
OpenGL Insights

Edited by

Patrick Cozzi and Christophe Riccio

Asynchronous Buffer Transfers

Ladislav Hrabcak and Arnaud Masserann

28.1 Introduction

Most 3D applications send large quantities of data from the CPU to the GPU on a
regular basis. Possible reasons include

• streaming data from hard drive or network: geometry, clipmapping, level of
detail (LOD), etc.;

• updating skeletal and blend-shapes animations on the CPU;

• computing a physics simulation;

• generating procedural meshes;

• data for instancing;

• setting uniform parameters for shaders with uniform buffers.

Likewise, it is often useful to read generated data back from the GPU. Possible sce-
narios are

• video capture [Kemen 10];

• physics simulation;

• page resolver pass in virtual texturing;

• image histogram for computing HDR tonemapping parameters.

391

28

392 V Transfers

While copying data back and forth to the GPU is easy, the PC architecture,
without unified memory, makes it harder to do it fast. Furthermore, the OpenGL
API specification doesn’t tell how to do it efficiently, and a naive use of data-transfer
functions wastes processing power on both the CPU and the GPU by introducing
pauses in the execution of the program.

In this chapter, for readers familiar with buffer objects, we are going to explain
what happens in the drivers and then present various methods, including unconven-
tional ones, to transfer data between the CPU and the GPU with maximum speed.
If an application needs to transfer meshes or textures frequently and efficiently, these
methods can be used to improve its performance. In this chapter, we will be using
OpenGL 3.3, which is the Direct3D 10 equivalent.

28.1.1 Explanation of Terms

First, in order to match the OpenGL specification, we refer to the GPU as the device.
Second, when calling OpenGL functions, the drivers translate calls into com-

mands and add them into an internal queue on the CPU side. These commands are
then consumed by the device asynchronously. This queue has already been refered to
as the command queue, but in order to be clear, we refer to it as the device command
queue.

Data transfers from CPU memory to device memory will be consistently referred
to as uploading and transfers from the device memory to CPU memory as download-
ing. This matches the client/server paradigm of OpenGL.

Finally, pinned memory is a portion of the main RAM that can be directly used
by the device through the PCI express bus (PCI-e). This is also known as page-locked
memory.

28.2 Buffer Objects

There are many buffer-object targets. The most well-known are GL ARRAY BUFFER

for vertex attributes and GL ELEMENT ARRAY BUFFER for vertex indices, formerly
known as vertex buffer objects (VBOs). However, there are also GL PIXEL PACK

BUFFER and GL TRANSFORM FEEDBACK BUFFER and many other useful ones. As
all these targets relate to the same kind of objects, they are all equivalent from a
transfer point of view. Thus, everything we will describe in this chapter is valid for
any buffer object target.

Buffer objects are linear memory regions allocated in device memory or in CPU
memory. They can be used in many ways, such as

• the source of vertex data,

• texture buffer, which allows shaders to access large linear memory regions
(128–256 MTexels on GeForce 400 series and Radeon HD 5000 series)
[ARB 09a],

28. Asynchronous Buffer Transfers 393

• uniform buffers,

• pixel buffer objects for texture upload and download.

28.2.1 Memory Transfers

Memory transfers play a very important role in OpenGL, and their understanding
is a key to achieving high performance in 3D applications. There are two major
desktop GPU architectures: discrete GPUs and integrated GPUs. Integrated GPUs
share the same die and memory space with the CPU, which gives them an advantage
because they are not limited by the PCI-e bus in communication. Recent APUs from
AMD, which combine a CPU and GPU in a single die, are capable of achieving a
transfer rate of 17GB/s which is beyond the PCI-e ability [Boudier and Sellers 11].
However, integrated units usually have mediocre performance in comparison to their
discrete counterparts. Discrete GPUs have a much faster memory on board (30–192
GB/s), which is a few times faster than the conventional memory used by CPUs and
integrated GPUs (12–30 GB/s) [Intel 08].

The direct memory access (DMA) controller allows the OpenGL drivers to asyn-
chronously transfer memory blocks from user memory to device memory without
wasting CPU cycles. This asynchronous transfer is most notably known for its
widespread usage with pixel buffer objects [ARB 08], but can actually be used to
transfer any type of buffer. It is important to note that the transfer is asynchronous
from the CPU point of view only: Fermi (GeForce 400 Series) and Nothern Islands
(Radeon HD 6000 Series) GPUs can’t transfer buffers and render at the same time,
so all OpenGL commands in the command queue are processed sequentially by the
device. This limitation comes partially from the driver, so this behavior is susceptible
to change and can be different in other APIs like CUDA, which exposes these GPU-
asynchronous transfers. There are some exceptions like the NVIDIA Quadro, which
can render while uploading and downloading textures [Venkataraman 10].

There are two ways to upload and download data to the device. The first way is to
use the glBufferData and glBufferSubData functions. The basic use of these
functions is quite straightforward, but it is worth understanding what is happening
behind the scenes to get the best functionality.

As shown in Figure 28.1, these functions take user data and copy them to pinned
memory directly accessible by the device. This process is similar to a standard
memcpy. Once this is done, the drivers start the DMA transfer, which is asyn-
chronous, and return from glBufferData. Destination memory depends on usage
hints, which will be explained in the next section, and on driver implementation.
In some cases, the data stay in pinned CPU memory and is used by the GPU di-
rectly from this memory, so the result is one hidden memcpy operation in every
glBufferData function. Depending on how the data are generated, this memcpy
can be avoided [Williams and Hart 11].

394 V Transfers

vertex data
app

memory

glBufferData(...)

OpenGL driver

GPU memory
DMA transfer

memory
accessible

directly by GPU

FileRead(...)
or prepare

data manually

Figure 28.1. Buffer data upload with glBufferData / glBufferSubData.

