
Keep it simple Wait, there’s more Questions

OpenLDAP, syncrepl and multimaster replication

Onďrej Kuzńık, Symas Corp.

November 2019



Keep it simple Wait, there’s more Questions

Hello Earth

The why

• There is little documentation and a lot of confusion

• A lot of work has gone into improving OpenLDAP’s
replication functionality with more to come

• Many distributed systems exist, but not many that openly
discuss guarantees/concessions



Keep it simple Wait, there’s more Questions

Pull Out the Pin

A step down from ACID in distributed systems

CAP theorem

• (Eventual) Convergence

• Availability

• Persistence of successful updates

• Pick two



Keep it simple Wait, there’s more Questions

And Dream Of Sheep

A step down from ACID in distributed systems

CAP theorem

• (Eventual) Convergence

• Availability

• Persistence of successful updates

• Pick two



Keep it simple Wait, there’s more Questions

In Search Of Peter Pan

Content synchronization is defined in RFC 4533 (a.k.a. Syncrepl)

• Like every self-respecting replication protocol piggy-backs on a
search request

• Start with no knowledge - get entries just like a regular search

• Further searches can be more efficient

• Utilises entryUUID attribute (RFC4530) - stable across
renames

• A session maintained with an opaque cookie

OpenLDAP has a client implementation in syncrepl.c, as well as
other protocols (master only).



Keep it simple Wait, there’s more Questions

Reaching Out
Search every time

• Search request + Sync Request Control (no cookie)
• refreshOnly

• refreshAndPersist

• Entry + Sync State Control: entryUUID and state:

• present (0)

• add (1)

• Sync Info Intermediate Response of type
• refreshPresent w. refreshDone = FALSE

• syncIdSet
• refreshDeletes = FALSE / TRUE
• set of UUIDs

• Entry + Sync State Control: entryUUID and state:
• delete (3)

• Search response + Sync done control:
• cookie
• refreshDeletes = FALSE



Keep it simple Wait, there’s more Questions

Jig of Life
Search every time

• Search request + Sync Request Control (w. cookie)
• refreshOnly

• refreshAndPersist

• Entry + Sync State Control: entryUUID and state:
• present (0)
• add (1)

• Sync Info Intermediate Response of type
• refreshPresent w. refreshDone = FALSE

• syncIdSet
• refreshDeletes = FALSE / TRUE
• set of UUIDs

• Entry + Sync State Control: entryUUID and state:
• delete (3)

• Search response + Sync done control:
• cookie
• refreshDeletes = FALSE



Keep it simple Wait, there’s more Questions

Running Up That Hill
Search every time

• Search request + Sync Request Control (w. cookie)
• refreshOnly

• refreshAndPersist

• Entry + Sync State Control: entryUUID and state:
• present (0)
• add (1)

• Sync Info Intermediate Response of type
• refreshPresent w. refreshDone = FALSE

• syncIdSet
• refreshDeletes = FALSE / TRUE
• set of UUIDs

• Entry + Sync State Control: entryUUID and state:
• delete (3)

• Search response + Sync done control:
• cookie
• refreshDeletes = FALSE / TRUE



Keep it simple Wait, there’s more Questions

Breathing
Search every time

• Search request + Sync Request Control (w. cookie)
• refreshOnly

• refreshAndPersist

• Entry + Sync State Control: entryUUID and state:
• present (0)
• add (1)

• Sync Info Intermediate Response of type
• refreshPresent w. refreshDone = FALSE

• syncIdSet
• refreshDeletes = FALSE / TRUE
• set of UUIDs

• Entry + Sync State Control: entryUUID and state:
• delete (3)

• Search response + Sync done control:
• cookie
• refreshDeletes = FALSE / TRUE



Keep it simple Wait, there’s more Questions

King of the Mountain
Search every time

• Search request + Sync Request Control (w. cookie)
• refreshOnly

• refreshAndPersist

• Entry + Sync State Control: entryUUID and state:
• present (0)
• add (1)

• Sync Info Intermediate Response of type either
• refreshPresent w. refreshDone = FALSE
• syncIdSet

• refreshDeletes = FALSE / TRUE
• set of UUIDs

• Entry + Sync State Control: entryUUID and state:
• delete (3)

• Search response + Sync done control:
• cookie
• refreshDeletes = FALSE / TRUE



Keep it simple Wait, there’s more Questions

Leave It Open

When client wants to be aware of changes as they happen.
• Search request + Sync Request Control

• refreshOnly

• refreshAndPersist

• [optional present/delete phase messages]
• Sync Info Intermediate Response of type either

• refreshPresent: cookie and refreshDone = TRUE
• refreshDelete: cookie and refreshDone = TRUE

• Entry + Sync State Control: entryUUID and state:
• add (1) / modify (2) / delete (3)

• optional cookie

• interspersed with Sync Info Intermediate Responses of type
• newcookie: cookie



Keep it simple Wait, there’s more Questions

Feel It

Cookies are opaque to clients but server uses it to identify:

• entries added/changed since

• entries deleted since

• or nothing changed

If all else fails, either:

• return Search Done Response with result
e-syncRefreshRequired (4096)

• act as if no cookie was received

In OpenLDAP, you’ll find this in overlay syncprov with an
ephemeral sessionlog to track deletes



Keep it simple Wait, there’s more Questions

Experiment IV

Replicating changes: Delta-sync

• Initial load off target DB, then from its log (append-only,
specific to each replica)

• Overlay accesslog, separate DB+syncprov

• Log DB is a representation of changes and that’s what we
replicate from

• We only ever delete (expire) the oldest entry
• syncprov configured never to propagate deletes
• If oldest entry not new enough to resume a session, tell to

refresh
• Client falls back to replicating the target DB to catch up



Keep it simple Wait, there’s more Questions

Big Stripey Lie

Case not catered for by RFC 4533

- what if the client is also an
LDAP server?

