
Operating C. Weissman
Systems Editor

Monitors: An
Operating System
Structuring Concept
C.A.R. Hoare
The Queen's University of Belfast

This paper develops Brinch-Hansen's concept of a
monitor as a method of structuring an operating system.
It introduces a form of synchronization, describes a
possible method of implementation in terms of sema-
phores and gives a suitable proof rule. Illustrative
examples include a single resource scheduler, a bounded
buffer, an alarm clock, a buffer pool, a disk head
optimizer, and a version of the problem of readers and
writers.

Key Words and Phrases: monitors, operating systems,
scheduling, mutual exclusion, synchronization, system
implementation languages, structured multiprogramming

CR Categories: 4.31, 4.22

Copyright @ 1974, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted, provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This paper is based on an address delivered to IRIA, France,
May 11, 1973. Author's address: Department of Computer Science,
The Queen's University of Belfast, Belfast BT7 INN, Northern
Ireland•

I. Introduction

A primary aim of an operating system is to share a
computer installation among many programs making
unpredictable demands upon its resources• A primary
task of its designer is therefore to construct resource
allocation (or scheduling) algorithms for resources of
various kinds (main store, drum store, magnetic tape
handlers, consoles, etc.). In order to simplify his task, he
should try to construct separate schedulers for each class
of resource. Each scheduler will consist of a certain
amount of local administrative data, together with some
procedures and functions which are called by programs
wishing to acquire and release resources. Such a collec-
tion of associated data and procedures is known as a
moni tor; and a suitable notation can be based on the
class notation of sIrvtULA67 [6].

monit orname : monitor
begin.., declarations of data local to the monitor;

procedure procname (. . . formal parameters...) ;
begin.. , procedure body. . , end;

•. . declarations of other procedures local to the monitor;
• . . initialization of local data of the monitor...

end;

Note that the procedure bodies may have local data, in
the normal way.

In order to call a procedure of a monitor, it is neces-
sary to give the name of the monitor as well as the name
of the desired procedure, separating them by a dot:

monitorname.procname(.., actual parameters...) ;

In an operating system it is sometimes desirable to
declare several monitors with identical structure and
behavior, for example to schedule two similar resources•
In such cases, the declaration shown above will be
preceded by the word class, and the separate momtors
will be declared to belong to this class:

monitor I, monitor 2: classname;

Thus the structure of a class of monitors is identical to
that described for a data representation in [13], except
for addition of the basic word moni tor . Brinch-Hansen
uses the word shared for the same purpose [3].

The procedures of a monitor are common to all
running programs, in the sense that any program may at
any time attempt to call such a procedure• However, it is
essential that only one program at a time actually
succeed in entering a monitor procedure, and any sub-
sequent call must be held up until the previous call has
been completed. Otherwise, if two procedure bodies
were in simultaneous execution, the effects on the local
variables of the monitor could be chaotic• The proce-

549 Communications October 1974
of Volume 17
the ACM Number 10

dures local to a moni tor should not access any nonlocal
variables other than those local to the same monitor,
and these variables of the monitor should be inaccessible
f rom outside the monitor. I f these restrictions are im-
posed, it is possible to guarantee against certain of the
more obscure forms of time-dependent coding error;
and this guarantee could be underwritten by a visual
scan of the text of the program, which could readily be
automated in a compiler.

Any dynamic resource allocator will sometimes need
to delay a program wishing to acquire a resource which
is not currently available, and to resume that program
after some other program has released the resource
required. We therefore need: a "wai t" operation, issued
f rom inside a procedure of the monitor, which causes
the calling program to be delayed; and a "signal" opera-
tion, also issued f rom inside a procedure of the same
monitor, which causes exactly one of the waiting pro-
grams to be resumed immediately. I f there are no wait-
ing programs, the signal has no effect. In order to enable
other programs to release resources during a wait, a wait
operation must relinquish the exclusion which would
otherwise prevent entry to the releasing procedure.
However, we decree that a signal operation be followed
immediately by resumption of a waiting program, with-
out possibility of an intervening procedure call f rom yet
a third program. I t is only in this way that a waiting
program has an absolute guarantee that it can acquire
the resource just released by the signalling program
without any danger that a third program will interpose a
monitor entry and seize the resource instead.

