

Open Core Network Project Group

Cloud-Native Infrastructure

Technical Requirements v1.0

Open Core Network - Technical Requirements v1.0

2

Authors:

Rabi Abdel , Vodafone

o abdel.rabi@vodafone.com

Boris Renski, FreedomFi

o brenski@freedomfi.com

Contributors:

Nick Chase, Mirantis

o nchase@mirantis.com

Joshua Braeger, Facebook Connectivity

o jbraeg@fb.com

Editor:

Chris Morton, Isn’t That Write

o chris@isntthatwrite.com

mailto:nchase@mirantis.com
mailto:jbraeg@fb.com
mailto:chris@isntthatwrite.com

Open Core Network - Technical Requirements v1.0

3

Change Tracking

Date Revision Author(s) Comment

March 15, 2020 v0.1 Boris Renski Initial Table of Content

March 20, 2020 V0.1a Nick Chase Overview Section

May 20, 2020 V0.1b Rabi Abdel Requirements

May 25, 2020 v0.1c Boris Renski Implementation Specification

May 28, 2020 v0.1d Boris Renski Public Deployment / Far Edge

June 11, 2020 v1.0 Boris Renski /

Stephani Fillmon

Edits for Readability

Sept. 22, 2020 v1.01 Chris Morton Cleaned up formatting.

Proofreading and line editing.

Minor editorial revising.

Checked conformance with (US) Plain

Writing Act of 2010.

Graphics manipulation and captioning.

Open Core Network - Technical Requirements v1.0

4

Table of Contents

Chapter 1 – Introduction 6

1.1 Goal 6

1.2 Document Scope 6

1.3 Requirements Approach 7

1.4 Document Overview 7

Chapter 2 – Overview of Infrastructure Standards Bodies 8

2.1 CNTT Overview 8

Chapter 3 – Cloud-Native Principles 9

Chapter 4 – Cloud-Native OCN Infrastructure Requirements 12

Chapter 5: Kubernetes Implementation Specification 13

5.1: Specification of K8s Components and Configurations 13

5.2: Requirements for Physical Hardware and Bill of Materials 14

5.3: Physical Network Setup 17

5.4: Kubernetes Cluster High Availability 18

Chapter 6 – Public Cloud Deployment Considerations 19

6.1: Managing OCN Databases in the Cloud 20

6.2: Persistent Volumes and Storage in the Cloud 20

6.3: K8s Networking in the Cloud 20

Chapter 7 – Running OCN Components at the Edge 21

Open Core Network - Technical Requirements v1.0

5

Table of Figures

No table of figures entries found.

Open Core Network - Technical Requirements v1.0

6

Chapter 1 – Introduction

The purpose of the Open Core Network (OCN) project is to build a cloud-native converged

packet core. As a cloud-native system, OCN will consist of a containerized microservices

architecture. This document provides requirements for the portable, cloud-native infrastructure

substrate on which that architecture will run.

By providing a specific substrate architecture, OCN makes it possible to create a cloud-native

infrastructure of microservices that is portable across environments, thereby enabling operators

to run components in various locations and situations—from on-premise commodity hardware

to public cloud or even a combination of both.

1.1 Goal

This document describes the best-of-breed infrastructure to deploy and run the microservices

that comprise the OCN. It serves the following purposes:

● To serve as a single source of truth defining the architecture to be used by all

participants of the OCN development process— creating an environment on which

to develop, deploy, and run the microservices that comprise OCN

● To specify the Telecom Infra Project (TIP) lab staging environment to use for testing and

field proof-of-concepts (POCs) of various deployment OCN topologies

● To enable operators interested in conducting OCN field trials to obtain an understanding

of the type of infrastructure they need to set up and budget in their respective staging

and production environments

1.2 Document Scope

The purpose of this document is to describe requirements for cloud-native infrastructure for

running OCN components on an individual Kubernetes (K8S) cluster, including:

● Hardware bill of materials (BOM)

● Networking setup

● Considerations for running OCN services in the public cloud

● Details and configuration information for a containerized, cloud-native substrate

based on Kubernetes

This document does not include:

● Configuration or setup for networking between multiple Kubernetes clusters, as multi-

cluster networking is use-case specific

● A description of the CI/CD infrastructure to be used in the development of core OCN

microservices, which will be covered in a separate document

● Requirements for an orchestrator that would manage the OCN microservices themselves.