A more efficient way to upload data to the device is to get a pointer to the inter-
nal drivers’ memory with the functions glMapBuffer and glUnmapBuffer. This
memory should, in most cases, be pinned, but this behavior can depend on the
drivers and available resources. We can use this pointer to fill the buffer directly, for
instance, using it for file read/write operations, so we will save one copy per mem-
ory transfer. It is also possible to use the ARB map buffer alignment extension,
which ensures that the returned pointer is aligned at least on a 64-byte boundary,
allowing SSE and AVX instructions to compute the buffer’s content. Mapping and
unmapping is shown in Figure 28.2.

The returned pointer remains valid until we call glUnmapBuffer. We can ex-
ploit this property and use this pointer in a worker thread, as we will see later in this
chapter.

Finally, there are also glMapBufferRange and glFlushMappedBuffer

Range, similar to glMapBuffer, but they have additional parameters which can
be used to improve the transfer performance and efficiency. These functions can be
used in many ways:

• glMapBufferRange can, as its name suggests, map only specific subsets of
the buffer. If only a portion of the buffer changes, there is no need to reupload
it completely.

vertex data

glMapBuffer or
glMapBufferRange/

glFlushMappedBufferRange
or glUnmapBuffer

FileRead(...) or
direct modify

OpenGL driver

DMA transfer
GPU memory

memory
accessible

directly by GPU

Figure 28.2. Buffer data upload with glMapBuffer / glUnmapBuffer or glMapBufferRange /
glFlushMappedBufferRange.

28. Asynchronous Buffer Transfers 395

• We can create a big buffer, use the first half for rendering, the second half
for updating, and switch the two when the upload is done (manual double
buffering).

• If the amount of data varies, we can allocate a big buffer, and map/unmap only
the smallest possible range of data.

28.2.2 Usage Hints

The two main possible locations where the OpenGL drivers can store our data are
CPU memory and device memory. CPU memory can be page-locked (pinned),
which means that it cannot be paged out to disk and is directly accessible by device,
or paged, i.e., accessible by the device too, but access to this memory is much less
efficient. We can use a hint to help the drivers make this decision, but the drivers can
override our hint, depending on the implementation.

Since Forceware 285, NVIDIA drivers are very helpful in this area because they
can show exactly where the data will be stored. All we need is to enable the GL ARB

debug output extension and use the WGL CONTEXT DEBUG BIT ARB flag in
wglCreateContextAttribs. In all our examples, this is enabled by default. See
Listing 28.1 for an example output and Chapter 33 for more details on this exten-
sion.

It seems that NVIDIA and AMD use our hint to decide in which memory to
place the buffer, but in both cases, the drivers uses statistics and heuristics in order
to fit the actual usage better. However, on NVIDIA with the Forceware 285 drivers,
there are differences in the behavior of glMapBuffer and glMapBufferRange:
glMapBuffer tries to guess the destination memory from the buffer-object us-
age, whereas glMapBufferRange always respects the hint and logs a debug mes-
sage (Chapter 33) if our usage of the buffer object doesn’t respect the hint. There
are also differences in transfer rates between these functions; it seems that using

Buffer detailed info: Buffer object 1 (bound to GL_TEXTURE_BUFFER, usage hint is ←֓
GL_ENUM_88e0) has been mapped WRITE_ONLY in SYSTEM HEAP memory (fast).

Buffer detailed info: Buffer object 1 (bound to GL_TEXTURE_BUFFER, usage hint is ←֓
GL_ENUM_88e0) will use SYSTEM HEAP memory as the source for buffer object ←֓
operations.

Buffer detailed info: Buffer object 2 (bound to GL_TEXTURE_BUFFER, usage hint is ←֓
GL_ENUM_88e4) will use VIDEO memory as the source for buffer object operations.

Buffer info:
Total VBO memory usage in the system:
memType : SYSHEAP , 22.50 Mb Allocated , numAllocations: 6.

memType : VID , 64.00 Kb Allocated , numAllocations: 1.
memType : DMA_CACHED , 0 bytes Allocated , numAllocations: 0.

memType : MALLOC , 0 bytes Allocated , numAllocations: 0.
memType : PAGED_AND_MAPPED , 40.14 Mb Allocated , numAllocations: 12.

memType : PAGED , 142.41 Mb Allocated , numAllocations: 32.

Listing 28.1. Example output of GL ARB debug output with Forceware 285.86 drivers.

396 V Transfers

Function Usage hint Destination Transfer

memory rate (GB/s)

glBufferData /

glBufferSubData

GL STATIC DRAW device 3.79

glMapBuffer /

glUnmapBuffer

GL STREAM DRAW pinned n/a (pinned in
CPU memory)

glMapBuffer /

glUnmapBuffer

GL STATIC DRAW device 5.73

Table 28.1. Buffer-transfer performance on an Intel Core i5 760 and an NVIDIA GeForce
GTX 470 with PCI-e 2.0.

glMapBufferRange for all transfers ensures the best performance. An example
application is available on the OpenGL Insights website, www.openglinsights.com,
to measure the transfer rates and other behaviors of buffers objects; a few results are
presented in Tables 28.1 and 28.2.

Pinned memory is standard CPU memory and there is no actual transfer to de-
vice memory: in this case, the device will use data directly from this memory location.
The PCI-e bus can access data faster than the device is able to render it, so there is no
performance penalty for doing this, but the driver can change that at any time and
transfer the data to device memory.

Transfer Source Destination Transfer

memory memory rate (GB/s)

buffer to buffer pinned device 5.73

buffer to texture pinned device 5.66

buffer to buffer device device 9.00

buffer to texture device device 52.79

Table 28.2. Buffer copy and texture transfer performance on an Intel Core i5 760
and an NVIDIA GeForce GTX 470 with PCI-e 2.0 using glCopyBufferSubData and

glTexImage2D with the GL RGBA8 format.

