters in an IText Object” on page 56
“Query and Modify Styles in an IText Object”

Query and Modify Styles in an IText Object
The Unicode Text Framework lets you access the styles associated with a given
character or range, and add to or remove those styles.
v Use IText::isStyled to determine whether the IText object has any associated

styling information.
v Use IText::stylesAt to access the set of styles associated with a specific character

range.

Chapter 2. Text Framework 57

v Use IText::maximumStyleSpan to access the range of characters with specific
styles.

v Use IText::addStyles or IText::removeStyles to add and remove styles to or from
a specific character range.

If you specify a type of style to remove, removeStyles removes any style of that
type. It does not look at the value of the style you specified to remove. For
example, if you specify to remove ITextBoldfaceStyle(true), removeStyles removes
any boldface style whether it is set to true or false.

This code shows how to query the styles at a particular point in the IText object
someText and modify the style values:

offset_type runOffset;
length_type runLength;
const ITextStyleSet* setPtr;
ITextPointSizeStyle size;
// Get the styles on the first style run.
// The offset and length of the run are returned.
setPtr = someText.stylesAt(0, runOffset, runLength)
// If the style run contains a point size style, increment its

value by 3
if (setPtr.extract(size))
size.setPointSize(size.pointSize() + 3);
// If the style run has no point size style, add one
else
size.setPointSize(6);
// Apply the new point size style to the entire style run
someText.addStyles(size, runOffset, runLength);

To look for characters with specific styles, you can use IText::maximumStyleSpan.
For example, this code shows how to look for all style runs of bold text, and
underline those characters:

offset_type cursorOffset = 0;
offset_type spanOffset;
length_type spanLength;
ITextStyleSet set;
ITextBoldfaceStyle bold(true);
ITextUnderlinStyle line(true);
while (cursorOffset < someText.length())
{
// If the current character is boldface, underline the entire

style run
if (someText.maximumStyleSpan (cursorOffset, bold,
spanOffset, spanLength))
someText.addStyles(line, spanOffset, spanLength);
cursorOffset += spanLength;
}

You can also use ITextStyleRunIterator to access style runs.

“Chapter 2. Text Framework” on page 43
“Styles and Style Sets” on page 73
Transcoding Classes
Text and Style Run Iteration

“Create an IText Object from char or IString Data” on page 52
“Create a Styled Text String” on page 52

58 IBM Open Class: Text and Internationalization

“Edit Character Data in an IText Object” on page 53
“Extract char* Data from an IText Object” on page 54
“Iterate through Characters in an IText Object” on page 56
“Iterate through Style Runs in an IText Object” on page 57

Work with IString Objects

Create Strings
You can create IStrings using constructors. You can use IString constructors that
construct null strings, that accept a numeric argument and convert it into a string
of numeric characters, or that translate one or more characters into an IString. You
can also create a single string out of up to three separate buffers, whose contents
are concatenated into the created IString object. The following example shows
some of the above ways of creating IString objects:

#include <istring.hpp>
void main()
{

IString Number1(123); // —> Number1 =“123”
IString Number2(123.12); // —> Number2 =“123.12”
IString Character('a'); // —> Character =“a”
IString String1(“a”); // —> String1 =“a”
IString String2(“and”); // —> String2 =“and”
IString String3(“a\0d”); // —> String3 =“a”

}

Note that the last string (String3) is initialized with only the first byte of quoted
text. The null character in the char* constructor argument is interpreted by the
compiler as a terminating null. However, the IString class does support null bytes
within strings. To construct String3 as the example intended, you could write:

//...
IString String3(“and”);
String3[2]='\0';

If this string is later copied to another string, the null character and following
characters are also copied:

IString String4=String3;
String4[2]='N'; // —> String4 =“aNd”

“Chapter 2. Text Framework” on page 43

“Copy Strings” on page 60
“Concatenate Strings” on page 61
“Extend Strings” on page 62
“Format Strings” on page 63
“Determine String Lengths and Word Counts” on page 64
Do String Input and Output
“Find Words or Substrings within Strings” on page 66
“Replace, Insert, and Delete Substrings” on page 67
“Test the Characteristics of Strings” on page 69
“Convert between Strings and Numeric Data” on page 71
“Convert between Strings and Different Base Notations” on page 72

Chapter 2. Text Framework 59

Copy Strings
You can copy IStrings using copy constructors, assignment operators, and
substring functions.

The IString assignment operator and copy constructor both copy one string to
another string. One of the strings can be an array of characters, or both may be
IString objects. The IString assignment operator and copy constructor offer the
following advantages over the strcpy and strdup functions provided by the C
string.h library:
v When an IString object is copied, a new copy of the string is not made. Instead,

the two strings point to the same buffer location. The object is only copied if one
of the strings is changed. This means that, for strings that are copied but where
neither the source string nor the copy is subsequently changed, performance is
improved by the amount of time it would have taken to make the new copy.

v The notation is simple and intuitive. To copy String1 into String2, you simply
code String2=String1. With strings defined using the traditional char* method,
such an assignment merely copies a pointer to the original string. With IString
objects, the assignment copies each byte of the string into the new string.

v You do not have to determine the length of the source string and allocate
sufficient storage to store it in the target string before the assignment. IString
takes care of allocating the storage for you, whether the target string is being
constructed within the assignment or has already been constructed. This reduces
the risk of memory violations. In the following example, String2 is constructed
and initialized, and then copied to (its original contents are overwritten), while
String3 is copy-constructed to contain a copy of String1. Notice that String2’s
length is extended by the assignment operation.

IString String1=“A longer string than String2”;
IString String2=“A short string”;
IString String3=String1; // initialized to String1
String2=String1; // extended to fit String1

v The string being copied can contain null characters anywhere within it, and the
entire string will be copied.

v If you accidentally create an array of characters without the terminating null, the
strcpy function may continue copying past the storage allocated for the string.
This can cause storage violations, or, at the least, it can corrupt the data in the
target string. The length of IString objects is not determined by a terminating
null, so storage violations and corrupt target strings are less likely.

Creating Substrings of Strings
You can use the subString function to return a new IString object containing a
portion of another IString. This function lets you create an IString containing the
leftmost characters, rightmost characters, or characters in the string’s middle. The
following example shows calls to subString that create substrings with leftmost,
rightmost, or middle characters:

// Using the subString method of IString

#include <iostream>
#include <istring.hpp>

void main()
{

IString All(“This is the entire string.”);

// Left -> subString(1, length)
IString Left=All.subString(1,5);

// Middle -> (startpos, length)
IString Middle=All.subString(6,14);

60 IBM Open Class: Text and Internationalization

// Right -> (string length - (substring length - 1))
IString Right=All.subString(All.length()-6);

std::cout << “<” << All << “>\n”
<< “<” << Left << “>\n”
<< “<” << Middle << “>\n”
<< “<” << Right << “>” << std::endl;

}

This program produces the following output:
<This is the entire string.>
<This >
<is the entire >
<string.>

“Chapter 2. Text Framework” on page 43

“Create Strings” on page 59
“Concatenate Strings”
“Extend Strings” on page 62
“Format Strings” on page 63
“Determine String Lengths and Word Counts” on page 64
Do String Input and Output
“Find Words or Substrings within Strings” on page 66
“Replace, Insert, and Delete Substrings” on page 67
“Test the Characteristics of Strings” on page 69
“Convert between Strings and Numeric Data” on page 71
“Convert between Strings and Different Base Notations” on page 72

Concatenate Strings
The IString class defines an addition operator (+) to allow you to concatenate two
words together. An addition assignment operator (+=) lets you assign the result of
the concatenation to the left operand. The copy() member function lets you create
an IString consisting of multiple copies of itself or of another string. The following
example shows ways of concatenating text onto the start or end of an IString:

// Concatenating strings

#include <iostream.h>
#include <istring.hpp>

void main()
{

IString Str1=“Let ”;
IString Str2=“us ”;
IString Str3=“concatenate ”;
IString Str4=“repeatedly ”;

IString Str5=Str1+Str2; // Add Str1 and Str2 and store in Str5
Str5+=Str3; // Add Str3 to Str5
Str4.copy(3); // Copy Str4 several times onto itself
Str5+=Str4; // Add Str4 to Str5
cout << Str5 << endl; // Write String 5

}

This program produces the following output:
Let us concatenate repeatedly repeatedly repeatedly

Chapter 2. Text Framework 61

“Chapter 2. Text Framework” on page 43

“Create Strings” on page 59
“Copy Strings” on page 60
“Extend Strings”
“Format Strings” on page 63
“Determine String Lengths and Word Counts” on page 64
Do String Input and Output
“Find Words or Substrings within Strings” on page 66
“Replace, Insert, and Delete Substrings” on page 67
“Test the Characteristics of Strings” on page 69
“Convert between Strings and Numeric Data” on page 71
“Convert between Strings and Different Base Notations” on page 72

Extend Strings
With arrays of characters, unless you allocate more storage than originally required
for a string, you can only extend a string by allocating a new chunk of storage,
moving the existing string into the new area, and extending it there.

IString objects are automatically extended for you whenever an IString operator or
function requires the extension. This lets you spend more time coding useful
function, and less time trying to track down the source of memory violations or
data corruption. You can even use the subscript operator to assign a value to a
position beyond the end of the string. The following example, by indexing past the
end of ShortString, causes the string to be padded with blanks up to position 119,
and the letter “a” is added at position 120:

IString ShortString=“A short string”;
ShortString[120]='a';

The + and += operators, the assignment operator, and all member functions that
change the contents of a string automatically allocate additional storage for the
string if that storage is required. This can drastically reduce the amount of
string-handling code you need to write.

