

2014 Veloce Emulation Competition Report

OpenRISC System-on-Chip Design Emulation
Kai Cong, Li Lei, and Zhenkun Yang

Advisor: Fei Xie
{congkai, leil, zhenkun, xie}@cs.pdx.edu

Department of Computer Science, Portland State University, Portland, OR

1. Introduction
New computer systems like smartphones and tablets, are entering the market at an
ever-accelerating pace. This brings enormous pressure on the product development
teams to shorten the time-to-market. Driven by increasing design complexity and
decreasing time-to-market, it demands innovative approaches to accelerating hardware
design simulation, verification, and debugging. Recently the hardware emulation
technique has emerged as a promising approach to accelerating hardware
verification/debugging process.

To fully evaluate the powerfulness of the emulation approach and demonstrate its
potential impact, we propose to emulate a system-on-chip (SoC) design using Mentor
Graphics Veloce emulation platform. This article presents our project setup and the
results we have achieved. In this project, we carry out the following tasks: (1)
standalone emulation of an existing open-source SoC design, OpenRISC Reference
Platform System on Chip (ORPSoC); (2) emulation performance evaluation with three
categories of benchmarks, running ‘sum’ program with different parameters over
ORPSoC, booting the Linux kernel over ORPSoC and running a set of software
programs over ORPSoC; (3) thoroughly comparison with the simulation approach:
simulating ORPSoC with the benchmarks on Mentor Graphics ModelSim.

The results are encouraging. ORPSoC emulation with Veloce has more than ten times
faster than hardware simulation. Our experimental results demonstrate that Mentor
Graphics Veloce has major advantages in emulation, verification, and debugging of
complicated real hardware designs, especially in the context of SoC complexity.
Through our three major tasks, we will demonstrate that (1) Veloce can successfully
emulate large-scale SoC designs; (2) it has much better performance comparing to the
state-of-the-art simulation tools; (3) it can significantly accelerate the process of
hardware verification and debugging while maintaining full signal visibility.

1

2014 Veloce Emulation Competition Report

2. Background

OpenRISC 1200: OpenRISC 1200 (OR1200) [1] is a synthesizable CPU core
developed and maintained by developers at OpenCores [2]. The OR1200 design is an
open source implementation of the OpenRISC 1000 RISC architecture [3], which is
implemented in Verilog HDL. OR1200 has following major features:

● Central CPU/DSP block
● Direct mapped data/instruction cache
● WISHBONE bus interfaces

ORPSoC: ORPSoC is an OpenRISC-based reference SoC [4], which consists of
following hardware components, as shown in Figure 1.

● WISHBONE Bus
● SRAM Memory
● General-purpose I/O (GPIO)
● UART serial port
● 10/100Mbps Ethernet MAC

Figure-1: Architecture of ORPSoC with major components

2

2014 Veloce Emulation Competition Report

3. ORPSoC Simulation

We use Mentor Graphics ModelSim as our RTL design simulator. The workflow of our
simulation is depicted as Figure-2.

Figure-2: Workflow of ORPSoC Simulation with ModelSim

The workflow contains three steps:
1). By using the OpenRISC compiler, the target program running on ORPSoC is

compiled into a memory file which is consumed by the simulator ModelSim.
2). ModelSim takes the compiled ORPSoC design and the memory file. It simulates the

target program running on the ORPSoC design.
3). ModelSim stops when the program terminates. It outputs the waveform of the

selected signals of the ORPSoC design and records the program output in the log
file.

4. ORPSoC Emulation

4.1 Workflow of ORPSoC Emulation.
The workflow of our ORPSoC emulation with Mentor Graphics Veloce is illustrated as
Figure-3. In this workflow, the memory file generated from the target program plays as
the testbench which includes a significant amount of CPU instructions on our ORPSoC
design.

3

2014 Veloce Emulation Competition Report

Figure-3: Workflow of ORPSoC emulation with Veloce

The workflow contains four steps:
1). Using the OpenRISC compiler, the target program running on ORPSoc design is

compiled into a memory file which is loaded into the memory.
2). Veloce software first compiles and synthesizes the ORPSoc design. Then the design

is configured on the Veloce machine.
3). In order to terminate the emulation automatically, triggers are defined and applied to

the emulation process.
4). Before the emulation starts, both memory and triggers are downloaded into Veloce

machine. Then emulation is executed and wave files and related information are
generated after the emulation is terminated by the trigger.

