
OpenGL Programming

Teacher: A.prof. Chengying Gao(高成英)

E-mail: mcsgcy@mail.sysu.edu.cn

School of Data and Computer Science

Computer Graphics

mailto:mcsgcy@mail.sysu.edu.cn

Introduction

Industry Standard API

for Computer Graphics

2Computer Graphics

What is OpenGL?

• The standard specification defining an API that interfaces with

the computer’s graphics system

• Cross-language

• Cross-platform

• Vendor-independent

• Introduced in 1992 by Silicon Graphics Inc.

3Computer Graphics

OpenGL (Open Graphics Library)

• OpenGL is a cross-language, multi-platform application programming

interface (API) for rendering 2D and 3D computer graphics.

• Applications make calls to OpenGL , which then renders an image (by

handling the graphics hardware) and displays it

• The API contains about 150 commands.

• is purely concerned with rendering, providing no APIs related to

input, audio, or windowing.

4Computer Graphics

Not the Only One Choice

5Computer Graphics

• Examples: NVIDIA CUDA, DirectX™, Windows Presentation

Foundation™ (WPF), RenderMan™, HTML5 + WebGL™, JAVA 3D

Development of OpenGL

• OpenGL is an evolving API.

• New versions of the OpenGL specification are regularly

released by the Khronos Group, each of which extends the API

to support various new features.

• OpenGL 4.5 Release Date: August, 2014

6Computer Graphics

What OpenGL Does

• Allow definition of object shapes,

material properties and lighting

• Arrange objects and interprets synthetic

camera in 3D space

• Coverts mathematical representations

of objects into pixels (rasterization)

• Calculates the color of every object

7Computer Graphics

OpenGL and OpenGL Utility Toolkit

• No high-level rendering functions for complex objects

• Build your shapes from primitives, points, lines, polygons, etc.

• The utility library GLUT provides additional support

• (GLUT) is a library of utilities for OpenGL programs, which primarily

perform system-level I/O with the host operating system.

• Functions performed include window definition, window control, and

monitoring of keyboard and mouse input.

• Routines for drawing a number of geometric primitives (both in solid

and wireframe mode) are also provided, including cubes, spheres and

the Utah teapot.

• GLUT also has some limited support for creating pop-up menus.

8Computer Graphics

Simplified OpenGL Pipeline

9Computer Graphics

Pieces of OpenGL Pipeline

10Computer Graphics

Stores
“Subroutines

(子程序)”

Pieces of OpenGL Pipeline

11Computer Graphics

Construct
geometric objects

Pieces of OpenGL Pipeline

12Computer Graphics

Change meshed
geometry

Store primitive
shapes

Pieces of OpenGL Pipeline

13Computer Graphics

Rasterization

Pieces of OpenGL Pipeline

14Computer Graphics

Modify and
combine per-pixel

information

Pieces of OpenGL Pipeline

15Computer Graphics

Prepare image to
be displayed

Related API

• opengl32.lib (OpenGL Kernel Library)

• Part of OpenGL

• Use the prefix of gl (ex: glBegin())

• GLU (OpenGL Utility Library)

• Part of OpenGL

• Use the prefix of glu (ex: gluLookAt())

• GLUT (OpenGL Utility Toolkit)

• Not officially part of OpenGL

• Provide common features for window system

• create window, mouse and keyboard, menu, event-driven

• Lack of modern GUI support (e.g. scroller)

• Use the prefix of glut (ex: glutDisplayFunc())

• GLUI (on top of GLUT)

• C++ interface library

• Provide buttons, checkboxes, radio buttons etc.