28.2.3 Implicit Synchronization

When an OpenGL call is done, it usually is not executed immediately. Instead,
most commands are placed in the device command queue. Actual rendering may
take place two frames later and sometimes more depending on the device’s perfor-
mance and on driver settings (triple buffering, max prerendered frames, multi-GPU
configurations, etc.). This lag between the application and the drivers can be mea-
sured by the timing functions glGetInteger64v(GL TIMESTAMP,&time) and
glQueryCounter(query,GL TIMESTAMP), as explained in Chapter 34. Most of

28. Asynchronous Buffer Transfers 397

application
thread

driver
thread

frame n

frame n + 1

glClear

glClear

glBufferSubData is
waiting until VBO

is free

glBufferSubData
can finish update

glDrawElements

glDrawElementsglBufferSubData

swap
buffers

Swap
Buffers

OpenGL driver has to wait because VBO is used
by glDrawElements from previous frame

Figure 28.3. Implicit synchronization with glSubBufferData.

the time, this is actually the desired behavior because this lag helps drivers hiding
latency in device communication and providing better overall performance.

However, when using glBufferSubData or glMapBuffer[Range], nothing
in the API itself prevents us from modifying data that are currently used by the device
for rendering the previous frame, as shown in Figure 28.3. Drivers have to avoid
this problem by blocking the function until the desired data are not used anymore:
this is called an implicit synchronization. This can seriously damage performance or
cause annoying jerks. A synchronization might block until all previous frames in
the device command queue are finished, which could add several milliseconds to the
performance time.

28.2.4 Synchronization Primitives

OpenGL offers its own synchronization primitives named sync objects, which work
like fences inside the device command queue and are set to signaled when the device
reaches their position. This is useful in a multithreaded environment, when other
threads have to be informed about the completeness of computations or rendering
and start downloading or uploading data.

The glClientWaitSync and glWaitSync functions will block until the spec-
ified fence is signaled, but these functions provide a timeout parameter which can
be set to 0 if we only want to know whether an object has been signaled or not,
instead of blocking it. More precisely, glClientWaitSync blocks the CPU until
the specified sync object is signaled, while glWaitSync blocks the device.

28.3 Upload

Streaming is the process in which data are uploaded to the device frequently, e.g.,
every frame. Good examples of streaming include updating instance data when using

398 V Transfers

instancing or font rendering. Because these tasks are processed every frame, it is
important to avoid implicit synchronizations. This can be done in multiple ways:

• a round-robin chain of buffer objects,

• buffer respecification or “orphaning” with glBufferData or glMapBuffer
Range,

• fully manual synchronization with glMapBufferRange and glFenceSync

/ glClientWaitSync.

28.3.1 Round-Robin Fashion (Multiple Buffer Objects)

The idea of the round-robin technique is to create several buffer objects and cycle
through them. The application can update and upload buffer N while the device is
rendering from buffer N−1, as shown on Figure 28.4. This method can also be used
for download, and it is useful in a multithreaded application, too. See Sections 28.6
and 28.7 for details.

application
thread glClear

frame n

frame n – 1

glClear
glBufferSubData

vbo[0]
glDrawElements

vbo[0]
swap

buffers

glBufferSubData
vbo[1]

glDrawElements
vbo[1]

OpenGL driver doesn’t need to synchronize
here because previous frame is using

another VBO

driver
thread

swap
buffers

Figure 28.4. Avoiding implicit synchronizations with a round-robin chain.

28.3.2 Buffer Respecification (Orphaning)

Buffer respecification is similar to the round-robin technique, but it all happens in-
side the OpenGL driver. There are two ways to respecify a buffer. The most common
one is to use an extra call to glBufferData with NULL as the data argument and
the exact size and usage hint it had before, as shown in Listing 28.2. The driver will
detach the physical memory block from the buffer object and allocate a new one.
This operation is called orphaning. The old block will be returned to the heap once it
is not used by any commands in the command queue. There is a high probability that

28. Asynchronous Buffer Transfers 399

glBindBuffer(GL_ARRAY_BUFFER , my_buffer_object);

glBufferData(GL_ARRAY_BUFFER , data_size , NULL , GL_STREAM_DRAW);

glBufferData(GL_ARRAY_BUFFER , data_size , mydata_ptr , GL_STREAM_DRAW);

Listing 28.2. Buffer respecification or orphaning using glBufferData.

this block will be reused by the next glBufferData respecification call [OpenGL
Wiki 09]. What’s more, we don’t have to guess the size of the round-robin chain,
since it all happens inside the driver. This process is shown in Figure 28.5.

The behavior of glBufferData / glBufferSubData is actually very imple-
mentation dependent. For instance, it seems that AMD’s driver can implicitly or-
phan the buffer. On NVIDIA, it is slightly more efficient to orphan manually and
then upload with glBufferSubData, but doing so will ruin the performance on In-
tel. Listing 28.2 gives the more “coherent” performance across vendors. Lastly, with
this technique, it’s important that the size parameter of glBufferData is always the
same to ensure the best performance.

The other way to respecify the buffer is to use the function glMapBufferRange

with the GL MAP INVALIDATE BUFFER BIT or GL MAP INVALIDATE RANGE BIT

flags. This will orphan the buffer and return a pointer to a freshly allocated memory
block. See Listing 28.3 for details. We can’t use glMapBuffer, since it doesn’t have
this option.

frame n – 1 frame n

glDrawElements

Buffer respecification
detaches the memory block
from the VBO and allocates

the new block.
The old one will be returned

to the heap when it is no
longer used.

glBufferSubData
real data update

glDrawElements

vertex buffer object

handle

target

new memory block
detached

memory block

swap
buffers

glBufferData(NULL)
re-specification

glClear......

Figure 28.5. Avoiding implicit synchronizations with orphaning.

400 V Transfers

glBindBuffer(GL_ARRAY_BUFFER , my_buffer_object);

void *mydata_ptr = glMapBufferRange(
GL_ARRAY_BUFFER , 0, data_size ,

GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT);

// Fill mydata_ptr with useful data

glUnmapBuffer(GL_ARRAY_BUFFER);

Listing 28.3. Buffer respecification or invalidation using glMapBufferRange.

