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Abstract

Adversarial multiarmed bandits with expert advice is one of the fundamental problems in
studying the exploration-exploitation trade-off. It is known that if we observe the advice of

all experts on every round we can achieve O
(√

KT lnN
)

regret, where K is the number

of arms, T is the number of game rounds, and N is the number of experts. It is also known
that if we observe the advice of just one expert on every round, we can achieve regret of

order O
(√

NT
)

. Our open problem is what can be achieved by asking M experts on every

round, where 1 < M < N .
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1. Introduction

Adversarial multiarmed bandits with expert advice is one of the fundamental problems in
studying the exploration-exploitation trade-off (Auer et al., 2002; Cesa-Bianchi and Lugosi,
2006; Bubeck and Cesa-Bianchi, 2012). The main use of this model is in problems, where
we do not make statistic assumptions on the data generating process. The model was
applied to real-world problems, such as online advertizing and news article recommendation
(Beygelzimer et al., 2011; Li et al., 2010).

The adversarial multiarmed bandits with expert advice problem can be described as a
game with T rounds. On each round t of the game there are K options (arms) indexed by
a ∈ {1, . . . ,K}. Arm a on round t yields reward rt(a). It is assumed that the sequences of
rewards are written down before the game starts, but not revealed to the player. On each
round of the game the player observes advices of N experts in a form of a distribution ξht
on {1, . . . ,K}, where h ∈ {1, . . . , N} indexes the experts. The player makes a choice of an
arm At and observes and accumulates reward rt(At). The rewards of other arms are not
observed. The reward of expert h on round t is defined as rt(h) ≡

∑
a ξ

h
t (a)rt(a). The goal

of the player is to minimize the regret defined as maxh

(∑T
t=1 rt(h)

)
−
∑T

t=1 rt(At).
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2. Open Problem Formulation and Motivation

In certain situations it may be overly expensive to query advice of all experts on all rounds of
the game. For example, if experts are doctors giving advice on patient treatment options,
it may be too expensive to ask for advice of all available doctors for each patient. The
restriction does not have to be monetary, in some situations it may be computational or
other constraints.

If we observe advices of all experts we can run the EXP4 algorithm of Auer et al. (2002)

and achieve O
(√

KT lnN
)

regret. (See also Beygelzimer et al. (2011) for a high-probability

version and Bubeck and Cesa-Bianchi (2012) for a simplified derivation.) If we observe the

advice of just one expert of our choice, we can achieve O
(√

NT lnN
)

regret by running the

EXP3 algorithm of Auer et al. (2002) for adversarial multiarmed bandits, where we consider
each expert as an arm. (Audibert and Bubeck (2010) improve the result by

√
lnN factor.)

Our question is what happens in between. Specifically, if we ask for advice of 1 < M < N
experts on every round, what order of regret can be achieved? By analogy to label-efficient
prediction we call this setting advice-efficient multiarmed bandits with expert advice. Based
on the result for the full information setting described below we conjecture that it should

be possible to achieve O

(√
N
MKT lnN

)
regret. Both upper and lower bounds would be

of interest.

3. Known Related Results

Seldin et al. (2013) derived an algorithm for advice-efficient prediction with expert advice

(the full information counterpart of the open problem) with regret guarantee ofO

(√
N
M T lnN

)
.

This result nicely interpolates between O
(√

T lnN
)

regret bound when observing advices

of all experts and O
(√

NT
)

regret bound when observing advice of just one expert (in the

full information setting). On each round of the game the algorithm of Seldin et al. queries
the advice of one expert according the distribution corresponding to the weights of exponen-
tially weighted forecaster. The algorithm follows the advice of the sampled expert and then
queries the advices of M − 1 additional experts sampled uniformly at random. At the end
of the round the algorithm updates the rewards of all experts using importance-weighting.

Seldin et al. also derived a matching (up to logarithmic factors) lower bound Ω

(√
N
M T

)
for advice-efficient prediction with expert advice. Obviously, the lower bound also holds
for the harder advice-efficient multiarmed bandit setting. (The interesting question in the
bandit case is to introduce

√
K into the lower bound.)