“Chapter 2. Text Framework” on page 43

“Create Strings” on page 59
“Copy Strings” on page 60
“Concatenate Strings” on page 61
“Format Strings” on page 63
“Determine String Lengths and Word Counts” on page 64
Do String Input and Output
“Find Words or Substrings within Strings” on page 66
“Replace, Insert, and Delete Substrings” on page 67
“Test the Characteristics of Strings” on page 69
“Convert between Strings and Numeric Data” on page 71
“Convert between Strings and Different Base Notations” on page 72

62 IBM Open Class: Text and Internationalization

Format Strings
You can insert padding (white space) into strings so that each string in a group of
strings has the same length. The center, leftJustify, and rightJustify functions all do
this; their names indicate where they place the existing string relative to the added
white space. You provide the final desired length of the string, and the function
adds the correct amount of white space (or removes characters if the string is
longer than the final length you specify). For example:

// Padding IStrings

#include <istring.hpp>
#include <iostream>

void main()
{

IString s1=“Short”, s2=“Not so short”,
s3=“Too long to fit in the desired field length”;

s1.rightJustify(20);
s2.center(20);
s3.leftJustify(20);
std::cout << s1 << '\n' << s2 << '\n' << s3 << std::endl;

}

This program produces the following output:
Short

Not so short
Too long to fit in t

If a string is too wide, you can strip leading or trailing blanks using the strip...
functions:

// Using the strip... functions of IString

#include <istring.hpp>
#include <iostream>

void main()
{

IString s1, s2, s3, Long=“ Lots of space here ”;
s1 = s2 = s3 = Long;
s1.stripLeading();
s2.stripTrailing();
s3.strip();
std::cout << “>” << Long << “<\n”

<< “>” << s1 << “<\n”
<< “>” << s2 << “<\n”
<< “>” << s3 << “<” << std::endl;

}

This program produces the following output:
> Lots of space here <
>Lots of space here <
> Lots of space here<
>Lots of space here<

You can also change the case of an IString to all uppercase or all lowercase:
// Changing the case of IStrings

#include <iostream>
#include <istring.hpp>

void main()
{

IString Upper=“MANY of THESE are UPPERCASE CHARACTERS”;
IString Lower=“Many of these ARE lowercase characters”;

Chapter 2. Text Framework 63

Upper.change(“MANY”,“NONE”).lowerCase();
Lower.change(“Many”,“None”).upperCase();
std::cout << Upper << '\n' << Lower << std::endl;

}

This program produces the following output:
none of these are uppercase characters
NONE OF THESE ARE LOWERCASE CHARACTERS

“Chapter 2. Text Framework” on page 43

“Create Strings” on page 59
“Copy Strings” on page 60
“Concatenate Strings” on page 61
“Extend Strings” on page 62
“Determine String Lengths and Word Counts”
Do String Input and Output
“Find Words or Substrings within Strings” on page 66
“Replace, Insert, and Delete Substrings” on page 67
“Test the Characteristics of Strings” on page 69
“Convert between Strings and Numeric Data” on page 71
“Convert between Strings and Different Base Notations” on page 72

Determine String Lengths and Word Counts
You can determine not only the length of a string, but the number of words within
the string, or the length of a particular word in the string. The length of a string is
not affected by any null characters you insert in the middle of the string. (The
strlen function of string.h treats any null character in an array of characters as a
terminating null.)

The following descriptions assume that ThisString contains the text “This string
has five words”.

The length and size functions both return the length of an IString. For example,
ThisString.size() returns the value 26, as does ThisString.length().

To determine the number of words in a string, use the numWords member
function. For example, ThisString.numWords() returns the value 5.

To determine the length of a particular word, use the lengthOfWord member
function. For example, ThisString.lengthOfWord(3) returns the value 3.

“Chapter 2. Text Framework” on page 43

“Create Strings” on page 59
“Copy Strings” on page 60
“Concatenate Strings” on page 61
“Extend Strings” on page 62
“Format Strings” on page 63

64 IBM Open Class: Text and Internationalization

Do String Input and Output
“Find Words or Substrings within Strings” on page 66
“Replace, Insert, and Delete Substrings” on page 67
“Test the Characteristics of Strings” on page 69
“Convert between Strings and Numeric Data” on page 71
“Convert between Strings and Different Base Notations” on page 72

Do String Input and Output
The IString class overloads the input and output operators of the AT&T USL
stream class library and the ANSI C++ stream library depending on the user’s
choice. This allows you to extract IString objects from streams and insert IString
objects into them. The input operator reads characters from the input stream until
a white-space character or EOF is encountered. The IString class also defines a
member function to read a single line from an input stream. The following
example shows uses of the input and output operators for IString and the lineFrom
function:

// Using the IString I/O operators
// and the lineFrom function

#include <istring.hpp>
#include <iostream>

void main()
{

IString Str1, Str2, Str3;
Str1=“Enter some text:”;
char test[80];

// Write prompt
std::cout << Str1;
// Get input
std::cin >> Str2;
// This only reads in one word of text, so we
// should check to see if this was the only word
// on the line:
if (std::cin.peek()!='\n') {

// there's more text on this line so ignore it
std::cin.ignore(1000,'\n');

}
// Change prompt
Str1.insert(“more ”,Str1.indexOf(“ text:”));
// Write prompt again
std::cout << Str1;
// Get line of input
Str3=IString::lineFrom(std::cin,'\n');
// Write output
std::cout << “First word of first input: ”

<< Str2 << '\n'
<< “Full text of second input: ”
<< Str3 << std::endl;

}

This example produces the output shown below in regular type, given the input
shown in bold:
Enter some text:Here is my first string
Enter some more text:Here is my second string
First word of first input: Here
Full text of second input: Here is my second string

Note that, although null characters are allowed within an IString object, a null
character in an input string is treated as the end of the input, and a null character
in an IString being written to an output stream ends the output of that IString.

Chapter 2. Text Framework 65

Text Framework
I/O Stream Classes
The C++ Programming Reference: Streams

Create Strings
Copy Strings
Concatenate Strings
Extend Strings
Format Strings
Determine String Lengths and Word Counts
Find Words or Substrings within Strings
Replace, Insert, and Delete Substrings
Test the Characteristics of Strings
Convert between Strings and Numeric Data
Convert between Strings and Different Base Notations

Find Words or Substrings within Strings
A wide range of functions are available to let you find words, substrings, patterns,
or individual characters within a string. You can even do wildcard searches: for
example, you can search through a string to find a substring that begins with the
letters “Ar” followed by one or more characters, followed by the letters “rk”.

The following example shows a number of the searching functions available for
IString objects. Comments describe the type of search operation being carried out.

// Searching for substrings
#include <iostream>
#include <istring.hpp>
void main()
{

IString
Str1=“This string contains some sample text in English.”;

IString
Str2=Str1.subString(27); // positions 27 and following:

// “sample text in English.”
std::cout << “The string under consideration is:\n\n”

<< Str1 << “\n\n”;

// 1. Count the number of occurrences of a substring
// within the string
std::cout << “The substring \”in\“ occurs ”

<< Str1.occurrencesOf(“in”)
<< “ times in the string.\n”;

// 2. Find the first occurrence of a substring:
// (Note that the substring can be a char, char*,
// or IString value)
std::cout << “The letter 'x' first occurs at position ”

<< Str1.indexOf('x') << “.\n”;
// 3. Find the first occurrence of any letter of
// those specified:
std::cout

<< “One of the letters q, r, or s first appears at position ”
<< Str1.indexOfAnyOf(“qrs”) << “.\n”;

// 4. Find the first occurrence of any letter
// other than those specified:
std::cout << “The first letter that is not in \”Think\“ ”

<< “appears at position ”
<< Str1.indexOfAnyBut(“Think”) << “.\n”;

// 5. Find the index of a word

66 IBM Open Class: Text and Internationalization

std::cout << “The third word starts at position ”
<< Str1.indexOfWord(3) << “.\n”;

// 6. Find a match to a phrase, and return the
// position of the first matching word
std::cout << “The phrase \”“ << Str2

<< ”\“ starts at word number ”
<< Str1.wordIndexOfPhrase(Str2)
<< “ of the string.\n”;

// 7. Do a wildcard search to see if the string
// starts with “Th”, contains “co”, and ends
// with “sh.”
std::cout

<< “Does the string match the wildcard search string ”
<< “\”Th*co*sh.\“?\n”;

if (Str1.isLike(“Th*co*sh.”)) std::cout << “Yes.”;
else std::cout << “No.”;

std::cout << std::endl;
}

This program produces the following output:
The string under consideration is:

This string contains some sample text in English.

The substring “in” occurs 3 times in the string.
The letter 'x' first occurs at position 36.
One of the letters q, r, or s first appears at position 4.
The first letter that is not in “Think” appears at position 4.
The third word starts at position 13.
The phrase “sample text in English.” starts at word number 5 of the string.
Does the string match the wildcard search string “Th*co*sh.”?
Yes.

“Chapter 2. Text Framework” on page 43

“Create Strings” on page 59
“Copy Strings” on page 60
“Concatenate Strings” on page 61
“Extend Strings” on page 62
“Format Strings” on page 63
“Determine String Lengths and Word Counts” on page 64
Do String Input and Output
“Replace, Insert, and Delete Substrings”
“Convert between Strings and Numeric Data” on page 71
“Convert between Strings and Different Base Notations” on page 72

Replace, Insert, and Delete Substrings
The ability to manipulate the contents of an IString is one of the greatest
advantages of the IString class over the traditional method of using string.h
functions to manipulate arrays of characters. Consider, for example, a function that
perform the following changes on a string. Issues that you need to address when
using arrays of characters, but that are handled for you by the IString class, are
shown in parentheses:
1. Replace all occurrences of Blue with Yellow (string must be expanded by two

characters for each replacement, and text after the replacement must be shifted
out).