16Computer Graphics

Installing GLUT - The OpenGL Utility Toolkit

• On Windows:

• Download from OpenGL website:

• https://www.opengl.org/resources/libraries/glut/glut_downloads.php

• glut-3.7.6-bin has the dll/lib/header that are required

• Copy glut.dll to {Windows DLL dir}\glut32.dll

• Copy glut.lib to {VC++ lib path}\glut32.lib

• Copy glut.h to {VC++ include path}\GL\glut.h

17Computer Graphics

https://www.opengl.org/resources/libraries/glut/glut_downloads.php

Using GLUT

• Only need to include glut.h

• #include <GL\glut.h>

• Automatically includes gl.h and glu.h

• Lighthouse3D has a good GLUT tutorial

• http://www.lighthouse3d.com/tutorials/

18Computer Graphics

http://www.lighthouse3d.com/tutorials/

Stages in OpenGL

19Computer Graphics

Define object in world scene

Set modeling and viewing transformations

Render the scene

How OpenGL Works

• OpenGL is a state machine

• You give it orders to set the current state of any one of its

internal variables, or to query for its current status

• The current state won’t change until you specify otherwise

• Each of the system’s state variables has a default value

20Computer Graphics

Functions of OpenGL

• Primitive - WHAT - Point, Edge, Polygon

• Attribute - HOW

• Transformation - Viewing & Modeling

• Input - provided by GLUT

• Control - provided by GLUT

• Query

21Computer Graphics

Function Format of OpenGL

22Computer Graphics

OpenGL Hello World

• Prerequisite

• Head Files:

• #include <GL/gl.h>

• #include <GL/glu.h>

• #include <GL/glut.h>

• Library Files:

• Compiled files folder\opengl32.lib glu32.lib glut32.lib

• C:\Windows\System32\opengl32.dll glu32.dll glut32.dll

23Computer Graphics

Basic Structure Of OpenGL Program

• NOT Object-Oriented!!

• Use states to control

• Infinite Loop

24Computer Graphics

Configure
&

Open
Window

Initializing
Works

Handle
User
Event

Render

Event Driven Programming

25Computer Graphics

2D demo

26Computer Graphics

Less than 20 lines!

Not that HARD

2D demo

27Computer Graphics

2D demo

28Computer Graphics

Structure of GLUT-Assisted Programs

• GLUT relies on user-defined callback functions, which
it calls whenever some event occurs
• Function to display the screen

• Function to resize the viewport

• Functions to handle keyboard and mouse events

29Computer Graphics

Callbacks

• Wiki: In computer programming, a callback is a reference to a piece of

executable code, that is passed as an argument to other code. This allows a

lower-level software layer to call a subroutine (or function) defined in a

higher-level layer.

• Usage

• Callbacks allow the user of a function to fine-tune it at runtime, another use is

in error signaling.

• Callbacks may also be used to control whether a function acts or not.

• In C/C++: function pointer

30Computer Graphics

Callbacks

• Typically, the main thread will just run in a loop, waiting for events to occur

- for example, for the user to move his mouse in your window, or click one

of your buttons.

• The GUI framework will provide a mechanism for you to pass it function

pointers, which it will then associate with certain events. When an event

occurs, the event loop will invoke any callback functions you've provided for

that event.

• Often, the callback function will have parameters, and the event dispatcher

(事件调度器) will provide you with extra information about the event

(perhaps the exact x,y coordinates of the mouse, for example) through the

arguments it calls your callback function with.

31Computer Graphics

Display Callback

32Computer Graphics

Reshape Callback

33Computer Graphics

Mouse Callback

34Computer Graphics

Closing the program

• There is no idea to close the current program by OpenGL in

previous programs.

• However, we can do the close operation by simple mouse

callback.

35Computer Graphics

Keyboard Callback

36Computer Graphics

Position (定位)

• The position on the screen is usually in pixels and the origin is in the

upper left corner

• The display is in a top-down manner to refresh the display

• A World Coordinate in OpenGL application，its origin in the lower

left corner

• y := h - y

37Computer Graphics

(0, 0)

w

h

Get the height of window

• To finish the change of y coordinate, we need to know the

window size.

• The height would be changed in the procedure of the program running.

• Need a global variant to track the changing.

• The new height will return a callback function for shape changing.

• Also use the glGetIntv() and glGetFloat() to obtain.

38Computer Graphics

OpenGL - GLUT Example

39Computer Graphics

OpenGL - GLUT Example

40Computer Graphics

OpenGL - GLUT Example

41Computer Graphics

Details of OpenGL Program

42Computer Graphics

Contexts and Viewports?