However, we found that, at least on NVIDIA, glBufferData and glMap

BufferRange, even with orphaning, cause expensive synchronizations if called con-
currently with a rendering operation, even if the buffer is not used in this draw call
or in any operation enqueued in the device command queue. This prevents the de-
vice from reaching 100 percent utilization. In any case, we recommend not using
these techniques. On top of that, flags like GL MAP INVALIDATE BUFFER BIT or
GL MAP INVALIDATE RANGE BIT involve the driver memory management, which
can increase the call duration by more than ten times. The next section will present
unsynchronized mapping, which can be used to solve all these synchronization prob-
lems.

28.3.3 Unsynchronized Buffers

The last method we will describe here gives us absolute control over the buffer-object
data. We just have to tell the driver not to synchronize at all. This can be done by
passing the GL MAP UNSYNCHRONIZED BIT flag to glMapBufferRange. In this

frame 0 frame 1

glDrawElements glDrawElements

glDrawElements in all
frames are using

different part
of one VBO

swap
buffers

swap
buffers

glClear

handle

target

memory part used in frame 0 memory part used in frame 1

Vertex Buffer Object

glMapBufferRange with
GL

–
UNSYNCHRONIZED

–
BIT

and offset 0

glMapBufferRange with
GL

–
UNSYNCHRONIZED

–
BIT

and offset 4096
glClear

Figure 28.6. Possible usage of unsynchronized glMapBufferRange.

28. Asynchronous Buffer Transfers 401

const int buffer_number = frame_number++ % 3;

// Wait until buffer is free to use, in most cases this should not wait

// because we are using three buffers in chain , glClientWaitSync
// function can be used for check if the TIMEOUT is zero
GLenum result = glClientWaitSync(fences[buffer_number], 0, TIMEOUT);

if (result == GL_TIMEOUT_EXPIRED || result == GL_WAIT_FAILED)
{

// Something is wrong
}

glDeleteSync(fences[buffer_number]);
glBindBuffer(GL_ARRAY_BUFFER , buffers [buffer_number]);

void *ptr = glMapBufferRange(GL_ARRAY_BUFFER , offset , size , GL_MAP_WRITE_BIT | ←֓
GL_MAP_UNSYNCHRONIZED_BIT);

// Fill ptr with useful data
glUnmapBuffer(GL_ARRAY_BUFFER);

// Use buffer in draw operation

glDrawArray(...);

// Put fence into command queue

fences[buffer_number] = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);

Listing 28.4. Unsynchronized buffer mapping.

case, drivers just return a pointer to previously allocated pinned memory and do no
synchronization and no memory re-allocation. This is the fastest way to deal with
mapping (see Figure 28.6).

The drawback is that we really have to know what we’re doing. No implicit
sanity check or synchronization is performed, so if we upload data to a buffer that
is currently being used for rendering, we can end up with an undefined behavior or
application crash.

The easiest way to deal with unsynchronized mapping is to use multiple buffers
like we did in the round-robin section and use GL MAP UNSYNCHRONIZED BIT in
the glMapBufferRange function, as shown in Listing 28.4. But we have to be sure
that the buffer we are going to use is not used in a concurrent rendering operation.
This can be achieved with the glFencSync and glClientWaitSync functions. In
practice, a chain of three buffers is enough because the device usually doesn’t lag more
than two frames behind. At most, glClientWaitSync will synchronize us on the
third buffer, but it is a desired behavior because it means that the device command
queue is full and that we are GPU-bound.

28.3.4 AMD’s pinned memory Extension

Since Catalyst 11.5, AMD exposes the AMD pinned memory extension [Mayer 11,
Boudier and Sellers 11], which allows us to use application-side memory allocated

402 V Transfers

#define GL_EXTERNAL_VIRTUAL_MEMORY_AMD 37216 // AMD_pinned_memory

char *_pinned_ptr = new char[buffer_size + 0x1000];

char *_pinned_ptr_aligned = reinterpret_cast <char *>(unsigned (_pinned_ptr + 0xfff) &←֓
(~0xfff));

glBindBuffer(GL_EXTERNAL_VIRTUAL_MEMORY_AMD, buffer);
glBufferData(GL_EXTERNAL_VIRTUAL_MEMORY_AMD, buffer_size , _pinned_ptr_aligned, ←֓

GL_STREAM_READ);
glBindBuffer(GL_EXTERNAL_VIRTUAL_MEMORY_AMD, 0);

Listing 28.5. Example usage of AMD pinned memory.

with new or malloc as buffer-object storage. This memory block has to be aligned
to the page size. There are a few advantages when using this extension:

• Memory is accessible without OpenGL mapping functions, which means there
is no OpenGL call overhead. This is very useful in worker threads for geometry
and texture loading.

• Drivers’ memory management is skipped because we are responsible for mem-
ory allocation.

• There is no internal driver synchronization involved in the process. It is sim-
ilar to the GL MAP UNSYNCHRONIZED BIT flag in glMapBufferRange, as
explained in the previous section, but it means that we have to be careful
which buffer or buffer portion we are going to modify; otherwise, the result
might be undefined or our application terminated.

Pinned memory is the best choice for data streaming and downloading, but it is
available only on AMD devices and needs explicit synchronization checks to be sure
that the buffer is not used in a concurrent rendering operation. Listing 28.5 shows
how to use this extension.

28.4 Download

The introduction of the PCI-e bus gave us enough bandwidth to use data down-
load in real-life scenarios. Depending on the PCI-e version, the device’s upload and
download performance is approximately 1.5–6 GB/s. Today, many algorithms or
situations require downloading data from the device:

• procedural terrain generation (collision, geometry, bounding boxes, etc.);

• video recording, as discussed in Chapter 31;

• page resolver pass in virtual texturing;

28. Asynchronous Buffer Transfers 403

application
thread

frame n

glClear
render

to
texture

glReadPixels
starts DMA

transfer

some other
useful work

sync glMapBuffer
swap
buffers

DMA transfer

Figure 28.7. Asynchronous DMA transfer in download.