Chapter 2. Text Framework 67

2. Replace all occurrences of Orange with Pink (string must be shortened by two
characters for each replacement).

3. Delete the sixth word of the string. (How are words delimited? By spaces?
Carriage returns? Tab characters? What about multiple adjacent whitespace
characters?)

4. Insert the word Dark as the fourth word or at the end of the string if the string
has fewer than three words. (String must be extended. How are words
delimited? Do you add a space before or after the word?).

You can easily handle the above requirements using IString member functions. The
sample function fixString() below implements the requirements. Numbered
comments correspond to the numbers of the requirements:

// Replace, insert, and delete substrings

#include <iostream>
#include <istring.hpp>
void fixString(IString&);
void main()
{

IString
Str1=“Light Blue and Green are nice colors. ”;

Str1+=“But so are Red and Orange.”;
cout << Str1 << endl;
fixString(Str1);
cout << Str1 << endl;

}
void fixString(IString &myString) {

// 1. Change Blue to Yellow
myString.change(“Blue”, “Yellow”);
// 2. Change Orange to Pink
myString.change(“Orange”, “Pink”);
// 3. Remove words, starting at word 6,
// for a total of 1 word.
myString.removeWords(6,1);
int Word4=myString.indexOfWord(4);
// 4. Insert “Dark” as fourth word
// or at the end of string if string
// has fewer than 4 words. The
// insertion occurs 1 byte before
// word 4 (otherwise it inserts
// in the middle of word 4).
if (Word4>0)

myString.insert(“Dark ”,Word4-1);
else

myString+=“ Dark”;
}

This program produces the following output:
Light Blue and Green are nice colors. But so are Red and Orange.
Light Yellow and Dark Green are colors. But so are Red and Pink.

“Chapter 2. Text Framework” on page 43

“Create Strings” on page 59
“Copy Strings” on page 60
“Concatenate Strings” on page 61
“Extend Strings” on page 62
“Format Strings” on page 63

68 IBM Open Class: Text and Internationalization

“Determine String Lengths and Word Counts” on page 64
Do String Input and Output
“Find Words or Substrings within Strings” on page 66
“Test the Characteristics of Strings”
“Convert between Strings and Numeric Data” on page 71
“Convert between Strings and Different Base Notations” on page 72

Test the Characteristics of Strings
The IString class lets you test your strings to determine characteristics such as the
following:
v Whether they represent valid hexadecimal, decimal, or binary values
v Whether they contain only letters, letters and numbers, uppercase letters,

lowercase letters, or punctuation characters
v Whether they contain all SBCS or DBCS characters

This list covers only a few of the testing functions provided by IString.

The testing functions return a value of type bool, indicating either true or false for
the tested characteristic. For example, the function isBinaryDigits() returns false for
the IString value “1101121101”. All testing functions return a value of false for null
IString.

The testing functions all have names beginning with is..., because they ask a
question, such as “is the IString made up only of binary digits?” The following
example shows how you can use a subset of these functions:

// Evaluating strings using
// the IString is... methods

#include <istring.hpp>
#include <iostream>

void evaluate(IString& StringToTest)
{

if (StringToTest.isPrintable())
std::cout << “Evaluating the string ”

<< StringToTest << “:” << std::endl;
else

std::cout << “Evaluating an unprintable string:”
<< std::endl;

if (StringToTest.isDigits())
std::cout << “ Contains only digits 0-9.”

<< std::endl;
if (StringToTest.isAlphabetic())

std::cout << “ Contains only alphabetic”
<< “ characters.” << std::endl;

if (StringToTest.isAlphanumeric())
std::cout << “ Contains only alphabetic and”

<< “ numeric characters.” << std::endl;
if (StringToTest.isBinaryDigits())

std::cout << “ Contains only zeros and ones.”
<< std::endl;

if (StringToTest.isHexDigits())
std::cout << “ Contains only hex digits”

<< “ 0-9, a-f, A-F.”
<< std::endl;

if (StringToTest.isControl())
std::cout << “ Contains only ASCII values”

<< “ 00-1F, 7F.” << std::endl;
if (StringToTest.isLowerCase())

std::cout << “ Contains only lowercase”
<< “ letters a-z.” << std::endl;

if (StringToTest.isUpperCase())

Chapter 2. Text Framework 69

std::cout << “ Contains only uppercase”
<< “ letters a-z.” << std::endl;

if (StringToTest.isSBCS())
std::cout << “ Contains only SBCS characters.”

<< std::endl;
}

void main()
{

IString Str[6];
Str[0]=“12345”; // numeric, hexadecimal
Str[1]=“abcde”; // alphabetic, hexadecimal
Str[2]=“10101”; // numeric, binary
Str[3]=“abCde”; // alphabetic, hexadecimal
Str[4]=“xyz12”; // alphanumeric, lowercase
Str[5]=“\x04\x06\x11\x12”; // control, unprintable

for (int i=1;i<6;i++) evaluate(Str[i]);
}

The output from this program resembles the following. Depending on the code
page and character set (ASCII or EBCDIC) of the system you are running the
program on, the results may vary.
Evaluating the string abcde:
Contains only alphabetic characters.
Contains only alphabetic and numeric characters.
Contains only hex digits 0-9, a-f, A-F.
Contains only lowercase letters a-z.
Contains only SBCS characters.
Evaluating the string 10101:
Contains only digits 0-9.
Contains only alphabetic and numeric characters.
Contains only zeros and ones.
Contains only hex digits 0-9, a-f, A-F.
Contains only SBCS characters.
Evaluating the string abCde:
Contains only alphabetic characters.
Contains only alphabetic and numeric characters.
Contains only hex digits 0-9, a-f, A-F.
Contains only SBCS characters.
Evaluating the string xyz12:
Contains only alphabetic and numeric characters.
Contains only SBCS characters.
Evaluating an unprintable string:
Contains only ASCII values 00-1F, 7F.
Contains only SBCS characters.

“Chapter 2. Text Framework” on page 43

“Create Strings” on page 59
“Copy Strings” on page 60
“Concatenate Strings” on page 61
“Extend Strings” on page 62
“Format Strings” on page 63
“Determine String Lengths and Word Counts” on page 64
Do String Input and Output
“Find Words or Substrings within Strings” on page 66
“Replace, Insert, and Delete Substrings” on page 67
“Convert between Strings and Numeric Data” on page 71
“Convert between Strings and Different Base Notations” on page 72

70 IBM Open Class: Text and Internationalization

Convert between Strings and Numeric Data
The IString class provides a number of as... functions that convert from IString
objects to numeric types. You can also convert from numeric types to IString
objects by using the versions of the IString constructor that take numeric values as
arguments. The following example shows various IString functions that convert
between strings and numbers:

// Conversion between IString and numeric values
#include <iostream>
#include <istring.hpp>
void main()
{

// Initialized with a float value
IString NumStr=1.4512356919E1;
// Convert to integer value
int Integer=NumStr.asInt();
// C++ conversion rules allow asDouble's
// result to be converted to float
float Float=NumStr.asDouble();
// Convert to double value
double Double=NumStr.asDouble();
// Assign another integer value
NumStr=688;
// Set precision of cout stream
std::cout.precision(20);
std::cout << “Integer: ” << Integer

<< “\nFloat: ” << Float
<< “\nDouble: ” << Double
<< “\nString: ” << NumStr
<< std::endl;

}

This program produces the following output:
Integer: 14
Float: 14.512356758117676
Double: 14.512356919
String: 688

You can also change the base notation of IString objects containing integer
numbers, by using the d2b, d2x or d2c functions, which convert from decimal to
binary, hexadecimal, or character representations.

IText and Numberic Formatting
The IText class provides numeric formatting classes through IDecimalFormat,
IBinaryFormat, and IHexadecimalFormat.

“Chapter 2. Text Framework” on page 43

“Create Strings” on page 59
“Copy Strings” on page 60
“Concatenate Strings” on page 61
“Extend Strings” on page 62
“Format Strings” on page 63
“Determine String Lengths and Word Counts” on page 64
Do String Input and Output
“Find Words or Substrings within Strings” on page 66
“Replace, Insert, and Delete Substrings” on page 67

Chapter 2. Text Framework 71

“Test the Characteristics of Strings” on page 69
“Convert between Strings and Different Base Notations”

Convert between Strings and Different Base Notations
You can use the format conversion functions to change the way the data in a string
is represented. These functions are overloaded so that each function has two
versions. The non-static version replaces the value of the string with the converted
value. The static version preserves the original string and returns a new string
object containing the converted value. For example:

// Changes value of aString
aString.c2b();
// Preserves value of aString
IString binaryDigits = IString::c2b(aString);

The conversion functions check the format of the source string to make sure it is
compatible with the source format implied by the function name. For example, if
you use the b2d function to convert a string from binary to decimal, the function
first checks that the string contains only the digits ’0’ and ’1’. If it contains any
characters other than those allowed by the source type, the format conversion
functions always return 0.

The following example shows the use of the conversion functions. If you examine
both the example and the output provided below, you can see how to use the
functions.

