Math for Machine Learning Open Doors to Data Science and Artificial Intelligence

Richard Han

Copyright © 2015 Richard Han
All rights reserved.

CONTENTS

PREFACE 1
1 - INTRODUCTION 2
2 - LINEAR REGRESSION 4
LINEAR REGRESSION 4
THE LEAST SQUARES METHOD 5
LINEAR ALGEBRA SOLUTION TO LEAST SQUARES PROBLEM 7
EXAMPLE: LINEAR REGRESSION 9
SUMMARY: LINEAR REGRESSION 10
PROBLEM SET: LINEAR REGRESSION 11
SOLUTION SET: LINEAR REGRESSION 12
3 - LINEAR DISCRIMINANT ANALYSIS 14
CLASSIFICATION 14
LINEAR DISCRIMINANT ANALYSIS 14
THE POSTERIOR PROBABILITY FUNCTIONS 14
MODELLING THE POSTERIOR PROBABILITY FUNCTIONS 15
LINEAR DISCRIMINANT FUNCTIONS 17
ESTIMATING THE LINEAR DISCRIMINANT FUNCTIONS 17
CLASSIFYING DATA POINTS USING LINEAR DISCRIMINANT FUNCTIONS 18
LDA EXAMPLE 1 19
LDA EXAMPLE 2 22
SUMMARY: LINEAR DISCRIMINANT ANALYSIS 27
PROBLEM SET: LINEAR DISCRIMINANT ANALYSIS 28
SOLUTION SET: LINEAR DISCRIMINANT ANALYSIS 29
4 - LOGISTIC REGRESSION Error! Bookmark not defined.
LOGISTIC REGRESSION Error! Bookmark not defined.
LOGISTIC REGRESSION MODEL OF THE POSTERIOR PROBABILITY FUNCTION ..Error! Bookmarknot defined.ESTIMATING THE POSTERIOR PROBABILITY FUNCTION.
THE MULTIVARIATE NEWTON-RAPHSON METHOD. Error! Bookmark not defined.
MAXIMIZING THE LOG-LIKELIHOOD FUNCTION Error! Bookmark not defined.
EXAMPLE: LOGISTIC REGRESSION Error! Bookmark not defined.
SUMMARY: LOGISTIC REGRESSION Error! Bookmark not defined.
PROBLEM SET: LOGISTIC REGRESSION Error! Bookmark not defined.
SOLUTION SET: LOGISTIC REGRESSION Error! Bookmark not defined.
5 - ARTIFICIAL NEURAL NETWORKSError! Bookmark not defined. ARTIFICIAL NEURAL NETWORKS Error! Bookmark not defined.
NEURAL NETWORK MODEL OF THE OUTPUT FUNCTIONS Error! Bookmark not defined.
FORWARD PROPAGATION. Error! Bookmark not defined.
CHOOSING ACTIVATION FUNCTIONS Error! Bookmark not defined.
ESTIMATING THE OUTPUT FUNCTIONS. Error! Bookmark not defined.
ERROR FUNCTION FOR REGRESSION Error! Bookmark not defined.
ERROR FUNCTION FOR BINARY CLASSIFICATION Error! Bookmark not defined.
ERROR FUNCTION FOR MULTI-CLASS CLASSIFICATION. Error! Bookmark not defined.
MINIMIZING THE ERROR FUNCTION USING GRADIENT DESCENT. Error! Bookmark not defined.
BACKPROPAGATION EQUATIONS Error! Bookmark not defined.
SUMMARY OF BACKPROPAGATION. Error! Bookmark not defined.
SUMMARY: ARTIFICIAL NEURAL NETWORKS. Error! Bookmark not defined.
PROBLEM SET: ARTIFICIAL NEURAL NETWORKS Error! Bookmark not defined.
SOLUTION SET: ARTIFICIAL NEURAL NETWORKS Error! Bookmark not defined.
6 - MAXIMAL MARGIN CLASSIFIERError! Bookmark not defined.
MAXIMAL MARGIN CLASSIFIER. Error! Bookmark not defined.
DEFINITIONS OF SEPARATING HYPERPLANE AND MARGIN Error! Bookmark not defined.
MAXIMIZING THE MARGIN Error! Bookmark not defined.
DEFINITION OF MAXIMAL MARGIN CLASSIFIER Error! Bookmark not defined.
REFORMULATING THE OPTIMIZATION PROBLEM. Error! Bookmark not defined.
SOLVING THE CONVEX OPTIMIZATION PROBLEM. Error! Bookmark not defined.
KKT CONDITIONS Error! Bookmark not defined.
PRIMAL AND DUAL PROBLEMS Error! Bookmark not defined.
SOLVING THE DUAL PROBLEM Error! Bookmark not defined.
THE COEFFICIENTS FOR THE MAXIMAL MARGIN HYPERPLANE Error! Bookmark not defined.
THE SUPPORT VECTORS Error! Bookmark not defined.
CLASSIFYING TEST POINTS Error! Bookmark not defined.
MAXIMAL MARGIN CLASSIFIER EXAMPLE 1 Error! Bookmark not defined.
MAXIMAL MARGIN CLASSIFIER EXAMPLE 2 Error! Bookmark not defined.
SUMMARY: MAXIMAL MARGIN CLASSIFIER Error! Bookmark not defined.
PROBLEM SET: MAXIMAL MARGIN CLASSIFIER Error! Bookmark not defined.
SOLUTION SET: MAXIMAL MARGIN CLASSIFIER Error! Bookmark not defined.
7 - SUPPORT VECTOR CLASSIFIERError! Bookmark not defined. SUPPORT VECTOR CLASSIFIER Error! Bookmark not defined.
SLACK VARIABLES: POINTS ON CORRECT SIDE OF HYPERPLANE .Error! Bookmark not defined.
SLACK VARIABLES: POINTS ON WRONG SIDE OF HYPERPLANE........Error! Bookmark not defined.
FORMULATING THE OPTIMIZATION PROBLEM Error! Bookmark not defined.
DEFINITION OF SUPPORT VECTOR CLASSIFIER. Error! Bookmark not defined.
A CONVEX OPTIMIZATION PROBLEM Error! Bookmark not defined.
SOLVING THE CONVEX OPTIMIZATION PROBLEM (SOFT MARGIN) ..Error! Bookmark not defined.
THE COEFFICIENTS FOR THE SOFT MARGIN HYPERPLANE Error! Bookmark not defined.
THE SUPPORT VECTORS (SOFT MARGIN) Error! Bookmark not defined.
CLASSIFYING TEST POINTS (SOFT MARGIN) Error! Bookmark not defined.
SUPPORT VECTOR CLASSIFIER EXAMPLE 1 Error! Bookmark not defined.
SUPPORT VECTOR CLASSIFIER EXAMPLE 2 Error! Bookmark not defined.
SUMMARY: SUPPORT VECTOR CLASSIFIER..Error! Bookmark not defined.
PROBLEM SET: SUPPORT VECTOR CLASSIFIER Error! Bookmark not defined.
SOLUTION SET: SUPPORT VECTOR CLASSIFIER Error! Bookmark not defined.
8 - SUPPORT VECTOR MACHINE CLASSIFIERError! Bookmark not defined. SUPPORT VECTOR MACHINE CLASSIFIER. Error! Bookmark not defined.
ENLARGING THE FEATURE SPACE. Error! Bookmark not defined.

THE KERNEL TRICK Error! Bookmark not defined.

SUPPORT VECTOR MACHINE CLASSIFIER EXAMPLE 1 Error! Bookmark not defined.

SUPPORT VECTOR MACHINE CLASSIFIER EXAMPLE 2 Error! Bookmark not defined.

SUMMARY: SUPPORT VECTOR MACHINE CLASSIFIER Error! Bookmark not defined.

PROBLEM SET: SUPPORT VECTOR MACHINE CLASSIFIER Error! Bookmark not defined.

SOLUTION SET: SUPPORT VECTOR MACHINE CLASSIFIER Error! Bookmark not defined.

CONCLUSION Error! Bookmark not defined.
APPENDIX 1 Error! Bookmark not defined.
APPENDIX 2 Error! Bookmark not defined.
APPENDIX 3 Error! Bookmark not defined.
APPENDIX 4 Error! Bookmark not defined.
APPENDIX 5 Error! Bookmark not defined.
INDEX... Error! Bookmark not defined.

PREFACE

Welcome to Math for Machine Learning: Open Doors to Data Science and Artificial Intelligence. This is a first textbook in math for machine learning. Be sure to get the companion online course Math for Machine Learning here: Math for Machine Learning Online Course. The online course can be very helpful in conjunction with this book.

The prerequisites for this book and the online course are Linear Algebra, Multivariable Calculus, and Probability. You can find my online course on Linear Algebra here: Linear Algebra Course.

We will not do any programming in this book.

This book will get you started in machine learning in a smooth and natural way, preparing you for more advanced topics and dispelling the belief that machine learning is complicated, difficult, and intimidating.

I want you to succeed and prosper in your career, life, and future endeavors. I am here for you. Visit me at: Online Math Training

1 - INTRODUCTION

Welcome to Math for Machine Learning: Open Doors to Data Science and Artificial Intelligence! My name is Richard Han. This is a first textbook in math for machine learning.

Ideal student:

If you're a working professional needing a refresher on machine learning or a complete beginner who needs to learn Machine Learning for the first time, this book is for you. If your busy schedule doesn't allow you to go back to a traditional school, this book allows you to study on your own schedule and further your career goals without being left behind.