• physics simulation;

• image histogram.

The asynchronous nature of OpenGL drivers brings some complications to the
download process, and the specification is not very helpful regarding how to do it
fast and without implicit synchronization. OpenGL currently offers a few ways to
download data to the main memory. Most of the time, we want to download textures
because rasterization is the most efficient way to generate data on the GPU, at least
in OpenGL. This includes most of the use-cases above.

In this case, we have to use glReadPixels and bind a buffer object to the
GL PIXEL PACK BUFFER target. This function will start an asynchronous transfer
from the texture memory to the buffer memory. In this case, it is important to specify
a GL * READ usage hint for the buffer object because the OpenGL driver will copy
the data to the driver memory, which can be accessed from the application. Again,
this is only asynchronous for the CPU: the device has to wait for the current render
to complete and process the transfer. Finally, glMapBuffer returns a pointer to the
downloaded data. This process is presented in Figure 28.7.

In this simple scenario, the application thread is blocked because the device com-
mand queue is always lagging behind, and we are trying to download data which
aren’t ready yet. Three options are available to avoid this waiting:

• do some CPU intensive work after the call to glReadPixels;

• call glMapBuffer on the buffer object from the previous frame or two frames
behind;

• use fences and call glMapBuffer when a sync object is signaled.

The first solution is not very practical in real applications because it doesn’t guar-
antee that we will not be waiting at the end and makes it harder to write efficient
code. The second solution is much better, and in most cases, there will be no wait

404 V Transfers

if (rb_tail != rb_head)

{
const int tmp_tail = (rb_tail + 1) & RB_BUFFERS_MASK;

GLenum res = glClientWaitSync(fences[tmp_tail], 0, 0);
if (res == GL_ALREADY_SIGNALED || res == GL_CONDITION_SATISFIED)
{

rb_tail = tmp_tail ;
glDeleteSync(sc->_fence);

glBindBuffer(GL_PIXEL_PACK_BUFFER, buffers [rb_tail]);
glMapBuffer(GL_PIXEL_PACK_BUFFER, GL_READ_ONLY);
// Process data

glUnmapBuffer(GL_PIXEL_PACK_BUFFER);
}

}
const int tmp_head = (rb_head + 1) & RB_BUFFERS_MASK;

if (tmp_head != rb_tail)
{

glReadBuffer(GL_BACK);

glBindBuffer(GL_PIXEL_PACK_BUFFER, buffers [rb_head]);
glReadPixels(0, 0, width , height, GL_BGRA , GL_UNSIGNED_BYTE , (void*)offset);

}
else
{

// We are too fast
}

Listing 28.6. Asynchronous pixel data transfer.

because the data is already transferred. This solution needs multiple buffer objects
as presented in the round-robin section. The last solution is the best way to avoid
implicit synchronization because it gives exact information on the completeness of
the transfer; we still have to deal with the fact that the data will only be ready later,
but as developers, we have more control over the status of the transfer thanks to the
fences. The basic steps are provided in Listing 28.6.

However, on AMD hardware, glUnmapBufferwill be synchronous in this spe-
cial case. If we really need an asynchronous behavior, we have to use the AMD pinned

memory extension.

On the other hand, we have found that on NVIDIA, it is better to use another
intermediate buffer with the GL STREAM COPY usage hint, which causes the buffer
to be allocated in device memory. We use glReadPixels on this buffer and finally
use glCopyBufferSubData to copy the data into the final buffer in CPU memory.
This process is almost two times faster than a direct way. This copy function is
described in the next section.

28.5 Copy

A widespread extension is ARB copy buffer [NVIDIA 09], which makes it possible
to copy data between buffer objects. In particular, if both buffers live in device

28. Asynchronous Buffer Transfers 405

glBindBuffer(GL_COPY_READ_BUFFER, source_buffer);

glBindBuffer(GL_COPY_WRITE_BUFFER, dest_buffer);
glCopyBufferSubData(GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, source_offset , ←֓

write_offset , data_size);

Listing 28.7. Copying one buffer into another using ARB copy buffer.

memory, this is the only way to copy data between buffers on the GPU side without
CPU intervention (see Listing 28.7).

As we pointed out at the end of previous section, on NVIDIA GeForce devices,
copy is useful for downloading data. Using an intermediate buffer in device memory
and reading the copy back to the CPU is actually faster than a direct transfer: 3GB/s
instead of 1.5GB/s. This is a limitation of the hardware that is not present on the
NVIDIA Quadro product line. On AMD, with Catalyst 11.12 drivers, this function
is extremely unoptimized, and in most cases, causes expensive synchronizations.

28.6 Multithreading and Shared Contexts

In this section, we will describe how to stream data from another thread. In the
last few years, single-core performance hasn’t been increasing as fast as the number
of cores in the CPU. As such, it is important to know how OpenGL behaves in
a multithreaded environment. Most importantly, we will focus on usability and
performance considerations. Since accessing the OpenGL API from multiple threads
is not very well known, we need to introduce shared contexts first.

28.6.1 Introduction to Multithreaded OpenGL

OpenGL can actually be used from multiple threads since Version 1.1, but some care
must be taken at application initialization. More precisely, each additional thread
that needs to call OpenGL functions must create its own context and explicitly con-
nect that context to the first context in order to share OpenGL objects. Not doing so
will result in crashes when trying to execute data transfers or draw calls. Implementa-
tion details vary from platform to platform. The recommended process on Windows
is depicted in Figure 28.8, using the WGL ARB create context extensions avail-
able in OpenGL 3.2 [ARB 09b]. A similar extension, GLX ARB create context,
is available for Linux [ARB 09c]. Implementation details for Linux, Mac, and Win-
dows can be found in [Supnik 08].