This document ends at defining the northbound infrastructure APIs and assumes that

Open Core Network - Technical Requirements v1.0

7

any operations pertaining to managing the microservices, such as placement decisions

and updates, are delegated to the orchestrator as defined by OCN Workstream 2

● Lifecycle management tooling for cloud-native infrastructure. This task will be handled

by a vendor of the operator’s choice

1.3 Requirements Approach

Portability across environments is essential to OCN success, which also equates to standards

adherence. Therefore, the approach we took closely collaborates with a number of standards

bodies and open source communities such as the Cloud iNfrastructure Telco Taskforce (CNTT)

and LF Edge Akraino stack.

The described infrastructure is fully conformant with CNTT Reference Architecture 2 (RA2), CNTT

Edge, and LF Edge Akraino blueprints. It’s also vendor-neutral, so operators aren’t tied to a any

one vendor. Any operator or vendor can implement this architecture with commodity or public

cloud hardware and best-of-breed, open source software components.

1.4 Document Overview

This document includes the following chapters:

● Overview of infrastructure standards bodies

Provides a brief overview of prominent standards bodies that do work to define

a common, reusable, cloud-native infrastructure for operator deployments. These groups

include CNTT, Linux Foundation Networking (LFN), Cloud Native Computing Foundation

(CNCF), and Open Platform for Network Functions Virtualization (OPNFV). It focuses on

CNTT and how and why it’s relevant to OCN.

● What is cloud-native for a telecom operator

Defines cloud-native and explains various documents produced by CNTT; in turn these

lead to the Kubernetes-based reference architecture that forms the basis of this

document.

● Requirements for cloud-native OCN infrastructure

Provides an overview of various components and requirements of the cloud-native

infrastructure underlay, as defined by various CNTT telecom operators.

● Kubernetes implementation requirements

Provides a summary and rationalization of component-level architecture, as well as

specific implementation choices used to implement OCN in TIP labs—including server

types and networking architecture. Describes relevant CNTT requirements and how to

fulfill them, and also how to create a highly available (HA) architecture for OCN.

Open Core Network - Technical Requirements v1.0

8

● Public cloud deployment considerations

Describes special considerations for deploying and running Kubernetes in the public

cloud vs. a private telecom operator datacenter, such that no dependency on any one

public cloud vendor is created.

● Running OCN components at the edge

Discusses proper approaches to infrastructure automation for use cases where OCN is

deployed in a geo-distributed, multi-site topology where some of the components are

running in the far edge as a single server or appliance.

Chapter 2 – Overview of Infrastructure Standards Bodies

Multiple standards bodies cover the field in which OCN is working. They work to make

infrastructure and workloads portable—or at least interoperable—across environments. For this

reason, operators generally closely collaborate with these bodies to ensure that the standards

they produce are both appropriate and helpful. Standards bodies governing the OCN arena

include:

● CNCF Telco User Group (TUG) – Defines cloud-native network function (CNF)

requirements and principles to which CNFs are expected to adhere. CNCF TUG is a

governance group that oversees and influences the development efforts of the CNF

Conformance Program (a program to certify CNFs) and the CNF Testbed project.

● LF Edge Akraino stack – A set of open infrastructures and application blueprints created

by the Akraino community for a variety of uses, including 5G, internet of things (IoT), and

infrastructure as a service (IaaS).

● Open Project for Network Functions Virtualization (OPNFV) – Produces standard

configurations and test harnesses for various use cases. OPNFV also discovers gaps in

existing projects (e.g., OpenStack, OpenDaylight Project) and works with those projects

to ensure that the gaps are closed.

● Cloud iNfrastructure Telco Taskforce (CNTT) – An LFN and GSMA-sponsored task force

focused on minimizing the number of network function virtualization infrastructure

(NFVI) configurations used in telco deployments. With reduced variability in NFVIs,

network operators can expect to reduce testing times and accelerate deployment of new

capabilities. Network function providers should also appreciate economies of scale as

fewer NFVI variants will be requested by operators.

2.1 CNTT overview

CNTT began as a temporary task force created by OPNFV to study requirements for telco-based

use cases. But it has since grown into a much more substantial project. CNTT acts as a proxy for

multiple standards bodies, creating a set of configurations and requirements that bridge the

gaps required to conform to multiple standards already created by those organizations.