In many cases, there may be more than one reason
for waiting, and these need to be distinguished by both
the waiting and the signalling operation. We therefore
introduce a new type of "var iable" known as a "condi-
t ion"; and the writer of a {nonitor should declare a
variable of type condition for each reason why a pro-
gram might have to wait. Then the wait and signal
operations should be preceded by the name of the
relevant condition variable, separated f rom it by a dot:

condvariable, wait;
eondvariable, signal;

Note that a condition "var iable" is neither true nor
false; indeed, it does not have any stored value accessible
to the program. In practice, a condition variable will be
represented by an (initially empty) queue of processes
which are currently waiting on the condition; but this
queue is invisible both to waiters and signallers. This
design of the condition variable has been deliberately
kept as primitive and rudimentary as possible, so that it
may ' be implemented efficiently and used flexibly to
achieve a wide variety of effects. There is a great temp-
tation to introduce a more complex synchronization
primitive, which may be easier to use for many purposes.
We shall resist this temptat ion for a while.

As the simplest example of a monitor, we will design
a scheduling algorithm for a single resource, which is

dynamically acquired and released by an unknown
number of customer processes by calls on procedures

procedure acquire;
procedure release;

A variable 1

busy: Boolean

determines whether or not the resource is in use. I f an
at tempt is made to acquire the resource when it is busy,
the attempting program must be delayed by waiting on
a variable

nonbusy : condition

which is signalled by the next subsequent release. The
initial value of busy is false. These design decisions lead
to the following code for the monitor:

single resource:monitor
begin busy: Boolean;

nonbusy : condition;
procedure acquire;

begin if busy then nonbusy, wa#;
busy : = true

end;
procedure release;

begin busy := false;
nonbusy, signal

end;
busy : = false; comment initial value;

end single resource

Notes
1. In designing a monitor, it seems natural to design
the procedure headings, the data, the conditions, and
the procedure bodies, in that order. All subsequent
examples will be designed in this way.
2. The acquire procedure does not have to retest that
busy has gone false when it resumes after its wait, since
the release procedure has guaranteed that this is so; and
as mentioned before, no other program can intervene
between the signal and the continuation of exactly one
waiting program.
3. I f more than one program is waiting on a condition,
we postulate that the signal operation will reactivate the
longest waiting program. This gives a simple neutral
queuing discipline which ensures that every waiting
program will eventually get its turn.
4. The single resource monitor simulates a Boolean
semaphore [7] with acquire and release used for P and V
respectively. This is a simple proof that the moni to r /
condition concepts are not in principle less powerful
than semaphores, and that they can be used for all the
same purposes.

1 As in PASCAL [15], a variable declaration is of the form:
(variable identifier) : (type);

550 Communications October 1974
of Volume 17
the ACM Number 10

2. Interpretation

Having proved that semaphores can be implemented
by a monitor, the next task is to prove that monitors can
be implemented by semaphores.

Obviously, we shall require for each monitor a
Boolean semaphore " r n u t e x " to ensure that the bodies
of the local procedures exclude each other. The sema-
phore is initialized to 1 ; a P (m u t e x) must be executed on
entry to each local procedure, and a V (m u t e x) must
usually be executed on exit f rom it.

When a process signals a condition on which another
process is waiting, the signalling process must wait until
the resumed process permits it to proceed. We therefore
introduce for each monitor a second semaphore
" u r g e n t " (initialized to 0), on which signalling processes
suspend themselves by the operation P(urgen t) . Before
releasing exclusion, each process must test whether any
other process is waiting on urgent , and if so, must release
it instead by a V(urgen t) instruction. We therefore need
to count the number of processes waiting on urgent , in
an integer " u r g e n t c o u n t " (initially zero). Thus each exit
f rom a procedure of a monitor should be coded:

if urgentcount > 0 then V(urgent) else V(mutex)

Finally, for each condition local to the monitor, we
introduce a semaphore " c o n d s e m " (initialized to 0), on
which a process desiring to wait suspends itself by a
P(condsem) operation. Since a process signalling this
condition needs to know whether anybody is waiting, we
also need a count of the number of waiting processes
held in an integer variable "condcoun t " (initially 0). The
operation "cond . wa i t " may now be implemented as
follows (recall that a waiting program must release ex-
clusion before suspending itself):

condcount := condcount -Jr- 1;
if urgentcount > 0 then V(urgent) else V(mutex) ;
P(condsem) ;
comment This will always wait;
condcount := condcount - 1

The signal operation may be coded:

urgentcount : = urgentcount -}- 1 ;
if condcount > 0 then { V(condsem) ; P(urgent) } ;
urgentcount := urgentcount -- 1

In this implementation, possession of the monitor is
regarded as a privilege which is explicitly passed from
one process to another. Only when no one further wants
the privilege is m u t e x finally released.

This solution is not intended to correspond to rec-
ommended "style" in the use of semaphores. The con-
cept of a condition-variable is intended as a substitute
for semaphores, and has its own style of usage, in the
same way that while-loops or coroutines are intended as
a substitute for jumps.