If you plan on taking machine learning in college, this is a great way to get ahead.
If you're currently struggling with machine learning or have struggled with it in the past, now is the time to master it.

Benefits of studying this book:

After reading this book, you will have refreshed your knowledge of machine learning for your career so that you can earn a higher salary.

You will have a required prerequisite for lucrative career fields such as Data Science and Artificial Intelligence.

You will be in a better position to pursue a masters or PhD degree in machine learning and data science.

Why Machine Learning is important:

- Famous uses of machine learning include:
- Linear discriminant analysis. Linear discriminant analysis can be used to solve classification problems such as spam filtering and classifying patient illnesses.
- Logistic regression. Logistic regression can be used to solve binary classification problems such as determining whether a patient has a certain form of cancer or not.
- Artificial neural networks. Artificial neural networks can be used for applications such as self-driving cars, recommender systems, online marketing, reading medical images, speech and face recognition
- Support Vector machines. Real world applications of SVM's include classification of proteins and classification of images.

What my book offers:

In this book, I cover core topics such as:

- Linear Regression

- Linear Discriminant Analysis
- Logistic Regression
- Artificial Neural Networks
- Support Vector Machines

I explain each definition and go through each example step by step so that you understand each topic clearly. Throughout the book, there are practice problems for you to try. Detailed solutions are provided after each problem set.

I hope you benefit from the book.

Best regards,
Richard Han

2 - LINEAR REGRESSION

LINEAR REGRESSION

Suppose we have a set of data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$. This is called the training data.
Each x_{i} is a vector $\left[\begin{array}{c}x_{i 1} \\ x_{i 2} \\ \vdots \\ x_{i p}\end{array}\right]$ of measurements, where $x_{i 1}$ is an instance of the first input variable $X_{1}, x_{i 2}$ is an instance of the second input variable X_{2}, etc. X_{1}, \ldots, X_{p} are called features or predictors.
y_{1}, \ldots, y_{N} are instances of the output variable Y, which is called the response.
In linear regression, we assume that the response depends on the input variables in a linear fashion: $y=f(X)+\varepsilon$, where $f(X)=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}$.

Here, ε is called the error term and $\beta_{0}, \ldots, \beta_{p}$ are called parameters.
We don't know the values of $\beta_{0}, \ldots, \beta_{p}$. However, we can use the training data to approximate the values of $\beta_{0}, \ldots, \beta_{p}$. What we'll do is look at the amount by which the predicted value $f\left(x_{i}\right)$ differs from the actual y_{i} for each of the pairs $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$ from the training data. So we have $y_{i}-$ $f\left(x_{i}\right)$ as the difference. We then square this and take the sum for $i=1, \ldots, N$:

$$
\sum_{i=1}^{N}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

This is called the residual sum of squares and denoted $\operatorname{RSS}(\beta)$ where $\beta=\left[\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{p}\end{array}\right]$.
We want the residual sum of squares to be as small as possible. Essentially, this means that we want our predicted value $f\left(x_{i}\right)$ to be as close to the actual value y_{i} as possible, for each of the pairs $\left(x_{i}, y_{i}\right)$. Doing this will give us a linear function of the input variables that best fits the given training data. In
the case of only one input variable, we get the best fit line. In the case of two input variables, we get the best fit plane. And so on, for higher dimensions.

THE LEAST SQUARES METHOD

By minimizing $\operatorname{RSS}(\beta)$, we can obtain estimates $\widehat{\beta_{0}}, \widehat{\beta_{1}}, \ldots, \widehat{\beta_{p}}$ of the parameters $\beta_{0}, \ldots, \beta_{p}$. This method is called the least squares method.

Let $X=\left[\begin{array}{ccccc}1 & x_{11} & x_{12} & \cdots & x_{1 p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2 p} \\ \vdots & & & & \\ 1 & x_{N 1} & x_{N 2} & \cdots & x_{N p}\end{array}\right]$ and $\boldsymbol{y}=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{N}\end{array}\right]$.
Then $\boldsymbol{y}-X \beta=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{N}\end{array}\right]-\left[\begin{array}{ccccc}1 & x_{11} & x_{12} & \cdots & x_{1 p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2 p} \\ \vdots & & & & \\ 1 & x_{N 1} & x_{N 2} & \cdots & x_{N p}\end{array}\right]\left[\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{p}\end{array}\right]$
$=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{N}\end{array}\right]-\left[\begin{array}{c}\beta_{0}+\beta_{1} x_{11}+\cdots+\beta_{p} x_{1 p} \\ \beta_{0}+\beta_{1} x_{21}+\cdots+\beta_{p} x_{2 p} \\ \vdots \\ \beta_{0}+\beta_{1} x_{N 1}+\cdots+\beta_{p} x_{N p}\end{array}\right]$
$=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{N}\end{array}\right]-\left[\begin{array}{c}f\left(x_{1}\right) \\ f\left(x_{2}\right) \\ \vdots \\ f\left(x_{N}\right)\end{array}\right]$
$=\left[\begin{array}{c}y_{1}-f\left(x_{1}\right) \\ \vdots \\ y_{N}-f\left(x_{N}\right)\end{array}\right]$
So $(\boldsymbol{y}-X \beta)^{T}(\boldsymbol{y}-X \beta)=\sum_{i=1}^{N}\left(y_{i}-f\left(x_{i}\right)\right)^{2}=R S S(\beta)$
$\Rightarrow \quad \operatorname{RSS}(\beta)=(\boldsymbol{y}-X \beta)^{T}(\boldsymbol{y}-X \beta)$.
Consider the vector of partial derivatives of $\operatorname{RSS}(\beta)$:
$\left[\begin{array}{c}\frac{\partial R S S(\beta)}{\partial \beta_{0}} \\ \frac{\partial R S S(\beta)}{\partial \beta_{1}} \\ \vdots \\ \frac{\partial R S S(\beta)}{\partial \beta_{p}}\end{array}\right]$

$$
\operatorname{RSS}(\beta)=\left(y_{1}-\left(\beta_{0}+\beta_{1} x_{11}+\cdots+\beta_{p} x_{1 p}\right)\right)^{2}+\cdots+\left(y_{N}-\left(\beta_{0}+\beta_{1} x_{N 1}+\cdots+\beta_{p} x_{N p}\right)\right)^{2}
$$

Let's take the partial derivative with respect to β_{0}.

$$
\begin{aligned}
& \frac{\partial R S S(\beta)}{\partial \beta_{0}}=2\left(y_{1}-\left(\beta_{0}+\beta_{1} x_{11}+\cdots+\beta_{p} x_{1 p}\right)\right) \cdot(-1)+\cdots+2\left(y_{N}-\left(\beta_{0}+\beta_{1} x_{N 1}+\cdots+\beta_{p} x_{N p}\right)\right) \cdot(-1) \\
&=-2 \cdot\left[\begin{array}{lll}
1 & \cdots & 1
\end{array}\right](\boldsymbol{y}-X \beta)
\end{aligned}
$$

Next, take the partial derivative with respect to β_{1}.

$$
\begin{gathered}
\frac{\partial R S S(\beta)}{\partial \beta_{1}}=2\left(y_{1}-\left(\beta_{0}+\beta_{1} x_{11}+\cdots+\beta_{p} x_{1 p}\right)\right) \cdot\left(-x_{11}\right)+\cdots+2\left(y_{N}-\left(\beta_{0}+\beta_{1} x_{N 1}+\cdots+\beta_{p} x_{N p}\right)\right) \cdot\left(-x_{N 1}\right) \\
=-2\left[\begin{array}{lll}
x_{11} & \cdots & x_{N 1}
\end{array}\right] \cdot(\boldsymbol{y}-X \beta)
\end{gathered}
$$

In general, $\frac{\partial R S S(\beta)}{\partial \beta_{k}}=-2\left[\begin{array}{lll}x_{1 k} & \cdots & x_{N k}\end{array}\right] \cdot(\boldsymbol{y}-X \beta)$
So,

$$
\begin{aligned}
{\left[\begin{array}{c}
\frac{\partial R S S}{}(\beta) \\
\partial \beta_{0} \\
\frac{\partial R S S}{}(\beta) \\
\partial \beta_{1} \\
\vdots \\
\frac{\partial R S S(\beta)}{\partial \beta_{p}}
\end{array}\right]=} & {\left[\begin{array}{ccc}
-2 \cdot\left[\begin{array}{lll}
1 & \cdots & 1
\end{array}\right](\boldsymbol{y}-X \beta) \\
-2\left[\begin{array}{lll}
x_{11} & \cdots & x_{N 1}
\end{array}\right](\boldsymbol{y}-X \beta) \\
-2\left[\begin{array}{lll}
x_{1 p} & \cdots & x_{N p}
\end{array}\right](\boldsymbol{y}-X \beta)
\end{array}\right] } \\
& =-2\left[\begin{array}{ccc}
1 & \cdots & 1 \\
x_{11} & \cdots & x_{N 1} \\
& \vdots & \\
x_{1 p} & \cdots & x_{N p}
\end{array}\right](\boldsymbol{y}-X \beta) \\
& =-2 X^{T}(\boldsymbol{y}-X \beta)
\end{aligned}
$$