// IString conversion functions
#include <istring.hpp>
#include <iostream>
enum Bases {Bin, Dec, Hex, Char};
IString

Base[4]={“binary”, “decimal”, “hex”, “character”};
IString NumStr;
void Show(int From, int To, IString& Result)
{

std::cout << NumStr << “ in ” << Base[From]
<< “ is ” << Result << “ in ” << Base[To]
<< '.' << std::endl;

}
void main()
{

IString NewStr;
NumStr=“122”;

NewStr=IString::d2b(NumStr); Show(Dec,Bin,NewStr);
NewStr=IString::d2x(NumStr); Show(Dec,Hex,NewStr);
NewStr=IString::d2c(NumStr); Show(Dec,Char,NewStr);

NumStr=“Hat”;
NewStr=IString::c2b(NumStr); Show(Char,Bin,NewStr);
NewStr=IString::c2d(NumStr); Show(Char,Dec,NewStr);
NewStr=IString::c2x(NumStr); Show(Char,Hex,NewStr);

NumStr=“5F”;
NewStr=IString::x2b(NumStr); Show(Hex,Bin,NewStr);
NewStr=IString::x2d(NumStr); Show(Hex,Dec,NewStr);
NewStr=IString::x2c(NumStr); Show(Hex,Char,NewStr);

NumStr=“0110100001101001”;
NewStr=IString::b2d(NumStr); Show(Bin,Dec,NewStr);
NewStr=IString::b2x(NumStr); Show(Bin,Hex,NewStr);
NewStr=IString::b2c(NumStr); Show(Bin,Char,NewStr);

}

The output from this program resembles the following. Depending on the code
page and character set (ASCII or EBCDIC) of the system you are running the
program on, the values may vary.

72 IBM Open Class: Text and Internationalization

122 in decimal is 01111010 in binary.
122 in decimal is 7A in hex.
122 in decimal is z in character.
Hat in character is 010010000110000101110100 in binary.
Hat in character is 4743540 in decimal.
Hat in character is 486174 in hex.
5F in hex is 01011111 in binary.
5F in hex is 95 in decimal.
5F in hex is in character.
0110100001101001 in binary is 26729 in decimal.
0110100001101001 in binary is 6869 in hex.
0110100001101001 in binary is ÃÐ in character.

“Chapter 2. Text Framework” on page 43

“Create Strings” on page 59
“Copy Strings” on page 60
“Concatenate Strings” on page 61
“Extend Strings” on page 62
“Format Strings” on page 63
“Determine String Lengths and Word Counts” on page 64
Do String Input and Output
“Find Words or Substrings within Strings” on page 66
“Replace, Insert, and Delete Substrings” on page 67
“Test the Characteristics of Strings” on page 69
“Convert between Strings and Numeric Data” on page 71

Styles

Styles and Style Sets
IText uses the classes ITextStyle and ITextStyleSet to encapsulate the styling
information associated with a string. ITextStyle is the abstract base class for all text
styles provided by the framework. ITextStyleSet provides a mechanism for
manipulating styles in groups. Most functions that take styles as parameters allow
you to add styles to a range of characters in an IText object either individually
(with ITextStyle) or as a group (with ITextStyleSet).

A style object is basically a wrapper for some value that gives the style meaning.
The type of value differs for each style. For example, a typeface style encapsulates
a string that indicates which typeface to use, such as Times or Helvetica, while the
italic style encapsulates a boolean that indicates whether the associated characters
are italicized or not. You can change the value of a style object at any time.

Styles can define information that controls how the text is displayed—for example,
the typeface or point size—or some other metadata not related to the display of the
text, such as the natural language of the text or whether it is editable. However,
styles do not define display mechanisms. It is up to the rendering mechanism to
interpret the information in the style objects and display the text according to the
associated styling information.

IText uses ITextStyleSet to store the set of styles associated with a particular style
run, and you can use it to work with groups of styles. An ITextStyleSet object can
contain only one instance of any given style. It cannot, for example, contain two

Chapter 2. Text Framework 73

instances of ITextTypefaceStyle even if one style indicates “Helvetica” and another
indicates “Times.” If you add a style to a style set that already contains an instance
of that type of style, the new style replaces the old style regardless of their values,
as illustrated in this figure:

“Style Classes”
“Style Propagation” on page 76
Character Data

Style Classes
The framework currently supports two types of styles: character styles and
paragraph styles. These styles derive from the abstract classes ICharacterStyle and
IParagraphStyle, respectively, and are distinguished by how they propagate:
v Styles that propagate by character can be applied to any arbitrary range of

characters, and maintain their association with those characters regardless of
how the surrounding text changes. Character styles include point size and color.

v Styles that propagate by paragraph can be applied only to whole
paragraphs—ranges of characters delimited by paragraph separator characters.

Paragraph styles include justification and indentation. For example, if you apply a
paragraph style such as a justification style to a range of characters, IText
automatically applies it to the entire paragraph (or multiple paragraphs) containing
that range. Paragraph styles may be adjusted as text is edited, for example, if
paragraph separator characters are added or deleted.

When you create a style object, give it a meaningful value. For example, you might
give the value “12” to an ITextPointSizeStyle object or the value
IParagraphJustificationStyle::kCenter to an IParagraphJustificationStyle object. No
default values are provided—if you don’t specify a value when you create a style
object, the style’s value remains undefined.

Using an undefined style may be useful, for example, in situations where the value
is unimportant (such as calling IText::removeStyles) or where you create the style
object to pass it to another function that will fill in the value.

The style classes also provide the ITextStyleSet, which lets you group styles. For
example, you could add several styles to a range of characters with a single call to
IText. Any IText function that takes an ITextStyle parameter is overloaded to take
an ITextStyleSet parameter as well.

Character Style Classes
Character styles derive from ICharacterStyle. ICharacterStyle::propagates returns
the value ITextStyle::kPropagateByCharacter. You can apply these character styles
to any arbitrary range of characters, from a single character to all characters in an
IText object.

74 IBM Open Class: Text and Internationalization

This table describes the concrete character styles currently provided by the
framework, along with the type of value each contains.

Class Description Value

ITextTypefaceStyle Specifies the typeface to use
to display characters.

An IText object encapsulating
the name of the typeface, for
example, “Helvetica.”

ITextPointSizeStyle Specifies the point size in
which to display characters.

A float representing the point
size, for example, “14.”

ITextBoldfaceStyle Specifies whether characters
are displayed in boldface, for
example, SampleString.

A bool-true means the
characters are displayed in
boldface.

ITextItalicStyle Specifies whether characters
are displayed in italics, for
example, SampleString.

A bool-true means the
characters are displayed in
italics.

ITextUnderlineStyle Specifies whether characters
are displayed underlined, for
example, SampleString.

A bool-true means the
characters are underlined.

ITextStrikethroughStyle Specifies whether characters
are displayed with a
strikethrough line, for
example, SampleString.

A bool-true means the
characters are struckthrough.

ITextOutlineStyle Specifies whether character
are displayed in an outline
typeface, for example,
SampleString.

A bool-true means the
characters are outlined.

ITextUneditableStyle Specifies whether characters
can be edited. This is
currently the only style that
is not related to text display.

A bool-true means the
character cannot be edited.

ITextColorStyle Specifies a color to use to
display characters.

Three unsigned char values
representing the red, green,
and blue components of the
color.

ITextSuperSubscriptStyle Specifies a shift from the
baseline, in points, for
displaying characters as
superscripts or subscripts.

A float representing the
baseline shift. A negative
value creates a subscript. A
positive value create a
superscript.

Paragraph Style Classes
Paragraph styles derive from IParagraphStyle. IParagraphStyle::propagates returns
the value ITextStyle::kPropagateByParagraph. You can apply paragraph styles only
to whole paragraphs, that is, to ranges of characters delimited by
UUnicodeSpecial::kParagraphSeparator characters.

If you apply paragraph styles to a range of characters that is less than a paragraph
or that intersects multiple paragraphs, IText propagates the paragraph styles to all
the relevant paragraphs. The styles also remain associated with the paragraph as
the number of characters in the paragraphs changes during editing.

This table describes the concrete paragraph styles currently provided by the
framework, along with the type of value each contains.

Chapter 2. Text Framework 75

Class Description Value

IParagraphJustificationStyle Specifies the alignment of the
paragraph. Alignment is
specified relative to the
directionality of the writing
system. For example,
starting-edge-aligned means
on the left for left-to-right
languages such as English.

EJustification enum, defining
the possible values kStart,
kCenter, and kEnd.

IParagraphSpreadStyle Specifies whether no lines,
all lines, or all but the last
line of the paragraph are
fully justified.

ESpread enum, defining the
possible values kNone, kAll,
and kNotLastLine.

IParagraphStartIndentStyle Specifies an indent distance,
in points, for the starting
edge (the left edge in
left-to-right writing systems)
of the paragraph.

A float representing the
indent distance in points.

IParagraphEndIndentStyle Specifies an indent distance,
in points, for the ending
edge (the right edge in
left-to-right writing systems)
of the paragraph.

A float representing the
indent distance in points.

IParagraphFirstIndentStyle Specifies an indent distance,
in points, for the starting
edge of the first line of the
paragraph.

A float representing the
indent distance in points.

Currently the set of styles supported by the Unicode Text Framework is not
extensible; you cannot create your own subclasses of ITextStyle, ICharacterStyle, or
IParagraphStyle. Future Open Class releases may support extending this style
mechanism.

“Styles and Style Sets” on page 73
“Style Propagation”
Character Data

Style Propagation
The Unicode Text Framework uses the propagation of a style to determine how it
can be applied to character ranges and how the affected style runs change as the
characters are edited. The framework currently defines two types of style
propagation:
v Character-based propagation
v Paragraph-based propagation

Styles that propagate by character can be applied to any arbitrary range of at least
one character. The styles remain with these characters regardless of how characters
within that range or surrounding that range are edited. Styles applied to a range of
characters also propagate to any new text entered into that range.