In many cases, the generality of this solution is un-
necessary, and a significant improvement in efficiency is
possible.
1. When a procedure body in a monitor contains no

551

wait or signal, exit f rom the body can be coded by a
simple V (m u t e x) , since urgentcount cannot have changed
during the execution of the body.
2. I f a cond . s igna l is the last operation of a procedure
body, it can be combined with moni tor exit as follows:

if condcount > 0 then V(condsem)
else if urgentcount > 0 then V(urgent)

rise V(mutex)

3. I f there is no other wait or signal in the procedure
body, the second line shown above can also be omitted.
4. I f every signal occurs as the last operation of its
procedure body, the variables urgen tcount and urgent
can be omitted, together with all operations upon them.
This is such a simplification that O-J. Dahl suggests that
signals should always be the last operation of a monitor
procedure; in fact, this restriction is a very natural one,
which has been unwittingly observed in all examples of
this paper.

Significant improvements in effÉciency may also be
obtained by avoiding the use of semaphores, and by
implementing conditions directly in hardware, or at the
lowest and most uninterruptible level of software (e.g.
supervisor mode). In this case, the following optimiza-
tions are possible.
1. urgen tcount and condcount can be abolished, since
the fact that someone is waiting can be established by
examining the representation of the semaphore, which
cannot change surreptitiously within noninterruptible
mode.
2. Many monitors are very short and contain no calls
to other monitors. Such monitors can be executed
wholly in noninterruptible mode, using, as it were, the
common exclusion mechanism provided by hardware.
This will often involve less time in noninterruptible
mode than the establishment of separate exclusion for
each monitor.

I am grateful to J. Bezivin, J. Horning, and R.M.
McKeag for assisting in the discovery of this algorithm.

3. Proof Rules

The analogy between a monitor and a data repre-
sentation has been noted in the introduction. The mu-
tual exclusion on the code of a moni tor ensures that
procedure calls follow each other in time, just as they do
in sequential programming; and the same restrictions
are placed on access to nonlocal data. These are the
reasons why the same proof rules can be applied to
monitors as to data representations.

As with a data representation, the programmer may
associate an invariant ~ with the local data of a monitor,
to describe some condition which will be true of this data
before and after every procedure call. ~ must also be
made true after initialization of the data, and before
e v e r y wait instruction; otherwise the next following
procedure call will not find the local data in a state
which it expects.

Communications October 1974
of Volume 17
the ACM Number 10

With each condition variable b the programmer may
associate an assertion B which describes the condition
under which a program waiting on b wishes to be re-
sumed. Since other programs may invoke a monitor
procedure during a wait, a waiting program must ensure
that the invariant ~ for the monitor is true beforehand.
This gives the proof rule for waits:

{ b . w a i t } ~ & B

Since a signal can cause immediate resumption of a wait-
ing program, the conditions ~&B which are expected by
that program must be made true before the signal; and
since B may be made false again by the resumed pro-
gram, only ~ may be assumed true afterwards. Thus the
proof rule for a signal is:

~ & B { b . s i g n a l } ~

This exhibits a pleasing symmetry with the rule for
waiting.

The introduction of condition variables makes it
possible to write monitors subject to the risk of deadly
embrace [7]. It is the responsibility of the programmer
to avoid this risk, together with other scheduling disasters
(thrashing, indefinitely repeated overtaking, etc. [11]).
Assertion-oriented proof methods cannot prove absence
of such risks; perhaps it is better to use less formal
methods for such proofs.

Finally, in many cases an operating system monitor
constructs some "vir tual" resource which is used
in place of actual resources by its "cus tomer" pro-
grams. This virtual resource is an abstraction f rom
the set of local variables of the monitor. The program
prover should therefore define this abstraction in terms
of its concrete representation, and then express the in-
tended effect of each of the procedure bodies in terms of
the abstraction. This proof method is described in detail
in [13].

4. Example: Bounded Buffer

A bounded buffer is a concrete representation of the
abstract idea of a sequence of portions. The sequence is
accessible to two programs running in parallel: the first
of these (the producer) updates the sequence by append-
ing a new portion x at the end; and the second (the
consumer) updates it by removing the first portion. The
initial value of the sequence is empty. We thus require
two operations:

(1) append(x:portion) ;

which should be equivalent to the abstract operation

sequence := sequence n (x);

where (x) is the sequence whose only item is x and n de-
notes concatenation of two sequences.

(2) remove(result x: portion) ;

which should be equivalent to the abstract operations

x := first(sequence); sequence := rest(sequence);

where f i r s t selects the first item of a sequence and res t
denotes the sequence with its first item removed. Ob-
viously, if the sequence is empty, f i r s t is undefined; and
in this case we want to ensure that the consumer waits
until the producer has made the sequence nonempty.