We note that the algorithm of Seldin et al. cannot be extended to the bandit case, since
when we follow the advice of one expert the importance-weighted estimates of rewards
of other experts have very large variance, even if we slightly smooth the advice of the
sampled expert. (This is because ξht may be very different from ξh

′
t for h 6= h′.) In the

appendix we describe another attempt to derive an algorithm for the open problem, where
the playing strategy (distribution over arms played) in each round is based on the advices
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of all experts sampled on that round. However, this approach can give, in the best case,

O
(√

(N −M + 1)KT lnN
)

regret bound, which has a bit disappointing dependence on

M (even though it would provide a continuous interpolation between asking one expert and
asking all experts).

The problem of advice-efficient prediction is, in a sense, orthogonal to label-efficient
prediction (Cesa-Bianchi and Lugosi, 2006; Audibert and Bubeck, 2010). In label-efficient
prediction all experts are queried on a subset of game rounds and in advice-efficient pre-
diction a subset of experts is queried on all game rounds. We note that the formulation
of advice-efficient prediction is substantially different from learning with partially observed
attributes (Cesa-Bianchi et al., 2011), but possibly some tools could be transferred between
the settings.
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∀h: L̂0(h) = 0.
for i = 1, 2, ... do

Let

qt(h) =
e−ηtL̂t−1(h)∑
h e
−ηtL̂t−1(h)

.

Sample M experts without replacement, such that the probability of sampling expert
h is q̃t(h). (q̃i(h) is specified in the analysis of the algorithm.) Let 1ht = 1 if expert h
was sampled and 1ht = 0 otherwise.

Get advice vectors ξht for the experts sampled.

Let

pt(a) =

∑
h
qt(h)
q̃t(h)

ξht (a)1ht∑
h
qt(h)
q̃t(h)

1ht

.

Draw action At according to pt and receive reward Rt ∈ [0, 1].

∀a : Lat =
1−Rt
pt(a)

1{At=a}.

∀h : Y h
t = ξht (At)L

At
t

1

q̃t(h)
1ht .

∀h : L̂t(h) =
t∑
i=1

Y h
i .

end

Algorithm 1: A general algorithm for advice-efficient multiarmed bandits with expert
advice.

Appendix A. An Attempt to Solve the Problem

In this appendix we analyze a general algorithm that uses the advice of all M experts
sampled to generate a prediction strategy for round t. We show that it is not trivial to
control bias and variance simultaneously. See Algorithm 1 box for the description of the
algorithm.

Analysis

The analysis is based on the following lemma, which follows from the analysis of EXP3 by
Bubeck and Cesa-Bianchi (2012).

Lemma 1 For any N sequences of random variables Y h
1 , Y

h
2 , . . . indexed by h ∈ {1, . . . , N},

such that Y h
t ≥ 0, and any non-increasing sequence η1, η2, . . . , such that ηt ≥ 0, for qt(h) =

exp(−ηt
∑t−1

s=1 Y
h
s )∑

h′ exp(−ηt
∑t−1

s=1 Y
h′
s )

(assuming for t = 1 the sum in the exponent is zero), for any h? we
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have:
T∑
t=1

∑
h

qt(h)Y h
t ≤

T∑
t=1

ηt
2

∑
h

qt(h)
(
Y h
t

)2
+

lnN

ηT
+

T∑
t=1

Y h?

t .

We study
∑

h qt(h)Y h
t and

∑
h qt(h)

(
Y h
t

)2
in the case of of Algorithm 1.

Study of
∑

h qt(h)Y h
t :∑

h

qt(h)Y h
t =

∑
h

qt(h)ξht (At)L
At
t

1ht
q̃t(h)

= LAt
t

∑
h

qt(h)ξht (At)
1ht
q̃t(h)

= (1−Rt)
∑
h

qt(h)

q̃t(h)
1ht .

(1)

Avoiding the Bias:

We remind that in the analysis of EXP4
∑

h qt(h)Y h
t = 1 − Rt. One way to ensure that

there is no bias in the estimation in (1) is to make sure that
∑

h
qt(h)
q̃t(h)

1ht = 1 for any random

draw of the hypotheses subset. This is achieved, for example, if q̃t(h) = 1 for all h. Or, if
q̃t(h) = qt(h) for all h and we draw exactly one hypothesis. (The first choice corresponds to
the EXP4 algorithm and the second choice corresponds to the case, where we sample just
one expert on each round and play the EXP3 algorithm on the experts.) A more general
way to eliminate the bias that combines the two approaches for a general M is described in
Algorithm 2 box.