Open Core Network - Technical Requirements v1.0

9

Considering that CNTT was largely created by telcos, it’s not a surprise that many operators such

as AT&T, Verizon Wireless, Orange, Telstra, and Vodafone are heavily involved, with more

joining as time goes on. In addition, many vendors serving those operators, such as Ericsson,

Nokia, and Huawei, as well as software vendors such as Red Hat, VMware, and Mirantis also

contribute to the project.

The following image illustrates CNTT contributors, supporters, and sponsors:

Figure 1 – CNTT contributors, supporters, and sponsors

Because of such broad and widening support, we have opted to collaborate with CNTT on this

requirements document, which conforms to its container-based reference architecture.

Chapter 3 – Cloud-Native Principles

From the beginning, the intention has been for OCN to be based on cloud-native principles.

While the CNCF defines cloud-native, CNCF TUG has an overlapping definition that is more

specific to telco use cases. It includes qualities such as:

● Scalability ● Dynamic environments

● Declarative APIs ● Immutable infrastructure

● Resilience ● Microservices-based architecture

● Manageability ● Ability to create robust automation

● Observability ● Use of service mesh technology to control traffic flow

Building cloud-native infrastructure by adhering to cloud-native principles is likely to result

in a great variety of non-interoperable and non-portable implementations. In defining OCN

cloud-native infrastructure, we stayed aligned with architecture principles described above—

but more importantly, we adhered to fulfill the following objectives:

Open Core Network - Technical Requirements v1.0

10

● Enable feature velocity – The overarching goal of the cloud-native system is to permit

frequent implementation of high-impact changes with minimal effort and a high level

of predictability through automation.

● Portability – To decrease system maintenance cost and maximize vendor independence,

the cloud-native infrastructure must be portable across bare metal and cloud platforms.

OCN collaborated with CNTT to satisfy the above objectives—specifically focusing on container-

based reference architecture (known as RA2). To achieve portability and vendor independence

goals, CNTT defines multiple layers of documentation.

Figure 2 – CNTT documentation layers

Reference Model – CNTT is based on the Reference Model (RM), a technology-independent

document that simply defines the qualities any system must have without specifying the means

for satisfying those requirements. For example, the RM defines Crypto acceleration, network

protocols, and security features, but leaves the specifics to the individual reference architectures.

The RM also provides specific keys for each requirement so each can be easily referenced within

other documents.

Reference Architecture – Within CNTT, a Reference Architecture (RA) is a specification for RM

abstractions. For example, an RA might specify a certain interface, storage type, and network

capability. RAs are technology-specific. The first RA is virtual machine-based and is known as

RA1; the second is a container-based architecture (RA2, upon which this document is based).

Reference Implementation – Once a reference architecture is created, the community works on

an implementation that satisfies those requirements. The Reference Implementation (RI) isn’t

necessarily meant to be used in production; rather it’s for developing and testing workloads and

validating the reference conformance suite.

Open Core Network - Technical Requirements v1.0

11

Reference Conformance – The purpose of initiatives such as OCN and CNTT is to promote

portability and interoperability, so it’s essential to ensure that infrastructure implementations

and workloads conform to the standard. As such, CNTT defines a Reference Conformance (RC)

suite that verifies all requirements.

Our RA2 architecture is an RI example specific to OCN. RA2 is a container-based mapping of the

goals and concepts of the RM to real-world system components. It’s based on the Kubernetes

container orchestrator—an open source platform that enables automation of containerized

workloads and services.

Kubernetes enables perform configuration using both declarative and API-based methods.

While other container orchestration systems such as Apache Mesos and Docker Swarm exist,

CNTT and, consequently OCN, have chosen Kubernetes for the following reasons:

● Kubernetes is the broadly adopted, de facto standard for cloud-native deployments

● Developers and potential participants are most familiar with Kubernetes

● Kubernetes is the architecture many operators are gravitating toward

● OCN is meant to be portable in all environments, including private and public clouds,

as well as bare metal. Kubernetes has the greatest support for this hybrid approach

● Kubernetes has a robust infrastructure of third-party support for additional hardware

and software plugins

OCN has chosen to follow the guidance of operators participating in CNTT by deciding not to

add additional functionality to Kubernetes. Instead it makes use of standard capabilities or

existing, well-supported, community-aligned extensions if at all possible. If that is not possible,

CNTT documents the requirement, then requests missing functionality from the appropriate project.