We shall assume that the amount of time taken to
produce a portion or consume it is large in comparison
with the time taken to append or remove it f rom the
sequence. We may therefore be justified in making a
design in which producer and consumer can both update
the sequence, but not simultaneously•

The sequence is represented by an array:

buffer :array 0..N -- 1 of portion;

and two variables:

(1) l a s tpo in t e r :O . .N - 1;

which points to the buffer position into which the next
append operation will put a new item, and

(2) count:O..N;

which always holds the length of the sequence (initially
0).

We define the function

seq (b,l,c) =dS if C = 0 then empty
else seq(b, lOl ,c- 1) n(b[lG1])

where the circled operations are taken modulo N. Note
that i f c ~ O,

first(seq(b,l,c)) = b[l~c]

and

rest(seq(b,l,c)) = seq(b,l ,c- 1)

The definition of the abstract sequence in terms of its
concrete representation may now be given:

sequence =as seq(buffer, lastpointer, count)

Less formally, this may be written

sequence =as (buffer[last pointerOcount],
buffer[lastpointerOcountQ1],

buffe r[lastpointerO 1])

Another way of conveying this information would be by
an example and a picture, which would be even less
formal.

The invariant for the moni tor is:

0 <_ count < N & 0 <_ lastpointer < N -- 1

There are two reasons for waiting, which must be
represented by condition variables:

nonem pty : condition;

means that the count is greater than 0, and

non full: condition;

means that the count is less than N.

552 Communications October 1974
of Volume 17
the ACM Number 10

With this constructive approach to the design [8], it
is relatively easy to code the monitor without error.

bounded buffer:monitor
begin buffer:array 0..N -- 1 of portion;

lastpointer:O. . N -- 1 ;
count'.O. .N;
nonempty ,non full : condition;

procedure append(x : portion) ;
begin if count = N then nonfull, wait;

note 0 < count < N;
buffer[lastpointer] := x;
lastpointer := lastpointer @ 1;
count : = count--}- 1 ;
nonempty, signal

end append;
procedure remove(result x :portion) ;

begin if count = 0 then nonempty, wait;
note 0 < count < N;
x := buffer[lastpointerOeount];
non full . signal

end remove;
count := 0; lastpointer := 0;

end bounded buffer;

A formal proof of the correctness of this monitor
with respect to the stated abstraction and invariant can
be given if desired by techniques described in [13]. How-
ever, these techniques seem not capable of dealing with
subsequent examples of this paper.

Single-buffered input and output may be regarded as
a special case of the bounded buffer with N = I. In this
ease, the array can be replaced by a single variable, the
l a s t p o i n t e r is redundant, and we get:

iostream : monitor
begin buffer:portion;

count: O.. l ;
nonempty,nonfull: condition;

procedure append(x :portion) ;
begin if count = 1 then non full . wait;

buffer := x;
count : = 1;
nonempty, signal

end append;
procedure remove(result x :portion) ;

begin if count = 0 then nonempty.wait;
x := buffer;
count := 0;
non full . signal

end remove;
count := 0;

end iostream;

I f physical output is carried out by a separate special
purpose channel, then the interrupt f rom the channel
should simulate a call of i o s t r e a m . r e m o v e (x) ; and
similarly for physical input, simulating a call of
i o s t r e a m . a p p e n d (x) .

5. Scheduled Waits

Up to this point, we have assumed that when more
than one program is waiting for the same condition, a
signal will cause the longest waiting program to be
resumed. This is a good simple scheduling strategy,

which precludes indefinite overtaking of a waiting
process.

However, in the design of an operating system, there
are many cases when such simple scheduling on the
basis of first-come-first-served is not adequate. In order
to give a closer control over scheduling strategy, we
introduce a further feature of a conditional wait, which
makes it possible to specify as a parameter of the wait
some indication of the priority of the waiting program,
e.g.:

busy . wait (p);

When the condition is signalled, it is the program that
specified the lowest value of p that is resumed. In using
this facility, the designer of a monitor must take care to
avoid the risk of indefinite overtaking; and often it is
advisable to make priority a nondecreasing function of
the time at which the wait commences.

This introduction of a "scheduled wait" concedes to
the temptation to make the condition concept more
elaborate. The main justifications are:
1. It has no effect whatsoever on the log ic of a program,
or on the formal proof rules. Any program which works
without a scheduled wait will work with it, but possibly
with better timing characteristics.
2. The automatic ordering of the queue of waiting
processes is a simple fast scheduling technique, except
when the queue is exceptionally l ong- -and when it is,
cer.~ral processor time is not the major bottleneck.
3. The maximum amount of storage required is one
word per process. Without such a built-in scheduling
method, each monitor may have to allocate storage pro-
portional to the number of its customers; the alternative
of dynamic storage allocation in small chunks is un-
attractive at the low level of an operating system where
moni tors are found.