406 V Transfers

main–hrc =
wglCreateContextAttribsARB(
 hdc, NULL, attribs
);
worker1–hrc =
wglCreateContextAttribsARB(
 hdc, main–hrc, NULL
);
worker2–hrc =
wglCreateContextAttribsARB(
 hdc, main–hrc, NULL
);

OpenGL calls OpenGL calls OpenGL calls

Thread lane OpenGL call CPU synchronization

wglMakeCurrent(
 hdc, main–hrc
);

wglMakeCurrent(
 hdc, worker1–hrc
);

wglMakeCurrent(
 hdc, worker2–hrc
);

Main rendering thread

Worker thread 1 Worker thread 2

Figure 28.8. Shared-context creation on Windows.

28.6.2 Synchronization Issues

In a single-threaded scenario, it is perfectly valid to respecify a buffer while it is
currently in use: the driver will put glBufferData in the command queue, and
upon processing, wait until draw calls relying on the same buffer are finished.

When using shared contexts, however, the driver will create one command queue
for each thread, and no such implicit synchronization will take place. A thread can
thus start a DMA transfer in a memory block that is currently used in a draw call by
the device. This usually results in partially updated meshes or instance data.

The solution is to use the above-mentioned techniques, which also work with
shared contexts: multibuffering the data or using fences.

28.6.3 Performance Hit due to Internal Synchronization

Shared contexts have one more disadvantage: as we will see in the benchmarks below,
they introduce a performance hit each frame.

In Figure 28.9, we show the profiling results of a sample application running
in Parallel Nsight on a GeForce GTX 470 with the 280.26 Forceware drivers. The
first timeline uses a single thread to upload and render a 3D model; the second

28. Asynchronous Buffer Transfers 407

Single thread

With an additional shared context

Device Context

API Calls

Draw Calls

Device Context

API Calls

Draw Calls

97 98 99

lag

0.5 ms hit

lag

100

100

101100

99

101 102100

glBufferData glBufferData glBufferDataSwap...

glBufferData glBufferDataSwapB... SwapB...SwapB...

glBSwap... Swap...Swap...

Figure 28.9. Performance hit due to shared contexts.

timeline does exactly the same thing but with an extra shared context in an idle
thread. This simple change adds 0.5 ms each frame, probably because of additional
synchronizations in the driver. We also notice that the device only lags one frame
behind instead of two.

At least on NVIDIA, this penalty usually varies between 0.1 and 0.5 ms; this
mostly depends on the CPU performance. Remarkably, it is quite constant with
respect to the number of threads with shared contexts. On NVIDIA Quadro hard-
ware, this penalty is usually lower because some hardware cost optimizations of the
GeForce product line are not present.

28.6.4 Final Words on Shared Context

Our advice is to use standard working threads when possible. Since all the function-
ality that shared contexts offers can be obtained without them, the following do not
usually cause a problem:

• If we want to speed up the rendering loop by offloading some CPU-heavy
task in another thread, this can be done without shared contexts; see the next
section for details.

• If we need to know if a data transfer is finished in a single-threaded envi-
ronment, we can use fences, as defined in the GL ARB sync extension; see
Listing 28.8 for details.

We have to point out that shared contexts won’t make transfers and rendering
parallel, at least in NVIDIA Forceware 285 and AMD Catalyst 11.12, so there is
usually minimal performance advantage for using them. See Chapter 29 for more
details on using fences with shader contexts and multiple threads.

408 V Transfers

glUnmapBuffer(...);

GLsync fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);

// Other operations

int res = glClientWaitSync(fence , 0, TIMEOUT);
if (res == GL_ALREADY_SIGNALED || res == GL_CONDITION_SATISFIED)

{
glDeleteSync(fence);
// Transfer finished

}

Listing 28.8. Waiting for a transfer completion with GL ARB sync.

28.7 Usage Scenario

In this last section, we will now present a scenario in which we will stream some scene
object data to the device. Our scene is represented by 32,768 objects representing a
building structure. Each object is generated in a GPU shader, and the only input is
the transformation matrix, which means 2MB of data per frame for the whole scene.
For rendering, we use an instanced draw call that minimizes the CPU intervention.

This scenario is implemented in three different methods: a single-threaded ver-
sion, a multithreaded version without shared contexts, and a multithreaded version
with shared contexts. All the source code is available for reference on the OpenGL
Insights website, www.openglinsights.com.

In practice, these methods can be used to upload, for instance, frustum culling
information, but since we want to measure the transfer performance, no computation
is actually done: the work consists simply in filling the buffer as fast as possible.

28.7.1 Method 1: Single Thread

In this first method, everything is done in the rendering thread: buffer streaming and
rendering. The main advantage of this implementation is its simplicity. In particular,
there is no need for mutexes or other synchronization primitives.

The buffer is streamed using glMapBufferRangewith the GL MAP WRITE BIT

and GL MAP UNSYNCHRONIZED BIT flags. This enables us to write transformation
matrices directly into the pinned memory region, which will be used directly by
the device, saving an extra memcpy and a synchronization compared to the other
methods.

In addition, glMapBufferRange can, as the name suggests, map only a subset
of the buffer, which is useful if we don’t want to modify the entire buffer or if the size
of the buffer changes from frame to frame: as we said earlier, we can allocate a big
buffer and only use a variable portion of it. The performance of this single-threaded
implementation method is shown in Table 28.3.

28. Asynchronous Buffer Transfers 409

Architecture Rendering time
(ms/frame)

Intel Core i5, NVIDIA GeForce GTX 470 2.8
Intel Core 2 Duo Q6600, AMD HD 6850 3.6

Intel Core i7, Intel GMA 3000 16.1

Table 28.3. Rendering performance for Method 1.

28.7.2 Method 2: Two Threads and One OpenGL Context

The second method uses another thread to copy the scene data to a mapped buffer.
There are a number of reasons why doing so is a good idea:

• The rendering thread doesn’t stop sending OpenGL commands and is able to
keep the device busy all the time.

• Dividing the processing between two CPU cores can shorten the frame time.