RA2 provides detailed requirements for a number of areas, including:

● Cloud infrastructure software profile capabilities

● Virtual network interface specifications

● Cloud infrastructure software profile requirements

● Cloud infrastructure hardware profile requirements

● Cloud infrastructure management requirements

● Cloud infrastructure security requirements

RA2 also provides specific requirements for the Kubernetes cluster, such as:

● Autoscaling capabilities

● Ability to run containers within a virtual machine

● Ability to integrate SDN controllers

● Support for dual-stack IPv4 and IPv6 workloads

● A highly available infrastructure

● Support for persistent storage

The next chapter lists requirements for the various aspects of an RA2-conformant architecture.

Open Core Network - Technical Requirements v1.0

12

Chapter 4 – Cloud-Native OCN Infrastructure Requirements

Building an infrastructure substrate that satisfies the parameters covered in chapter 3 for

operators implies following a set of operator-specific requirements. Through its collaboration

with CNTT operators, OCN has outlined the following requirements and configuration

parameters for the specific Kubernetes components:

● Host OS – Must support Linux 3.10+ for both control and worker nodes and Windows

1809 (10.0.17763) for worker nodes. The chosen operating system must be immutable,

compatible with the kubeadm tool, and have no container base image restriction.

● Version – Kubernetes must be one of three latest minor versions (n-2)

● Services and features – Master nodes must run the following Kubernetes control

plane services:

○ kube-apiserver

○ kube-scheduler

○ kube-controller-manager

● Kubelet features – The following kubelet features must be enabled:

○ CPU manager

○ Device plugin

○ Topology manager

● etcd nodes – Either three, five, or seven nodes running the etcd service must be running.

They can be colocated on the master nodes or run on separate nodes, but cannot run on

worker nodes.

● High Availability – Each availability zone or fault domain must run at least one master

and one worker node to ensure high availability of Kubernetes control plane services and

Kubernetes-managed workload resilience.

● Separation of services using at least two nodes – Master node services (including

etcd) and worker node services (e.g., consumer workloads) must be kept separate, so

there must be at least one master and one worker node.

● Workload independence – Workloads must not rely on availability of the master nodes

for successful execution of their functionality. In other words, loss of the master nodes

might affect non-functional behaviors such as healing and scaling, but components

already running will continue to do so without issue.

● Container runtime – Container runtime might consist of one of several options,

including container-d, Docker CE (via the included dockershim), and CRI-O, as long

as it’s conformant with the Kubernetes Container Runtime Interface (CRI) and the Open

Container Initiative (OCI) runtime specification. It must also include kernel isolation using

a technology such as kata-containers.

● CNI plugins – Must use a multiplexer/metaplugin, such as DANM or Multus, that

provides the following features:

○ The architecture must support network resiliency

○ The architecture must be fully redundant

https://kubernetes.io/docs/reference/setup-tools/kubeadm/implementation-details/#kubeadm-init-workflow-internal-design
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec

Open Core Network - Technical Requirements v1.0

13

○ The networking solution should be able to be centrally administered

and configured

○ The architecture must support dual-stack IPv4 and IPv6 for Kubernetes workloads

○ The architecture must support capabilities for integrating SDN controllers

○ The architecture must support more than one networking solution

○ The architecture must support the ability for an operator to choose whether or

not to deploy more than one networking solution

○ The architecture must provide a default network that implements the Kubernetes

network model

○ The networking solution must not interfere with, or cause interference to, any

interface or network it doesn’t own

○ The architecture must support cluster-wide coordination of IP address assignment

○ Storage – The following feature gates must be enabled: CSIDriverRegistry and

CSINodeInfo. Distributed storage, specific to the environment (e.g., EBS in AWS or

NetApp/EMC in private DC) can be used via volume plugin. For more information,

see the CNTT chapter on container storage services.

○ K8s application package manager – The architecture must support open APIs.

Chapter 5 – Kubernetes Implementation Requirements

Chapter 4 requirements provide certain architectural choice constraints, but don’t dictate

specifics of the implementation. Herein we define OCN decisions made in collaboration with

an operator group regarding requirement fulfillment for each of those categories. And we

provide implementation details of staging an OCN environment on bare metal servers in

TIP Labs.

