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1. Introduction

1.0.1 About OpenFOAM®

OpenFOAM is first and foremost a C++ library, used primarily to create executa-
bles, known as applications. The applications fall into two categories: solvers, that
are each designed to solve a specific problem in continuum mechanics; and utilities,
that are designed to perform tasks that involve data manipulation. The Open-
FOAM distribution contains numerous solvers and utilities covering a wide range of

problems.

One of the strengths of OpenFOAM is that new solvers and utilities can be created
by its users with some pre-requisite knowledge of the underlying method, physics

and programming techniques involved.

OpenFOAM is supplied with pre- and post-processing environments. The interface
to the pre- and post- processing are themselves OpenFOAM utilities, thereby en-
suring consistent data handling across all environments. The overall structure of
OpenFOAM is shown in Figure 1.1 [1]:

Open Source Field Operation and Manipulation (OpenFOAM) C++ Library

N ' 1
Preprocess? § Solving P %ost processing
o Meshing User Standard . Others
Utilities Tools Applications|Applications ParaView e.g.EnSight

Figure 1.1: Overview of OpenFOAM structure, extracted from [1]

1.0.2 About this guide

The OpenFOAM guide developed in this project allows new users to establish and
extend their OpenFOAM background once the main tutorial of the official guide is
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done. Then with the present guide it will be possible to improve comprehension of
the OpenFOAM structure, learn programming techniques, understand how to mesh
different kinds of geometries (2D and 3D), acquire familiarity with the main pre-
and post-processing OpenFOAM and ParaView capabilities, figure out which solvers
and physical models are more adequate for each kind of fluid mechanics problem,
and much more. It should then be much easier to use complex utilities found in

Internet and follow specific tutorials focused on advanced tools.

The current guide studies and exposes five different types of solved fluid mechanics
problems with high applicability potential and all of them included in the same
document. It has been designed to guide the user throughout the cases, starting by
simple ones and following an increasing degree of difficulty. The guide offers theoret-
ical background before developing each case, includes OpenFOAM codes needed for
the simulations, gives explanations of the main physical models required for the res-
olution of each case, incorporates advice against typical pitfalls, and shows different

and relevant OpenFOAM utilities in each chapter.
This product is not approved or endorsed by ESI Group. There is no

attempt to profit from this guide; it only aims to assist new users and

facilitate learning of the main OpenFOAM characteristics.

This guide is given fully for free. The author will not be responsible for any harm
of any kind that these codes and their uses may cause. Readers may use the codes

under their own responsibility and risk.

Send feedback to casacuberta.puig@gmail.com if you wish. I hope you find it useful.

1.0.3 Notes

In this project, Version 2.2.1 of OpenFOAM has been used.

All the plots are in SI units, except for the airfoil and the aircraft cases, where the

angle a of attack is expressed in degrees.
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