• OpenGL draw calls are expensive; they are usually more time consuming than
simply appending a command in the device command queue. In particular,
if the internal state has changed since the last draw call, for instance, due to
a call to glEnable, a long state-validation step occurs [2]. By separating our
computations from the driver’s thread, we can take advantage of multicore
architectures.

In this method (see Figure 28.10), we will use two threads: the application thread
and the renderer thread. The application thread is responsible for

• handling inputs,

• copying scene instance data into the mapped buffer,

• preparing the primitives for font rendering.

The renderer thread is responsible for

• calling glUnmapBuffer on the mapped buffers that were filled in the appli-
cation thread,

• setting shaders and uniforms,

• drawing batches.

We use a queue of frame-context objects that helps us avoid unnecessary syn-
chronizations between threads. The frame-context objects hold all data required for
a frame, such as the camera matrix, pointers to memory-mapped buffers, etc. This
design is very similar to the round-robin fashion because it uses multiple unsyn-
chronized buffers. It is also used with success in the Outerra Engine [Kemen and

410 V Transfers

Single threaded

Two threads, one OpenGL context
Bold line represents one full frame, but in this case, it
is divided into two threads and processed in parallel

Application
thread

Renderer
thread

Application
thread

frame N - 1 app part frame N app part

frame N - 1 renderer part... frame N renderer part

...

Time

Time 20 ms

33 ms 33 ms

20 ms 20 ms

Data preparation

frame N - 1 frame N

OpenGL calls

Figure 28.10. Method 2: improving the frame rate with an external renderer thread.

Hrabcak 11]. The performance results are shown in Table 28.4. For simplicity, we
used only two threads here, but we can of course add more, depending on the tasks
and the dependencies in the computations.

Architecture Performance
(ms/frame) improvement

vs. Method 1

Intel Core i5, NVIDIA GeForce GTX 470 2.0 ×1.4
Intel Core 2 Duo Q6600, AMD HD 6850 3.2 ×1.25

Intel Core i7, Intel GMA 3000 15.4 ×1.05

Table 28.4. Rendering performance for Method 2.

28.7.3 Method 3: Two Threads and Two OpenGL Shared
Contexts

In this last method, the scene-data copy is done in an OpenGL-capable thread.
We thus have two threads: the main rendering thread and the additional rendering
thread. The main rendering thread is responsible for the following tasks:

• handling inputs,

• calling glMapBufferRange and glUnmapBuffer on buffers,

• copying scene instance data into the mapped buffer,

• preparing primitives for font rendering.

28. Asynchronous Buffer Transfers 411

Architecture Performance
(ms/frame) improvement

vs. Method 1

hit due to shared

contexts (ms/frame)

Intel Core i5, NVIDIA GeForce GTX 470 2.1 ×1.33 +0.1

Intel Core 2 Duo Q6600, AMD HD 6850 7.5 ×0.48 +4.3
Intel Core i7, Intel GMA 3000 15.3 ×1.05 -0.1

Table 28.5. Rendering performance for Method 3.

The renderer thread is responsible for

• setting shaders and uniforms,

• drawing batches.

In this method, buffers are updated in the main thread. This includes call-
ing glMapBufferRange and glUnmapBuffer because the threads are sharing the
OpenGL rendering context. We get most of the benefits from the second method
(two threads and one OpenGL context) as compared to the single-threaded version:
faster rendering loop, parallelization of some OpenGL calls, and better overall perfor-
mance than Method 1, as shown in Table 28.5. However, as mentioned earlier, there
is a synchronization overhead in the driver, which makes this version slower than
the previous one. This overhead is much smaller on professional cards like NVIDIA
Quadro, on which such multithreading is very common, but is still present.

The performance drop of AMD in this case should not be taken too seriously,
because unsynchronized buffers are not ideal with shared contexts on this platform.
Other methods exhibit a more reasonable 1.1 times performance improvement over
the first solution, as shown in the next section.

28.7.4 Performance Comparisons

Table 28.6 shows the complete performance comparisons of our scenarios with sev-
eral upload policies on various hardware configurations. All tests use several buffers
in a round-robin fashion; the differences lie in the way the data is given to OpenGL:

• InvalidateBuffer. The buffer is mapped with glMapBufferRange using
the GL MAP WRITE BIT | GL MAP INVALIDATE BUFFER BIT flags, and
unmapped normally.

• FlushExplicit. The buffer is mapped with glMapBufferRange using the
GL MAP WRITE BIT | GL MAP FLUSH EXPLICIT BIT flags, flushed, and
unmapped. The unmapping must be done because it is not safe to keep the
buffer mapped permanently, except when using AMD pinned memory.

412 V Transfers

CPU Intel Q6600 Intel i7 2630QM Intel i5 760

GPU
AMD
HD
6850

NV

GTX
460

Intel
HD
3000

NV
GT
525M

AMD
HD
6570

NV
GTX
470

Scenario 1

InvalidateBuffer 3.6 5.0 16.1 12.6 12.0 3.5

FlushExplicit 4.9 4.9 16.1 12.5 18.4 3.5

Unsynchronized 3.6 3.7 16.1 11.2 9.0 2.8

BufferData 5.2 4.3 16.2 11.7 6.7 3.1

BufferSubData 4.4 4.3 17.3 11.6 9.5 3.1

Write 8.8 4.9 16.1 12.4 19.5 3.5

AMD Pinned 3.7 n/a n/a n/a 8.6 n/a

Scenario 2

InvalidateBuffer 5.5 3.2 15.3 10.3 9.5 2.1

FlushExplicit 7.2 3.1 15.3 10.3 16.3 2.1

Unsynchronized 3.2 2.9 15.4 9.9 8.0 2.0

BufferData 4.6 3.5 15.2 10.4 5.5 2.3

BufferSubData 4.0 3.5 15.1 10.5 8.3 2.3

Write 7.4 3.1 15.3 10.3 17.0 2.1

AMD Pinned 3.2 n/a n/a n/a 8.1 n/a

Scenario 3

InvalidateBuffer 5.3 3.8 15.2 10.6 9.4 2.4

FlushExplicit 7.4 3.7 15.2 10.6 17.1 2.3

Unsynchronized 7.5 3.2 15.3 10.2 17.9 2.1

BufferData broken 4.5 15.3 11.0 broken 2.5

BufferSubData 4.5 3.9 15.1 11.0 8.6 2.5

Write 7.5 3.5 15.2 10.5 17.9 2.3

AMD Pinned 3.2 n/a n/a n/a 8.0 n/a

Table 28.6. Our results in all configurations. All values are expressed in ms/frame (smaller is
better).