If we take the second derivative of $R S S(\beta)$, say $\frac{\partial^{2} R S S(\beta)}{\partial \beta_{k} \partial \beta_{j}}$, we get

$$
\begin{aligned}
\frac{\partial}{\partial \beta_{j}}\left(2\left(y_{1}-\left(\beta_{0}+\beta_{1} x_{11}+\cdots+\beta_{p} x_{1 p}\right)\right)\right. & \left.\cdot\left(-x_{1 k}\right)+\cdots+2\left(y_{N}-\left(\beta_{0}+\beta_{1} x_{N 1}+\cdots+\beta_{p} x_{N p}\right)\right) \cdot\left(-x_{N k}\right)\right) \\
& =2 x_{1 j} x_{1 k}+\cdots+2 x_{N j} x_{N k} \\
& =2\left(x_{1 j} x_{1 k}+\cdots+x_{N j} x_{N k}\right)
\end{aligned}
$$

Note $X=\left[\begin{array}{ccccc}x_{10} & x_{11} & x_{12} & \cdots & x_{1 p} \\ x_{20} & x_{21} & x_{22} & \cdots & x_{2 p} \\ \vdots & & & & \\ x_{N 0} & x_{N 1} & x_{N 2} & \cdots & x_{N p}\end{array}\right]$
$\Rightarrow \quad X^{T} X=\left[\begin{array}{cccc}x_{10} & x_{20} & \cdots & x_{N 0} \\ x_{11} & x_{21} & \cdots & x_{N 1} \\ \vdots & & & \\ x_{1 p} & x_{2 p} & \cdots & x_{N p}\end{array}\right]\left[\begin{array}{cccc}x_{10} & x_{11} & \cdots & x_{1 p} \\ x_{20} & x_{21} & \cdots & x_{2 p} \\ \vdots & & & \\ x_{N 0} & x_{N 1} & \cdots & x_{N p}\end{array}\right]$

$$
=\left(a_{j k}\right) \quad \text { where } a_{j k}=x_{1 j} x_{1 k}+\cdots+x_{N j} x_{N k}
$$

So $\frac{\partial^{2} R S S(\beta)}{\partial \beta_{k} \partial \beta_{j}}=2 a_{j k}$
\Rightarrow The matrix of second derivatives of $\operatorname{RSS}(\beta)$ is $2 X^{T} X$. This matrix is called the Hessian. By the second derivative test, if the Hessian of $\operatorname{RSS}(\beta)$ at a critical point is positive definite, then $\operatorname{RSS}(\beta)$ has a local minimum there.

If we set our vector of derivatives to $\mathbf{0}$, we get

$$
\begin{array}{ll}
& -2 X^{T}(\boldsymbol{y}-X \beta)=\mathbf{0} \\
\Rightarrow & -2 X^{T} \boldsymbol{y}+2 X^{T} X \beta=\mathbf{0} \\
\Rightarrow \quad & 2 X^{T} X \beta=2 X^{T} \boldsymbol{y} \\
\Rightarrow & X^{T} X \beta=X^{T} \boldsymbol{y} \\
\Rightarrow \quad & \beta=\left(X^{T} X\right)^{-1} X^{T} \boldsymbol{y} .
\end{array}
$$

Thus, we solved for the vector of parameters $\left[\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{p}\end{array}\right]$ which minimizes the residual sum of squares $\operatorname{RSS}(\beta)$. So we let $\left[\begin{array}{c}\widehat{\beta_{0}} \\ \widehat{\beta_{1}} \\ \vdots \\ \widehat{\beta_{p}}\end{array}\right]=\left(X^{T} X\right)^{-1} X^{T} \boldsymbol{y}$.

LINEAR ALGEBRA SOLUTION TO LEAST SQUARES PROBLEM

We can arrive at the same solution for the least squares problem by using linear algebra.
Let $X=\left[\begin{array}{ccccc}1 & x_{11} & x_{12} & \cdots & x_{1 p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2 p} \\ \vdots & & & & \\ 1 & x_{N 1} & x_{N 2} & \cdots & x_{N p}\end{array}\right]$ and $\boldsymbol{y}=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{N}\end{array}\right]$ as before, from our training data. We want a vector β such that $X \beta$ is close to \boldsymbol{y}. In other words, we want a vector β such that the distance $\|X \beta-\boldsymbol{y}\|$ between $X \beta$ and \boldsymbol{y} is minimized. A vector β that minimizes $\|X \beta-\boldsymbol{y}\|$ is called a least-squares solution
of $X \beta=y$.
X is an N by $(p+1)$ matrix. We want a $\hat{\beta}$ in \mathbb{R}^{p+1} such that $X \hat{\beta}$ is closest to \boldsymbol{y}. Note that $X \hat{\beta}$ is a linear combination of the columns of X. So $X \hat{\beta}$ lies in the span of the columns of X, which is a subspace of \mathbb{R}^{N} denoted $\operatorname{Col} X$. So we want the vector in $\operatorname{Col} X$ that is closest to \boldsymbol{y}. The projection of \boldsymbol{y} onto the subspace $\operatorname{Col} X$ is that vector.

$$
\operatorname{proj}_{\text {Col } X} \boldsymbol{y}=X \hat{\beta} \text { for some } \hat{\beta} \in \mathbb{R}^{p+1}
$$

Consider $\boldsymbol{y}-X \hat{\beta}$. Note that $\boldsymbol{y}=X \hat{\beta}+(\boldsymbol{y}-X \hat{\beta})$.
\mathbb{R}^{N} can be broken into two subspaces $\operatorname{Col} X$ and $(\operatorname{Col} X)^{\perp}$, where $(\operatorname{Col} X)^{\perp}$ is the subspace of \mathbb{R}^{N} consisting of all vectors that are orthogonal to the vectors in $\operatorname{Col} X$. Any vector in \mathbb{R}^{N} can be written uniquely as $\mathbf{z}+\boldsymbol{w}$ where $\boldsymbol{z} \in \operatorname{Col} X$ and $\boldsymbol{w} \in(\operatorname{Col} X)^{\perp}$.
Since $\boldsymbol{y} \in \mathbb{R}^{N}$, and $\boldsymbol{y}=X \hat{\beta}+(\boldsymbol{y}-X \hat{\beta})$, with $X \hat{\beta} \in \operatorname{Col} X$, the second vector $\boldsymbol{y}-X \hat{\beta}$ must lie in $(\operatorname{Col} X)^{\perp}$.
$\Rightarrow \quad y-X \hat{\beta}$ is orthogonal to the columns of X.
$\Rightarrow \quad X^{T}(\boldsymbol{y}-X \hat{\beta})=\mathbf{0}$
$\Rightarrow \quad X^{T} \boldsymbol{y}-X^{T} X \hat{\beta}=\mathbf{0}$.
$\Rightarrow \quad X^{T} X \hat{\beta}=X^{T} y$.

Thus, it turns out that the set of least-squares solutions of $X \beta=\boldsymbol{y}$ consists of all and only the solutions to the matrix equation $X^{T} X \beta=X^{T} y$.

If $X^{T} X$ is positive definite, then the eigenvalues of $X^{T} X$ are all positive. So 0 is not an eigenvalue of $X^{T} X$. It follows that $X^{T} X$ is invertible. Then, we can solve the equation $X^{T} X \hat{\beta}=X^{T} \boldsymbol{y}$ for $\hat{\beta}$ to get $\hat{\beta}=$
$\left(X^{T} X\right)^{-1} X^{T} \boldsymbol{y}$, which is the same result we got earlier using multi-variable calculus.

EXAMPLE: LINEAR REGRESSION

Suppose we have the following training data:

$$
\left(x_{1}, y_{1}\right)=(1,1),\left(x_{2}, y_{2}\right)=(2,4),\left(x_{3}, y_{3}\right)=(3,4) .
$$

Find the best fit line using the least squares method. Find the predicted value for $x=4$.
Solution:

$$
\text { Form } X=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right] \text { and } \boldsymbol{y}=\left[\begin{array}{l}
1 \\
4 \\
4
\end{array}\right]
$$

The coefficients β_{0}, β_{1} for the best fit line $f(x)=\beta_{0}+\beta_{1} x$ are given by $\left[\begin{array}{c}\beta_{0} \\ \beta_{1}\end{array}\right]=\left(X^{T} X\right)^{-1} X^{T} \boldsymbol{y}$. $X^{T}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3\end{array}\right]$
$\Rightarrow \quad X^{T} X=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right]=\left[\begin{array}{cc}3 & 6 \\ 6 & 14\end{array}\right]$
$\Rightarrow \quad\left(X^{T} X\right)^{-1}=\left[\begin{array}{cc}7 / 3 & -1 \\ -1 & 1 / 2\end{array}\right]$
$\Rightarrow \quad\left(X^{T} X\right)^{-1} X^{T} y=\left[\begin{array}{cc}7 / 3 & -1 \\ -1 & 1 / 2\end{array}\right]\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3\end{array}\right]\left[\begin{array}{l}1 \\ 4 \\ 4\end{array}\right]$

$$
=\left[\begin{array}{c}
0 \\
3 / 2
\end{array}\right]
$$

$\Rightarrow \quad \beta_{0}=0$ and $\beta_{1}=3 / 2$.

Thus, the best fit line is given by $f(x)=\left(\frac{3}{2}\right) x$.
The predicted value for $x=4$ is $f(4)=\left(\frac{3}{2}\right) \cdot 4=6$.

SUMMARY: LINEAR REGRESSION

- In the least squares method, we seek a linear function of the input variables that best fits the given training data. We do this by minimizing the residual sum of squares.
- To minimize the residual sum of squares, we apply the second derivative test from multi-variable calculus.
- We can arrive at the same solution to the least squares problem using linear algebra.