I shall yield to one further temptation, to introduce a
Boolean function of conditions:

condname, queue

which yields the value true if anyone is waiting on
c o n d n a m e and false otherwise. This can obviously be
easily implemented by a couple of instructions, and
affords valuable information which could otherwise be
obtained only at the expense of extra storage, time, and
trouble.

A trivially simple example is an a l a r m c l o c k monitor,
which enables a calling program to delay itself for a
stated number n of time-units, or " t i c k s " . There are two
entries:

procedure wakeme (n: integer) ;
procedure tick;

The second of these is invoked by hardware (e.g. an
interrupt) at regular intervals, say ten times per second.
Local variables are

now: integer;

553 Communications October 1974
of Volume 17
the ACM Number 10

which records the current time (initially zero) and

wakeup : condition;

on which sleeping programs wait. But the a l a r m s e t t i n g

at which these programs will be aroused is known at the
time when they start the wait; and this can be used to
determine the correct sequence of waking up.

alarmclock : monitor
begin now: integer;

wakeup: condition;
procedure wakeme(n: integer) ;

begin alarmsetting: integer;
alarmsetting := now -]- n;
while now < alarmsetting do wakeup, wait(alarmsetting) ;
wakeup, signal;
comment In case the next process is due to wake up at the
same time;

end;
procedure tick;

begin now := now -q- 1;
wakeup, signal

end;
nOW : : 0

end alarmclock

In the program given above, the next candidate for
wakening is actually woken at every tick of the clock.
This will not matter if the frequency of ticking is low
enough, and the overhead of an accepted signal is not
too high.

I am grateful to A. Ballard and J. Horning for posing
this problem.

6. Further Examples

In proposing a new feature for a high level language
it is very difficult to make a convincing case that the
feature will be both easy to use efficiently and easy to
implement efficiently. Quality of implementation can be
proved by a single good example, but ease and efficiency
of use require a great number of realistic examples;
otherwise it can appear that the new feature has been
specially designed to suit the examples, or vice versa•
This section contains a number of additional examples
of solutions of familiar problems• Further examples may
be found in [14].

6.1 Buffer Allocation
The bounded buffer described in Section 4 was

designed to be suitable only for seque.nces with small
portions, for example, message queues• I f the buffers
contain high volume information (for example, files for
pseudo offline input and output), the bounded buffer
may still be used to store the a d d r e s s e s of the buffers
which are being used to hold the information. In this
way, the producer can be filling one buffer while the
consumer is emptying another buffer of the same se-
quence. But this requires an allocator for dynamic
acquisition and relinquishment of b u f f e r a d d r e s s e s .

These may be declared as a type

type bufferaddress = 1 . . B ;

where B is the number of buffers available for allocation.
The buffer allocator has two entries:

procedure acquire (result b: buf f e raddress) ;

which delivers a free b u f f e r a d d r e s s b; and

procedure release(b : bufferaddress) ;

which returns a b u f f e r a d d r e s s when it is no longer re-
quired. In order to keep a record of free buffer addresses
the monitor will need:

f reepool: powerset bufferaddress;

which uses the P A S C A L powerset facility to define a
variable whose values range over all sets of b u f f e r

a d d r e s s e s , f rom the empty set to the set containing all
b u f f e r a d d r e s s e s . I t should be implemented as a b i t m a p

of B consecutive bits, where the ith bit is 1 if and only if
i is in the set. There is only one condition variable
needed:

nonempty : condition

which means that f r e e p o o l ~ e m p t y . The code for the
allocator is:

buffer allocator: monitor
begin freepool: powerset bufferaddress;

nonempty : condition;
procedure acquire (result b: bufferaddress) ;

begin i f f reepool = empty then nonempty .wai t ;
b := f irst(freepool) ;
comment Any one would do;
freepool : = freepool -- { b } ;
comment Set subtraction;

end acquire;
procedure release(b :bufferaddress) ;

begin f reepool : = f reepool -- { b } ;
nonempty , signal

end release;
f reepool := all buffer addresses

end buffer allocator

The action of a producer and consumer may be
summarized:

producer: begin b :bufferaddress; . . .
while not f inished do

begin bufferallocator, acquire(b) ;
• . . f i l l buffer b . . . ;
bounded buffer, append(b)

end; . . .
end producer;

consumer: begin b: bufferaddress; . . .
while not f inished do

begin bounded buffer, remove(b) ;
• . . empty buffer b . . . ;
buffer allocator, release(b)

end; . . .
end consumer;