• Maybe it needs to accept and send writes back - both
replicate off each other

• Cookie can’t stay opaque - rid, serverID, CSN / contextCSN
set (a vector clock keyed on serverID)

• Makes serverID 0 special - single master or pure client

• In refreshAndPersist even clients need to interpret the cookie

• Limits on entry broadcasts - based on rid/sid/csn combo (do
not transmit to originator, do not transmit to sender)

Even more fun with delta-MMR.



Keep it simple Wait, there’s more Questions

Somewhere in Between

Case not catered for by RFC 4533 - what if the client is also an
LDAP server?

• Maybe it needs to accept and send writes back - both
replicate off each other

• Cookie can’t stay opaque - rid, serverID, CSN / contextCSN
set (a vector clock keyed on serverID)

• Makes serverID 0 special - single master or pure client

• In refreshAndPersist even clients need to interpret the cookie

• Limits on entry broadcasts - based on rid/sid/csn combo (do
not transmit to originator, do not transmit to sender)

Even more fun with delta-MMR.



Keep it simple Wait, there’s more Questions

Walk Straight Down the Middle

Case not catered for by RFC 4533 - what if the client is also an
LDAP server?

• Maybe it needs to accept and send writes back - both
replicate off each other

• Cookie can’t stay opaque - rid, serverID, CSN / contextCSN
set (a vector clock keyed on serverID)

• Makes serverID 0 special - single master

or pure client

• In refreshAndPersist even clients need to interpret the cookie

• Limits on entry broadcasts - based on rid/sid/csn combo (do
not transmit to originator, do not transmit to sender)

Even more fun with delta-MMR.



Keep it simple Wait, there’s more Questions

Deeper Understanding

Case not catered for by RFC 4533 - what if the client is also an
LDAP server?

• Maybe it needs to accept and send writes back - both
replicate off each other

• Cookie can’t stay opaque - rid, serverID, CSN / contextCSN
set (a vector clock keyed on serverID)

• Makes serverID 0 special - single master or pure client

• In refreshAndPersist even clients need to interpret the cookie

• Limits on entry broadcasts - based on rid/sid/csn combo (do
not transmit to originator, do not transmit to sender)

Even more fun with delta-MMR.



Keep it simple Wait, there’s more Questions

Love and Anger

Conflicts are inevitable

• Add/Add

• Add/Delete of parent

• Rename/Modify/Delete

• etc.

“Last version” wins (maintains convergence).
We always try to preserve C, plus give A (in OpenLDAP we don’t
have the tools to provide P).

Alternative approaches exist - see LDAPCon 2017 presentation by
Ludwig Krispenz



Keep it simple Wait, there’s more Questions

Not This Time

Conflicts are inevitable

• Add/Add

• Add/Delete of parent

• Rename/Modify/Delete

• etc.

“Last version” wins (maintains convergence).
We always try to preserve C, plus give A (in OpenLDAP we don’t
have the tools to provide P).

Alternative approaches exist - see LDAPCon 2017 presentation by
Ludwig Krispenz



Keep it simple Wait, there’s more Questions

Don’t Give Up

Conflicts are inevitable

• Add/Add

• Add/Delete of parent

• Rename/Modify/Delete

• etc.

“Last version” wins (maintains convergence).
We always try to preserve C, plus give A (in OpenLDAP we don’t
have the tools to provide P).

Alternative approaches exist - see LDAPCon 2017 presentation by
Ludwig Krispenz



Keep it simple Wait, there’s more Questions

How to be Invisible

Operational concerns

• Clocks - OpenLDAP uses timestamps for conflict resolution
• Chattiness

• Plain sends full entries
• Delta only changes with low (constant) overhead
• In MMR, messages still get duplicated

• Prune the graph while maintaining reachability
• Needs extra communication between replicas - new protocol
• Not done in OpenLDAP



Keep it simple Wait, there’s more Questions

Be Kind to my Mistakes

Issues in current implementation

• sessionlog is ephemeral (too many costly present phase
refreshes)

• ITS#8768: delete phase can’t be interrupted safely

• ITS#8125: present phase refresh not always MMR ready (2.5
item)

• contextCSN is cached by syncprov (can break delta-MMR
during DR)

• overlays break guarantees and need to be aware of too much



Keep it simple Wait, there’s more Questions

The Big Sky

Plans

• Persistent sessionlog

• Merge stuff into a single overlay

• Transactions (RFC 5805)

Wishlist

• Testbed (even a chaos-monkey one)

• Help finding/implementing an protocol to maintain a more
efficient MMR



Keep it simple Wait, there’s more Questions

Aerial

Plans

• Persistent sessionlog

• Merge stuff into a single overlay

• Transactions (RFC 5805)

Wishlist

• Testbed (even a chaos-monkey one)

• Help finding/implementing an protocol to maintain a more
efficient MMR



3.1415
926535
89793238

46
26
4 3

38 3279
502884197169399

37
51
0
58
23
19

749 4
4 59230781

64062862088214808
65

1
32

82
30
66
47

09
384

46095 505 8223

Keep it simple Wait, there’s more Questions

π

Thank you


	Keep it simple
	Wait, there's more
	Questions