4.2 Emulation Triggers
Veloce provides trigger mechanism which allows detection of a given state of logic
during emulation. In our project, we mainly define two triggers for Linux System boot-up
and generic programs separately. Both triggers are used for determining the termination
condition during emulation. Using the Veloce trigger editor, triggers are created and
trigger diagrams are generated easily.

4.2.1 Triggers for Linux System boot-up
For Linux system boot-up, we need to determine when the system is booted. We first
instrumented the linux kernel source code to output some special flag through uart
module. Then we define a trigger to capture such special flag to notify that the system
has booted. The corresponding trigger diagram is as follows:

4

2014 Veloce Emulation Competition Report

4.2.2 Triggers for generic programs
For the generic programs including CHStone benchmark and ‘SUM’ program, we need
to determine when the program has been executed. We added a special instruction into
the end of the program memory file. Then we define a trigger to capture such special
instruction to notify that the program has been executed. The corresponding trigger
diagram is as follows:

5. Evaluation

We mainly focus on evaluating how much speedup can be achieved when Veloce deals
with a complicated hardware design. In this section, we evaluate the performance of two
approaches:

● ORPSoC Simulation with ModelSim

5

2014 Veloce Emulation Competition Report

● ORPSoC Emulation with Veloce

Moreover, we evaluate the two approaches under three benchmarks:

● Sum N
● Linux System boot-up
● CHStone benchmark, which consists of 12 designs

5.1 ORPSoC Information
Table-I shows basic information of the ORPSoC design. Blank, comment, and code are
evaluated in Lines of Code (LOC).

Table-I: ORPSoC RTL Design Information

Language Files Blank Comment Code

Verilog 201 7466 21276 46611

5.2 Evaluation Benchmark 1: Sum N
We evaluate simulation and emulation of the following ‘sum’ program with different N
with ModelSim and Veloce. From Table-II and Figure-4, we can see that emulation has
major advantage over simulation when executing large number of instructions. The
results demonstrate that (1) when the number of iterations is small, there is no
significant speedup achieved by Veloce; (2) As the number of iterations increases, the
speedup achieved by Veloce is significantly improved.

#define N 10
int main() {
 long int i = 0, sum = 0;
 for (i = 0; i < N; i++)
 sum += i;
 return 0;
}

Table-II: Evaluation Results of Sum with Different N

N Simulation Time (s) Emulation Time (s) Speedup (x)

10 1.908 1.663 1.15

100 1.982 1.7 1.17

1000 3.122 1.66 1.88

6

2014 Veloce Emulation Competition Report

10,000 13.776 1.788 7.70

100,000 120.987 3.356 36.05

1,000,000 1216.704 18.941 64.24

10,000,000 13011.505 175.612 74.09

Figure-4 Speedup achieved by Veloce with N increases

5.3 Evaluation Benchmark 2: Booting Linux System on ORPSoC

We evaluate the performance of booting a Linux system on ORPSoC. We compile the
Linux kernel from the source, and build the vmem file from the compiled binary. We
simulated/emulated booting a Linux system on the CPU. It takes about 55 million of
instruction and 198 million of clock cycles to boot the Linux. Veloce takes about 127s
and Xilinx Spartan-6 FPGA with 50MHz clock takes about 30s to boot the Linux
system. Theoretically, FPGA should take shorter time, it took longer than expected is
because it need to program the FPGA from FLASH memory on boot. Table-III shows
the statistics of booting Linux system. However, we didn’t get the time from ModelSim, it
got stuck during the simulation. We timed it at the beginning, ModelSim took about ~2s
to run 10,000 instructions, theoretically ModelSim should take about 3 hours to boot
Linux.

Running an operating system is an important test scenario while developing and testing
SoC designs. In practice, the simulation approach is often not acceptable as it takes
hours to just boot the system, let alone debugging the software running in the system.
Veloce not only provides the designers full traceability over entire software stacks and
hardware systems, but also enables significant speedup over the simulation approach.

7

2014 Veloce Emulation Competition Report

Our evaluation on booting a Linux system on ORPSoC fully demonstrates the benefits
Veloce brings us.