This buffer allocator would appear to be usable to
share the buffers among several streams, each with its
own producer and its own consumer, and its own in-
stance of a bounded buffer monitor. Unfortunately,

554 Communications October 1974
of Volume 17
the ACM Number 10

when the streams operate at widely varying speeds, and
when the freepool is empty, the scheduling algorithm
can exhibit persistent undesirable behavior. I f two pro-
ducers are competing for each buffer as it becomes free,
a first-come-first-served discipline of allocation will
ensure (apparently fairly) that each gets alternate
buffers; and they will consequently begin to produce at
equal speeds. But if one consumer is a 1000 lines/min
printer and the other is a 10 lines/min teletype, the
faster consumer will be eventually reduced to the speed
of the slower, since it cannot forever go faster than its
producer. At this stage nearly all buffers will belong to
the slower stream, so the situation could take a long
time to clear.

A solution to this is to use a scheduled wait, to
ensure that in heavy load conditions the available buffers
will be shared reasonably fairly between the streams that
are competing for them. Of course, inactive streams
need not be considered, and streams for which the con-
sumer is currently faster than the producer will never
ask for more than two buffers anyway. In order to
achieve fairness in allocation, it is sufficient to allocate a
newly freed buffer to that one among the competing
producers whose stream currently owns fewest buffers.
Thus the system will seek a point as far away from the
undesirable extreme as possible.

For this reason, the entries to the allocator shotild
indicate for what stream the buffer is to be (or has been)
used, and the allocator must keep a count of the current
allocation to each stream in an array:

count: array stream of integer;

The new version of the allocator is:

bufferallocator: monitor
begin freepool: powerset bufferaddress;

nonempty : condition
count: array stream of integer;

procedure acquire(result b:bufferaddress; s:stream) ;
begin i f freepool = empty then nonempty.wait(count[s]) ;

count[s] := count[s] + 1;
b : = firstOCreepool) ;
freepool := freepool -- {b}

end acquire;
procedure release(b:bufferaddress; s:stream)

begin count[s] := count[s] -- 1;
freepool := freepool -- {b};
nonempty, signal

en d;
freepool : = all buffer addresses;
for s:stream do count[s] := 0

end bufferallocator

Of course, if a consumer stops altogether, perhaps
owing to mechanical failure, the producer must also be
halted before it has acquired too many buffers, even if
no one else currently wants them. This can perhaps be
most easily accomplished by appropriate fixing of the
size of the bounded buffer for that stream and /o r by
ensuring that at least two buffers are reserved for each
stream, even when inactive. It is an interesting comment
on dynamic resource allocation that, as soon as re-

sources are heavily loaded, the system must be designed
to fall back toward a more static regime.

I am grateful to E.W. Dijkstra for pointing out this
problem and its solution [10].

6.2 D i s k H e a d Scheduler
On a moving head disk, the time taken to move the

heads increases monotonically with the distance
traveled. I f several programs wish to move the heads, the
average waiting time can be reduced by selecting, first,
the program which wishes to move them the shortest
distance. But unfortunately this policy is subject to an
instability, since a program wishing to access a cylinder
at one edge of the disk can be indefinitely overtaken by
programs operating at the other edge or the middle.

A solution to this is to minimize the frequency of
change of direction of movement of the heads. At any
time, the heads are kept moving in a given direction,
and they service the program requesting the nearest
cylinder in that direction. I f there is no such request, the
direction changes, and the heads make another sweep
across the surface of the disk. This may be called the
"elevator" algorithm, since it simulates the behavior of
a lift in a multi-storey building.

There are two entries to a disk head scheduler:

(1) request(dest :cylinder) ;

where

type cylinder = O. • cylmax;

which is entered by a p rogram just b e f o r e issuing the
instruction to move the heads to cylinder dest .

(2) release;

which is entered by a program when it has made all the
transfers it needs on the current cylinder.

The local data of the moni tor must include a record
o f the current headposition, h e a d p o s , the current direc-
tion o f s w e e p , and whether the disk is b u s y :

headpos: cylinder;
direction: (up, down) ;
busy: Boolean

We need two conditions, one for requests waiting for an
u p s w e e p and the other for requests waiting for a d o w n -

s w e e p :

upsweep, downsweep:condition

disehead : monitor
begin headpos:cylinder;

direction: (up, down) ;
busy: Boolean;
upsweep ,downsweep : condition;

procedure request (dest : cylinder) ;
begin if busy then

{if headpos < dest V headpos = dest & direction = up
then upsweep, wait(dest)
else downsweep, wait (c ylmax-dest) } ;

busy := true; headpos := dest
end request;