For example, this shows a sequence of possible editing changes:

76 IBM Open Class: Text and Internationalization

Styles that propagate by paragraph can be applied only to paragraphs—ranges of
characters delimited by paragraph-separator characters
(UUnicodeSpecial::kParagraphSeparator). This makes the style propagation
mechanism more complicated than it is for character styles, because IText has to
repropagate paragraph styles when paragraph separator characters are added or
deleted.

The mechanism for propagating styles follows these rules:
v A text string containing no paragraph-separator characters takes on the

paragraph styles of the text into which it is inserted.
v A text string bounded on both sides by paragraph-separator characters retains its

paragraph styles even when inserted into text containing other paragraph styles.
v A range of text that is inserted into another string and then deleted should have

the same paragraph separators and paragraph styles as it did before the editing
operations.

IText propagates paragraph styles backwards from the character closest to a
paragraph separator back to the beginning of the paragraph. For example, if you
have two text strings containing several paragraphs with different paragraph
styles:

When propagating paragraph styles, IText recognizes only the
UUnicodeSpecial::kParagraphSeparator character (U+2029) to be a
paragraph-separator character. When text in other character encoding systems is
transcoded into Unicode, you must ensure that it is processed by an
ILineBreakConverter object so that the separator characters are transcoded
correctly.

“Styles and Style Sets” on page 73
“Style Classes” on page 74
Character Data

Chapter 2. Text Framework 77

“Edit Character Data in an IText Object” on page 53

Character Data
IText provides several functions for accessing specific characters or character
ranges.

The framework provides a special class, ICharacterReference, that acts as a simple
proxy class to access single ioc::unichar_t values. IText uses ICharacterReference
wherever a non-const reference to an ioc::unichar_t is required. ICharacterReference
provides a safer character reference mechanism by:
v Filtering out-of-range character references that might cause memory problems
v Protecting the integrity of an IText object’s underlying storage mechanism, which

might be shared
v Protecting against style propagation problems

ICharacterReference provides an operator that returns a copy of the referenced
ioc::unichar_t values.

The following table describes the low-level IText functions for accessing characters:

Member function Description

operator[] and at Return a reference to or copy of the
character at a specified offset.

at_put Lets you set the character at a particular
offset to a specified character. The
ICharacterReference assignment operator
also supports this.

substr Provides an IText object containing a copy of
a specified range of characters.

Editing Character Data
IText provides functions for editing character data. You can specify the text to add
to the object as:
v Another IText object
v A ioc::unichar_t array (null-terminated or with a specified length)
v A range of an IText defined by a pair of iterators
v A range of an IText defined by an offset and a character count

Unless noted, text added to an IText retains its character styling information
(Unicode characters inserted into an IText are considered unstyled). Paragraph
styles are propagated as appropriate.

The following table describes the IText interfaces for editing character data:

Member function Description

operator+= and append Add a string to the end of the current text.

insert Inserts a string at a specified offset (you
specify the offset of the character after which
new text is to be inserted).

78 IBM Open Class: Text and Internationalization

Member function Description

insert_and_propagate_styles Inserts a string at a specified offset. The
inserted string takes on the styles of the
surrounding text.

erase Deletes the characters in a specified range.

replace Replaces a range of characters with another
string. Unlike IString::change, the
IText::replace function is not able to perform
a full search and replace.

Styles and Style Sets
Style Classes
Style Propagation

Text Display
Unicode Text
The Text and International Frameworks use the Unicode-based class IText as the
storage mechanism for underlying text. The text can contain a mixture of runs of
different character- and paragraph-styling information.

IGraphicText lets you display a single line of styled text as a static graphic object.

Static Text
The most straightforward mechanism for drawing the styled text represented in an
instance of IText is provided by IGraphicText. IGraphicText implements functions
inherited from IMGraphic for drawing, performing graphic transformations, and
computing the bounds of the graphic in a device-specific manner.

IGraphicText also provides access functions for the text and for the current
transform.

After initial construction, IGraphicText lets you use setText to reset the text or the
setTransform function to reset the current transform. You can also use the
convenience function setLocation to set a new drawing position. This resets the
current transform to translate the origin to the specified location. The containing
view should call the draw function to redraw the string.

You can use the bounds returned by looseFitBounds to position the graphic. For
example, you can create a matrix that rotates the graphic by 45 degrees around the
center of the bounding rectangle

For computing the bounding rectangle, the function looseFitBounds returns more
accurate results than geometricBounds because geometricBounds returns an
approximate bounds based on an untransformed root screen port.

Some graphic transformations may also cause the bounding rectangle to change
slightly. You should apply the transformation before computing and using the
bounds.

Chapter 2. Text Framework 79

IGraphicText is a subclass of the 2D Graphics class IMGraphic that you use to
draw static text strings. IGraphicText draws the styled text in an IText object as a
single line of text, beginning at a specified point. IGraphicText also supports basic
graphic transformations.

IGraphicText is not intended to be subclassed. To implement your own static text
display class, derive directly from classes in the 2D Graphics Framework.

You can specify an IGPoint2D object to represent the anchor position at which to
draw the text. For English text, the origin is at the left baseline.

To draw the text, you specify the IGrafPort into which to display the text. For
example, this code demonstrates simple usage of IGraphicText:

void drawSomeText (const IText& styledText,
IGPoint2D anchorLocation,
IGrafPort* displayPort)

{
IGraphicText graphicText(styledText, IGraphicText::kSingleLine);
graphicText.setLocation(anchorLocation);
graphicText.draw(*displayPort);
}

Graphics Class Architecture
GrafPorts
IMGraphic Models

Display Text Strings as Graphics
Use IGraphicText to display styled text strings as static graphics. IGraphicText
currently displays text as a single line, ignoring text following any new-line
characters.

To draw a static text string:
1. Create an IGraphicText instance, specifying the text to draw.
2. Call the IGraphicText::setLocation function, passing in the point representing

the position at which to begin drawing. This point is the baseline of the text.
3. Call the IGraphicText::draw function, passing in the port to draw the text to.

For example, this code shows a simple drawContents function for a view that
draws static styled text:

bool
IHelloWorldView::drawContents (IGrafPort& port) const
{

IText string(“Hello World!”);
string.addStyles(ITextTypefaceStyle(“Helvetica”));
string.addStyles(ITextPointSizeStyle(18), 0, 5);

IGraphicText hello(string, IGraphicText::kSingleLine);
hello.setLocation(IGPoint2D(30, 30));
hello.draw(port);
return true;

}

“Text Display” on page 79

80 IBM Open Class: Text and Internationalization

“Apply Graphic Transformations to a Text Graphic”

IText
ITextPointSizeStyle
ITextTypefaceStyle

Apply Graphic Transformations to a Text Graphic
IGraphicText supports the IMGraphic functions for graphic transformations,
including scaling, rotating, and translating.

To apply a transformation to an existing IGraphicText object:
1. Create an IGrafMatrix representing the transform.
2. Call the IGraphicText::transformBy function to apply the transformation.

Instead of creating and applying a matrix, you can also use one of the
convenience functions rotateBy, translateBy, or scaleBy.

1. Call the IGraphicText::draw function to draw the transformed graphic.

Some transformations, such as rotation, may cause the bounding rectangle to
change slightly. Apply the transformation before computing and using the bounds.

For example, this code shows how to center a graphic text object in the
IExtendedRootGrafPort port:

IManagedPresSpaceHandle presSpace(&drawingArea);
IExtendedRootGrafPort *myDisplayPort

= new IExtendedRootGrafPort(presSpace);
IText string(“Hello World!”);
string.addStyles(ITextTypefaceStyle(“Helvetica”));
IGraphicText graphic(string, IGraphicText::kSingleLine);
// center the bounding rectangle within the bounding rectangle
// of the port
IGRect2D portBounds = myDisplayPort->worldBounds();
IGRect2D graphicBounds = graphic.looseFitBounds(myDisplayPort);
// apply the transformation
graphic.translateBy(portBounds.center() - graphicBounds.center());
graphic.draw(*myDisplayPort);
delete myDisplayPort;

The IGRect2D object portBounds represents the rectangular region of the client
window.

The IGRect2D object graphicBounds represents the smallest rectangle that can fit
around the IGraphicText object. The call to looseFitBounds takes into account the
transforms and attributes applied to the graphics port, in this case, myDisplayPort.

The translateBy function moves a graphic by the specified vector. The function
moves the graphic relative to the graphic’s origin. Therefore to center a graphic in
a graphics port, subtract the center of the graphic from the center of the graphics
port. This will take into account the distance between the graphic’s origin and
center.

The call to draw draws the graphic text onto the graphics port myDisplayPort.

