OpenGL ES in the Mobile Graphics Ecosystem

Tom Olson OpenGL ES working group chair Director, Graphics Research, ARM Ltd

THE ARCHITECTURE FOR THE DIGITAL WORLD®

Outline

Why Mobile Graphics?

OpenGL ES Overview

Getting Started with OpenGL ES

Conclusion

THE ARCHITECTURE FOR THE DIGITAL WORLD®

Why Mobile Graphics?

- Mobile graphics is growing quickly
 - Embedded platforms will eventually outnumber desktops

Factors driving the trend

- Demand: Consumers want it
- Technology: Displays, GPUs, CPUs, batteries, memory
- Standards: Operating systems, APIs
- ... and the commercial infrastructure is emerging the rise of open distribution channels is creating a market for applications

What is OpenGL ES?

- OpenGL ES is the dominant C/C++ API for Mobile 3D
 - Products from every major mobile phone manufacturer
 - Moving rapidly into other mobile and embedded devices
- Available for (or a standard part of) most mobile OSes
 - Symbian
 - Mac OS X on iPhone
 - Linux: Maemo, Android, etc
 - BREW
 - Windows Mobile / WinCE
 - Palm OS

Over 54 million hardware-accelerated OpenGL ES platforms have shipped to date. Many more are coming.

OpenGL ES Features

- Based on desktop OpenGL
 - Leverages the OpenGL ecosystem
 - Extensible to allow innovation / evolution
- Optimized for mobile devices
 - Gets rid of redundancy & rarely-used features
 - Adds mobile-friendly data types
- Full-Featured
 - All the most used desktop features are available

OpenGL ES gives you the power of OpenGL in a much smaller package

OpenGL ES Versions

OpenGL ES Versioning Model

- OpenGL ES design philosophy is to minimize redundancy
- When new versions add better methods, old methods are dropped
- Note the difference from desktop GL!
- OpenGL ES Versions
 - OpenGL ES 1.x: fixed function graphics
 - OpenGL ES 2.0: shader based graphics

Full Transform & (almost) Lighting

- Multitexturing (min 2 units)
- DOT3 bump mapping

OpenGL ES 1.1

Key Features

Fixed Point & Float profiles

Features Removed Begin / End Color Index Mode **Imaging Subset** Quads/Polygons

THE ARCHITECTURE FOR THE DIGITAL WORLD®

ARM

FUTUREMARK

OpenGL ES 2.0

- Key Features
 - Vertex / fragment shaders
 - Removes fixed function pipeline
 - High level language (GLSL ES 1.0)
 - On-line or off-line compilation
 - Super-compact, efficient API

What comes next?

Working group is committed to supporting OpenGL ES 2.0

- Working actively on conformance testing program
- Ongoing projects to improve documentation, tools, ecosystem
- But, work has begun on OpenGL ES 'Halti'

Tentative Goals

- Maintain compatibility with OpenGL ES 2.0
- Minimize / reduce differences from desktop OpenGL
 - Working closely with OpenGL ARB
 - Note similarity of OpenGL ES 2.0 to non-deprecated subset of OpenGL 3.0
- Improve driver efficiency
- Adopt the most modern / advanced features from OpenGL

Getting Started: Information

Khronos.org

- News: http://www.khronos.org
- Khronos OpenGL ES API registry : ~/registry/gles
- OpenGL ES 2.0 man pages: ~/opengles/sdk/docs/man

- Developer Sites
 - ZeusCMD, etc (tutorials)
 - Beware of platform dependencies

Getting Started: Information

Books

- Most new OpenGL books have some ES material
- Some books focus exclusively on OpenGL ES
- Check dates and API versions covered

Getting Started: Development Tools

ES 1.x Desktop Implementations

- Vincent (open source)
- Imagination PowerVR Insider OpenGL ES 1.1 SDK
- Note: Gerbera is no longer available
- ES 1.x Desktop+embedded SDKs
 - Series 60 SDK from Nokia
 - Symbian SDK from Sony-Ericsson
 - iPhone SDK from Apple
- ES 2.0 Desktop Implementations / SDKs / Tools
 - AMD OpenGL ES 2.0 Emulator
 - PowerVR OpenGL ES 2.0 SDK (from Imagination)
 - AMD Rendermonkey 1.8 (or higher GLSL ES only)
 - ARM Desktop Emulators (available 2H 2009)

About Open GL ES 2.0 Emulators

- What they do
 - Emulate OpenGL ES 2.0 on desktop hardware
 - Map ES function calls to a desktop OpenGL 2+ implementation
- Desktop Emulators: Pro
 - Easy way to get started
 - Low cost if you have the right 3D card
 - Great C/C++ debug environment
- Desktop Emulators: Con
 - Only work with certain graphics cards
 - Emulation isn't perfect
 - Performance, precision, language differences not handled well
 - Demoing on desktop lacks 'cool factor'

Embedded ES 2.0 Development Tools

- Beagle Board
 - Open Source board + SW
 - Low cost (\$150 US)
 - TI OMAP: ARM Cortex A8 + SGX GPU
 - Linux (various)
 - Currently has a steep learning curve
- ARM mass-market development board
 - ARM CPU + Mali[™] GPU
 - Available 2H 2009

Practical Considerations

- What to expect from mobile platforms:
- CPU Speed
 - 300 to 600 MHz
 - High-end platforms will go multicore soon
- GPU Speed
 - Peak fill rates of 200-500MHz in next generation
- GPU Architecture
 - Most devices use deferred rasterization (tiling or chunking)
 - Few have DXT*; other texture compression (ETC1) is often available
- Other Considerations
 - No virtual memory
 - Limited file storage
 - Slow networks

ARI

Conclusion

- Mobile Graphics is here now!
 - The market is exploding
- The technical possibilities are exciting
 - The HW / SW platforms are increasingly sophisticated
 - Performance is good and getting better
- OpenGL ES is a great low-level graphics API
 - Mobile friendly
 - Powerful, modern feature set
 - Simpler and easier to learn than desktop APIs
- You can get started with it today!