5.1 – Requirements for K8S Components and Configurations

Requirements
Category

OCN Choice

Host OS
OCN uses one of the two latest LTS versions (n-1) of Ubuntu.

Current version: 18.04

Kubernetes Version
OCN uses one of the three latest minor versions (n-2)

of Kubernetes. Current version: 1.18

Master Node Services

OCN K8S master nodes run kube-apiserver, kube-scheduler,

and kube-controller-manager, as well as a number of additional

components to ensure high availability of K8S control plane.

Kubelet Features
OCN K8S cluster ensures the following kubelet features are

enabled: CPU Manager, Device Plugin, and Topology Manager.

etcd Nodes OCN runs a minimum of three (3) etcd nodes.

https://cntt-n.github.io/CNTT/doc/ref_arch/kubernetes/chapters/chapter03.html#3.2.3
https://cntt-n.github.io/CNTT/doc/ref_arch/kubernetes/chapters/chapter03.html#3.2.3

Open Core Network - Technical Requirements v1.0

14

High Availability
OCN runs nodes in three regions or zones, provided the scale

of a single cluster permits this (section 5.4).

Service Separation Using

at Least Two Nodes

OCN deploys a six-node system that includes both control and

user plane nodes.

Container Runtime OCN uses Docker CE.

CNI Plugins OCN uses DANM with Traefik as an ingress controller.

Storage OCN K8s uses persistent volumes and volume plugins.

K8s Application

Package Manager
OCN uses Helm 3.

Virtual Machine

Manager
KubeVirt

5.2: Requirements for Physical Hardware and Bill of Materials (BOM)

To make the cloud-native requirements tangible and actionable, OCN has partnered with CNTT

and TIP Labs to define the hardware BOM and network configuration for an OCN microservices

staging deployment. Rather than being a hard prescription, the staging environment aims to

exemplify a vendor BOM for commercial OCN pilot projects.

The choice of hardware vendor and physical network configuration can vary from operator to

operator. That said, we recommend that operators deploying OCN familiarize themselves with

the following requirements and attempt to stay reasonably close to them. We do not mandate

full adherence to the following requirements.

K8s requirements outlined in this document don’t require that operators exclusively use bare

metal. Rather, they’re intended to be “cloud and hybrid friendly.” But because we believe a large

number of core network deployments will arise in operator datacenters, we paid particular

attention to defining bare metal environments. Additional guidelines for deploying the same K8s

architecture in the cloud are provided in Chapter 6 – Public Cloud Deployment Considerations.

Participating CNTT operators have defined two physical hardware profiles to be used in cloud-

native deployments: basic and network intensive. Each uses the same requirement set, but with

different values for the various CNTT RM parameters. Refer to chapter 4 of the CNTT documentation.

https://github.com/cntt-n/CNTT/blob/master/doc/ref_model/chapters/chapter04.md#424-cloud-infrastructure-profiles

Open Core Network - Technical Requirements v1.0

15

Figure 3 – Defined bare metal hardware profiles

To remain CNTT-conformant with, we’ve chosen a hardware BOM that adheres to the

previously-described OCN parameters. But for the sake of simplicity, OCN exclusively uses the

network intensive server configuration in its staging environment. And we’ve selected a server

platform having ample room for additional networking interfaces so as to experiment with

various acceleration solutions .

A CNTT-compliant K8s pod must meet the following requirements:

● One (1) physical server dedicated as a jump or test host

● Six (6) physical servers, serving as either compute or controllers

● A configured network topology permitting out-of-band management, admin, public,

private, and storage networks

TIP Labs will host an OCN staging environment consisting of six cloud servers. To simplify the

footprint, one of the compute servers will double as a traffic generator (it can also be used as a

jump server per CNTT requirements). When deploying a similar environment in your datacenter

for OCN staging, we recommend using a minimum of five physical servers (three control, or

master servers, and two compute servers). If needed, you can scale the number of compute

servers to whatever number that can be accommodated by datacenter rack configuration.

Figure 4 – CNTT-compliant Pod architecture

Open Core Network - Technical Requirements v1.0

16

Per CNTT recommendation, lab hardware should stay reasonably close to the following

minimum requirements:

● CPU

○ 2x x86_64 CPU sockets (both populated), providing 24 cores each,

48 simultaneous multi-threads (SMT) at 2.2 GHz

● Memory

○ 512 GB RAM

● Storage

○ 3.2 TB SSD via SATA 6 Gbps

● Network interfaces

At least one network interface must be capable of performing PXE boot; that network

must be available to serve as both the jump or test host and each physical server.