Chapter 2. Text Framework 81

“Text Display” on page 79
2D Transformations

“Display Text Strings as Graphics” on page 80

Summary of Text Framework Classes
This table summarizes the Unicode Text Framework classes:

Class Description

ICharacterReference Provides a mechanism to reference
individual characters without introducing
errors in style propagation or reference
counting

ICharacterStyle Abstract base class for all character
styles-that is, styles that can be applied to
individual characters

IConstTextIterator A variation on ITextIterator that doesn’t
allow you to modify the characters

IFastTextIterator A text iterator that provides faster
performance but fewer safety guarantees
than ITextIterator

IParagraphEndIndentStyle Paragraph style specifying the indent
distance for the “end” side of the paragraph,
for example, the right side of left-to-right
text

IParagraphFirstIndentStyle Paragraph style specifying the indent
distance for the start of the first line of the
paragraph

IParagraphJustificationStyle Paragraph style specifying which margin(s)
to align the lines of the paragraph to

IParagraphSpreadStyle Paragraph style specifying which lines of a
range of paragraphs are aligned to both
margins

IParagraphStartIndentStyle Paragraph style specifying the indent
distance for the “start” side of the
paragraph, for example, the left side of
left-to-right text

IParagraphStyle Abstract base class for all paragraph
styles-that is, styles that can only be applied
to paragraphs and not to individual
characters

IReverseConstTextIterator A variation on IReverseTextIterator that
doesn’t allow you to modify the characters

IReverseTextIterator Lets you iterate backwards through the
character in an IText object

IText Encapsulates styled strings of Unicode
characters

ITextBoldfaceStyle Character style specifying whether
characters are boldface

82 IBM Open Class: Text and Internationalization

Class Description

ITextColorStyle Character style specifying the color of
characters

ITextItalicStyle Character style specifying whether
characters are italicized

ITextIterator Lets you iterate through the characters in an
IText object

ITextOutlineStyle Character style specifying whether
characters are outlined

ITextPointSizeStyle Character style specifying the point size of
characters

ITextStrikethroughStyle Character style specifying whether
characters have a strikethrough

ITextStyle Abstract base class for both character and
paragraph styles

ITextStyleRunIterator Lets you iterate through style runs (ranges
of text with the same styling information) in
an IText object

ITextStyleSet Class for manipulating a group of styles as a
single set

ITextSuperSubscriptStyle Character style specifying the amount of
baseline shift of characters, for creating
superscripts and subscripts

ITextTypefaceStyle Character style specifying the typeface or
font of characters

ITextUnderlineStyle Character style specifying whether
characters are underlined

ITextUneditableStyle Character style specifying whether
characters can be modified

“Chapter 2. Text Framework” on page 43
Text Creation and Manipulation
Text Boundaries
“Text Storage” on page 45
Strings and Buffers
String Formats
Text and Style Run Iteration

Chapter 2. Text Framework 83

84 IBM Open Class: Text and Internationalization

Chapter 3. The Unicode Standard

The Unicode Standard is a standardized character code designed to encode
international texts for display and storage. It uses a unique 16-bit value to
represent each individual character. The Unicode standard includes the following:
v Alphabets used in Europe, Africa, and Asia
v Standard characters from China, Japan, Korea, and Taiwan
v Mathematical operators
v Technical symbols

The following diagram illustrates how Unicode assigns a unique 16-bit value to
each character:

0xAFB3 represents the character in BIG5 and the characters in Shift-JIS.

Unicode assigns each character with a unique code point. In this case is

assigned with 0x9673 and with 0xFF73 and 0xFF6F.

Although the 16-bit architecture of Unicode can handle more than 65,000 different
characters, the Unicode Standard can extend to handle an additional one million
characters by the surrogate extension mechanism. This mechanism uses two16-bit
values to represent one character. The Unicode Standard has not used any of these
surrogates. (The current standard contains 38,885 characters.)

The Unicode Standard lets you dynamically compose accented characters. In the
Unicode Standard, a character and an accent are separate characters. In other
character encodings such as ASCII, you select from a set of accented characters.

The standard supports bidirectional ordering of languages. Bidirectional language
ordering occurs when a script uses two or more languages with different dominant
directions. For example, a script would have bidirectional language ordering if it
mixes Arabic (which reads from right-to-left) with Greek (which reads from
left-to-right). The Unicode Standard includes characters that specify a change of
direction.

© Copyright IBM Corp. 1998, 2000 85

The current implementation of the IBM Open Class Unicode Text framework
supports the Unicode Standard without the surrogate extension mechanism.

Unicode Encoding Schemes
The ISO/IEC 10646 (International Organization for Standardization/International
Electrotechnical Commission) defines two alternative forms of encoding:

Encoding Description

UCS-4 The Universal Character Set coded in 4 bytes is
a 31-bit encoding used to represent each
individual character. These coding positions
are conceptually divided in 120 groups of 256
planes, each plane containing 256 rows and
256 columns.

UCS-2 The Universal Character Set coded in 2 bytes is
a 16-bit encoding consisting of plane zero,
the Basic Multilingual Plane (BMP). The
Unicode Standard includes all character code
values of UCS-2 as well as additional
characters.

Transformation Formats
A transformation format is used to transform a coding to another coding with a
more restrictive numerical range. For example, Unicode consists of characters that
have 16 bits, while ASCII characters only have 7 bits. A transformation format
would typically transform a Unicode character to one or more bytes so that a
system using ASCII characters may understand the Unicode data.

Format Description

UTF-8 The UCS Transformation Format, 8-bit form is
a file system safe multi-byte encoding
scheme for UCS-2. It is a proper superset of
ASCII and it preserves the semantics of a
null octet for the C programming language.
UTF-8 is mostly used for AIX’s file system.

UTF-16 The UCS Transformation Format for Planes of
Group 00. UTF-16 is the ISO/IEC encoding
that is equivalent to the Unicode Standard
with the use of surrogates.

Both AIX and NT use UCS-2 as their process codes. Win95/98 is still mostly ASCII
based. The AIX platform prefers UTF-8 based functions.

The current implementation of IBM Open Class Unicode Text framework supports
both UCS-2 (UTF-16 without the support for surrogates) and UTF-8 encodings for
a number of reasons, such as performance, practical interest, and memory burden.

Unicode Character Types
Two data types exist for multilingual characters:

Data type Description

unsigned short Data type customarily used for Unicode
characters.

86 IBM Open Class: Text and Internationalization

Data type Description

wchar_t Data type used for extended DBCS (double
byte character string).

The IBM Open Class has defined two data types to explicitly represent Unicode as
an unsigned short:

Unicode Character Type Description

UniChar An unsigned short. The IBM Open Class
explicitly declared this typedef so that you
can easily distinguish between Unicode
characters and unsigned short numbers.

ioc::unichar_t This data type allow you to switch from
unsigned short to wchar_t on systems where
wchar_t is two bytes long and supports
Unicode. By default this type is defined as
an unsigned short. If you define the macro
__IOC_USE_WCHAR, ioc::unichar_t
becomes a wchar_t.

The Unicode Standard
Unicode Support and the IUnicode Class
Character Values
Character Properties
Summary of Unicode Support Classes

Create a Unicode Application
Identify a Character’s Properties
Identify a Character’s Script
Find Characters with Specific Properties

Create a Unicode Application
Unicode Enabled Applications
A Unicode enabled IBM Open Class application is one that uses the Unicode
interfaces from IBM Open Class. Unicode interfaces are those that either takes an
IText object (or reference) or an array of ioc::unichar_t data.

You can mix Unicode and non-Unicode code (in other words, use both IText and
IString). However, you may not be able to represent some Unicode (UCS-2) data as
ASCII or MBCS data. As a result, you may lose data when converting between
encoding schemes.

User interface classes do not support UCS-2 but they do support UTF-8. The 2D
graphics classes support UCS-2.

When creating help documents for UTF-8 applications, use HTML help rather than
IPF help, since IPF help is not supported under UTF-8 locales. However, the IBM
Open Class does not provide classes to work with HTML help.

Chapter 3. The Unicode Standard 87

The IBM Open class provides two string classes: IText and IString. The following
chart lists factors that determine which string class you should use:

Factor Yes No

Is it a graphical user
interface application?

Use either IString or a
mixture of IText and IString.

Use IText if you are
primarily dealing with
UCS-2 data; IString if you
are
dealing with Multibyte or
UTF-8 data.

Do you want ANSI
basic_string protocol?

Use IText. Use either IString or IText.

Are you going to store and
manipulate large string
objects?

Use IText. Use either IString or IText.

Do you want to associate
styles with your strings (like
bold, italic, or color
information)?

Use IText. Use either IString or IText.

Do you need parsing
capabilities?

Use IString. Use either IString or IText.

Unicode Samples
VisualAge C++ provides you with the following samples to help you create
Unicode applications:

Name Location Description

Unicode Transcoding Sample samples/intl/transcod Converts string data between
one code page and Unicode

Unicode 2D Graphic Text
Sample

samples/intl/graftext Draws Unicode strings with
2D graphics

The Unicode Standard
Unicode Support and the IUnicode Class
Character Values
Character Properties
Summary of Unicode Support Classes

Identify a Character’s Properties
Identify a Character’s Script
Find Characters with Specific Properties
Unicode Transcoding Sample
Unicode 2D Graphic Text Sample

Unicode Support and the IUnicode Class
Overview of Unicode Support
Many Open Class classes use the Unicode character encoding standard to represent
text data internally. Unicode, a fixed-width, 16-bit character encoding system,
contains codes for every character in every major world script, along with a wide

88 IBM Open Class: Text and Internationalization

set of symbols, punctuation, and control characters. Because the Unicode system
can store and access every character, regardless of its script or natural language, it
lets you manipulate text more easily than in environments that require multiple
code pages to support different character sets.

The Unicode support classes let you query the properties associated with
individual Unicode character values. These properties, provided implicitly by the
Unicode character encoding standard, include:
v information about the script (for example, Latin or Cyrillic)
v information about the character’s character set (for example, symbols or control

characters)
v semantic information, such as whether a character is a digit or is uppercase,

lowercase, or uncased.

The IUnicode Class
The primary class in the Unicode support classes is IUnicode, which lets you
determine a character’s script and character properties. The Unicode support
classes also provide a mechanism for referencing specific Unicode character values
by name instead of by codepoint values.

