

KHR GROUP

OpenCL @ Adobe

Eric Berdahl Adobe Imaging Foundation Engineering Manager Adobe Systems Inc.

2

Т

 \mathbf{X}

S O N N O S

2

Т

×

Adobe Imaging Foundation

Image processing system

- Apply filters to images
- Do for pixels what OpenGL does for triangles
- Support for heterogeneous hardware
 - GPU, (multi-core) CPU
- Framework
- Programmable language (Pixel Bender) for kernels

K H R O N O S

History	of Hete	erogeneou	is Coi	mputing	at Adobe
-		CS4 ships with			CS6 ships with
	AIF Project	GPU-accelerated			GPU-accelerated
	Formed	features			features
	•	•		•	
			AE Ps FL Pr		Ae Ps Pr
Point product		CS3 ships with		CS5 ships with	
support for		GPU-accelerated		GPU-accelerated	b
OpenGL		features		features	
•				•	
		AE		AE PS FL Pr	
Pre-2005	2005	2007	2008	2010	2012

PH 2012	History of Heterogeneous Computing at Adobe						
SIGGRA	AIF Project Formed		CS4 ships with GPU-accelerated features			CS6 ships with OpenCL-accelerated features	
0		•		AE Ps Fl Pr		Ae Ps F	
	Point product support for OpenGL		CS3 ships with GPU-accelerated features		CS5 ships with GPU-accelerate features	ed	
N O S	•		AE		AE Ps FI Pr		~
H RO	Pre-2005	2005	2007	2008	2010	2012	2
ΚF	SIGGRAPH - Khronos OpenCL ROF	- Διιαμεί 8, 2012					Dog

Adobe V OpenCL

- Compute API supported across vendors
- Programming model familiar to C programmers
- Demonstrated performance
- Same compute kernels on CPU and GPU!

- Adobe is now active member of OpenCL working group
 - Contributing Adobe's experience and minds to continue OpenCL evolution

KHR GROUP

OpenCL in Photoshop CS6

Sarah Kong Photoshop Engineering Manager Adobe Systems Inc.

N O S

Blur Gallery Demo

Why OpenCL

- Only cross-platform GPGPU solution
- Advantages over OpenGL
 - Learning curves; data formats; debugging
- Increasing maturity and ubiquity

How did we do it?

- OpenCL kernel was naïve port of SSE2 function (scheduled with TBB on CPU)
- Broken into 2K x 2K blocks for GPU

N O S HR ×

Adobe

Need good candidate algorithms

- Bandwidth, compute, parallel

Need good candidate algorithms

- Bandwidth, compute, parallel

Need debugged C algorithm first

- Bandwidth, compute, parallel
- Need debugged C algorithm first
- GPU win over CPU variable and unpredictable

N O S HR \mathbf{X}

- Bandwidth, compute, parallel
- Need debugged C algorithm first
- GPU win over CPU variable and unpredictable
- Resource limits
 - Win/Mac Timeout issues on low end cards.

S O N N O S

2

Т

Challenges

Need good candidate algorithms

- Bandwidth, compute, parallel

Need debugged C algorithm first

• GPU win over CPU variable and unpredictable

Resource limits

- Win/Mac Timeout issues on low end cards.
- Out of memory issues on low end cards.

S

0° Z°

2

I

Challenges

Need good candidate algorithms

- Bandwidth, compute, parallel

Need debugged C algorithm first

• GPU win over CPU variable and unpredictable

Resource limits

- Win/Mac Timeout issues on low end cards.
- Out of memory issues on low end cards.
- Used bandwidth test to enable OpenCL acceleration
 - Affected by power-gating on mobile GPU

S

0° 2°

2

I.

 $\mathbf{\Sigma}$

Challenges

Need good candidate algorithms

- Bandwidth, compute, parallel

Need debugged C algorithm first

GPU win over CPU variable and unpredictable

Resource limits

- Win/Mac Timeout issues on low end cards.
- Out of memory issues on low end cards.
- Used bandwidth test to enable OpenCL acceleration
 - Affected by power-gating on mobile GPU

Platform variation

- Driver Issues
- Various compiler issues

N O S

HR

Performance Comparison

- Systems of standard configuration show 4-8x gain for typical use-cases
- Gains improve with Blur radii (results from MacBookPro running 10.7.4 listed below)
 - General application processing accounts for majority of time in smaller workloads

Radius in Pixels (13 Megapixel image)	Radeon 6750m	Core i7 (2.3 GHz)
50	4.7s	16.2s
100	7.0s	31.9s
150	9.4s	47.9s

Future Plans

- More OpenCL in future versions
- Investigate OpenCL for CPU

KHR GROUP

OpenCL in Premiere Pro CS

David McGavran Premiere Pro Engineering Manager Adobe Systems Inc.

Demo

SIGGRAPH – Khronos OpenCL BOF - August 8, 2012

Pipeline

0° Z°

2

I

 \mathbf{X}

Accelerated Effects

Intrinsics

- Adjustment layers
- Color space conversion
- Deinterlacing
- Compositing
- Blending modes
- Nested Sequences
- Multicam
- Time remapping

Transitions

- Additive dissolve
- Cross dissolve
- Dip to black
- Dip to white
- Film Dissolve
- Push

Effects

- Alpha adjust
- Basic 3D
- Black & white
- Brightness & contrast
- Color balance
- Color pass
- Color replace
- Crop
- Directional blur
- Drop Shadow
- Extract
- Fast blur
- Fast color corrector
- Feather edges
- Gamma correction
- Garbage matte
- Gaussian blur
- Horizontal flip

- Invert
- Luma corrector
- Luma curve
- Noise
- Proc amp
- RGB color corrector
- RGB curves
- Sharpen
- Three-way color corrector
- Timecode
- Tint
- Track matte
- Ultra keyer
- Vertical flip
- Video limiter
- Warp Stabilizer

Implementation

- Pipeline entirely floating point
- 10-bit display supported
- Subtree rendering for non-accelerated effects
- Draw with OpenGL interop

Λ

Filter Concatenation

- Entirely manual
- Host kernel for successive pointwise effects
- Read once, apply multiple filters, write once
- Major bandwidth savings

Future

- Increase set of supported effects
- Supporting third party effects & codecs
- GPU encoding & decoding
- Multiple GPU support
- GPU Scopes

Λ

K H R N O S