PROBLEM SET: LINEAR REGRESSION

1. Suppose we have the following training data:
$\left(x_{1}, y_{1}\right)=(0,2),\left(x_{2}, y_{2}\right)=(1,1)$,
$\left(x_{3}, y_{3}\right)=(2,4),\left(x_{4}, y_{4}\right)=(3,4)$.
Find the best fit line using the least squares method. Find the predicted value for $x=4$.
2. Suppose we have the following training data:
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ where
$x_{1}=\left[\begin{array}{l}0 \\ 0\end{array}\right], x_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right], x_{3}=\left[\begin{array}{l}0 \\ 1\end{array}\right], x_{4}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
and $y_{1}=1, y_{2}=0, y_{3}=0, y_{4}=2$.

Find the best fit plane using the least squares method. Find the predicted value for $x=\left[\begin{array}{l}2 \\ 2\end{array}\right]$.

SOLUTION SET: LINEAR REGRESSION

1. Form $X=\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right]$ and $\boldsymbol{y}=\left[\begin{array}{l}2 \\ 1 \\ 4 \\ 4\end{array}\right]$.

The coefficients β_{0}, β_{1} for the best fit line $f(x)=\beta_{0}+\beta_{1} x$ are given by $\left[\begin{array}{l}\beta_{0} \\ \beta_{1}\end{array}\right]=\left(X^{T} X\right)^{-1} X^{T} \boldsymbol{y}$.

$$
\begin{aligned}
X^{T}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right] \quad & \Rightarrow X^{T} X=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]=\left[\begin{array}{cc}
4 & 6 \\
6 & 14
\end{array}\right] \\
& \Rightarrow\left(X^{T} X\right)^{-1}=\left[\begin{array}{cc}
\frac{7}{10} & -\frac{3}{10} \\
-\frac{3}{10} & \frac{1}{5}
\end{array}\right] \\
& \Rightarrow\left(X^{T} X\right)^{-1} X^{T} y=\left[\begin{array}{cc}
\frac{7}{10} & -\frac{3}{10} \\
-\frac{3}{10} & \frac{1}{5}
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
4 \\
4
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{14}{10} \\
\frac{9}{10}
\end{array}\right] \\
& \Rightarrow \beta_{0}=\frac{14}{10} \text { and } \beta_{1}=\frac{9}{10} .
\end{aligned}
$$

Thus, the best fit line is given by

$$
f(x)=\frac{14}{10}+\frac{9}{10} x
$$

The predicted value for $x=4$ is $f(4)=\frac{14}{10}+\frac{9}{10} \cdot 4=5$.
2. Form $X=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$ and $\boldsymbol{y}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 2\end{array}\right]$.

The coefficients $\beta_{0}, \beta_{1}, \beta_{2}$ for the best fit line $f\left(x_{1}, x_{2}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$ are given by $\left[\begin{array}{l}\beta_{0} \\ \beta_{1} \\ \beta_{2}\end{array}\right]=$ $\left(X^{T} X\right)^{-1} X^{T} y$.
$X^{T}=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$
$\Rightarrow X^{T} X=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]=\left[\begin{array}{lll}4 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2\end{array}\right]$

$$
\begin{aligned}
\Rightarrow\left(X^{T} X\right)^{-1}=\left[\begin{array}{ccc}
\frac{3}{4} & -\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & 1 & 0 \\
-\frac{1}{2} & 0 & 1
\end{array}\right] \\
\begin{aligned}
\Rightarrow\left(X^{T} X\right)^{-1} X^{T} \boldsymbol{y} & =\left[\begin{array}{ccc}
\frac{3}{4} & -\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & 1 & 0 \\
-\frac{1}{2} & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
2
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\frac{3}{4} & \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\
-\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
2
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{1}{4} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right] \\
\Rightarrow \beta_{0}=\frac{1}{4}, \beta_{1} & =\frac{1}{2}, \beta_{2}=\frac{1}{2}
\end{aligned} .
\end{aligned}
$$

Thus, the best fit plane is given by

$$
f\left(x_{1}, x_{2}\right)=\frac{1}{4}+\frac{1}{2} x_{1}+\frac{1}{2} x_{2}
$$

The predicted value for $x=\left[\begin{array}{l}2 \\ 2\end{array}\right]$ is $f(2,2)=2 \frac{1}{4}$.

3 - LINEAR DISCRIMINANT ANALYSIS

CLASSIFICATION

In the problem of regression, we had a set of data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$ and we wanted to predict the values for the response variable Y for new data points. The values that Y took were numerical, quantitative, values. In certain problems, the values for the response variable Y that we want to predict are not quantitative but qualitative. So the values for Y will take on values from a finite set of classes or categories. Problems of this sort are called classification problems. Some examples of a classification problem are classifying an email as spam or not spam and classifying a patient's illness as one among a finite number of diseases.

LINEAR DISCRIMINANT ANALYSIS

One method for solving a classification problem is called linear discriminant analysis.
What we'll do is estimate $\operatorname{Pr}(Y=k \mid X=x)$, the probability that Y is the class k given that the input variable X is x. Once we have all of these probabilities for a fixed x, we pick the class k for which the probability $\operatorname{Pr}(Y=k \mid X=x)$ is largest. We then classify x as that class k.

THE POSTERIOR PROBABILITY FUNCTIONS

In this section, we'll build a formula for the posterior probability $\operatorname{Pr}(Y=k \mid X=x)$.
Let $\pi_{k}=\operatorname{Pr}(Y=k)$, the prior probability that $Y=k$.
Let $f_{k}(x)=\operatorname{Pr}(X=x \mid Y=k)$, the probability that $X=x$, given that $Y=k$.
By Bayes' rule,

$$
\operatorname{Pr}(Y=k \mid X=x)=\frac{\operatorname{Pr}(X=x \mid Y=k) \cdot \operatorname{Pr}(Y=k)}{\sum_{l=1}^{K} \operatorname{Pr}(X=x \mid Y=l) \operatorname{Pr}(Y=l)}
$$

Here we assume that k can take on the values $1, \ldots, K$.

$$
\begin{gathered}
=\frac{f_{k}(x) \cdot \pi_{k}}{\sum_{l=1}^{K} f_{l}(x) \cdot \pi_{l}} \\
=\frac{\pi_{k} \cdot f_{k}(x)}{\sum_{l=1}^{K} \pi_{l} f_{l}(x)}
\end{gathered}
$$

We can think of $\operatorname{Pr}(Y=k \mid X=x)$ as a function of x and denote it as $p_{k}(x)$.
So $p_{k}(x)=\frac{\pi_{k} \cdot f_{k}(x)}{\sum_{l=1}^{K} \pi_{l} f_{l}(x)}$. Recall that $p_{k}(x)$ is the posterior probability that $Y=k$ given that $X=x$.

MODELLING THE POSTERIOR PROBABILITY FUNCTIONS

Remember that we wanted to estimate $\operatorname{Pr}(Y=k \mid X=x)$ for any given x. That is, we want an estimate for $p_{k}(x)$. If we can get estimates for $\pi_{k}, f_{k}(x), \pi_{l}$ and $f_{l}(x)$ for each $l=1, \ldots, K$, then we would have an estimate for $p_{k}(x)$.

Let's say that $X=\left(X_{1}, X_{2}, \ldots, X_{p}\right)$ where X_{1}, \ldots, X_{p} are the input variables. So the values of X will be vectors of p elements.

We will assume that the conditional distribution of X given $Y=k$ is the multivariate Gaussian distribution $N\left(\mu_{k}, \Sigma\right)$, where μ_{k} is a class-specific mean vector and Σ is the covariance of X.

The class-specific mean vector μ_{k} is given by the vector of class-specific means $\left[\begin{array}{c}\mu_{k 1} \\ \vdots \\ \mu_{k p}\end{array}\right]$, where $\mu_{k j}$ is the class-specific mean of X_{j}.

So $\mu_{k j}=\sum_{i: y_{i}=k} x_{i j} \operatorname{Pr}\left(X_{j}=x_{i j}\right)$. Recall that $x_{i}=\left[\begin{array}{c}x_{i 1} \\ \vdots \\ x_{i p}\end{array}\right]$. (For all those x_{i} for which $y_{i}=k$, we're taking the mean of their j th components.)
Σ, the covariance matrix of X, is given by the matrix of covariances of X_{i} and X_{j}.
So $\Sigma=\left(a_{i j}\right)$, where $a_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right) \stackrel{\text { def }}{=} E\left[\left(X_{i}-\mu_{X_{i}}\right)\left(X_{j}-\mu_{X_{j}}\right)\right]$.

The multivariate Gaussian density is given by

$$
f(x)=\frac{1}{(2 \pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)}
$$

for the multivariate Gaussian distribution $N(\mu, \Sigma)$.
Since we're assuming that the conditional distribution of X given $Y=k$ is the multivariate Gaussian distribution $N\left(\mu_{k}, \Sigma\right)$, we have that

$$
\operatorname{Pr}(X=x \mid Y=k)=\frac{1}{(2 \pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}\left(x-\mu_{k}\right)^{T} \Sigma^{-1}\left(x-\mu_{k}\right)}
$$

Recall that $f_{k}(x)=\operatorname{Pr}(X=x \mid Y=k)$.
So $f_{k}(x)=\frac{1}{(2 \pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}\left(x-\mu_{k}\right)^{T} \Sigma^{-1}\left(x-\mu_{k}\right)}$.
Recall that $p_{k}(x)=\frac{\pi_{k} \cdot f_{k}(x)}{\sum_{l=1}^{K} \pi_{l} f_{l}(x)}$.