555 Communications October 1974
of Volume 17
the ACM Number 10

procedure release;
begin busy := false;

if direction = up then
{if upsweep, queue then upsweep, signal

else {direction := down;
downsweep, signal} }

else if downsweep.queue then downsweep, signal
else {direction := up;

upsweep, signal}
end release;
headpos := 0; direction := up; busy := false

end dischead;

6.3 Readers and Writers

As a more significant example, we take a problem
which arises in on-line real-time applications such as
airspace control. Suppose that each aircraft is repre-
sented by a record, and that this record is kept up to
date by a number of "wri ter" processes and accessed by
a number of " reader" processes. Any number of
" reader" processes may simultaneously access the same
record, but obviously any process which is updating
(writing) the individual components of the record must
have exclusive access to it, or chaos will ensue. Thus we
need a class of monitors; an instance of this class local
to e a c h individual aircraft record will enforce the re-
quired discipline for that record. I f there are many air-
craft, there is a strong motivation for minimizing local
data of the monitor; and if each read or write operation
is brief, we should also minimize the time taken by each
monitor entry.

When many readers are interested in a single aircraft
record, there is a danger that a writer will be indefinitely
prevented f rom keeping that record up to date. We
therefore decide that a new reader should not be per-
mitted to start if there is a writer waiting. Similarly, to
avoid the danger of indefinite exclusion of readers, all
readers waiting at the end of a write should have priority
over the next writer. Note that this is a very different
scheduling rule f rom that propounded in [4], and does
not seem to require such subtlety in implementation.
Nevertheless, it may be more suited to this kind of
application, where it is better to read stale information
than to wait indefinitely!

The monitor obviously requires four local proce-
dures:

startread entered by reader who wishes to read.
endread entered by reader who has finished reading.
startwrite entered by writer who wishes to write.
endwrite entered by writer who has finished writing.

We need to keep a count of the number of users who are
reading, so that the last reader to finish will know this
fact:

readercount : integer

We also need a B o o l e a n to indicate that someone is
actually writing:

busy: Boolean;

We introduce separate conditions for readers and

writers to wait on:

OKtoread, OKtowrite:conditionl;

The following annotation is relevant:

OKtoread -~ -7 busy
OKtowrite ~ --1 busy & readercount = 0
invariant: busy ~ readercount = 0

class readers and writers: monitor
begin readercount : integer;

busy: Boolean;
OKtoread, OKtowrite:condition;

procedure startread;
begin if busy V OKtowrite .queue then OKtoread. wait;

readercount := readercount d- 1;
OKtoread. signal;
comment Once one reader can start, they all can;

end startread;
procedure endread;

begin readercount : = readercount -- 1 ;
if readercount = 0 then OKtowrite . signal

end endread;
procedure startwrite;

begin
if readercount ~ 0 V busy then OKtowrite . wait
busy := true

end startwrite;
procedure endwrite;

begin busy := false;
if OKtoread.queue then OKtoread.s ignal

else OKtowri te .s ignal
end endwrite;

readercount := 0;
busy := false;

end readers and writers;

I am grateful to Dave Gorman for assisting in the
discovery of this solution.

7. Conclusion

This paper suggests that an appropriate structure for
a module of an operating system, which schedules re-
sources for parallel user processes, is very similar to that
of a data representation used by a sequential program.
However, in the case of monitors, the bodies of the
procedures must be protected against re-entrance by
being implemented as critical regions. The textual group-
ing of critical regions together with the data which they
update seems much superior to critical regions scattered
through the user program, as described in [7, 12]. It also
corresponds to the traditional practice of the writers of
operating system supervisors. It can be recommended
without reservation.

However, it is much more difficult to be confident
about the condition concept as a synchronizing primi-
tive. The synchronizing facility which is easiest to use is
probably the conditional w a i t [2, 12] :

wait(B) ;

where B is a general Boolean expression (it causes the
given process to wait until B becomes true) ; but this may
be too inefficient for general use in operating systems,

556 Communications October 1974
of Volume 17
the ACM Number 10

because its implementation requires re-evaluation of the
expression B after every exit f rom a procedure of the
monitor. The condition variable gives the programmer
better control over efficiency and over scheduling; it was
designed to be very primitive, and to have a simple proof
rule. But perhaps some other compromise between
convenience and efficiency might be better. The question
whether the signal should always be the last operation
of a monitor procedure is still open. These problems will
be studied in the design and implementation of a pilot
project operating system, currently enjoying the support
of the Science Research Council of Great Britain.