Table-III: CHStone Benchmark Evaluation Results

 # of Instructions # cycles ModelSim
Simulation

Veloce
Emulation

FPGA
(50MHz)

Linux boot-up ~55 million ~198 million ~3 hours ~127.1s ~30s

5.4 Evaluation Benchmark 3: CHStone

CHStone [5] is a C-based benchmark which consists of 12 programs which are selected
from various application domains such as arithmetic, media processing, security and
microprocessor. Table-IV shows the complexity of the benchmark. We compiled all the
designs into executable binary files, and then convert the binary files into vmem files.
Table-IV and Figure-5 demonstrate that (1) when running the applications with the low
complexity, such as GSM, the speedup achieved by Veloce is not obvious; (2) while
running the applications with the high complexity, such as DFSIN, Veloce achieved
significant speedup.

This designs in CHStone benchmark are real industry applications which are widely
used. Running these applications on ORPSoC with simulation and emulation
demonstrates that Veloce also provides benefits in testing SoC designs at
application-level.

8

2014 Veloce Emulation Competition Report

Table-IV: CHStone Benchmark Evaluation Results

App. Domain Design LoC # of Instructions Simulation
 Time (s)

Emulation
 Time (s) Speed-up

Arithmetic DFADD 526 8943366 248.272 14.428 17.21

 DFDIV 436 4328401 116.053 7.812 14.86

 DFMUL 376 3909483 104.182 7.228 14.41

 DFSIN 755 13274785 335.227 19.366 17.31

Microprocessor MIPS 232 64311 3.136 1.704 1.84

Media Proc. ADPCM 541 145840 5.509 1.812 3.04

 GSM 393 25776 2.275 1.668 1.36

 JPEG 1692 4957468 137.109 8.135 16.85

 MOTION 583 62126 3.107 1.699 1.83

Security AES 716 275207 9.102 2.009 4.53

 BLOWFISH 1406 1449807 37.703 1.812 20.81

 SHA 1284 844421 23.792 2.358 10.09

Figure-5 Speedup achieved by Veloce on CHStone benchmark

9

2014 Veloce Emulation Competition Report

6. Discussion and Research in Our Group

Nowadays there are so many electronic products entering the market everyday. To earn
more market share, it requires electronic companies to shorten the product
development cycles and deliver high-quality products. Both academic research groups
and electronic companies are exploring innovative and systematic approaches to
shorten the time-to-market, reduce the development cost and improve the product
quality. In our group, we have been conducting several critical research for achieving
this goal in the past several years.
1). Post-silicon functional validation with virtual prototypes. Post-silicon validation

has become a critical stage in the system-on-chip (SoC) development cycle, driven
by increasing design complexity, higher level of integration and decreasing
time-to-market. According to recent reports, post-silicon validation effort comprises
more than 50% of the overall development effort of an 65nm SoC. Though
post-silicon validation covers many aspects ranging from electronic properties of
hardware to performance and power consumption of whole systems, a central task
remains validating functional correctness of both hardware and its integration with
software. There are several key challenges to achieving accelerated and low-cost
post-silicon functional validation. First, there is only limited silicon observability and
controllability; second, there is no good test coverage estimation over a silicon
device; third, it is difficult to generate good post-silicon tests before a silicon device
is available; fourth, there is no effective software robustness testing approaches to
ensure the quality of hardware/software integration. We propose a systematic
approach to accelerating post-silicon functional validation with virtual prototypes [6].
Post-silicon test coverage [7] is estimated in the pre-silicon stage by evaluating the
test cases on the virtual prototypes. Such analysis is first conducted on the initial test
suite assembled by the user and subsequently on the expanded test suite which
includes test cases that are automatically generated [8]. Based on the coverage
statistics of the initial test suite on the virtual prototypes, test cases are automatically
generated to improve the test coverage using symbolic execution [9]. In the
post-silicon stage, our approach supports coverage evaluation of test cases on
silicon devices to ensure fidelity of early coverage evaluation. The generated test
cases are issued to silicon devices to detect inconsistencies between virtual
prototypes and silicon devices using conformance checking. We further extend the
test case generation framework to generate and inject fault scenario with virtual
prototypes for driver robustness testing. Besides virtual prototype-based fault
injection, an automatic driver fault injection approach is developed to support
runtime fault generation and injection for driver robustness testing [10]. Since virtual