IUnicode provides a set of static functions that check a Unicode character,
represented by the datatype ioc::unichar_t, for a specific property—for example,
querying whether a character is an uppercase character, a digit, or one of the space
characters. These functions let you check a character for a specific property without
requiring you to know all the possibilities. You can test for a space character, for
example, with the IUnicode::IsASpace function without needing to know the full
set of Unicode characters used to represent a space.

The class library also provides a set of classes that contain enumerated names for
each Unicode character value. These classes correspond to groups of characters
based on script or functions: ULatin, UGreek, UDingbats, UMathematicalOperators,
and so on. Use the names enumerated in these classes to reference specific Unicode
character values.

Character Support
The Unicode character set provides full character coverage for the major scripts
listed below, as well as for punctuation, symbols, and control characters. The
character set for each script is independent—even if a character appears in
multiple scripts, it has a separate code within each script. For example, the
character A has one code for the Roman alphabet, another code for the Greek
alphabet, and yet another code for the Cyrillic alphabet. However, because more
than one language may use a given alphabet, the character A is represented by the
same code for English, French, and, in fact, all languages that use the Roman
alphabet.

Supported Scripts

v Arabic
v Armenian
v Bengali
v Cyrillic
v Devanagari
v Georgian
v Greek
v Gujarati

Chapter 3. The Unicode Standard 89

v Gurmukhi
v Han
v Hangul
v Hebrew
v Kana
v Kannada
v Lao
v Malayam
v Oriya
v Roman
v Tamil
v Telugu
v Thai
v Zhuyinfuhao

Reserved Areas
The Unicode standard sets aside a range of characters, from U+E000 to U+F8FF, for
the following private uses:
v special characters or sets of characters not included in the Unicode set
v assigning specific semantics to a character

By convention, this area is divided into an end-user zone, which begins at U+E000
and ascends toward higher numbers, and a corporate use zone, which begins at
U+F8FF and descends toward lower numbers. The purpose of this convention is to
minimize conflicting assignments within the private use area.

The Unicode Standard
Character Values
Character Properties
Summary of Unicode Support Classes

Create a Unicode Application
Identify a Character’s Properties
Identify a Character’s Script
Find Characters with Specific Properties

90 IBM Open Class: Text and Internationalization

Character Values
The class library provides a name, through a set of enumerations, for every
character in the Unicode set, with the exception of most of the Han ideographic
characters. Names are provided for some particularly significant ideographs, such
as digits and the 214 KangXi radicals.

To refer to specific Unicode values, use character names rather than code points.
For example, refer to UGeneralPunctuation::kQuestionMark rather than the value
U+003F.

Because of the large number of characters, the names are scoped into a set of
classes based on script or function. These classes are provided only for referencing
the enumerated names they contain; do not use them for any other reason. These
classes are listed in the following table. See the enumeration in the referenced
header file for specific character names.

Category Header file Classes

General utility characters iugnrl.hpp UASCII
UCombining
UControlCode
UGeneralPunctuation
ULatin
ULatin1
UModifierLetter
UUnicodeDigit
UUnicodeSpecial

East Asian scripts iueasia.hpp UBopomofo
UHangulChoseong
UHangulJongseong
UHangulJungseong
UHangulLetter
UHangzhouNumeral
UHanNumeral
UHiragana
UIdeographicAnnotation
UKangXiRadical
UKatakana
UKatakanaHiragana

South and Southeast Asian
scripts

iusasia.hpp UBengali
UDevanagari
UGujarati
UGurmukhi
UKannada
ULao
UMalayalam
UOriya
UTamil
UTelugu
UThai

Eastern European scripts iueeuro.hpp UCoptic
UCyrillic
UGeorgian
UGreek

Chapter 3. The Unicode Standard 91

Category Header file Classes

Mideastern scripts iumeast.hpp UArabic
UArmenian
UHebrew

Characters provided for
compatibility with other
standards

iucmpbty.hpp UArabicCompatibility
UArabicLigature
UArmenianSmallLigature
UBlocks
UBoxDrawings
UCircledDigit
UCircledHangul
UCircledIdeograph
UCircledKatakana
UCircledLatin
UCircledNumber
UCJKCompatibility
UCJKSquaredAbbreviations
UCJKSquaredWords
UCNSCompatibility
UFullStopDigit
UFullStopNumber
UFullwidth
UHalfwidth
UHalfwidthHangulLetter
UHangulSyllable
UIdeographicTelegraph
ULatinSmallLigature
UParenthesizedDigit
UParenthesizedHangul
UParenthesizedIdeograph
UParenthesizedLatin
UParenthesizedNumber
UPresentationFormForVertical
URomanNumeral
USmallVariants
USubscript
USuperscript
UVulgarFraction

Symbols iusyms.hpp UAPLFunctionalSymbol
UArrow
UCJKSymbols
UControlCodePicture
UCurrency
UDingbats
UGeometricShapes
UHarpoon
ULetterLikeSymbol
UMathematicalOperators
UMiscellaneousTechnical
UOCR
UStandardPhonetic
UZapfDingbats

Some character names may refer to characters of types other than ioc::unichar_t. In
such cases, you may need to cast characters before using interfaces that take
ioc::unichar_t parameters.

92 IBM Open Class: Text and Internationalization

The Unicode Standard
Unicode Support and the IUnicode Class
Character Properties
Summary of Unicode Support Classes

Create a Unicode Application
Identify a Character’s Properties
Identify a Character’s Script
Find Characters with Specific Properties

Character Properties
IUnicode provides static member functions that let you access the semantic
information provided by the Unicode character standard. These functions let you
determine the script of an ioc::unichar_t character or query whether that character
has a particular property.

IUnicode includes an enum, EUnicodeScript, that defines the set of scripts
supported by Unicode. The function script returns the correct enumerated value
that indicates the script of the character. Other functions return a boolean value
that indicates whether the character has a particular property.

ICharacterPropertyIterator lets you scan the set of Unicode characters for
characters that have a specific set of properties. For example, you might use this
class to return a list of punctuation characters for a particular script. The iterator
takes a range of character properties, defined by the IUnicode enum
ECharacterProperty, and identifies the characters that have the properties in that
range.

The Unicode Standard
Unicode Support and the IUnicode Class
Character Values
Summary of Unicode Support Classes

Create a Unicode Application
Identify a Character’s Properties
Identify a Character’s Script
Find Characters with Specific Properties

Identify a Character’s Properties
Use the corresponding IUnicode static member function to determine whether a
character has a particular property. For example, this code shows how to iterate
through a text object, replacing space characters with hyphens:

for (iter = someText.begin();
iter < someText.end() && IUnicode::isASpace(*iter);
++iter);
someText.replace(someText.begin(), iter,
UGeneralPunctuation::kHyphen);

Chapter 3. The Unicode Standard 93

The Unicode Standard
Character Properties

Create a Unicode Application
Identify a Character’s Script
Find Characters with Specific Properties

Identify a Character’s Script
Use the IUnicode::script function to determine the script of a character. Scripts are
identified by the IUnicode::EScript enumeration. For example, this code shows how
to determine whether a character at a specified offset in a text object is from the
Roman script:

ioc::unichar_t c = someText.at(0);
if IUnicode::script(c) = IUnicode::kRoman
{
// Character is of the Roman script...
}

The Unicode Standard
Unicode Support and the IUnicode Class

Create a Unicode Application
Identify a Character’s Properties
Find Characters with Specific Properties

Find Characters with Specific Properties
Use the class ICharacterPropertyIterator to find the set of Unicode characters with
particular properties. This iterator identifies the set of characters with a specified
range of properties, based on the IUnicode::ECharacterProperty enum.
1. Create an ICharacterPropertyIterator, specifying the range of properties to

identify.
2. Use operator++ to advance the iterator.
3. Use operator* to access the character currently referenced by the iterator.
4. Use operator bool to determine when the iterator is at the end of the list.

For example, this code shows how to iterate through the Unicode character set and
build a list of cased letters (characters with either a lowercase or an uppercase
property):

ioc::unichar_t longList[65536];
int n = 0;
// Create the iterator
ICharacterPropertyIterator iter(IUnicode::kUpperCaseLetter,

IUnicode::kLowerCaseLetter);
while(iter)
{
// Access the next character with case properties
longList[n] = iter*;

94 IBM Open Class: Text and Internationalization

// Advance the iterator
iter++;
n++;
}

The Unicode Standard
Character Properties

Create a Unicode Application
Identify a Character’s Properties
Identify a Character’s Script

Summary of Unicode Support Classes
This table lists the Unicode support classes:

Class Description

ICharacterPropertyIterator Lets you identify the set of Unicode
characters with specific character properties

IUnicode Provides access to the script and character
properties associated with a Unicode
character

UAPLFunctionalSymbol Enumerates names for APL functional
symbols in Unicode

UArabic Enumerates names for characters in the
Arabic script, excluding ligatures and
compatibility variants

UArabicCompatibility Enumerates names for characters required
for compatibility with older Arabic character
sets

UArabicLigature Enumerates names for Arabic ligatures

UArmenian Enumerates names for characters in the
Armenian script, excluding ligatures

UArmenianSmallLigature Enumerates names for ligatures of lowercase
Armenian letters

UArrow Enumerates names for arrow symbols in
Unicode

UASCII Enumerates names for Unicode characters
from the ASCII character set

UBengali Enumerates names for characters in the
Bengali script

UBlocks Enumerates names for Unicode characters
used in some terminal applications to draw
blocks and filled-in shapes on the screen