○ 4x 25 Gbps Ethernet ports, implemented as two distinct, dual-port NICs

○ Out-of-band management port

● 25 GbE switch requirements

○ 32/48x 25GbE SFP ports

○ 6 servers x 4 ports = 24 ports + uplink

○ 7 servers x 4 ports = 28 ports + uplink

● Management switch requirements

○ 24x 10/100/1000 Base-TX ports

The following table describes the specific BOM for the TIP Labs OCN staging environment:

D52BQ–2U
Control/Compute Nodes for TIP

OCN Automation Project

Total of

Six(6)

Servers

Proposed

Product
QPN Specification

Quantity/

Server

BASE 20S5BMA03M0
Server QuantaGrid D52BQ 2U 2.5 expander 35x40 LBG-4

(for rear NVMe)
1

CPU_CSL_SP AJSRF9HUA00
Intel Xeon Platinum 8260,2.40G,35.75M cache, 24C/48T(165W),

Max Mem 2933MHz, Turbo2.0, HT, SRF9H
2

RAM 2S5BRM320I0 DDR4-R 32G 2933MHz 1.2V 16

RAM DUMMY EBS2S002010 DDR4 dummy DIMM 8

PSU 2S5BPWR00B0 QuantaGrid D52BQ 1*1100W -48V DC 86.3 gold grouping 2

POWER CORD DDS5BEPB100 DC power cord for -48VDC PSU 2

RATING LABEL HCS5B204010 QuantaGrid D52BQ 1100W PSU rating label (made in Taiwan) 1

PACKAGE 22THLPKTAE1 For vendor cons. packing 1

CPU_HS 2S5BHS00000 QuantaGrid D52BQ/D52BM CPU H/S 41F HP group 2

RAIL_KIT FBS5B212010 QuantaGrid D52BQ/D52BM rail kit 1

https://github.com/cntt-n/CNTT/blob/master/doc/ref_impl/cntt-ri/chapters/chapter04.md#421-physical-server-requirements

Open Core Network - Technical Requirements v1.0

17

ACC_KIT 25S5BAKST00 QuantaGrid D52B/D52BQ/D52BM accessory kit 1

SAS_MEZZ 1HYQZZZ032X QuantaGrid D52BQ QS 3516 16i SAS R6 mezz (2.5) 4G 1

SATA SSD ABS019T8001 Intel 2.5-7mm 1.92T SATAIII S4510 SSDSC2KB019T801 4

PCIE HHL

CARD_R1_R2_

R3ADPC07100

09

ADPC0710009 NIC Intel XXV710-DA2 PCIe x8 25G dual port SFP28 HHHL 2

TPM 1HY9ZZZ063G Nuvoton SPI 2.0 FW1.3.1.0 1

IBBU 1HYQZZZ0031
QuantaGrid D52B/QuantaGrid D52BQ QS Super Cap Kit for QS

3516 SAS Mezz
1

5.3: Physical Network Setup

When setting up an OCN production environment on-premise, we recommend the following

configuration:

● Clusters that host multiple pods should use a leaf-spine topology when interconnecting

pods or physical servers.

● At least one leaf switch should be provided for each pod, having interface speeds

matching server requirements listed in the previous section.

● Leaf switches must provide interfaces matching the physical server requirements (listed

in the previous section) and northbound (spine connections) of 100 Gbps connections.

● Spine switches must provide the corresponding 100 Gbps interfaces to each leaf switch.

The minimum requirement is one spine switch.

Figure 5 – Physical network setup

Open Core Network - Technical Requirements v1.0

18

● A TIP Labs’ staging environment setup for OCN in (as well as for operator pilots) can use

only a single top-of-rack switch since hardware HA isn’t a concern.

● The minimum networking configuration must provide at least five VLANs to partition

the various networks

● The pod network topology should provide at least two networks with pre-allocated IP

addressing schemes for out-of-band management network and the public network. The

public network must be able to reach or access the public internet.