Plugging in what we have for $f_{k}(x)$, we get

$$
\begin{aligned}
p_{k}(x)= & \frac{\pi_{k} \cdot \frac{1}{(2 \pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}\left(x-\mu_{k}\right)^{T} \Sigma^{-1}\left(x-\mu_{k}\right)}}{\sum_{l=1}^{K} \pi_{l} \cdot \frac{1}{(2 \pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}\left(x-\mu_{l}\right)^{T} \Sigma^{-1}\left(x-\mu_{l}\right)}} \\
& =\frac{\pi_{k} \cdot e^{-\frac{1}{2}\left(x-\mu_{k}\right)^{T} \Sigma^{-1}\left(x-\mu_{k}\right)}}{\sum_{l=1}^{K} \pi_{l} \cdot e^{-\frac{1}{2}\left(x-\mu_{l}\right)^{T} \Sigma^{-1}\left(x-\mu_{l}\right)}} .
\end{aligned}
$$

Note that the denominator is $(2 \pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}} \sum_{l=1}^{K} \pi_{l} f_{l}(x)$ and that

$$
\begin{aligned}
\sum_{l=1}^{K} \pi_{l} f_{l}(x)= & \sum_{l=1}^{K} f_{l}(x) \pi_{l} \\
& =\sum_{l=1}^{K} \operatorname{Pr}(X=x \mid Y=l) \operatorname{Pr}(Y=l) \\
& =\operatorname{Pr}(X=x)
\end{aligned}
$$

So the denominator is just $(2 \pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}} \operatorname{Pr}(X=x)$.
Hence, $p_{k}(x)=\frac{\pi_{k} \cdot e^{-\frac{1}{2}\left(x-\mu_{k}\right)^{T} \Sigma^{-1}\left(x-\mu_{k}\right)}}{(2 \pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}} \operatorname{Pr}(X=x)}$.

LINEAR DISCRIMINANT FUNCTIONS

Recall that we want to choose the class k for which the posterior probability $p_{k}(x)$ is largest. Since the logarithm function is order-preserving, maximizing $p_{k}(x)$ is the same as maximizing $\log p_{k}(x)$.

Taking $\log p_{k}(x)$ gives $\log \frac{\pi_{k} \cdot e^{-\frac{1}{2}\left(x-\mu_{k}\right)^{T} \Sigma^{-1}\left(x-\mu_{k}\right)}}{(2 \pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}} \operatorname{Pr}(X=x)}$

$$
\begin{aligned}
& =\log \pi_{k}+\left(-\frac{1}{2}\right)\left(x-\mu_{k}\right)^{T} \Sigma^{-1}\left(x-\mu_{k}\right)-\log \left((2 \pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}} \operatorname{Pr}(X=x)\right) \\
& =\log \pi_{k}+\left(-\frac{1}{2}\right)\left(x-\mu_{k}\right)^{T} \Sigma^{-1}\left(x-\mu_{k}\right)-\log C \quad \text { where } C=(2 \pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}} \operatorname{Pr}(X=x) \text {. } \\
& =\log \pi_{k}-\frac{1}{2}\left(x^{T} \Sigma^{-1}-\mu_{k}^{T} \Sigma^{-1}\right)\left(x-\mu_{k}\right)-\log C \\
& =\log \pi_{k}-\frac{1}{2}\left[x^{T} \Sigma^{-1} x-x^{T} \Sigma^{-1} \mu_{k}-\mu_{k}^{T} \Sigma^{-1} x+\mu_{k}^{T} \Sigma^{-1} \mu_{k}\right]-\log C \\
& =\log \pi_{k}-\frac{1}{2}\left[x^{T} \Sigma^{-1} x-2 x^{T} \Sigma^{-1} \mu_{k}+\mu_{k}^{T} \Sigma^{-1} \mu_{k}\right]-\log C, \\
& \text { because } x^{T} \Sigma^{-1} \mu_{k}=\mu_{k}^{T} \Sigma^{-1} x \\
& \text { Proof: } x^{T} \Sigma^{-1} \mu_{k}=\mu_{k}\left(\Sigma^{-1}\right)^{T} x \\
& =\mu_{k}^{T}\left(\Sigma^{T}\right)^{-1} x \\
& =\mu_{k}^{T} \Sigma^{-1} x \text { because } \Sigma \text { is symmetric. } \\
& =\log \pi_{k}-\frac{1}{2} x^{T} \Sigma^{-1} x+x^{T} \Sigma^{-1} \mu_{k}-\frac{1}{2} \mu_{k}^{T} \Sigma^{-1} \mu_{k}-\log C \\
& =x^{T} \Sigma^{-1} \mu_{k}-\frac{1}{2} \mu_{k}^{T} \Sigma^{-1} \mu_{k}+\log \pi_{k}-\frac{1}{2} x^{T} \Sigma^{-1} x-\log C
\end{aligned}
$$

Let $\delta_{k}(x)=x^{T} \Sigma^{-1} \mu_{k}-\frac{1}{2} \mu_{k}^{T} \Sigma^{-1} \mu_{k}+\log \pi_{k}$.
Then $\log p_{k}(x)=\delta_{k}(x)-\frac{1}{2} x^{T} \Sigma^{-1} x-\log C$.
$\delta_{k}(x)$ is called a linear discriminant function. Maximizing $\log p_{k}(x)$ is the same as maximizing $\delta_{k}(x)$ since $-\frac{1}{2} x^{T} \Sigma^{-1} x-\log C$ does not depend on k.

ESTIMATING THE LINEAR DISCRIMINANT FUNCTIONS

Now, if we can find estimates for π_{k}, μ_{k}, and Σ, then we would have an estimate for $p_{k}(x)$ and hence for $\log p_{k}(x)$ and $\delta_{k}(x)$.

In an attempt to maximize $p_{k}(x)$, we instead maximize the estimate of $p_{k}(x)$, which is the same as
maximizing the estimate of $\delta_{k}(x)$.
π_{k} can be estimated as $\widehat{\pi_{k}}=\frac{N_{k}}{N}$ where N_{k} is the number of training data points in class k and N is the total number of training data points.

Remember $\pi_{k}=\operatorname{Pr}(Y=k)$. We're estimating this by just taking the proportion of data points in class k.
The class-specific mean vector $\mu_{k}=\left[\begin{array}{c}\mu_{k 1} \\ \vdots \\ \mu_{k p}\end{array}\right]$, where $\mu_{k j}=\sum_{i: y_{i}=k} x_{i j} \operatorname{Pr}\left(X_{j}=x_{i j}\right)$.
We can estimate $\mu_{k j}$ as $\frac{1}{N_{k}} \sum_{i: y_{i}=k} x_{i j}$.
So we can estimate μ_{k} as $\widehat{\mu_{k}}=\left[\begin{array}{c}\frac{1}{N_{k}} \sum_{i: y_{i}=k} x_{i 1} \\ \vdots \\ \frac{1}{N_{k}} \sum_{i: y_{i}=k} x_{i p}\end{array}\right]=\frac{1}{N_{k}}\left[\begin{array}{c}\sum_{i: y_{i}=k} x_{i 1} \\ \vdots \\ \sum_{i: y_{i}=k} x_{i p}\end{array}\right]$

$$
\begin{gathered}
=\frac{1}{N_{k}} \sum_{i: y_{i}=k}\left[\begin{array}{c}
x_{i 1} \\
\vdots \\
x_{i p}
\end{array}\right] \\
=\frac{1}{N_{k}} \sum_{i: y_{i}=k} x_{i}
\end{gathered}
$$

In other words, $\widehat{\mu_{k}}=\frac{1}{N_{k}} \sum_{i: y_{i}=k} x_{i}$. We estimate the class-specific mean vector by the vector of averages of each component over all x_{i} in class k.

Finally, the covariance matrix Σ is estimated as $\widehat{\Sigma}=\frac{1}{N-K} \sum_{k=1}^{K} \sum_{i: y_{i}=k}\left(x_{i}-\widehat{\mu_{k}}\right)\left(x_{i}-\widehat{\mu_{k}}\right)^{T}$.
Recall that $\delta_{k}(x)=x^{T} \Sigma^{-1} \mu_{k}-\frac{1}{2} \mu_{k}^{T} \Sigma^{-1} \mu_{k}+\log \pi_{k}$.
So, $\widehat{\delta_{k}}(x)=x^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{k}}-\frac{1}{2}\left(\widehat{\mu_{k}}\right)^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{k}}+\log \widehat{\pi_{k}}$.
Note that $\widehat{\Sigma}, \widehat{\mu_{k}}$, and $\widehat{\pi_{k}}$ only depend on the training data and not on x. Note that x is a vector and $x^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{k}}$ is a linear combination of the components of x. Hence, $\widehat{\delta_{k}}(x)$ is a linear combination of the components of x. This is why it's called a linear discriminant function.