10

2014 Veloce Emulation Competition Report

prototype enables early driver development, our automatic driver fault injection
approach can be applied to driver testing in both pre-silicon and post-silicon stages.
For preliminary evaluation, we have applied our coverage evaluation and test
generation to several network adapters and their virtual prototypes. We have
conducted coverage analysis for a suite of common tests on both the virtual
prototypes and silicon devices. The results show that our approach can estimate the
test coverage with high fidelity. Based on the coverage estimation, we have
employed our automatic test generation approach to generate additional tests. When
the generated test cases were issued to both virtual prototypes and silicon devices,
we observed significant coverage improvement. And we detected 20 inconsistencies
between virtual prototypes and silicon devices, each of which reveals a virtual
prototype or silicon device defect. After we applied virtual prototype-based fault
injection approach to virtual prototypes for three widely-used network adapters, we
generated and injected thousands of fault scenarios and found 2 driver bugs. For
automatic driver fault injection, we have applied our approach to 12 widely used
drivers with either virtual prototypes or silicon devices. After testing all these drivers,
we found 28 distinct bugs.

2). Hardware/Software Interface Assurance with Conformance Checking.
Hardware/Software (HW/SW) interfaces are pervasive in modern computer systems.
Most of HW/SW interfaces are implemented by devices and their device drivers.
Unfortunately, HW/SW interfaces are unreliable and insecure due to their intrinsic
complexity and error-prone nature. Moreover, assuring HW/SW interface reliability
and security is challenging. First, at the post-silicon validation stage, HW/SW
integration validation is largely an ad-hoc and time-consuming process. Second, at
the system deployment stage, transient hardware failures and malicious attacks
make HW/SW interfaces vulnerable even after intensive testing and validation. In
this dissertation, we present a comprehensive solution for HW/SW interface
assurance over the system life cycle. This solution is composed of two major parts.
First, our solution provides a systematic HW/SW co-validation framework which
validates hardware and software together; Second, based on the co-validation
framework, we design two schemes for assuring HW/SW interfaces over the system
life cycle: (1) post-silicon HW/SW co-validation at the post-silicon validation stage;
(2) HW/SW co-monitoring at the system deployment stage. Our HW/SW
co-validation framework employs a key technique, conformance checking which
checks the interface conformance between the device and its reference model [11]
[12]. Furthermore, property checking is carried out to verify system properties over
the interactions between the reference model and the driver [13]. Based on ii the
conformance between the reference model and the device, properties hold on the
reference model/driver interface also hold on the device/driver interface.

11

2014 Veloce Emulation Competition Report

Conformance checking discovers inconsistencies between the device and its
reference model thereby validating device interface implementations of both sides.
Property checking detects both device and driver violations of HW/SW interface
protocols. By detecting device and driver errors, our co-validation approach provides
a systematic and efficient way to validate HW/SW interfaces [14]. We developed two
software tools which implement the two assurance schemes: DCC (Device
Conformance Checker), a co-validation framework for post-silicon HW/SW
integration validation; and CoMon (HW/SW Co-monitoring), a runtime verification
framework for detecting bugs and malicious attacks across HW/SW interfaces. The
two software tools lead to discovery of 42 bugs from four industry hardware devices,
the device drivers, and their reference models. The results have demonstrated the
significance of our approach in HW/SW interface assurance of industry applications.

3). Scalable Equivalence Checking for Behavioral Synthesis. Behavioral synthesis
is the process of compiling an Electronic System Level (ESL) design to a
register-transfer level (RTL) implementation. ESL specifications define the design
functionality at a high level of abstraction (e.g., with C/C++ or SystemC), and thus
provide a promising approach to address the exacting demands to develop
feature-rich, optimized, and complex hardware systems within aggressive
time-to-market schedules. Behavioral synthesis entails application of complex and
error-prone transformations during the compilation process. Therefore, the adoption
of behavioral synthesis highly depends on our ability to ensure that the synthesized
RTL conforms to the ESL description. This research provides an end-to-end scalable
equivalence checking support for behavioral synthesis. The major challenge of this
research is to bridge the huge semantic gap between the ESL and RTL descriptions,
which makes the direct comparison of designs in ESL and RTL difficult. Moreover, a
large number and a wide variety of aggressive transformations from front-end to
back-end require an end-to-end scalable checking framework. A behavioral
synthesis flow can be divided into three major phases, including 1) front-end:
compiler transformations, 2) scheduling: assigning each operation a clock cycle and
satisfying the user-specified constraints, and 3) back-end: local optimizations and
RTL generation. In our end-to-end and incremental equivalence checking
framework, we check each of the three phases one by one. Firstly, we check the
front-end that consists of a sequence of compiler transformations by decomposing it
into a series of checks, one for each transformation applied [16]. We symbolically
explore paths in the input and output programs of each transformation, and check
whether the input and output programs have the same observable behavior under
the same path condition. Secondly, we validate the scheduling transformation by
checking the preservation of control and data dependencies, and the preservation of
I/O timing in the user-specified scheduling mode[17]. Thirdly, we symbolically