• Unsynchronized. The buffer is mapped with glMapBufferRange using
the GL MAP WRITE BIT | GL MAP UNSYNCHRONIZED BIT flags and
unmapped normally.

• BufferData. The buffer is orphaned using glBufferData(NULL), and
updated with glBufferSubData.

• BufferSubData. The buffer is not orphaned and is simply updated with
glBufferSubData.

• Write. The buffer is mapped with glMapBufferRange using only the
GL MAP WRITE BIT flag.

28. Asynchronous Buffer Transfers 413

Tests on the Intel GMA 3000 were performed with a smaller scene because it
wasn’t able to render the larger scene correctly.

The Intel GMA 3000 has almost the same performance in all cases. Since there
is only standard RAM, there is no transfer and probably fewer possible variations for
accessing the memory. Intel also seems to have a decent implementation of shared
contexts with a minimal overhead.

NVIDIA and AMD, however, both have worse performance when using shared
contexts. As said earlier, the synchronization cost is relatively constant but not negli-
gible.

For all vendors, using a simple worker thread gets us the best performance, pro-
vided that synchronizations are done carefully. While the unsynchronized version is
generally the fastest, we notice some exceptions: in particular, glBufferData can
be very fast on AMD when the CPU can fill the buffer fast enough.

28.8 Conclusion

In this chapter, we investigated how to get the most out of CPU-device transfers. We
explained many available techniques to stream data between the CPU and the device
and provided three sample implementations with performance comparisons.

In the general case, we recommend using a standard worker thread and multiple
buffers with the GL MAP UNSYCHRONIZED BIT flag. This might not be possible
because of dependencies in the data, but this will usually be a simple yet effective
way to improve the performance of an existing application.

It is still possible that such an application isn’t well suited to parallelization. For
instance, if it is rendering-intensive and doesn’t use much CPU, nothing will be
gained from multithreading it. Even there, better performance can be achieved by
simply avoiding uploads and downloads of currently used data. In any case, we
should always upload our data as soon as possible and wait as long as possible before
using new data in order to let the transfer complete.

We believe that OpenGL would benefit from a more precise specification in
buffer objects, like explicit pinned memory allocation, strict memory destination
parameters instead of hints, or a replacement of shared contexts by streams, similar
to what CUDA and Direct3D 11 provide. We also hope that future drivers provide
real GPU-asynchronous transfers for all buffer targets and textures, even on low-cost
gaming hardware, since it would greatly improve the performance of many real-world
scenarios.

Finally, as with any performance-critical piece of software, it is very important
to benchmark the actual usage on our target hardware, for instance, using NVIDIA
Nsight because it is easy to leave the “fast path.”

414 V Transfers

Bibliography

[ARB 08] OpenGL ARB. “OpenGL EXT framebuffer object Specification.” www.opengl.

org/registry/specs/EXT/framebuffer object.txt, 2008.

[ARB 09a] OpenGL ARB. “OpenGL ARB texture buffer object Specification.” www.
opengl.org/registry/specs/EXT/texture buffer object.txt, 2009.

[ARB 09b] OpenGL ARB. “OpenGL GLX create context Specification.” www.opengl.org/
registry/specs/ARB/glx create context.txt, 2009.

[ARB 09c] OpenGL ARB. “OpenGL WGL create context Specification.” www.opengl.org/
registry/specs/ARB/wgl create context.txt, 2009.

[Boudier and Sellers 11] Pierre Boudier and Graham Sellers. “Memory System on Fusion
APUs: The Benefit of Zero Copy.” developer.amd.com/afds/assets/presentations/1004
final.pdf, 2011.

[Intel 08] Intel. “Intel X58 Express Chipset.” http://www.intel.com/Assets/PDF/prodbrief/
x58-product-brief.pdf, 2008.

[Kemen and Hrabcak 11] Brano Kemen and Ladislav Hrabcak. “Outerra.” outerra.com,
2011.

[Kemen 10] Brano Kemen. “Outerra Video Recording.” www.outerra.com/video, 2010.

[Mayer 11] Christopher Mayer. “Streaming Video Data into 3D Applications.” developer.
amd.com/afds/assets/presentations/2116 final.pdf, 2011.

[NVIDIA 09] NVIDIA. “OpenGL ARB copy buffer Specification.” http://www.opengl.org/
registry/specs/ARB/copy buffer.txt, 2009.

[OpenGL Wiki 09] OpenGL Wiki. “OpenGL Wiki Buffer Object Streaming.” www.opengl.
org/wiki/Buffer Object Streaming, 2009.

[Supnik 08] Benjamin Supnik. “Creating OpenGL Objects in a Second
Thread—Mac, Linux, Windows.” http://hacksoflife.blogspot.com/2008/02/
creating-opengl-objects-in-second.html, 2008.

[Venkataraman 10] Shalini Venkataraman. “NVIDIA Quadro Dual Copy Engines.” www.
nvidia.com/docs/IO/40049/Dual copy engines.pdf, 2010.

[Williams and Hart 11] Ian Williams and Evan Hart. “Efficient Rendering of Geomet-
ric Data Using OpenGL VBOs in SPECviewperf.” www.spec.org/gwpg/gpc.static/
vbo whitepaper.html, 2011.