• Each OpenGL application creates a context to issue rendering

commands to.

• The application must also define a viewport, a region of pixels

on the screen that can see the context.

• Can be

• Part of a window

• An entire window

• The whole screen

43Computer Graphics

Viewport

• The viewport is the part of the window your drawing is

displayed to

• By default, the viewport is the entire window

• Modifying the viewport is analogous to changing the size of the

final picture

• From the camera analogy

• Can have multiple viewports in the

same window for a split-screen effect

44Computer Graphics

Setting the Viewport

• glViewport(int x, int y, int width, int height)

• (x, y) is the location of the origin (lower-left) within the window

• (width, height) is the size of the viewport

• The aspect ratio of the viewport should be the same as that of

the viewing volume

45Computer Graphics

(0,0) width

height

(x,y)

Viewport

Window

OpenGL as a State Machine

• Put a value into various states, then it will remain in effect until

being changed.

• e.g. glColor*()

• Many state variables are enabled or disabled with glEnable(),

glDisable()

• e.g. glEnable(GL_LIGHT0)

46Computer Graphics

OpenGL State

• Some attributes of the OpenGL state

• Current color

• Camera properties (location, orientation, field of view, etc.)

• Lighting model (flat, smooth, etc.)

• Type of primitive being drawn

• Line width, dotted line or full line,…

• And many more...

47Computer Graphics

OpenGL Input

• All inputs (i.e. geometry) to an OpenGL context are defined as

vertex lists

• glVertex (*)

• * = nt OR ntv

• n - number (2, 3, 4)

• t - type (i = integer, f = float, etc.)

• v - vector

48Computer Graphics

OpenGL Types

49Computer Graphics

Suffix Data Type
Typical Corresponding

C-Language Type
OpenGL Type Definition

b 8-bit integer signed char GLbyte

s 16-bit integer short GLshort

i 32-bit integer long GLint, GLsizei

f 32-bit floating-point float GLfloat, GLclampf

d 64-bit floating-point double GLdouble, GLclampd

ub 8-bit unsigned integer unsigned char GLubyte, GLboolean

us 16-bit unsigned integer unsigned short GLushort

ui 32-bit unsigned integer unsigned long GLuint, GLenum, GLbitfield

OpenGL Input

• Examples:

• glVertex2i(5, 4);

• Specifies a vertex at location (5, 4) on the z = 0 plane

• “2” tells the system to expect a 2-vector (a vertex defined in 2D)

• “i” tells the system that the vertex will have integer locations

50Computer Graphics

OpenGL Input

• More examples:

• glVertex3f(.25, .25, .5);

• double vertex[3] = {1.0, .33, 3.14159};

glVertex3dv(vertex);

• “v” tells the system to expect the coordinate list in a single data structure,

instead of a list of n numbers

51Computer Graphics

OpenGL Primitive Types

• All geometry is specified by vertex lists

• But can draw multiple types of things

• Points

• Lines

• Triangles

• etc.

• The different things the system knows how to draw are the system

primitives

52Computer Graphics

OpenGL Primitive Types

53Computer Graphics

Specifying the OpenGL Primitive Type

• glBegin(primitiveType);

// A list of glVertex* calls goes here

// ...

glEnd();

• primitiveType can be any of several things

54Computer Graphics

glBegin(GL_POLYGON);

glVertex2f(0.0, 0.0);

glVertex2f(0.0, 3.0);

glVertex2f(3.0, 3.0);

glVertex2f(4.0, 1.5);

glVertex2f(3.0, 0.0);

glEnd();

glBegin(GL_POINTS);

glVertex2f(0.0, 0.0);

glVertex2f(0.0, 3.0);

glVertex2f(3.0, 3.0);

glVertex2f(4.0, 1.5);

glVertex2f(3.0, 0.0);

glEnd();

Color in OpenGL

55Computer Graphics

Polygon Display Modes

56Computer Graphics

Drawing Other Objects

• GLU contains calls to draw cylinders, cons, and more complex

surfaces called NURBS.

• GLUT contains calls to draw spheres and cubes.