Bounding
∑

h qt(h)
(
Y h
t

)2
for sampling from q̃t(h):

∑
h

qt(h)
(
Y h
t

)2
=
∑
h

qt(h)

(
ξht (At)L

At
t

1ht
q̃t(h)

)2

=
(
LAt
t

)2∑
h

qt(h)

(
ξht (At)

1ht
q̃t(h)

)2

≤ 1

(pt(At))
2

∑
h

qt(h)

q̃t(h)2
ξht (At)1

h
t =

1

pt(At)

∑
h
qt(h)
q̃t(h)2

ξht (At)1
h
t∑

h
qt(h)
q̃t(h)

ξht (At)1ht

∑
h

qt(h)

q̃t(h)
1ht

=
1

pt(At)

∑
h
qt(h)
q̃t(h)2

ξht (At)1
h
t∑

h
qt(h)
q̃t(h)

ξht (At)1ht
≤ 1

pt(At)

∑
h

1

q̃t(h)
1ht ,

where in the last line we used the fact that
∑

h
qt(h)
q̃t(h)

1ht = 1 and then lower bounded the
sum in the denominator by its individual element.

We remind that the quantity of interest in the analysis of EXP4 was Et
[∑

h qt(h)
(
Y h
t

)2]
,

where Et [·] denotes expectation conditioned on realizations of random variables up to round
t. Taking this expectation in our case yields

Et

[
1

pt(At)

∑
h

1

q̃t(h)
1ht

]
= Et

[∑
h

1

q̃t(h)
1ht E

[
1

pt(At)

∣∣∣∣{1ht }h]
]

= KN.
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Without loss of generality, assume that qt(h) are ordered in decreasing order

qt(1) ≥ qt(2) ≥ · · · ≥ qt(N). Let h†t = max{h : Mqt(h) ≥ 1}.

For h ≤ h†t define q̃t(h) = 1. % For h ≤ h†t experts h are sampled w.p. 1

Let w+
t =

∑h†t
h=1 qt(h). % w+

t is the total qt-mass of the experts that are sampled w.p. 1

h = h†t + 1. %The loop below adds more experts that after scaling qt are sampled w.p. 1

while h ≤ N AND

(
M−h†t

)
qt(h)

1−w+
t

≥ 1 do

q̃t(h) = 1.

h†t = h†t + 1.

w+
t = w+

t + qt(h).

h = h+ 1.
end

For h > h†t define q̃t(h) =

(
M−h†t

)
qt(h)

1−w+
t

.

Algorithm 2: Algorithm for defining q̃t(h).

There is a bit tighter way to bound

∑
h

qt(h)

q̃t(h)
2 ξ

h
t (At)1h

t∑
h

qt(h)
q̃t(h)

ξht (At)1h
t

. Assume without loss of generality

that qt(1) ≥ · · · ≥ qt(N). Then for any h‡t ∈ {1, . . . , N}:

∑
h

qt(h)
(
Y h
t

)2
≤ 1

pt(At)

∑
h
qt(h)
q̃t(h)2

ξht (At)1
h
t∑

h
qt(h)
q̃t(h)

ξht (At)1ht
≤ 1

pt(At)

 1

qt(h
‡
t)

+

N∑
h=h‡t+1

1

q̃t(h)
1ht

 .

With the above bound we obtain Et
[∑

h qt(h)
(
Y h
t

)2] ≤ K

(
1

q̃t(h
‡
t )

+N − h‡t
)

. Using this

approach it seems possible to get a bound on Et
[∑

h qt(h)
(
Y h
t

)2]
of order K(N −M + 1)

(we did not prove such bound, but we also could not find a counter example). This shows at
least some minimal advantage of sampling more than one expert. Unfortunately, it does not
seem possible to achieve higher benefit from M experts using this approach. Examples of
“hard” distributions include qt(h) = 2−h (where h ∈ {1, . . . , N}) and qt(h) = (1−ε)/(M−1)
for h ∈ {1, . . . ,M − 1} and qt(h) = ε/(N −M + 1) for h ∈ {M, . . . , N} and a small ε.

We note that it does not seem possible to apply smoothing to achieve sufficient reduction
in the variance while keeping the bias under control.
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