CLASSIFYING DATA POINTS USING LINEAR DISCRIMINANT FUNCTIONS

If (k_{1}, k_{2}) is a pair of classes, we can consider whether $\widehat{\delta_{k_{1}}}(x)>\widehat{\delta_{k_{2}}}(x)$. If so, we know x is not in class k_{2}. Then, we can compare $\widehat{\delta_{k_{1}}}(x)>\widehat{\delta_{k_{3}}}(x)$ and rule out another class. Once we've exhausted all
the classes, we'll know which class x should be assigned to.
Setting $\widehat{\delta_{k_{1}}}(x)=\widehat{\delta_{k_{2}}}(x)$, we get

$$
x^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{k_{1}}}-\frac{1}{2}\left(\widehat{\mu_{k_{1}}}\right)^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{k_{1}}}+\log \widehat{\pi_{k_{1}}}=x^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{k_{2}}}-\frac{1}{2}\left(\widehat{\mu_{k_{2}}}\right)^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{k_{2}}}+\log \widehat{\pi_{k_{2}}} .
$$

This gives us a hyperplane in \mathbb{R}^{p} which separates class k_{1} from class k_{2}.
If we find the separating hyperplane for each pair of classes, we get something like this:

In this example, $p=2$ and $K=3$.

LDA EXAMPLE 1

Suppose we have a set of data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{6}, y_{6}\right)$ as follows:
$x_{1}=(1,3), x_{2}=(2,3), x_{3}=(2,4), x_{4}=(3,1), x_{5}=(3,2), x_{6}=(4,2)$, with $y_{1}=y_{2}=y_{3}=k_{1}=1$ and $y_{4}=y_{5}=y_{6}=k_{2}=2$.

Apply linear discriminant analysis by doing the following:
a) Find estimates for the linear discriminant functions $\delta_{1}(x)$ and $\delta_{2}(x)$.
b) Find the line that decides between the two classes.
c) Classify the new point $x=(5,0)$.

Solution:
Here is a graph of the data points:

The number of features p is 2 , the number of classes K is 2 , the total number of data points N is 6 , the number N_{1} of data points in class k_{1} is 3 , and the number N_{2} of data points in class k_{2} is 3 .

First, we will find estimates for π_{1} and π_{2}, the prior probabilities that $Y=k_{1}$ and $Y=k_{2}$, respectively.

Then, we will find estimates for μ_{1} and μ_{2}, the class-specific mean vectors.
We can then calculate the estimate for the covariance matrix Σ.
Finally, using the estimates $\widehat{\pi_{1}}, \widehat{\pi_{2}}, \widehat{\mu_{1}}, \widehat{\mu_{2}}, \widehat{\Sigma}$, we can find the estimates for the linear discriminant functions $\delta_{1}(x)$ and $\delta_{2}(x)$.
$\widehat{\pi_{1}}=\frac{N_{1}}{N}=\frac{3}{6}=\frac{1}{2}$
$\widehat{\pi_{2}}=\frac{N_{2}}{N}=\frac{3}{6}=\frac{1}{2}$
$\widehat{\mu_{1}}=\frac{1}{N_{1}} \sum_{i: y_{i}=1} x_{i}=\frac{1}{3}\left[x_{1}+x_{2}+x_{3}\right]=\left[\begin{array}{c}5 / 3 \\ 10 / 3\end{array}\right]$
$\widehat{\mu_{2}}=\frac{1}{N_{2}} \sum_{i: y_{i}=2} x_{i}=\frac{1}{3}\left[x_{4}+x_{5}+x_{6}\right]=\left[\begin{array}{c}10 / 3 \\ 5 / 3\end{array}\right]$
$\widehat{\Sigma}=\frac{1}{N-K} \sum_{k=1}^{K} \sum_{i: y_{i}=k}\left(x_{i}-\widehat{\mu_{k}}\right)\left(x_{i}-\widehat{\mu_{k}}\right)^{T}$

$$
=\frac{1}{6-2} \sum_{k=1}^{2} \sum_{i: y_{i}=k}\left(x_{i}-\widehat{\mu_{k}}\right)\left(x_{i}-\widehat{\mu_{k}}\right)^{T}
$$

Plugging in what we got for $\widehat{\mu_{1}}$ and $\widehat{\mu_{2}}$, we get

$$
\begin{aligned}
\hat{\Sigma}= & \frac{1}{4}\left[\begin{array}{ll}
4 / 3 & 2 / 3 \\
2 / 3 & 4 / 3
\end{array}\right]=\left[\begin{array}{ll}
1 / 3 & 1 / 6 \\
1 / 6 & 1 / 3
\end{array}\right] \\
& \Rightarrow \hat{\Sigma}^{-1}=\left[\begin{array}{cc}
4 & -2 \\
-2 & 4
\end{array}\right]
\end{aligned}
$$

$$
\widehat{\delta_{1}}(x)=x^{T} \hat{\Sigma}^{-1} \widehat{\mu_{1}}-\frac{1}{2}\left(\widehat{\mu_{1}}\right)^{T} \hat{\Sigma}^{-1} \widehat{\mu_{1}}+\log \widehat{\pi_{1}} .
$$

$$
=x^{T}\left[\begin{array}{c}
0 \\
10
\end{array}\right]-\frac{1}{2}\left(\frac{100}{3}\right)+\log \frac{1}{2}
$$

$$
=10 X_{2}-\frac{50}{3}+\log \frac{1}{2}
$$

$$
\widehat{\delta_{2}}(x)=x^{T} \hat{\Sigma}^{-1} \widehat{\mu_{2}}-\frac{1}{2}\left(\widehat{\mu_{2}}\right)^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{2}}+\log \widehat{\pi_{2}}
$$

$$
=x^{T}\left[\begin{array}{c}
10 \\
0
\end{array}\right]-\frac{1}{2}\left(\frac{100}{3}\right)+\log \frac{1}{2}
$$

$$
=10 X_{1}-\frac{50}{3}+\log \frac{1}{2}
$$

Setting $\widehat{\delta_{1}}(x)=\widehat{\delta_{2}}(x)$

$$
\begin{aligned}
& \Rightarrow \quad 10 X_{2}-\frac{50}{3}+\log \frac{1}{2}=10 X_{1}-\frac{50}{3}+\log \frac{1}{2} \\
& \Rightarrow \quad 10 X_{2}=10 X_{1} \\
& \Rightarrow \quad X_{2}=X_{1} .
\end{aligned}
$$

So, the line that decides between the two classes is given by $X_{2}=X_{1}$. Here is a graph of the deciding line:

If $\widehat{\delta_{1}}(x)>\widehat{\delta_{2}}(x)$, then we classify x as of class k_{1}. So if x is above the line $X_{2}=X_{1}$, then we classify x as of class k_{1}. Conversely, if $\widehat{\delta_{1}}(x)<\widehat{\delta_{2}}(x)$, then we classify x as of class k_{2}. This corresponds to x being below the line $X_{2}=X_{1}$.

The point $(5,0)$ is below the line; so we classify it as of class k_{2}.

LDA EXAMPLE 2

Suppose we have a set of data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{6}, y_{6}\right)$ as follows:
$x_{1}=(0,2), x_{2}=(1,2), x_{3}=(2,0), x_{4}=(2,1), x_{5}=(3,3), x_{6}=(4,4)$,
with $y_{1}=y_{2}=k_{1}=1, y_{3}=y_{4}=k_{2}=2$, and $y_{5}=y_{6}=k_{3}=3$.
Apply linear discriminant analysis by doing the following:
a) Find estimates for the linear discriminant functions $\delta_{1}(x), \delta_{2}(x)$, and $\delta_{3}(x)$.
b) Find the lines that decide between each pair of classes.
c) Classify the new point $x=(1,3)$.

Solution:
Here is a graph of the data points:

The number of features p is 2 , the number of classes K is 3 , the total number of data points N is 6 , the number N_{1} of data points in class k_{1} is 2 , the number N_{2} of data points in class k_{2} is 2 , and the number N_{3} of data points in class k_{3} is 2.

First, we will find estimates for $\pi_{1}, \pi_{2}, \pi_{3}$, the prior probabilities that $Y=k_{1}, Y=k_{2}, Y=k_{3}$, respectively.

Then, we will find estimates for $\mu_{1}, \mu_{2}, \mu_{3}$, the class-specific mean vectors.
We can then calculate the estimate for the covariance matrix Σ.
Finally, using the estimates $\widehat{\pi_{1}}, \widehat{\pi_{2}}, \widehat{\pi_{3}}, \widehat{\mu_{1}}, \widehat{\mu_{2}}, \widehat{\mu_{3}}, \widehat{\Sigma}$, we can find the estimates for the linear discriminant functions $\delta_{1}(x), \delta_{2}(x)$, and $\delta_{3}(x)$.
$\widehat{\pi_{1}}=\frac{N_{1}}{N}=\frac{2}{6}=\frac{1}{3}$
$\widehat{\pi_{2}}=\frac{N_{2}}{N}=\frac{2}{6}=\frac{1}{3}$
$\widehat{\pi_{3}}=\frac{N_{3}}{N}=\frac{2}{6}=\frac{1}{3}$
$\widehat{\mu_{1}}=\frac{1}{N_{1}} \sum_{i: y_{i}=1} x_{i}=\frac{1}{2}\left[x_{1}+x_{2}\right]=\left[\begin{array}{c}1 / 2 \\ 2\end{array}\right]$
$\widehat{\mu_{2}}=\frac{1}{N_{2}} \sum_{i: y_{i}=2} x_{i}=\frac{1}{2}\left[x_{3}+x_{4}\right]=\left[\begin{array}{c}2 \\ 1 / 2\end{array}\right]$