12

2014 Veloce Emulation Competition Report

simulate the scheduled design and the generated RTL cycle by cycle, and check the
equivalence of each mapped variables. We also develop several key optimizations
to make our back-end checker scale to real industrial-strength designs [15]. In
addition to the equivalence checking framework, we also present an approach to
detecting deadlocks introduced by parallelization of RTL blocks that are connected
by synthesized interfaces with handshaking protocols.

7. Conclusion and Future Work

In this project, we simulate and emulate an existing open-source SoC design based on
OpenRISC architecture. We successfully simulated the design with ModelSim. More
importantly, we port the design to Veloce emulation platform, and emulated the whole
SoC design. We evaluated the performance of simulation versus emulation on two
benchmarks: Linux System boot-up and CHStone. The results demonstrate that when
ORPSoC executes a large number of instructions, the simulation speed is significant
slow, which may not be acceptable in hardware verification and debugging. With the
help of Veloce, we achieved significant speedup over ModelSim. As our non-trivial
evaluation benchmarks are common SoC testing scenarios in industry, the results
demonstrate that Veloce has a large potential to facilitate hardware
verification/debugging in the real industry practice.

In the future, we plan to add more peripheral devices to the OpenRISC SoC and
evaluate Veloce in depth. We also want to explore advanced features in Veloce, such
as TBX. We plan to build a SoC platform with customized peripherals. Based on the
platform, we will conduct research on SoC debugging and verification with Veloce.

References
[1] OpenRISC 1200 Processor.

http://opencores.org/or1k/OR1200_OpenRISC_Processor
[2] OpenCore. http://opencores.org/
[3] OpenRISC Architecture Specification.

http://opencores.org/or1k/Architecture_Specification
[4] ORPSoC. http://opencores.org/or1k/ORPSoC
[5] CHStone. http://www.ertl.jp/chstone/
[6] K. Cong, “Post-silicon functional validation with virtual prototypes”, Ph.D. dissertation,

Portland State University, 2015.
[7] K. Cong, L. Lei, Z. Yang, and F. Xie, “Coverage Evaluation of Post-silicon Validation

Tests with Virtual Prototypes”, in DATE, 2014.

13

2014 Veloce Emulation Competition Report

[8] K. Cong, F. Xie, and L. Lei, “Automatic concolic test generation with virtual prototypes
for post-silicon validation”, in ICCAD, 2013.

[9] K. Cong, F. Xie, and L. Lei, “Symbolic execution of virtual devices”, in QSIC, 2013.
[10] K. Cong, L. Lei, Z. Yang, and F. Xie, “Automatic Fault Injection for Driver Robustness

Testing”, in ISSTA, 2015.
[11] L. Lei, F. Xie, and K. Cong. “Post-silicon Conformance Checking with Virtual

Prototypes”, in DAC, 2013.
[12] L. Lei, K. Cong, and F. Xie. “Optimizing Post-silicon Conformance Checking”, in ICCD,

2013.
[13] L. Lei, K. Cong, Z. Yang, and F. Xie. “Validating Direct Memory Access Interfaces with

Conformance Checking”, in ICCAD, 2014.
[14] L. Lei, “Hardware/Software Interface Assurance with Conformance Checking”, Ph.D.

Dissertation, Portland State University, 2015.
[15] Z. Yang, K. Hao, S. Ray, and F. Xie. “Handling Design and Implementation Optimizations

in Equivalence Checking for Behavioral Synthesis”, in DAC ,2013.
[16] Z. Yang, K. Hao, K. Cong, L. Lei, S. Ray, and F. Xie. “Scalable Certification Framework

for Behavioral Synthesis Front-End”, in DAC, 2014
[17] Z. Yang, K. Hao, K. Cong, L. Lei, S. Ray, and F. Xie. “Validating Scheduling

Transformations for Behavioral Synthesis”, in DATE, 2016.

14

