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Hello Earth

The why

• There is little documentation and a lot of confusion

• A lot of work has gone into improving OpenLDAP’s
replication functionality with more to come

• Many distributed systems exist, but not many that openly
discuss guarantees/concessions
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Pull Out the Pin

A step down from ACID in distributed systems

CAP theorem

• (Eventual) Convergence

• Availability

• Persistence of successful updates

• Pick two
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And Dream Of Sheep

A step down from ACID in distributed systems

CAP theorem

• (Eventual) Convergence

• Availability

• Persistence of successful updates

• Pick two
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In Search Of Peter Pan

Content synchronization is defined in RFC 4533 (a.k.a. Syncrepl)

• Like every self-respecting replication protocol piggy-backs on a
search request

• Start with no knowledge - get entries just like a regular search

• Further searches can be more efficient

• Utilises entryUUID attribute (RFC4530) - stable across
renames

• A session maintained with an opaque cookie

OpenLDAP has a client implementation in syncrepl.c, as well as
other protocols (master only).
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Reaching Out
Search every time

• Search request + Sync Request Control (no cookie)
• refreshOnly

• refreshAndPersist

• Entry + Sync State Control: entryUUID and state:

• present (0)

• add (1)

• Sync Info Intermediate Response of type
• refreshPresent w. refreshDone = FALSE

• syncIdSet
• refreshDeletes = FALSE / TRUE
• set of UUIDs

• Entry + Sync State Control: entryUUID and state:
• delete (3)

• Search response + Sync done control:
• cookie
• refreshDeletes = FALSE
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Jig of Life
Search every time

• Search request + Sync Request Control (w. cookie)
• refreshOnly

• refreshAndPersist

• Entry + Sync State Control: entryUUID and state:
• present (0)
• add (1)

• Sync Info Intermediate Response of type
• refreshPresent w. refreshDone = FALSE

• syncIdSet
• refreshDeletes = FALSE / TRUE
• set of UUIDs

• Entry + Sync State Control: entryUUID and state:
• delete (3)

• Search response + Sync done control:
• cookie
• refreshDeletes = FALSE
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Running Up That Hill
Search every time

• Search request + Sync Request Control (w. cookie)
• refreshOnly

• refreshAndPersist

• Entry + Sync State Control: entryUUID and state:
• present (0)
• add (1)

• Sync Info Intermediate Response of type
• refreshPresent w. refreshDone = FALSE

• syncIdSet
• refreshDeletes = FALSE / TRUE
• set of UUIDs

• Entry + Sync State Control: entryUUID and state:
• delete (3)

• Search response + Sync done control:
• cookie
• refreshDeletes = FALSE / TRUE
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Breathing
Search every time

• Search request + Sync Request Control (w. cookie)
• refreshOnly

• refreshAndPersist

• Entry + Sync State Control: entryUUID and state:
• present (0)
• add (1)

• Sync Info Intermediate Response of type
• refreshPresent w. refreshDone = FALSE

• syncIdSet
• refreshDeletes = FALSE / TRUE
• set of UUIDs

• Entry + Sync State Control: entryUUID and state:
• delete (3)

• Search response + Sync done control:
• cookie
• refreshDeletes = FALSE / TRUE
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King of the Mountain
Search every time

• Search request + Sync Request Control (w. cookie)
• refreshOnly

• refreshAndPersist

• Entry + Sync State Control: entryUUID and state:
• present (0)
• add (1)

• Sync Info Intermediate Response of type either
• refreshPresent w. refreshDone = FALSE
• syncIdSet

• refreshDeletes = FALSE / TRUE
• set of UUIDs

• Entry + Sync State Control: entryUUID and state:
• delete (3)

• Search response + Sync done control:
• cookie
• refreshDeletes = FALSE / TRUE
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Leave It Open

When client wants to be aware of changes as they happen.
• Search request + Sync Request Control

• refreshOnly

• refreshAndPersist

• [optional present/delete phase messages]
• Sync Info Intermediate Response of type either

• refreshPresent: cookie and refreshDone = TRUE
• refreshDelete: cookie and refreshDone = TRUE

• Entry + Sync State Control: entryUUID and state:
• add (1) / modify (2) / delete (3)

• optional cookie

• interspersed with Sync Info Intermediate Responses of type
• newcookie: cookie
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Feel It

Cookies are opaque to clients but server uses it to identify:

• entries added/changed since

• entries deleted since

• or nothing changed

If all else fails, either:

• return Search Done Response with result
e-syncRefreshRequired (4096)

• act as if no cookie was received

In OpenLDAP, you’ll find this in overlay syncprov with an
ephemeral sessionlog to track deletes
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Experiment IV

Replicating changes: Delta-sync

• Initial load off target DB, then from its log (append-only,
specific to each replica)

• Overlay accesslog, separate DB+syncprov

• Log DB is a representation of changes and that’s what we
replicate from

• We only ever delete (expire) the oldest entry
• syncprov configured never to propagate deletes
• If oldest entry not new enough to resume a session, tell to

refresh
• Client falls back to replicating the target DB to catch up
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Big Stripey Lie

Case not catered for by RFC 4533

- what if the client is also an
LDAP server?