57Computer Graphics

Finishing Up Your OpenGL Program

• OpenGL commands are not executed immediately

• They are put into a command buffer that gets fed to the

hardware

• When you’re done drawing, need to send the commands to the

graphics hardware

• –glFlush() or glFinish()

58Computer Graphics

glFlush vs. glFinish

• glFlush();

• Forces all issued commands to begin execution

• Returns immediately (asynchronous)

• glFinish();

• Forces all issued commands to begin execution

• Does not return until execution is complete (synchronous)

59Computer Graphics

Matrices in OpenGL

• Vertices are transformed by 2 matrices:

• ModelView

• Maps 3D to 3D

• Transforms vertices from object coordinates to eye coordinates

• Projection

• Maps 3D to 2D (sort of)

• Transforms vertices from eye coordinates to screen coordinates

60Computer Graphics

Matrix in OpenGL

• There are two matrix stacks.

• ModelView matrix (GL_MODELVIEW)

• Projection matrix (GL_PROJECTION)

• When we call functions of transformation, we should change to

the appropriate matrix stack first.

61Computer Graphics

glMatrixMode(GL_MODELVIEW);

//now we are in modelview matrix stack!

//do modelview transformation here…..

glMatrixMode(GL_PROJECTION);

//now we are in projection matrix stack!

//do projection transformation here….

Matrix in OpenGL

• Matrix multiplications always apply to the top of matrix stack.

62Computer Graphics

WARNING! OpenGL Matrices

• In C/C++, we are used to row-major matrices

• In OpenGL, matrices are specified in column-major order

63Computer Graphics

Row-Major Order Column-Major Order

The ModelView Matrix

• Modeling Transformation

• Perform rotate, translate, scale and combinations of these

transformations to the object.

• Viewing Transformation

• To positioning and aiming the camera

64Computer Graphics

The ModelView Matrix

• In OpenGL, the viewing and modeling transforms are combined

into a single matrix - the modelview matrix

• Viewing Transform - positioning the camera

• Modeling Transform - positioning the object

• Why?

• Consider how you would “translate” a fixed object with a real camera

65Computer Graphics

Modeling Transformations

• glTranslate{fd}(x, y, z)

• Multiplies current matrix by a matrix that moves an object by x,y,z

66Computer Graphics

glTranslatef(0, 0, -1)

Modeling Transformations

• glRotate{fd}(angle, x, y, z)

• Multiplies current matrix by a matrix that rotates an object in a

counterclockwise direction about the ray from origin to (x,y,z) with

angle as the degrees

67Computer Graphics

glRotatef(45.0, 0, 0, 1)

Modeling Transformations

• glScale{fd} (x, y, z)

• Multiplies current matrix by a matrix that scales an object along axes.

68Computer Graphics

glScalef(2.0, -0.5, 1.0)

Viewing Transformations

• gluLookAt (eyex, eyey, eyez, atx, aty, atz, upx, upy, upz);

• By default the camera is at the origin, looking down negative z,

and the up vector is the positive y axis

69Computer Graphics

Right-handed
Cartesian Coordinates

Using OpenGL Matrices

• Use the following function to specify which matrix you are changing:

• glMatrixMode(whichMatrix): whichMatrix = GL_PROJECTION | GL_MODELVIEW

• To guarantee a “fresh start”, use glLoadIdentity():

• Loads the identity matrix into the active matrix

• To load a user-defined matrix into the current matrix:

• glLoadMatrix{fd}(TYPE *m)

• To multiply the current matrix by a user defined matrix:

• glMultMatrix{fd}(TYPE *m)

• SUGGESTION: To avoid row-/column-major confusion, specify matrices as m[16]

instead of m[4][4]

70Computer Graphics

Transforms in OpenGL

• OpenGL uses 4x4 matrices for all its transforms

• But you don’t have to build them all by hand!