UBopomofo Enumerates names for characters in the
Bopomofo (or Zhuyinfuhao) alphabet used
to write Chinese phonetically

UBoxDrawings Enumerates names for characters used to
draw boxes on the screen

Chapter 3. The Unicode Standard 95

Class Description

UCircledDigit Enumerates names for digits inside circles

UCircledHangul Enumerates names for Hangul (Korean)
characters inside circles

UCircledIdeograph Enumerates names for East Asian
ideographs inside circles

UCircledKatakana Enumerates names for Katakana characters
inside circles

UCircledLatin Enumerates names for Latin characters
inside circles

UCircledNumber Enumerates names for numbers inside
circles

UCJKCompatibility Enumerates names for East Asian
ideographs required for compatibility with
existing national and industrial standards

UCJKSquaredAbbreviations Enumerates names for Latin abbreviations
written in square blocks in Japanese

UCJKSquaredWords Enumerates names for Japanese words or
phrases written in square blocks

UCJKSymbols Enumerates names for symbols used in the
writing of East Asian languages or from East
Asian character sets

UCNSCompatibility Enumerates names for characters required
for compatibility with CNS 11643-1986

UCombining Enumerates names for certain combining
characters used in Unicode

UControlCode Enumerates names for control codes defined
in Unicode

UControlCodePicture Enumerates names for graphic symbols used
to represent standard control codes when
discussing them (as opposed to executing
them)

UCoptic Enumerates names for characters in the
Coptic script

UCurrency Enumerates names for currency symbols

UCyrillic Enumerates names for characters in the
Cyrillic script

UDevanagari Enumerates names for characters in the
Devanagari script

UDingbats Enumerates names for miscellaneous
dingbat symbols encoded in Unicode

UFullStopDigit Enumerates names for digits followed by
periods

UFullStopNumber Enumerates names for numbers followed by
periods

UFullwidth Enumerates names for extra-wide copies of
certain Unicode characters

UGeneralPunctuation Enumerates names for punctuation
characters within Unicode, such as spaces,
dashes, and so on

96 IBM Open Class: Text and Internationalization

Class Description

UGeometricShapes Enumerates names for Unicode characters
providing prototypes for various geometric
shapes

UGeorgian Enumerates names for characters in the
Georgian script

UGreek Enumerates names for characters in the
Greek script

UGujarati Enumerates names for characters in the
Gujarati script

UGurmukhi Enumerates names for characters in the
Gurmukhi script

UHalfwidth Enumerates names for extra-narrow copies
of certain Unicode characters

UHalfwidthHangulLetter Enumerates names for half-width Hangul
letters

UHangulChoseong Enumerates names for initial conjoining
Korean letters (jamos)

UHangulJongseong Enumerates names for final consonant
conjoining Korean letters (jamos)

UHangulJungseong Enumerates names for medial vowel
conjoining Korean letters (jamos)

UHangulLetter Enumerates names for non-conjoining forms
of Korean letters (jamos)

UHangulSyllable Enumerates names for precomposed Hangul
syllables

UHangzhouNumeral Enumerates names for Hangzhou-style
numerals used in East Asia

UHanNumeral Enumerates names for East Asian
ideographs used to write numerals

UHarpoon Enumerates names for harpoon-like symbols
within Unicode

UHebrew Enumerates names for characters in the
Hebrew script

UHiragana Enumerates names for the Hiragana
syllabary used in writing Japanese

UIdeographicAnnotation Enumerates names for Kanbun marks used
in Japanese to indicate the Japanese reading
order of classical Chinese texts

UIdeographicTelegraph Enumerates names for East Asian symbols
from telegraph codes

UKangXiRadical Enumerates names for the traditional 214
radicals used to classify and order East
Asian ideographs, as found in the KangXi
dictionary

UKannada Enumerates names for characters in the
Kannada script

UKatakana Enumerates names for the Katakana
syllabary used in writing Japanese

Chapter 3. The Unicode Standard 97

Class Description

UKatakanaHiragana Enumerates names for voicing marks used
in both the Hiragana and Katakana
syllabaries

ULao Enumerates names for characters in the Lao
script

ULatin Enumerates names for characters in the
Latin script

ULatin1 Enumerates names for Unicode characters
from the ISO 8859-1 (Latin 1) character set

ULatinSmallLigature Enumerates names for ligatures of lowercase
Latin letters

ULetterLikeSymbol Enumerates names for symbols, such as
some mathematical constants, derived from
ordinary letters from the Latin, Greek, or
Hebrew scripts

UMalayalam Enumerates names for characters in the
Malayalam script

UMathematicalOperators Enumerates names for symbols used in
writing mathematics

UMiscellaneousTechnical Enumerates names for miscellaneous
technical symbols, such as keyboard symbols
and crop marks

UModifierLetter Enumerates names for modifier letters, such
as most accents, used within Unicode

UOCR Enumerates names for Unicode characters
used in OCR systems such as check
processing

UOriya Enumerates names for characters in the
Oriya script

UParenthesizedDigit Enumerates names for digits inside
parentheses

UParenthesizedHangul Enumerates names for Hangul (Korean)
characters inside parentheses

UParenthesizedIdeograph Enumerates names for East Asian
ideographs inside parentheses

UParenthesizedLatin Enumerates names for Latin characters
inside parentheses

UParenthesizedNumber Enumerates names for numbers inside
parentheses

UPresentationFormForVertical Enumerates names for variants of Unicode
characters used in writing text vertically

URomanNumeral Enumerates names for Roman numeral
characters

USmallVariants Enumerates names for extra-small versions
of certain Unicode characters

UStandardPhonetic Enumerates names for Unicode characters
used in the International Phonetic Alphabet

USubscript Enumerates names for subscripted digits
and letters

98 IBM Open Class: Text and Internationalization

Class Description

USuperscript Enumerates names for superscripted digits
and letters

UTamil Enumerates names for characters in the
Tamil script

UTelugu Enumerates names for characters in the
Telugu script

UThai Enumerates names for characters in the Thai
script

UUnicodeDigit Enumerates names for Unicode characters
used to write decimal numerals

UUnicodeSpecial Enumerates names for special characters
within Unicode, such as the byte order
mark, null character, invalid character, and
so on

UVulgarFraction Enumerates names for fraction characters,
such as 1/2

UZapfDingbats Enumerates names for the Zapf dingbat set

Unicode Support and the IUnicode Class
Character Values
Character Properties

Create a Unicode Application
“Identify a Character’s Properties” on page 93
Identify a Character’s Script
Find Characters with Specific Properties

Chapter 3. The Unicode Standard 99

	Contents
	Notices
	Programming Interface Information
	Trademarks and Service Marks
	Industry Standards

	About This Book
	Chapter 1. International Framework
	Locales in Internationalization
	Locale Classes
	Locale Names
	Set the Locale
	Get a Key for a Locale
	Get an Object from the Current Default Locale
	Get an Object from a Specific Locale
	Iterate through Available Locales

	Collation Classes
	Instantiate a Collation Object
	Perform Case-Insensitive String Comparison
	Perform Language-Sensitive String Comparison
	Perform Bitwise String Comparison
	Use the ICollation::transform Function
	Iterate through Available Collation Objects

	Transcoding Classes
	Transcoder Names
	Instantiate a Transcoder
	Convert Text from Character Format to Unicode
	Convert Text from Unicode to Character Format
	Process Line-Breaking Characters
	Convert with ANSI C++ Compatible Transcoding Functions
	Iterate through Available Transcoders
	Verify Transcoding Results

	Date and Time Classes
	Dates and Calendars
	Information Functions for IDate Objects
	Create an IDate Object
	Change an IDate Object
	Compare and Test IDate Objects
	Time
	Information Functions for ITime Objects
	Create an ITime Object
	Change an ITime Object
	Compare ITime Objects
	Write an ITime Object to an Output Stream
	Time Stamps
	Information Functions for ITimeStamp Objects
	Create an ITimeStamp Object
	Change an ITimeStamp Object
	Compare ITimeStamp Objects

	National Language Support and Double-Byte Character Sets
	National Language Support
	Add National Language Support
	Double-Byte Character Set Support
	DBCS and National Language Support

	Troubleshoot International Objects

	Chapter 2. Text Framework
	Text Creation and Manipulation
	Text Boundaries
	Text Storage
	Strings and Buffers
	String Formats
	Comparison of IText and IString
	Work with IText Objects
	Create an IText Object from char or IString Data
	Create a Styled Text String
	Edit Character Data in an IText Object
	Extract char* Data from an IText Object
	Text and Style Run Iteration
	Iterate through Characters in an IText Object
	Iterate through Style Runs in an IText Object
	Query and Modify Styles in an IText Object

	Work with IString Objects
	Create Strings
	Copy Strings
	Concatenate Strings
	Extend Strings
	Format Strings
	Determine String Lengths and Word Counts
	Do String Input and Output
	Find Words or Substrings within Strings
	Replace, Insert, and Delete Substrings
	Test the Characteristics of Strings
	Convert between Strings and Numeric Data
	Convert between Strings and Different Base Notations

	Styles
	Styles and Style Sets
	Style Classes
	Style Propagation
	Character Data

	Text Display
	Display Text Strings as Graphics
	Apply Graphic Transformations to a Text Graphic

	Summary of Text Framework Classes

	Chapter 3. The Unicode Standard
	Create a Unicode Application
	Unicode Support and the IUnicode Class
	Character Values
	Character Properties
	Identify a Character's Properties
	Identify a Character's Script
	Find Characters with Specific Properties

	Summary of Unicode Support Classes