Another question which will be studied will be that
of the disjointness of monitors: Is it possible to design a
separate isolated monitor for each kind of resource, so
that it will make sensible scheduling decisions for that
resource, using only the minimal information about the
utilization of that resource, and using no information
about the utilization of any resource administered by
other monitors? In principle, it would seem that, when
more knowledge of the status of the entire system is
available, it should be easier to take decisions nearer to
optimality. Furthermore, in principle, independent
scheduling of different kinds of resource can lead to
deadly embrace. These considerations would lead to the
design of a traditional "monoli thic" monitor, maintain-
ing large system tables, all of which can be accessed and
updated by any of the procedures of the monitor.

There is no a priori reason why the at tempt to split
the functions of an operating system into a number of
isolated disjoint monitors should succeed. It can be
made to succeed only by discovering and implementing
good scheduling algorithms in each monitor. In order to
avoid undesirable interactions between the separate
scheduling algorithms, it appears necessary to observe
the following principles:
1. Never seek to make an optimal decision ; merely seek
to avoid persistently pessimal decisions.
2. Do not seek to present the user with a virtual ma-
chine which is better than the actual hardware; merely
seek to pass on the speed, size, and flat unopiniated
structure of a simple hardware design.
3. Use preemptive techniques in preference to non-
preemptive ones where possible.
4. Use "grain of t ime" [9] methods to secure independ-
ence of scheduling strategies.
5. Keep a low variance (as well as a low mean) on
waiting times.
6. Avoid fixed priorities; instead, try to ensure that
every program in the system makes reasonably steady
progress. In particular, avoid indefinite overtaking.
7. Ensure that when demand for resources outstrips
the supply (i.e. in overload conditions), the behavior of
the scheduler is satisfactory (i.e. thrashing is avoided).
8. Make rules for the correct and sensible use of moni-
tor calls, and assume that user programs will obey
them. Any checking which is necessary should be done
not by a central shared monitor, but rather by an

algorithm (called "user envelope") which is local to
each process executing a user program. This algorithm
should be implemented at least partially in the hardware
(e.g. base and range registers, address translation mech-
anisms, capabilities, etc.).

It is the possibility of constructing separate monitors
for different purposes, and of separating the scheduling
decisions embodied in monitors f rom the checking
embodied in user envelopes, that may justify a hope
that monitors are an appropriate concept for the struc-
turing of an operating system.

Acknowledgments . The development of the moni tor
concept is due to frequent discussions and communica-
tions with E.W. Dijkstra and P. Brinch-Hansen. A
monitor corresponds to the "secretary" described in
[9], and is also described in [1, 3].

Acknowledgment is also due to the support of IFIP
wc.2.3., which provides a meeting place at which these
and many other ideas have been germinated, fostered,
and tested.

Received February 1973; revised April 1974

References
1. Brinch-Hansen, P. Structured multiprogramming. Comm.
ACM 15, 7 (July 1972), 574-577.
2. Brinch-Hansen, P. "A comparison of two synchronizing
concepts," Aeta Information 1 (1972), 190-199.
3. Brinch-Hansen, P. Operating System Principles. Prentice-Hall,
Englewood Cliffs, N.J., 1973.
4. Courtois, P. J., Heymans, F., Parnas, D.L. Concurrent control
with readers and writers. Comm. ACM 14, 10 (Oct. 1971), 6 67-668.
5. Courtois, P.J., Heymans, F., Parnas, D.L. Comments on [2].
Acta lnformatica 1 (1972), 375-376.
6. Dahl, O.J. Hierarchical program structures. In Structured
Programming, Academic Press, New York, 1972.
7. Dijkstra, E.W. Cooperating Sequential Processes. In Program-
ming Languages (Ed. F. Genuys), Academic Press, New York,
1968.
8. Dijkstra, E.W. A constructive approach to the problem of
program correctness. BIT8 (1968), 174-186.
9. Dijkstra, E.W. Hierarchical ordering of sequential processes.
In Operating Systems Techniques, Academic Press, New York,
1972.
10. Dijkstra, E.W. Information streams sharing a finite buffer.
Information Processing Letters 1, 5 (Oct. 1972), 179-180.
11. Dijkstra, E.W. A class of allocation strategies inducing
bounded delays only. Proc AFIPS 1972 SJCC, Vol. 40,
AFIPS Press, Montvale, N.J., pp. 933-936.
12. Hoare, C.A.R. Towards a theory of parallel programming. In
Operath~g Systems Techniques, Academic Press, New York, 1972.
13. Hoare, C.A.R. Proof of correctness of data representations.
Acta Informatica 1 (1972), 271-281.
14. Hoare, C.A.R. A structured paging system. Computer J. 16, 3
(1973), 209-215.
15. Wirth, N. The programming language PASCAL. Acta
blformatica 1, 1 (1971), 35-63.

55"/ Communications October 1974
of Volume 17
the ACM Number 10