Network Name VLAN ID IP Subnet

Out of Band Mgmt (IPMI/iDrac/ILO) 100 10.1.100.0/24

PXE/Management Network 101 10.1.101.0/24

Control Network 102 10.1.102.0/24

Data Network 103 10.1.103.0/24

Public Network 104 10.1.104.0/24

5.4: Kubernetes Cluster High Availability

To stay conformant with requirements defined by CNTT member operators, OCN K8s

architecture must support high availability. These requirements are as follows:

● Each availability zone or fault domain must run at least one master and one worker node

to ensure HA of Kubernetes control plane services and resilience of workloads it

manages.

● Each master node must run kube-apiserver, kube-scheduler, kube-controller-manager.

● Either three, five, or seven nodes must be running with the etcd service. They can be

colocated on master nodes or run on separate nodes, but cannot run on worker nodes.

OCN K8s implements control plane services that are highly available and work in active-standby

mode. All control components run on every K8s master node of a cluster, with one node at a

time selected as a master replica and the others running in standby mode.

Every master node runs an instance of kube-scheduler and kube-controller-manager. Only one

service of each kind is active at a time, while the others remain in the warm standby mode. The

kube-controller-manager and kube-scheduler services natively elect their own leaders.

API servers work independently while an external or internal K8s load balancer dispatches

requests between them. Each of the three master nodes runs its own kube-apiserver instance. All

master node services work with the K8s API locally, while services running on the K8s nodes

access the API by directly connecting to a kube-apiserver instance.

The following diagram illustrates the API flow in a HA K8s cluster. Each API instance on every

master node interacts with each HAProxy instance, etcd cluster, and each kubelet instance on

the K8s nodes.

Open Core Network - Technical Requirements v1.0

19

Figure 6 – API flow in a HA K8s cluster

Proxy server HA is ensured by HAProxy. It provides access to the K8s API endpoint by redirecting

requests to kube-apiserver instances in a round-robin manner. The proxy server sends API traffic

to available backends, while HAProxy prevents the traffic from going to unavailable nodes. The

keepalived daemon provides VIP management for the proxy server. Optionally, SSL termination

can be configured on HAProxy, so traffic to kube-apiserver instances goes over the internal K8s

network.

Chapter 6: Public Cloud Deployment Considerations

Some operators might choose to deploy OCN in either a public or hybrid cloud environment.

Since all public clouds are somewhat different in terms of hardware, network, and a catalog of

infrastructure services they provide, it’s beyond the scope of this document to prove a detailed

deployment specification for each public cloud vendor. However, by using K8s and containers

as core infrastructure building blocks, coupled with the guidelines in this chapter, we aim to

provide a great degree of OCN portability across public clouds.

To optimize for cloud-to-cloud and cloud-to-bare metal portability, it’s important to avoid the

use of higher level, PaaS-like services provided by any given cloud provider (e.g., managed

databases, cloud-managed K8s implementations, managed load balancers).

Open Core Network - Technical Requirements v1.0

20

For example, if you’re deploying OCN on AWS, you should limit use of its services to EC2 virtual

machines (VMs), or bare metal servers with CNTT-compliant Kubernetes deployed on those

VMs—rather than using a high-level service such as Amazon Kubernetes Service along with

other AWS-managed services.

OCN microservices might require databases and other stateful components to run that don’t

come out of the box with CNTT-conformant, K8s-reference architecture. In this section we

describe the OCN infrastructure approach to address these issues.

6.1: Managing OCN Databases in the Cloud

OCN relies on a number of stateful components (such as Redis and MySQL databases) to save

configuration parameters and data. Magma Orchestrator is one of the seed OCN projects that

uses PostgreSQL, MySQL, and Redis; it’s a good example of such a requirement. When you build

or run OCN components, we recommend minimizing database diversity so as to optimize for

portability and reduce operational overhead. To that effect, we recommend using MySQL

exclusively as a relational database and Redis as a distributed database for OCN service

implementation and future operation.

To avoid using a cloud-specific implementation of the above databases, the OCN automation

workstream implements and maintains up-to-date images and Helm charts for deploying them

in a highly available configuration as K8s services. Helm charts and images of the highly

available MySQL database will be maintained by OCN as part of the OpenStack-Helm project in

this GitHub repository.

6.2: Persistent Volumes and Storage in the Cloud

Various OCN components, including the database services described above, likely require the

use of persistent volumes. To guarantee persistence, all K8s deployments used for running OCN

microservices must use K8s hostPath PersistentVolumes in combination with

PersistentVolumeClaims and StatefulSets. See K8s documentation for information on

configuring K8S pods to use persistent volumes.