$$
\begin{aligned}
& \widehat{\mu_{3}}=\frac{1}{N_{3}} \sum_{i: y_{i}=3} x_{i}=\frac{1}{2}\left[x_{5}+x_{6}\right]=\left[\begin{array}{l}
7 / 2 \\
7 / 2
\end{array}\right] \\
& \widehat{\Sigma}=\frac{1}{N-K} \sum_{k=1}^{K} \sum_{i: y_{i}=k}\left(x_{i}-\widehat{\mu_{k}}\right)\left(x_{i}-\widehat{\mu_{k}}\right)^{T} \\
& =\frac{1}{6-3}\left[\begin{array}{cc}
1 & 1 / 2 \\
1 / 2 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 / 3 & 1 / 6 \\
1 / 6 & 1 / 3
\end{array}\right] \\
& \Rightarrow \quad \hat{\Sigma}^{-1}=\left[\begin{array}{cc}
4 & -2 \\
-2 & 4
\end{array}\right] \\
& \widehat{\delta_{1}}(x)=x^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{1}}-\frac{1}{2}\left(\widehat{\mu_{1}}\right)^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{1}}+\log \widehat{\pi_{1}} . \\
& =x^{T}\left[\begin{array}{c}
-2 \\
7
\end{array}\right]-\left(\frac{13}{2}\right)+\log \frac{1}{3} \\
& =-2 X_{1}+7 X_{2}-\frac{13}{2}+\log \frac{1}{3} \\
& \widehat{\delta_{2}}(x)=x^{T} \hat{\Sigma}^{-1} \widehat{\mu_{2}}-\frac{1}{2}\left(\widehat{\mu_{2}}\right)^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{2}}+\log \widehat{\pi_{2}} . \\
& =x^{T}\left[\begin{array}{c}
7 \\
-2
\end{array}\right]-\left(\frac{13}{2}\right)+\log \frac{1}{3} \\
& =7 X_{1}-2 X_{2}-\frac{13}{2}+\log \frac{1}{3} \\
& \widehat{\delta_{3}}(x)=x^{T} \hat{\Sigma}^{-1} \widehat{\mu_{3}}-\frac{1}{2}\left(\widehat{\mu_{3}}\right)^{T} \hat{\Sigma}^{-1} \widehat{\mu_{3}}+\log \widehat{\pi_{3}} . \\
& =x^{T}\left[\begin{array}{l}
7 \\
7
\end{array}\right]-\left(\frac{49}{2}\right)+\log \frac{1}{3} \\
& =7 X_{1}+7 X_{2}-\frac{49}{2}+\log \frac{1}{3}
\end{aligned}
$$

Setting $\widehat{\delta_{1}}(x)=\widehat{\delta_{2}}(x)$

$$
\begin{array}{ll}
\Rightarrow & -2 X_{1}+7 X_{2}-\frac{13}{2}+\log \frac{1}{3}=7 X_{1}-2 X_{2}-\frac{13}{2}+\log \frac{1}{3} \\
\Rightarrow & -2 X_{1}+7 X_{2}=7 X_{1}-2 X_{2} \\
\Rightarrow & 9 X_{2}=9 X_{1}
\end{array}
$$

$$
\Rightarrow \quad X_{2}=X_{1} .
$$

So, the line that decides between classes k_{1} and k_{2} is given by $X_{2}=X_{1}$.

$$
\begin{array}{ll}
\text { Setting } \widehat{\delta_{1}}(x)=\widehat{\delta_{3}}(x) \\
\Rightarrow & -2 X_{1}+7 X_{2}-\frac{13}{2}+\log \frac{1}{3}=7 X_{1}+7 X_{2}-\frac{49}{2}+\log \frac{1}{3} \\
\Rightarrow & 18=9 X_{1} \\
\Rightarrow & X_{1}=2
\end{array}
$$

So, the line that decides between classes k_{1} and k_{3} is given by $X_{1}=2$.

$$
\begin{aligned}
& \text { Setting } \widehat{\delta_{2}}(x)=\widehat{\delta_{3}}(x) \\
& \Rightarrow \\
& \Rightarrow \quad 7 X_{1}-2 X_{2}-\frac{13}{2}+\log \frac{1}{3}=7 X_{1}+7 X_{2}-\frac{49}{2}+\log \frac{1}{3} \\
& \Rightarrow \quad 18=9 X_{2} \\
& \Rightarrow
\end{aligned} \quad X_{2}=2
$$

So, the line that decides between classes k_{2} and k_{3} is given by $X_{2}=2$.
Here is a graph of the deciding lines:

The lines divide the plane into 3 regions.
$\widehat{\delta_{1}}(x)>\widehat{\delta_{2}}(x)$ corresponds to the region above the line $X_{2}=X_{1}$. Conversely, $\widehat{\delta_{1}}(x)<\widehat{\delta_{2}}(x)$ corresponds to the region below the line $X_{2}=X_{1}$.
$\widehat{\delta_{1}}(x)>\widehat{\delta_{3}}(x)$ corresponds to the region to the left of the line $X_{1}=2$. Conversely, $\widehat{\delta_{1}}(x)<\widehat{\delta_{3}}(x)$
corresponds to the region to the right of $X_{1}=2$. $\widehat{\delta_{2}}(x)>\widehat{\delta_{3}}(x)$ corresponds to the region below the line $X_{2}=2$. Conversely, $\widehat{\delta_{2}}(x)<\widehat{\delta_{3}}(x)$ corresponds to the region above the line $X_{2}=2$.

If $\widehat{\delta_{1}}(x)>\widehat{\delta_{2}}(x)$ and $\widehat{\delta_{1}}(x)>\widehat{\delta_{3}}(x)$, then we classify x as of class k_{1}. So if x is in region I, then we classify x as of class k_{1}. Conversely, if x is in region II, then we classify x as of class k_{2}; and if x is in region III, we classify x as of class k_{3}.

The point $(1,3)$ is in region I; so we classify it as of class k_{1}.

SUMMARY: LINEAR DISCRIMINANT ANALYSIS

- In linear discriminant analysis, we find estimates $\widehat{p_{k}}(x)$ for the posterior probability $p_{k}(x)$ that $Y=k$ given that $X=x$. We classify x according to the class k that gives the highest estimated posterior probability $\widehat{p_{k}}(x)$.
- Maximizing the estimated posterior probability $\widehat{p_{k}}(x)$ is equivalent to maximizing the log of $\widehat{p_{k}}(x)$, which, in turn, is equivalent to maximizing the estimated linear discriminant function $\widehat{\delta_{k}}(x)$.
- We find estimates of the prior probability π_{k} that $Y=k$, of the class-specific mean vectors μ_{k}, and of the covariance matrix Σ in order to estimate the linear discriminant functions $\delta_{k}(x)$.
- By setting $\widehat{\delta_{k}}(x)=\widehat{\delta_{k^{\prime}}}(x)$ for each pair $\left(k, k^{\prime}\right)$ of classes, we get hyperplanes in \mathbb{R}^{p} that, together, divide \mathbb{R}^{p} into regions corresponding to the distinct classes.
- We classify x according to the class k for which $\widehat{\delta_{k}}(x)$ is largest.

PROBLEM SET: LINEAR DISCRIMINANT ANALYSIS

1. Suppose we have a set of data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{6}, y_{6}\right)$ as follows:
$x_{1}=(1,2), x_{2}=(2,1), x_{3}=(2,2), x_{4}=(3,3), x_{5}=(3,4), x_{6}=(4,3)$ with $y_{1}=y_{2}=y_{3}=k_{1}=1$ and $y_{4}=y_{5}=y_{6}=k_{2}=2$.

Apply linear discriminant analysis by doing the following:
a) Find estimates for the linear discriminant functions $\delta_{1}(x)$ and $\delta_{2}(x)$.
b) Find the line that decides between the two classes.
c) Classify the new point $x=(4,5)$.
2. Suppose we have a set of data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{6}, y_{6}\right)$ as follows:
$x_{1}=(0,0), x_{2}=(1,1), x_{3}=(2,3), x_{4}=(2,4), x_{5}=(3,2), x_{6}=(4,2)$ with $y_{1}=y_{2}=k_{1}=1, y_{3}=y_{4}=k_{2}=2$ and $y_{5}=y_{6}=k_{3}=3$.

Apply linear discriminant analysis by doing the following:
a) Find estimates for the linear discriminant functions $\delta_{1}(x), \delta_{2}(x)$ and $\delta_{3}(x)$.
b) Find the lines that decide between each pair of classes.
c) Classify the new point $x=(3,0)$.

SOLUTION SET: LINEAR DISCRIMINANT ANALYSIS

1. Here is a graph of the data points:

The number of features p is 2 , the number of classes K is 2 , the total number of data points N is 6 , the number N_{1} of data points in class k_{1} is 3 , and the number N_{2} of data points in class k_{2} is 3 . First, we will find estimates for π_{1} and π_{2}, the prior probabilities that $Y=k_{1}$ and $Y=k_{2}$, respectively.