• Maybe it needs to accept and send writes back - both
replicate off each other

• Cookie can’t stay opaque - rid, serverID, CSN / contextCSN
set (a vector clock keyed on serverID)

• Makes serverID 0 special - single master or pure client

• In refreshAndPersist even clients need to interpret the cookie

• Limits on entry broadcasts - based on rid/sid/csn combo (do
not transmit to originator, do not transmit to sender)

Even more fun with delta-MMR.
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Somewhere in Between

Case not catered for by RFC 4533 - what if the client is also an
LDAP server?

• Maybe it needs to accept and send writes back - both
replicate off each other

• Cookie can’t stay opaque - rid, serverID, CSN / contextCSN
set (a vector clock keyed on serverID)

• Makes serverID 0 special - single master or pure client

• In refreshAndPersist even clients need to interpret the cookie

• Limits on entry broadcasts - based on rid/sid/csn combo (do
not transmit to originator, do not transmit to sender)

Even more fun with delta-MMR.



Keep it simple Wait, there’s more Questions

Walk Straight Down the Middle

Case not catered for by RFC 4533 - what if the client is also an
LDAP server?

• Maybe it needs to accept and send writes back - both
replicate off each other

• Cookie can’t stay opaque - rid, serverID, CSN / contextCSN
set (a vector clock keyed on serverID)

• Makes serverID 0 special - single master

or pure client

• In refreshAndPersist even clients need to interpret the cookie

• Limits on entry broadcasts - based on rid/sid/csn combo (do
not transmit to originator, do not transmit to sender)

Even more fun with delta-MMR.
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Deeper Understanding

Case not catered for by RFC 4533 - what if the client is also an
LDAP server?

• Maybe it needs to accept and send writes back - both
replicate off each other

• Cookie can’t stay opaque - rid, serverID, CSN / contextCSN
set (a vector clock keyed on serverID)

• Makes serverID 0 special - single master or pure client

• In refreshAndPersist even clients need to interpret the cookie

• Limits on entry broadcasts - based on rid/sid/csn combo (do
not transmit to originator, do not transmit to sender)

Even more fun with delta-MMR.
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Love and Anger

Conflicts are inevitable

• Add/Add

• Add/Delete of parent

• Rename/Modify/Delete

• etc.

“Last version” wins (maintains convergence).
We always try to preserve C, plus give A (in OpenLDAP we don’t
have the tools to provide P).

Alternative approaches exist - see LDAPCon 2017 presentation by
Ludwig Krispenz
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Not This Time

Conflicts are inevitable

• Add/Add

• Add/Delete of parent

• Rename/Modify/Delete

• etc.

“Last version” wins (maintains convergence).
We always try to preserve C, plus give A (in OpenLDAP we don’t
have the tools to provide P).

Alternative approaches exist - see LDAPCon 2017 presentation by
Ludwig Krispenz
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Don’t Give Up

Conflicts are inevitable

• Add/Add

• Add/Delete of parent

• Rename/Modify/Delete

• etc.

“Last version” wins (maintains convergence).
We always try to preserve C, plus give A (in OpenLDAP we don’t
have the tools to provide P).

Alternative approaches exist - see LDAPCon 2017 presentation by
Ludwig Krispenz
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How to be Invisible

Operational concerns

• Clocks - OpenLDAP uses timestamps for conflict resolution
• Chattiness

• Plain sends full entries
• Delta only changes with low (constant) overhead
• In MMR, messages still get duplicated

• Prune the graph while maintaining reachability
• Needs extra communication between replicas - new protocol
• Not done in OpenLDAP
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Be Kind to my Mistakes

Issues in current implementation

• sessionlog is ephemeral (too many costly present phase
refreshes)

• ITS#8768: delete phase can’t be interrupted safely

• ITS#8125: present phase refresh not always MMR ready (2.5
item)

• contextCSN is cached by syncprov (can break delta-MMR
during DR)

• overlays break guarantees and need to be aware of too much



Keep it simple Wait, there’s more Questions

The Big Sky

Plans

• Persistent sessionlog

• Merge stuff into a single overlay

• Transactions (RFC 5805)

Wishlist

• Testbed (even a chaos-monkey one)

• Help finding/implementing an protocol to maintain a more
efficient MMR
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Aerial

Plans

• Persistent sessionlog

• Merge stuff into a single overlay

• Transactions (RFC 5805)

Wishlist

• Testbed (even a chaos-monkey one)

• Help finding/implementing an protocol to maintain a more
efficient MMR
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π

Thank you
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