Extending beyond K8s configuration, OCN components likely require a persistent storage

backend (e.g., a dynamic volume manager such as Amazon EBS or object storage such as S3).

(Deploying and managing an open source, distributed storage system such as Ceph in the cloud

makes little sense.)

Moreover, when it comes to deploying in operator datacenters, operators might choose to use

different vendor solutions as a distributed storage backend. Despite the detrimental effects to

portability, OCN doesn’t require the use of any particular storage backend, and explicitly permits

use of persistent storage cloud services. Be aware that deploying to a public cloud and using a

persistent storage service can result in decreased portability, as well as introduce potential data

gravity issues to the extent that storage services are used.

6.3: K8s Networking in the Cloud

A main challenge of using cloud-specific K8s implementations is the varying approach to K8s

networking among cloud providers. To that effect, OCN doesn’t rely on cloud-managed K8s and

https://kubernetes.io/docs/tasks/configure-pod-container/configure-persistent-volume-storage/

Open Core Network - Technical Requirements v1.0

21

implements a cloud-agnostic approach to K8s networking. For communication between services

within a single K8s cluster, OCN implements ClusterIP service. For external access, we implement

Traefic as the ingress controller. To ensure multiple network interfaces can access a single pod,

OCN implements DANM as a CNI multiplexer.

In addition to the bare metal infrastructure staging environment at TIP labs, OCN maintains

a cloud-agnostic K8s implementation hosted in AWS as an example that can be used by OCN

microservice developers.

Chapter 7: Running OCN Components at the Edge

Some OCN use cases, such as fixed wireless access, might require a distributed deployment

topology—where control plane components are centrally hosted with K8S underlay in the public

cloud or in the operator datacenter—while data plane components such as UPF (or AGW

coming from Magma seed code) are distributed across cell sites. For such use cases it might be

impractical or cost-prohibitive to deploy a cluster of six servers at each cell site.

Running K8s at the far edge is an architectural decision that comes with pros and cons. Reasons

to consider running it on edge devices include:

● Having a “container” as a single, universal unit for dependency encapsulation simplifies

application lifecycle management. A single set of tools and workflows can apply system

updates to components running at the core datacenter, as well as at edge devices.

● Having all user plane components containerized and managed by K8s makes it possible

to automatically update individual application containers on a different lifecycle from the

host operating system. This makes it possible to update components more frequently

and with no downtime—even where only a single server or appliance is running at the edge.

Some of the reasons not to run K8s at the edge (particularly where edge is a single server

appliance, such as the fixed wireless access use case) include:

● The primary benefit of using K8s is that it inherently maintains HA and seamless failover

of all application components, protecting them from isolated hardware failures. This

benefit largely disappears when running on a single appliance. If an edge appliance dies,

all K8s services die with it.

● OCN use cases, such as fixed wireless, might require that an edge appliance to be

extremely inexpensive and therefore limited in memory and compute resources. In some

instances, OCN user plane components such as UPF or AGW might be embedded into

the small cell itself. Therefore, dedicating some of these scarce resources toward the K8s

control plane and away from data packet processing might not be advisable.

● Running dozens or hundreds of geo-distributed K8s clusters might make it easier to

update individual appliance containers, but introduces the problem of having to update

the K8s control plane services across the many locations.

● The closer you get to the network edge, the more diversity you see in relation to

hardware platforms. For example, x86, arm64, and MIPs are all commonly used in edge

devices. Running K8s across such a diversity of platforms is challenging.

Open Core Network - Technical Requirements v1.0

22

● While there are a number of lightweight K8s implementations designed for the edge

(e.g., kube-edge, k3s, and StarlingX), neither CNTT nor any of the other standards bodies

have produced a common approach to running it at the edge.

In light of the above analysis and until further standardization happens among “far edge” K8s

architectures, the OCN automation workstream recommends the following:

● In the public cloud or any site where five or more servers can be deployed, OCN must

run on hardware using a cloud agnostic, CNTT-conformant K8s distribution as described

in Chapter 5.

● For far edge sites where OCN components are to run on a single appliance, K8s

shouldn’t be used.

○ Such sites should be updated by using immutable images

○ State and configuration should be persisted in the orchestrator

○ HA should be achieved through hardware—for example, if HA is required,

another hardware appliance should be added at the cell site location