Then, we will find estimates for μ_{1} and μ_{2}, the class-specific mean vectors.
We can then calculate the estimate for the covariance matrix Σ.
Finally, using the estimates $\widehat{\pi_{1}}, \widehat{\pi_{2}}, \widehat{\mu_{1}}, \widehat{\mu_{2}}, \widehat{\Sigma}$, we can find the estimates for the linear discriminant functions $\delta_{1}(x)$ and $\delta_{2}(x)$.
$\widehat{\pi_{1}}=\frac{N_{1}}{N}=\frac{3}{6}=\frac{1}{2}$
$\widehat{\pi_{2}}=\frac{N_{2}}{N}=\frac{3}{6}=\frac{1}{2}$
$\widehat{\mu_{1}}=\frac{1}{N_{1}} \sum_{i: y_{i}=1} x_{i}=\frac{1}{3}\left[x_{1}+x_{2}+x_{3}\right]=\left[\begin{array}{l}\frac{5}{3} \\ \frac{5}{3}\end{array}\right]$

$$
\begin{aligned}
& \widehat{\mu_{2}}=\frac{1}{N_{2}} \sum_{i: y_{i}=2} x_{i}=\frac{1}{3}\left[x_{4}+x_{5}+x_{6}\right]=\left[\begin{array}{c}
\frac{10}{3} \\
\frac{10}{3}
\end{array}\right] \\
& \widehat{\Sigma}=\frac{1}{N-K} \sum_{k=1}^{K} \sum_{i: y_{i}=k}\left(x_{i}-\widehat{\mu_{k}}\right)\left(x_{i}-\widehat{\mu_{k}}\right)^{T} \\
& =\frac{1}{6-2}\left[\begin{array}{ll}
12 / 9 & -6 / 9 \\
-6 / 9 & 12 / 9
\end{array}\right]=\left[\begin{array}{cc}
1 / 3 & -1 / 6 \\
-1 / 6 & 1 / 3
\end{array}\right] \\
& \Rightarrow \quad \hat{\Sigma}^{-1}=\left[\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right] \\
& \widehat{\delta_{1}}(x)=x^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{1}}-\frac{1}{2}{\widehat{\mu_{1}}}^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{1}}+\log \widehat{\pi_{1}} \\
& =x^{T}\left[\begin{array}{l}
10 \\
10
\end{array}\right]-\frac{1}{2}\left(\frac{100}{3}\right)+\log \frac{1}{2} \\
& =10 X_{1}+10 X_{2}-\frac{50}{3}+\log \frac{1}{2} \\
& \widehat{\delta_{2}}(x)=x^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{2}}-\frac{1}{2}{\widehat{\mu_{2}}}^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{2}}+\log \widehat{\pi_{2}} \\
& =x^{T}\left[\begin{array}{l}
20 \\
20
\end{array}\right]-\frac{1}{2}\left(\frac{400}{3}\right)+\log \frac{1}{2} \\
& =20 X_{1}+20 X_{2}-\frac{200}{3}+\log \frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Setting } \widehat{\delta_{1}}(x)=\widehat{\delta_{2}}(x) \\
& \quad \Rightarrow 10 X_{1}+10 X_{2}-\frac{50}{3}+\log \frac{1}{2}=20 X_{1}+20 X_{2}-\frac{200}{3}+\log \frac{1}{2} \\
& \quad \Rightarrow \quad \frac{150}{3}=10 X_{1}+10 X_{2} \\
& \Rightarrow 50=10 X_{1}+10 X_{2} \\
& \Rightarrow 5=X_{1}+X_{2} \\
& \Rightarrow-X_{1}+5=X_{2}
\end{aligned}
$$

So, the line that decides between the two classes is given by $X_{2}=-X_{1}+5$. Here is a graph of the decision line:

If $\widehat{\delta_{1}}(x)>\widehat{\delta_{2}}(x)$, then we classify x as of class k_{1}.
So if x is below the line $X_{2}=-X_{1}+5$, then we classify x as of class k_{1}.
Conversely, if $\widehat{\delta_{1}}(x)<\widehat{\delta_{2}}(x)$, then we classify x as of class k_{2}. This corresponds to x being above the line $X_{2}=-X_{1}+5$.
The point $(4,5)$ is above the line; so we classify it as of class k_{2}.
2. Here is a graph of the data points:

The number of features p is 2 , the number of classes K is 3 , the total number of data points N is 6 , the number N_{1} of data points in class k_{1} is 2 , the number N_{2} of data points in class k_{2} is 2 , and the number N_{3} of data points in class k_{3} is 2 .
First, we will find estimates for $\pi_{1}, \pi_{2}, \pi_{3}$, the prior probabilities that $Y=k_{1}, Y=k_{2}, Y=k_{3}$, respectively.

Then, we will find estimates for $\mu_{1}, \mu_{2}, \mu_{3}$, the class-specific mean vectors.
We can then calculate the estimate for the covariance matrix Σ.
Finally, using the estimates $\widehat{\pi_{1}}, \widehat{\pi_{2}}, \widehat{\pi_{3}}, \widehat{\mu_{1}}, \widehat{\mu_{2}}, \widehat{\mu_{3}}, \widehat{\Sigma}$, we can find the estimates for the linear discriminant functions $\delta_{1}(x), \delta_{2}(x)$, and $\delta_{3}(x)$.
$\widehat{\pi_{1}}=\frac{N_{1}}{N}=\frac{2}{6}=\frac{1}{3}$
$\widehat{\pi_{2}}=\frac{N_{2}}{N}=\frac{2}{6}=\frac{1}{3}$
$\widehat{\pi_{3}}=\frac{N_{3}}{N}=\frac{2}{6}=\frac{1}{3}$

$$
\text { Setting } \widehat{\delta_{1}}(x)=\widehat{\delta_{2}}(x)
$$

$$
\Rightarrow \quad X_{1}+X_{2}-\frac{1}{2}+\log \frac{1}{3}=X_{1}+10 X_{2}-\frac{37}{2}+\log \frac{1}{3}
$$

$$
\Rightarrow \quad 18=9 X_{2}
$$

$$
\Rightarrow \quad 2=X_{2}
$$

So, the line that decides between classes k_{1} and k_{2} is given by $X_{2}=2$.

$$
\begin{aligned}
& \widehat{\mu_{1}}=\frac{1}{N_{1}} \sum_{i: y_{i}=1} x_{i}=\frac{1}{2}\left[x_{1}+x_{2}\right]=\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right] \\
& \widehat{\mu_{2}}=\frac{1}{N_{2}} \sum_{i: y_{i}=2} x_{i}=\frac{1}{2}\left[x_{3}+x_{4}\right]=\left[\begin{array}{c}
2 \\
7 / 2
\end{array}\right] \\
& \widehat{\mu_{3}}=\frac{1}{N_{3}} \sum_{i: y_{i}=3} x_{i}=\frac{1}{2}\left[x_{5}+x_{6}\right]=\left[\begin{array}{c}
7 / 2 \\
2
\end{array}\right] \\
& \widehat{\Sigma}=\frac{1}{N-K} \sum_{k=1}^{K} \sum_{i: y_{i}=k}\left(x_{i}-\widehat{\mu_{k}}\right)\left(x_{i}-\widehat{\mu_{k}}\right)^{T} \\
& =\frac{1}{6-3}\left[\begin{array}{cc}
1 & 1 / 2 \\
1 / 2 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 / 3 & 1 / 6 \\
1 / 6 & 1 / 3
\end{array}\right] \\
& \Rightarrow \quad \hat{\Sigma}^{-1}=\left[\begin{array}{cc}
4 & -2 \\
-2 & 4
\end{array}\right] \\
& \widehat{\delta_{1}}(x)=x^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{1}}-\frac{1}{2}{\widehat{\mu_{1}}}^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{1}}+\log \widehat{\pi_{1}} \\
& =x^{T}\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\frac{1}{2}(1)+\log \frac{1}{3} \\
& =X_{1}+X_{2}-\frac{1}{2}+\log \frac{1}{3} \\
& \widehat{\delta_{2}}(x)=x^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{2}}-\frac{1}{2}{\widehat{\mu_{2}}}^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{2}}+\log \widehat{\pi_{2}} \\
& =x^{T}\left[\begin{array}{c}
1 \\
10
\end{array}\right]-\frac{1}{2}(37)+\log \frac{1}{3} \\
& =X_{1}+10 X_{2}-\frac{37}{2}+\log \frac{1}{3} \\
& \widehat{\delta_{3}}(x)=x^{T} \hat{\Sigma}^{-1} \widehat{\mu_{3}}-\frac{1}{2}{\widehat{\mu_{3}}}^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{3}}+\log \widehat{\pi_{3}} \\
& =x^{T}\left[\begin{array}{c}
10 \\
1
\end{array}\right]-\frac{1}{2}(37)+\log \frac{1}{3} \\
& =10 X_{1}+X_{2}-\frac{37}{2}+\log \frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Setting } \widehat{\delta_{1}}(x)=\widehat{\delta_{3}}(x) \\
& \Rightarrow \quad X_{1}+X_{2}-\frac{1}{2}+\log \frac{1}{3}=10 X_{1}+X_{2}-\frac{37}{2}+\log \frac{1}{3} \\
& \Rightarrow \quad 18=9 X_{1} \\
& \Rightarrow \quad 2=X_{1}
\end{aligned}
$$

So, the line that decides between classes k_{1} and k_{3} is given by $X_{1}=2$.

Setting $\widehat{\delta_{2}}(x)=\widehat{\delta_{3}}(x)$
$\Rightarrow X_{1}+10 X_{2}-\frac{37}{2}+\log \frac{1}{3}=10 X_{1}+X_{2}-\frac{37}{2}+\log \frac{1}{3}$
$\Rightarrow 9 X_{2}=9 X_{1}$
$\Rightarrow X_{2}=X_{1}$

So, the line that decides between classes k_{2} and k_{3} is given by $X_{2}=X_{1}$.

Here is a graph of the decision lines:

The lines divide the plane into 3 regions.
If x is in region I, then we classify x as of class k_{1}. Similarly, points in region II get classified as of k_{2}, and points in region III get classified as of k_{3}.
The point $(3,0)$ is in region III; so we classify it as of class k_{3}.

MATH FOR MACHINE LEARNING