• glRotate{fd}(angle, x, y, z)

• Rotates counter-clockwise by angle degrees about the vector (x, y, z)

• glTranslate{fd}(x, y, z)

• glScale{fd}(x, y, z)

71Computer Graphics

Order of Transforms

• In OpenGL, the last transform in a list is applied FIRST

• Think back to right-multiplication of transforms

72Computer Graphics

glTranslatef(1, 0, 0);

glRotatef(45.0, 0, 0, 1);

drawObject();

glRotatef(45.0, 0, 0, 1);

glTranslatef(1, 0, 0);

drawObject();

Projection Transforms

• The projection matrix defines the viewing volume

• Used for 2 things:

• Projects an object onto the screen

• Determines how objects are clipped

• The viewpoint (the location of the “camera”) that we’ve been

talking about is at one end of the viewing volume

73Computer Graphics

Projection Transform

• Perspective

• Viewing volume is a truncated pyramid

• aka frustum

• Orthographic

• Viewing volume is a box

74Computer Graphics

Perspective

Orthographic

Perspective Projection

• The most noticeable effect of perspective projection is
foreshortening

• OpenGL provides several functions to define a viewing frustum
• glFrustum(...)

• gluPerspective(...)

75Computer Graphics

glFrustum (视锥体/视景体)

• glFrustum(GLdouble left, GLdouble right, GLdouble bottom,

GLdouble top, GLdouble near, GLdouble far)

• (left, bottom, -near) and (right, top, -near) are the bottom-left and top-

right corners of the near clip plane

• far is the distance to the far clip plane

• near and far should always be positive

76Computer Graphics

Frustum
Bottom

Left
Top

Right

Near

Far

gluPerspective (透视图)

• This GL Utility Library function provides a more intuitive way (I

think) to define a frustum

• gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble near,

GLdouble far)

• fovy - field of view in y (in degrees)

• aspect - aspect ratio (width / height)

• near and far - same as with glFrustum()

77Computer Graphics

Aspect = w/h

w
h

Fovy

𝚯

Near

Far

Orthographic Projection

• With orthographic projection, there is no foreshortening (透视

收缩)

• Distance from the camera does not change apparent size

• Again, there are several functions that can define an

orthographic projection

• glOrtho()

• gluOrtho2D()

78Computer Graphics

glOrtho

• glOrtho(GLdouble left, GLdouble right, GLdouble bottom,

GLdouble top, GLdouble near, GLdouble far)

• Arguments are the same as glPerspective()

• (left, bottom, -near) and (right, top, -near) are the bottom-left and top-

right corners of the near clip plane

• near and far can be any values, but they should not be the same

79Computer Graphics

Toward the
viewpoint

Left

Top

Right

Bottom

Near Far

Viewing volume

http://arkham46.developpez.com/articles/office/vbaopengl/?page=page_3#LIX-B-1-b
http://arkham46.developpez.com/articles/office/vbaopengl/?page=page_3#LIX-B-1-b

gluOrtho2D

• This GL Utility Library function provides a more intuitive way (I

think) to define a frustum

• gluOrtho2D(GLdouble left, GLdouble right, GLdouble bottom,

GLdouble top)

• (left, bottom) and (right, top) define the (x, y) coordinates of the

bottom-left and top-right corners of the clipping region

• Automatically clips to between -1.0 and 1.0 in z

• In 2D mode, frustum is equal to viewport

80Computer Graphics

OpenGL Transformations

81Computer Graphics

glTranslatef
glRotatef

glScalf
gluLookAt

gluPerspective
gluOrtho2D
glFrustum

glOrtho glViewport()

References

• OpenGL officially website:
• http://www.opengl.org

• NeHe’s OpenGL course (useful installation guides included)
• http://www.yakergong.net/nehe/ (Chinese)

• The Red Book (OpenGL Programming Guide)

82Computer Graphics

http://www.ics.uci.edu/~gopi/CS211B/opengl_
programming_guide_8th_edition.pdf

An PDF version is available online:

http://www.yakergong.net/nehe/
http://www.ics.uci.edu/~gopi/CS211B/opengl_programming_guide_8th_edition.pdf

FLTK

• Fast Light Toolkit

• Cross-Platform C++ GUI Toolkit

• Provides more full-featured UI functionality than GLUT

• Also supports GLUT code through emulation

• Download from http://www.fltk.org

83Computer Graphics

http://www.fltk.org/

